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Abstract
This paper deals with a clustering approach based on mixture models to analyze
multidimensional mobility count time-series data within a multimodal transport hub.
These time series are very likely to evolve depending on various periods characterized
by strikes, maintenance works, or health measures against the Covid19 pandemic. In
addition, exogenous one-off factors, such as concerts and transport disruptions, can
also impact mobility. Our approach flexibly detects time segments within which the
very noisy count data is synthesized into regular spatio-temporal mobility profiles.
At the upper level of the modeling, evolving mixing weights are designed to detect
segments properly. At the lower level, segment-specific count regression models take
into account correlations between series and overdispersion as well as the impact of
exogenous factors. For this purpose, we set up and compare two promising strategies
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that can address this issue, namely the “sums and shares” and “Poisson log-normal”
models. The proposed methodologies are applied to actual data collected within a
multimodal transport hub in the Paris region. Ticketing logs and pedestrian counts
provided by stereo cameras are considered here. Experiments are carried out to show
the ability of the statistical models to highlight mobility patterns within the transport
hub. One model is chosen based on its ability to detect the most continuous segments
possible while fitting the count time series well. An in-depth analysis of the time
segmentation, mobility patterns, and impact of exogenous factors obtained with the
chosen model is finally performed.

Keywords Mixture model · Sums and shares models · Poisson log-normal · EM
algorithm · Multimodal transport hub · Mobility data

Mathematical Subject Classification 62H10 · 62H30

1 Introduction

Multivariate count data are increasingly collected in the form of time series with the
help of various sensing systems. These time series are found in many domains such
as economics, meteorology, transport or bioinformatics. In the field of mobility, these
series are often presented as counts of people acquired at several points in a city
(Fernández-Ares et al. 2017), a transport network (Mützel and Scheiner 2021) or a
multimodal hub (de Nailly et al. 2021). In a context where transportation areas are
very congested due to increased use of public transport, crowdmovement analysis and
evacuation planning in these areas will become more and more of a topic of interest.
Thus, statistical analysis of human flows has become an active research topic that can
provide valuable information to urban and transport planners. These research topics
improve the ability to manage and predict crowd movement. As described in detail
in Cecaj et al. (2021) many applications exist to model crowds. In mobility planning,
Balzotti et al. (2018) identified the pedestrian movements that most likely change the
crowd density. In a similar way, event management can be helped with these models.
Singh et al. (2020) use Wifi-based crowd counting to forecast density evolutions as
a consequence of an event. This type of work can also be used as an aid to crowd
safety management. Finally, epidemiology is another possible application. Ronchi
et al. (2020) present a methodology to use crowdmodeling as an aid to assess safety in
confined and open spaces. The present study focuses on a multimodal transportation
hub, i.e. a place designed to connect multiple modes of travel and through which large
numbers of people may move. Several sensing systems positioned at different count
locations in the transport hub allow multivariate count data to be collected. Passenger
flows tend to form transportation routes towards areas of interest. However, depending
on the time of day, the period of the year or local events, these flows do not necessarily
go to or transit through the same places. Three elements should be taken into account
when modeling people count data:
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• The mobility of people is impacted by various factors that can be calendar (e.g.
time and type of day, public holidays) or non-calendar, such as concerts or transport
disruptions (Toqué et al. 2018; Briand et al. 2019).

• Mobility data are subject to long-time effects such as trends, seasonal effects or
effects related to exceptional events such as the Covid19 pandemic (de Nailly et al.
2021). These series thus present a non-stationary aspect.

• Potential dependencies may exist between the different count locations, which is
challenging to model for count data, as suggested by Singh et al. (2020).

Extracting information from a large set of highly noisy count series is a difficult task.
These series share common dynamics in response to certain events, but may also have
their own dynamics for more localized events. Our goal is to create a model of these
multivariate count time series using a set of covariates, which is useful for understand-
ing the operations / use of the transport hub or as a basis for prediction work. Because
of their non-stationary nature, the time seriesmust be subdivided into several segments
(Truong et al. 2020). One can look at this work by considering time segmentation on
multivariate count data as a way to capture regularity through mobility patterns that
can be easily interpreted, while covariates add distinguished features to these patterns
(Zhong et al. 2015). However, we do not use any autoregression term in this work,
we rather focus on taking into account covariates which impact the counts at each
time slot. Mixture models are a promising strategy for this purpose, as they allow
the modeling to be subdivided into segments within which both simple and compli-
cated distributional forms can be used for the observed data (Magidson and Vermunt
2002). Overdispersion and correlations between series are characteristics frequently
encountered with count data (Winkelmann 2008). In order to take these phenomena
into account, we drew on two strategies, found in the literature, capable of model-
ing numerous, noisy and possibly correlated count data. These two strategies, namely
“sums and shares” (Jones and Marchand 2019) and Poisson log-normal models (Chi-
quet et al. 2021), tackle the modeling of count data according to distinct philosophies.
In the first approach, periods are considered homogeneous if, conditional on covari-
ates and segments, the totals (i.e. “sums”) of people observed in the transport hub and
their distribution (i.e. “shares”) among several locations are similar. In the second one,
periods are considered as homogeneous if, conditional on covariates and segments,
the series have similar mean counts and interact in the same way. Both strategies are
discussed in the Sect. 4. Our work is thus positioned as the search for a model that can
both take into account numerous, dispersed and correlated data, and gather the most
continuous periods possible.

Combining multiple mobility data sources is a valuable addition to this kind of
study, as it enriches the data available on observed flows in the multimodal transport
hub. To this end, this study relies on two sources of people count data: (i) ticketing logs
collected by automated fare collection systems quantify the number of trips to, from
and between the different transport lines in the hub, (ii) stereo camera sensors count all
incoming and outgoing flows of people between the transport hub and various places
of work, leisure or commerce in the vicinity.

• We aim to synthesize dynamic count data into regular spatio-temporal mobility
profiles. For this purpose we propose methods to flexibly detect time segments in
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multivariate count series. We build “smooth” mixture models, whereby we model
the transition between segments using logistic functions as mixing weights. These
logistic functions integrate spline functions to ensure a temporal regularity to the
segmentation, especially between proximal days. At the upper level evolvingmixing
weights are designed to help detecting segments. At the lower level, segment specific
count data regressionmodels handle passenger flowsdynamicswithin each segment.

• We use “sums and shares” and Poisson log-normal regression models within the
segmentation methods, well suited to handle overdispersed, correlated, multivariate
count data. To the best of our knowledge, no study has been conducted to compare
the two presented models.

• Weconduct an in-depth analysis on real passenger flows data from the transportation
hub of the Europe’s leading business district “La Défense”. The transportation hub
provides access not only to the business district but also to a major shopping center
and concert/conference hall. The temporal segmentation is performed at the day
scale but the model also manages the hour scale. This representation draws useful
information for operators and managers of urban spaces by valorizing the collected
data. Segmentation on a daily basis gives an idea of the long-term dynamics of
passenger flows, while modeling on an hourly basis makes it possible to study in
detail the impact of calendar and non-calendar factors.

The paper is organized as follows. We first position our work within an existing litera-
ture on count data, mixture models and segmentation (Sect. 2). Then we introduce our
motivating case study by including a global presentation of the multimodal transport
hub, the series of counts, and the exogenous factors impacting them (Sect. 3). Section 4
details the two models and their variants. It also explains how to fit the model parame-
ters. Section 5 compares the twomodels, by first applying them to simulated data, then
to actual data from the case study. Finally, we present the results of segmentation and
mobility patterns obtained with the prefered model. Section 6 concludes the paper.

2 State of the art

Count data are ubiquitous in the field of human mobility and are tracked by numerous
data collection technologies. Smart cards and automated fare collection (AFC) systems
in particular produce large quantities of data which are frequently used to analyze
urban mobility (Briand et al. 2017; Pavlyuk et al. 2020; Wang et al. 2021). Stereo
camera technology is another data collection system seen in a number of applications,
and more specifically in two fields: pedestrian detection (Kristoffersen et al. 2016)
and vehicle navigation (Peláez et al. 2015). The collected data can be noisy hence
difficult to interpret; they should therefore be analyzed using a clustering approach.
The following sections provide a state of the art of this component.

2.1 Analyzing count data through clustering

Finding groups of similar mobility patterns in massive and noisy human mobility
behavior data falls in the field of time series segmentation, which deals with time series
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that are subject to regime changes. From a statistical point of view, segmentation is
found by estimating a common break in the mean and the variance of count data (Bai
2010). It can also be seen as a clustering framework that partitions the count time
series into a reduced set of groups sharing common changes in regime. As mentioned
by Ghaemi et al. (2017), the following three categories of mobility patterns can be
analyzed:

1. Spatial patterns, which provide information on the spatial distribution of people,
enabling public transport operators to optimize resource allocation (Li et al. 2020).

2. Temporal patterns, which give information on how a public transport network is
used over time (Briand et al. 2017; Ghaemi et al. 2017), helping transport operators
to predict affluence and understand the evolution of demand.

3. Spatio-temporal patterns, as with Pavlyuk et al. (2020), which determine dates
with similar daily mobility patterns (e.g. origin–destination profiles). Transport
operators need to identify the variability of travel demands that change in space
and time.

Several approaches have been deployed for clustering mobility data. These include
distance-based approaches, such as hierarchical ascendant classification (HAC) or K-
means algorithms. These two methods are used in Agard et al. (2006) to study weekly
travel behavior on buses. Summaries of weekday passenger activity are obtained with
the aggregation of bus trips. HAC and K-means are applied in order to study group
behavior. DBSCAN is another clustering method based on the density of data points.
With smart card data that provide spatio-temporal information about trips, Manley
et al. (2018) calculate the regularity of a user with DBSCAN clustering that detects
the time slots of the day when the passenger uses the network most frequently. The
comparison of the clusters formed among the different users allows the authors to
highlight the metro stations or bus lines that are regularly used, which lines are linked
or which types of populations (e.g., residential or working) are linked to particular
stations or bus lines.

However, distance-based approaches present certain problems. They are hard clus-
tering methods, i.e. each data belong to only one class, contrary to soft clustering
methods (Baid and Talbar 2016). Moreover they can’t be extended to include exoge-
nous variables (Magidson and Vermunt 2002).

2.2 Probabilistic methods for clustering count data

Probabilistic model-based methods (Bouveyron et al. 2019; McLachlan et al. 2019)
involve clustering data using amixture of probability distributions. Thesemodels seem
suited for our case study, due to the wide variety of distributions within each segment,
which are due to the effects of exogenous factors and the interrelationships between
count locations. Moreover, these models offer interpretability that is valuable to better
understand temporal and spatial mobility dynamics within the transport hub (Magid-
son and Vermunt 2002). Since the observed data are counts that are overdispersed,
the work should be oriented towards certain types of model-based methods. Poisson
mixture regression models can be successfully fitted to counts, in the presence of
exogenous factors (Côme and Oukhellou 2014; Mohamed et al. 2016). Nevertheless,
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because of the assumption of equal dispersion, i.e. expectation and variance are equal
conditionally on segments and covariates, the usefulness of these methods can be lim-
ited when data are highly overdispersed. The use of Negative binomial regressions
can alleviate this issue because means and variances differ (Hilbe 2011). Mixtures of
these models are used in transcriptomic analysis as with Li et al. (2021), but we did
not find an application of such models in the field of mobility.

A problem occurring when working with multivariate count data are the depen-
dence relationships between the count series. A challenge is thus to quantify these
relationships. Multinomial and Dirichlet multinomial regressions are the models usu-
ally applied to multivariate count data (Zhang et al. 2017). However, these models
cannot handle total counts summed over all series. As stated by Peyhardi et al. (2021),
this induces a constraint in terms of dependencies between the count series, as any
series is deterministic when all the other series are known. A first solution is to write
the count distributions as “sums and shares” distributions, which allows dependen-
cies between series to be taken into account. This model assumes that total counts
follow a univariate distribution (e.g. Poisson, Negative binomial), used as a parameter
of a multivariate distribution (e.g. Multinomial, Dirichlet multinomial) to model their
separation into different categories. For example it is possible to obtain a distribution
by compounding a negative binomial with a multinomial distribution as did Sibuya
et al. (1964). Here we were inspired by the work presented by Jones and Marchand
(2019). “Sums and shares” models are explained and developed in Sect. 4.1.1. A sec-
ond way not to assume independence between series is to use the multivariate Poisson
log-normal distribution first proposed by Aitchison and Ho (1989), which is also well
explained by Chiquet et al. (2021), and interestingly used in a model-based clustering
method in the work of Silva et al. (2019). In this model the dependence structure
between the series is taken into account with a covariance matrix that is estimated
within a hidden layer. “Poisson log-normal” models are explained in Sect. 4.1.2. The
different models introduced here differ in terms of how complex the treatment of noisy
data is. Amodel that is able to take into account very noisy data could indeed not guar-
antee that the observations are always similar within the segments because of the large
variances. When considering the example of the Poisson log-normal mixture model,
an encoding with diagonal covariance matrices, as opposed to that with unconstrained
covariance matrices, should give more sensitive segments, as the former cannot be
characterized by the dependence structure of the data.

Both methods appear to be suitable for modeling multivariate, overdispersed and
correlated count data. In the following section we present the data associated with our
case study and show that they meet these different characteristics.

3 Case study

3.1 The“La Défense” multimodal transport hub

This work focuses on the “La Défense” hub, a major tertiary center in the Paris region,
to which a large number of workers commute daily, primarily (about 85%) by public
transportation. In addition to being a business zone with ca. 180,000 jobs, the “La
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Fig. 1 Location map of the transport hub with the count locations used in this study, each with a description
of its vicinity. Count locations presented in Figs. 2 and 3 are highlighted here

Défense” center hosts a shopping mall and a concert hall. Thus, users travel to the
“La Défense” hub daily, mainly to work, but also to shop, attend concerts or go to
university. “La Défense” is served by multiple modes i.e. a metro line (i.e. “Metro
1”), an express regional railway line (i.e. “RER A”), two regional train lines (i.e.
“L” and “U”) and a tramway line (i.e. “T2”). Note that the M1 and RER A lines are
parallel when crossing Paris. As studied by de Nailly et al. (2021), these lines are
complementary and in competition. In particular, users may take one line when the
other is disrupted.

Two sources of passenger flow count data are available for our study. First, a set of
stereo camera sensors, placed at all access/ egress points to/ from the hub, record the
number of people entering/ leaving every minute. This count system captures various
pedestrian flows to and from shopping centers, office towers, bus stations, or a concert
hall. Then, ticketing logs collected by automated fare collection systems capture the
volume of flows between the different transport lines of the hub. Ticketing data are
presented in the following form: for each control line within the transport hub, the
number of validations is aggregated by 10-minute intervals. In addition, each control
line is associated with a function that provides the nature of the flow (i.e. incoming,
outgoing and transit). In this study, we work with groups of control lines that share
the same functions and are spatially located close to one another. The transport hub
is organized in two levels: the level at which the different transport lines operate,
and a level called “interchange hall” which allows users to access these lines. On
the outside, above the transport hub, there is a pedestrian esplanade from which it
is possible to access the different work and leisure areas of “La Défense”. Figure 1
presents a schematic view of the interchange hall with all count locations used in this
study. Counts at these locations are collected either by sensors or groups of control
lines. In addition, each location is attached to a codename and a description of the
surroundings (ibid.).
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Fig. 2 Counts collected at locations E, M, P11 and P12. Medians, 1st and 3rd quartiles of hourly counts
across the entire observation period. Note that only incoming flows are captured at metro access M

3.2 Characteristics of the“La Défense” count data

This study’s analysis is based on hourly aggregated count data from sensors and ticket-
ing systems, as provided by the Paris public transport operator (i.e., Régie Autonome
des Transports Parisiens or RATP) between April 2019 and September 2020. The
daily patterns of use of public transport frequently alternate between working days
(i.e., non-holiday weekdays) and non-working days (i.e., bank holidays and week-
ends). Therefore, this study will focus strictly on working days between 7 am and 1
am (the following day) in order to avoid introducing variables for non-working days,
which simplifies the models. Several points characterize the count data, as we show
below.

3.2.1 Inter and intra-location variabilities are clearly visible

Fig. 2 illustrates this phenomenon for the count locations E,M, P11 and P12 described
in Fig. 1.

It shows the median, 1st quartile, and 3rd quartile values of the incoming and
outgoing flow counts recorded every hour across the whole period. These graphs
suggest significant variability in the flows captured at the different hub locations,
highlighting large inter-location variabilities. There is also intra-location variability,
as observed through the 25% and 75% quantiles. These large differences indicate
significant variability in the counts over the entire period for several locations and
hours of the day.

3.2.2 Changes in time series regimes must be taken into account

Fig. 3 represents the proportion of counts captured at each of the locations from Fig. 2
at each hour (in relation to the total hourly counts summed over the four locations)
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Fig. 3 Evolution of the proportion of flows that pass through each count location (i.e. E, M, P11 and P12) at
each hour for incoming flows (these proportions are calculated in relation to the total hourly counts summed
over the seven flows). Each day from summer 2019 is represented. Days highlighted in red occurred during
maintenance works on the RER transport line

during summer 2019 inwhich a period ofmaintenanceworks on theRER line occurred.
This figure illustrates an example of local changes in regime regarding location use, as
a result of a particular period. It shows significant changes in the spatial distribution
of flows between locations once the maintenance work period begins. This effect is
visible for locations M and E. Ridership at location M increased during maintenance
works, whereas that at location E diminished, as people used the metro line instead of
the RER line.

3.2.3 Several covariates are likely to have a significant impact on the use
of the transport hub

Hereafter, we specify a non-exhaustive list of these covariates which will be used in
the regression parts of all the models:

1. The time of day (i.e. hours).
2. Concerts at Paris La Défense Arena (i.e. one of the largest concert halls in Europe

with a maximum capacity of around 40,000 seats).
3. Disruptions of the RER line. This regional express railway is one of the busiest

public transportation lines in the world, with about 1.4 million passengers per
working day.

3.2.4 Overdispersion and correlations are found in the series, even when removing
covariate and segment effects

We take the example of a short normal period, i.e. April 2019, for which we removed
all time slots with special events such as transport disruptions or concerts. First we
visualize the overdispersion effect by computing empirical means and variances of
each count location at each hour over this period. The results shown in Fig. 4 suggest
that variances (y-axis) are much higher than means (x-axis), which indicates overdis-
persion.
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Fig. 4 Log-scaled empirical
means versus empirical
variances by count location and
time slot, for the April 2019
period

Correlations between count series are abundant in the dataset. To highlight this
point, we have plotted the correlations between the counts at different locations for
three particular times in Fig. 5: one hour of the morning peak (8:00 am), the noon
hour (12:00 pm), and one hour of the evening peak (6:00 pm). The location codename
is associated with “O” when it is an outgoing flow and “I” when an incoming flow.
Note that correlations can be positive or negative but we still see a predominance of
positive correlations here.

Considering all these aspects, a model capable of properly modeling these mobility
data should handle regime changes through the most continuous segments possible
while being able to take into account correlations between series as well as overdis-
persions. The next section will introduce two promising strategies that can address
this issue.

Fig. 5 Correlation matrices between the different counting locations for three particular hours of the day.
Note that the correlations seem to be more impacted by the direction of the flows (“O” or “I”) than by the
geographical proximity of the locations. We see a tidal effect with “O” flows well correlated during the
morning rush hour (8am) and “I” flows well correlated during the evening rush hour (6pm). Since the uses
of the pole are less subject to these tidal effects outside of the peak hours, the correlations seem to be less
strong at 12am
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4 Segmentationmodel structures and estimation

Regression models “sums and shares” and Poisson-Lognormal are first introduced. In
particular, we will explain to what degree and how these different strategies handle or
not the phenomena of correlation and overdispersion. Then we will explain how we
transformed these models into mixture models, able to detect regime changes in the
time series.

4.1 Regressionmodels for correlated and overdispersedmultivariate count data

Hereafter, Y is considered as an L-vector of counts among L locations: Y =
(Yl)l∈(1,..,L). We propose to model these count data through two distinct regression
models, namely “sums and shares” and “Poisson log-normal”. The general notation
of these regression models is:

Y |x, ζ ∼ D(x, ζ ), (1)

with ζ a set of parameters controlling the conditional distributions D that we are
looking for. We note x as a D × 1 vector of D exogenous factors. In the following we
introduce the different regression models we wish to compare.

4.1.1 Sums and shares regression models

The first strategy draws inspiration from the work presented by Jones and Marchand
(2019). Let V = ∑

l Yl be the sum of the counts; the proposed strategy models the
multivariate counts as follows:

1. The sum V follows a distribution G(x, ζ );
2. Conditionally on V = v,Y follows a distributionH(v, x, ζ ) on the simplex defined

by {0, ..., V }L .
Consequently, the probability mass function is given by

p(y|x, ζ ) = h(y|v, x, ζ )g(v|x, ζ ) (2)

with g and h are the densities ofG andH respectively. In the followingwewill focus on
two sums and shares models: Poisson-multinomial and Negative binomial-Dirichlet
multinomial.

Poisson sums and multinomial shares. This first option applies a Poisson distri-
bution for the sum distribution G(x, ζ ) and a multinomial distribution for the joint
distribution of counts H(v, x, ζ ). As stated in Lemma 4.1 of Zhou et al. (2012), this
joint distribution is the same as the one produced by L independent Poisson variables
with parameters r1 = λu1, ..., rL = λuL , where λ is the parameter of the Poisson
distribution and u1, ..., uL are the parameters of the multinomial distribution. Thus
this model can be seen as a baseline in our study since the components Y1, ..., YL are

123



466 P. de Nailly et al.

independent. The mean and variance of Yl are E(Yl |x) = V(Yl |x) = λul ; the covari-
ance between Yl and Yl ′ is Cov(Yl ,Yl ′ |x) = 0. It can be seen from the mathematical
expression of the moments that neither overdispersion nor correlation are handled.

Negative binomial sums and Pólya shares. This second option introduces correla-
tions between count series and models overdispersed counts. It is possible to mix λ

and u1, ..., uL over distributions for random variables � > 0 and U1, ...,UL ∈ (0, 1)
such that U1 + ... + UL = 1. Here � follows a gamma distribution and U1, ...,UL

a Dirichlet distribution so that G(x, ζ ) is a Negative binomial distribution (NB) and
H(v, x, ζ ) a Dirichlet-multinomial (or Pólya) distribution (DM). With this specifica-
tion, the model may be written as follows:

V |x ∼ NB(exp(xT γ ), r) (3)

Y |x, V ∼ DM(V , (exp(xT ξ l))l∈1,...L), (4)

with r the shape parameter and γ the vector (D × 1) of regression parameters of
the NB regression. ξl is the vector (D × 1) of DM regression coefficients linked to
exogenous effects x. Note that ζ = (r , γ , ξ) here.

Properties 1 Themoments of Y fromNegative binomial sums and Pólya shares model
as described by Jones and Marchand (2019) are written as follow:

• E(Yl |x) = rql
r
k q.

= k ql
q.

• V(Yl |x) = rql
( rk )2q2. (1+q.)

[
q.{r + 1 + (1 + q.)

r
k } + (q. − r)ql

]

• Cov(Yl ,Yl ′ |x) = r(q.−r)qlql′
( rk )2(q.)2(1+q.)

,

with k = exp(xT γ ), ql = exp(xT ξ l) and q. = ∑L
l=1 ql .

From the variance expression we can see that overdispersion is taken into account.
Moreover the signs of the covariances are the same for all l, l ′ and depend on the sign
of q. − r .

4.1.2 Poisson–Lognormal model

The second strategy consists of using a two-layer hierarchicalmodel,with one observa-
tion layermodeling the count data and one hidden layer that estimates the dependencies
between the different location counts Yl . The multivariate Poisson log-normal distri-
bution addresses this by modeling count data with a Multivarite Gaussian latent layer,
which is exponentiated before being used for parametrizing independant poisson dis-
tributions. This model is well explained by Chiquet et al. (2021). The advantages lie
in the fact that there is no need to assume independence between the series, and any
overdispersion can be taken into account. The equations are:

θ |x ∼ N (xT ρ,�) (5)

Y |θ ∼ P(exp(θ)), (6)
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where N is a Gaussian distribution. Each Y is modeled via a Gaussian latent vector
θ . The mean of the latent vector is a combination of covariates x and of the (D ×
L) regression-parameter matrix ρ. The (L × L) covariance matrix � describes the
underlying structure of the dependencies between the L items. We consider two cases
in this study concerning �. In the first case, � is diagonal, which means that only
the variances are estimated, and the covariances are assumed to be null. In the second
case, � is estimated without restrictions, i.e. all the covariances are estimated. Note
that ζ = (ρ,�) here.

Properties 2 The moments of Y from the Poisson-Lognormal model as described by
Chiquet et al. (2021) are written as follow:

• E(Yl |x) = exp
(
μl + 1

2�l,l
)

• V(Yl |x) = E(Yl |x) + exp
(
μl + 1

2�l,l
)2(

exp(�l,l) − 1
)

• Cov(Yl ,Yl ′ |x) = E(Yl |x)E(Yl ′ |x)
(
exp(�l,l ′) − 1

)
,

with μ = xT ρ.

From these equations, we see that this model accounts for overdispersion. It also
supports negative and positive correlations when there is no restriction on the covari-
ance matrix.

4.1.3 Summary of the models

Table 1 lists all the models compared within this paper. Each model is associated
with an acronym used in the rest of the paper. Elements on the number of estimated
parameters and overdispersion/correlation handling are also displayed. Correlations
between the series are handled in distinct ways. For the NegPol model the correlations
are captured by the dirichlet-multinomial parameter vector and their sign is governed

Table 1 Mixture models studied with acronymsb, numbers of parameters, correlation and overdispersion
handling

Acronym Model Number of param Overdisp.
handling

Corr. handling

PoiMult Poisson multinomial b1 = D+(D×(L−1)) ✗ ✗

NegPol Negative binomial
Pólya

b2 = D + 1 + (D × L) ✓ ✓a

PLNdiag Poisson lognormal
diagonal �

b3 = D × L + L ✓ ✗

PLNfull Poisson lognormal full
�

b4 = D×L+L2/2+L ✓ ✓

Note that b1 < b2 < b3 < b4 if D < L + 1 and b1 < b3 < b2 < b4 if D > L + 1 with D the number of
exogenous factors and L the number of count locations
aAll correlations either positive or negative
bAcronyms are preceded by an “s” (e.g. sPoiMult) to designate the smoothed mixture models, as explained
in Sect. 4.2
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by the negative binomial parameters. For the PLNfull model, it is the directly estimated
covariance matrix that captures the correlations.

4.2 Mixturemodels

We now consider Y j,t as the L-vector of counts for time slot t of day j. We assume
that each day j can be associated with the dynamics of one segment among S possible
segments, with a certain probability. Associating dynamics at the day scale rather than
at the time slot scale is, in our opinion, a good way to synthesize information over
long periods such as years. If we adapt the previously presented regression models to
a mixture model framework, we end up with generative models which include a set of
indicator variables denoted by Z j (Z j ∈ {0, 1}s) encoding the segment membership
of the days, with s ∈ {1, ..., S}. The number of segments S is chosen a priori. The
following generative model is assumed for the observed data:

Y j,t |Z j=s, x j,t , ζ s ∼ D(x j,t , ζ s), (7)

with ζ s the set of parameters controlling the conditional distributions within segment
s. This generative model assumes that knowing the segment of the day and current
values of covariates, the counts at each timestamp t follow a distribution of parameters
specific to each segment. The variable Z j follows a multinomial distribution (M) of
parameter π (i.e the vector of association weights). We will compare two ways of
modeling segment memberships Z j , as detailed below:

• In the first scheme, the association weights πs are fixed and will not change during
the days.

Z j ∼ M(1, (πs)s∈1,...,S) (8)

• In the second scheme denoted as “smooth”, the association weights evolve with
days j as they follow a logistic transformation of cubic spline functions with M
nodes. The idea behind this scheme is to help the model to detect regime changes
that are difficult to detect from the data, by taking into account a relation between
proximal days through spline functions. Moreover the cubic spline functions can
help to detect separate periods that are similar to each other.

Z j | j ∼ M(1, (πs( j;α))s∈1,...,S) (9)

with
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Fig. 6 Graphical models of the sums and shares mixture model A and Poisson-Lognormal mixture model
B. Grey circles are observed data. White circles are parameters to be estimated. Z j is the hidden layer of
the generative model. Dashed links represent the potential intervention of the smoothed association weights
πs ( j; α). T is the total number of time slots for day j

πs( j;α) = exp(
∑M+4

m=1 αs,mam( j))
∑

h exp(
∑M+4

m=1 αh,mam( j))
, (10)

with αs,m a weight to be estimated and

am( j) = jm−1,m ∈ {1, ..., 4} (11)

am+4( j) = ( j − κm)3,m ∈ {1, ..., M}. (12)

Each cubic spline is a piecewise cubic polynomial with knots at κm ,m ∈ {1, ..., M}.
Note that in the mathematical notations we will use the “smoothed” association
weights πs( j;α) in order to include the formalism of the estimation of the α param-
eters.

In the rest of the paper we use the acronym of the models as defined in Table 1
preceded by an “s” to designate the smoothed versions. These models require the
additional estimation of (S− 1)× M parameters α. The graphical models for mixture
of sums and shares models and mixture of Poisson log-normal models are shown in
Fig. 6.

4.3 Parameter estimation

The parameters of the model are estimated by the maximum likelihood method solved
by the Expectation Maximization (EM) algorithm (Dempster et al. 1977) as explained
with Algorithm 1 (text in blue stands for smoothed model estimations). Details about
the different steps for the parameter estimation are developed in “Appendix A” for the
“sums and shares” mixture models and in “Appendix B” for the Poisson log-normal
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mixture model. For each estimation of the S-segment models, we ran five trials, each
with a segment initialization as explained with Algorithm 2. The way parameters
are initialized is crucial for the ability of the EM algorithm to converge faster and
provide acceptable solutions. The same initialization procedure was implemented for
both models, using a hierarchical ascendant clustering (HAC) (i.e. Algorithm 2). HAC
method builds a hierarchy of clusters from the bottom-up: it first puts each day in its
cluster before repeatedly indentifying the closest two clusters and combining them
into one cluster until all the days are in a single cluster. The number S of clusters
is then selected. HAC requires a distance matrix computed between the J days; we
used euclidian distance here. We use Ward’s linkage method to determine how close
two clusters are. This non-random initialization was chosen in particular with respect
to the Poisson log-normal mixture model since a random initialization would have
implied very large covariance computations �s on heterogeneous data, which would
have made it difficult to identify homogeneous segments. For each run, we use a
set of five randomly selected days per segment for parameter initialization since we
consider that each experiment should not have exactly the same starting point, so as to
allow the mixing models to potentially find different solutions (Lashkari and Golland
2007). Because of this potential variable finding of different optima, depending on
the segment initialization, the EM-run may lead to the disappearance of a segment
during the E step. This is why running several simulations for each run is valuable
here. Moreover we added a “hot restart” step in the EM framework in order to handle
segment disappearance. This step consists in resetting the disappeared segment by
using days from other segments with the smallest values of a posteriori membership
probabilities (τ j,s) i.e. days which are least likely to belong to those segments. Each
run is stopped when the difference in decay between two successive log-likelihoods
is below a given threshold, which we set at 10−6. The model with the highest log-
likelihood is finally chosen. Selecting anoptimal number of segmentsS is crucial. In the
context of mixture models and the EM algorithm, a natural choice for model selection
is to use the Bayesian Information Criterion (BIC, Schwarz (1978)). The optimal
number of segments is thus selected by means of the search for the minimum value of
this criterion. All models were built in the R environment using the glm function in the
stats package, glm.nb function in the MASS (Ripley et al. 2013) package, multinom
function in the nnet (Ripley et al. 2016) package and also MGLM (Kim et al. 2018)
and PLNmodels (Chiquet et al. 2021) packages. Time segmentation is obtained by
updating at each step of the EM algorithm the conditional expectation of membership
of the days to the segments (τ j,s)s=1,..,S .

123



Multivariate count time series segmentation “sums and shares”... 471

123



472 P. de Nailly et al.

5 Numerical experiments

This section compares the different models on simulated and actual data from the
case study. On simulated data, the goal is to evaluate the capacity of each model to
classify days well in controlled settings. We will also highlight the abilities of these
models in their smoothed or unsmoothed versions. We will then apply the models to
the real data set. First, we will compare the different models based on their fitting
capacity when varying the number of segments. Then for the chosen model, three
results will be detailed: the segmentation of the total period into S time segments,
the analysis of typical spatio-temporal flow patterns within these segments, and the
impact of exogenous variables.

5.1 Experiments using simulated data

The purpose of working with simulated data is to comfort us in the ability of our
models to correctly detect segments in a controlled setting. Notably, we seek to:

• evaluate the capacities of the models to correctly classify days coming from time
series subject to controlled global or local regime changes;

• study the impact of the number of knots M for smoothed models. We thus test
models with M = 5, 20, 50 and 80 knots.

The experiments conducted here are carried out in a simple case and are therefore not
generalizable; they do, however, give us some insights about the detection capabilities
of the models. The data generation protocol is as follows: we create L = 5 series
of counts, with 3 segments during a period of two hundred days. These series are
generated from a PLNdiag or a PoiMult model (see Table 1) with parameters specified
a priori (i.e., μ for PLNdiag, λ and u for PoiMult). For the PLNdiag simulation model
we limited the variance values �l,l ′ to 1 × 10−3. The data generating mechanism
relates to the models’ assumptions in the following way: both PLN and PoiMult
generate independant count series respecting the assumptions of the segmentation
models, although the data generated with PLN are slightly overdispersed. Regime
changes are generated by increasing or decreasing the counts with an average d%.
Note that this rate is slightly different from one time series to another. As shown in
Fig. 7, we generate three segments according to the following protocol:

1. Segment 1 includes days 1 through 60 and is characterized by an average increase
of d% of counts.

2. Segment 2 includes days 61 to 100 and 181 to 200 and is not impacted by any
change.

3. Segment 3 includes days 101 to 180 and is characterized by a loss of d%of counts.

The regime change can impact all the time series (i.e., global impact) or a single series
(i.e., local impact). One example of simulated count data generated according to a
PoiMult model is shown in Fig. 7.

The following set of experiments studied the impact of the rate of count change
d on the segmentation capacities of four models: PoiMult, sPoiMult, PLNdiag and
sPLNdiag (see Table 1). At first, the impact of regime changes will be global and then
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Fig. 7 Simulated data over 3 segments with d = 50 and PoiMult model. The (Yl )l∈(1,..,5) series are the
simulated data. The difference between the Yl is derived from an a priori specified difference of the λ and
u sets at each t. The colors yellow, cyan and grey correspond respectively to segments 1, 2 and 3 (color
figure online)

we will test the local case. Each experiment consists in detecting segments in a set of
simulated data with a specific rate d. Each experiment is repeated 20 times with each
time a new generation of simulated data and a task of segment detection. Within each
experiment, the search for segments is performed with S=2, 3 or 4 segments, with
the expectation that the number of segments S=3 used to generate the simulated data
performs better.

Two criteria are estimated to compare the model capacities: the mean misclassifi-
cation rate of days, and the percentage of times the 3-segment model was the best fit
according to the Bayesian Information Criterion (BIC). For experiments with global
impact, results are shown in Figs. 8 and 9.

Figures 8 and 9 show that higher rates d are, as expected, associated with lower rates
of misclassification of days and with more frequent selection of 3-segment models.
The segments being more distinguishable, the segmentation task is easier, but not in
the same way for the two generation models. It is to be noted that misclassification
rates are slightly lower for data generated with PLN model. We suppose this may be
due to the fact that data generated with PLN are slightly higher than data generated
with PoiMult. This can be seen from the calculation of the expectation for PLNmodel
which incorporates the variance term �. The difference between the segments would
then be slightly more pronounced with the data generated with PLN.

Then it seems that the smoothed versions with a low number of knots (M = 5,
20) obtain better results for both criteria. This result was obtained in the context of
low-noise and low-dimension simulated data, but nevertheless indicates a potential
advantage of smoothed models with few knots compared to unsmoothed versions. For
experiments with local impact, we chose a rate d = 10. Results are shown in Table 2.
In this hard-to-detect case, only the sPoiMult models with fewer knots (i.e., 5 or 20)
seem to succeed in considering the three-segment version as best. “Sums and shares”
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Fig. 8 Misclassification rate for PoiMult model and PLN models with the 3-segment models. The graph-
ics show the evolution of the impact of d: once d drops below 10%, the misclassification rate increases
(differently depending on the model)

Fig. 9 Percentage of times the 3-segment model was the best fit according to the BIC, function of d

models seem to have an advantage over the Poisson lognormal models in this situation
when considering both criteria. Moreover, smoothed models with fewer knots seem
to classify the days better.

All of these results obtained on simulated data demonstrate the value of consider-
ing “sums and shares” mixture models and smoothed versions to properly categorize
count data subject to regime changes. Studying the models on real data will deepen
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Table 2 Experimentation with a local impact d = 10

Model Generation : PoiMult Generation : PLNdiag

Misclass (%) 3-segments sel. (%) Misclass (%) 3-segments sel. (%)

PoiMult 0.05 0 0.03 0.15

sPoiMult (5) 0.01 1 0 1

sPoiMult (20) 0.01 1 0.01 1

sPoiMult (50) 0.03 0.05 0.02 0

sPoiMult (80) 0.04 0 0.03 0

PLN 0.08 0 0.05 0

sPLN (5) 0.06 0 0.02 0

sPLN (20) 0.04 0 0.02 0

sPLN (50) 0.08 0 0.04 0

sPLN (80) 0.08 0 0.04 0

sPoiMult models with fewer knots perform better than the other models
The two best values per metric are in bold

these conclusions, valid in a simple low-noise case. The source code for the R
script and application on simulated data is available at https://github.com/pdenailly/
segmentation_models.

5.2 Experiments on real-world data

This section compares the different regressionmixturemodels (see Table 1), using real
data from the case study that motivated this work. The goal is to explore the models’
capacity on two bases: (i) their ability to fit the count data through the BIC criterion and
(ii) their capacity to detect contiguous time segments, i.e. where temporally close days
belong to the same segments, through the entropy criterion Celeux and Soromenho
(1996). The criteria are computed for each model for a given number of segments S.
The same exogenous factors x j,t are used for all models, they are listed in Table 3.
As discussed in the section on simulated data, smoothed versions of each model will
be introduced. These smoothed versions will consider M = 25 knots, which is small
compared to the number of days in the case study.

5.2.1 Comparison of fitting capacities

The BIC criterion computed for the different models is displayed in Fig. 10. As
expected, the PLNfull and NegPol models, in their smoothed and unsmoothed ver-
sions, reach lower values of BIC criterion because they handle overdispersion as well
as covariance (see Table 1), and should therefore be preferred. The PLNfull and sPLN-
full models, however, appear to be better than NegPol and sNegPol by this criterion
calculated over the entire period from Fig. 10. A second way to analyze the results
of these four models is to calculate the criteria on periods that are known presumably
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Table 3 Explanatory variables

Position Name Description

x1,...,8j,t Hour j,t bspline with 8 degrees of freedom on the 1-hour time slots
from t = 7 am to t = 12 pm

x9j,t ConcOut j,t Dummy variable for after a concert: 1 if there is a concert on
day j and t is 11 pm

x10j,t ConcIn j,t Dummy variable for before a concert: 1 if there is a concert
on day j and t is between 4 pm and 10 pm

x13j,t DisturbanceRERmorn j ,t Log transformation of total duration of the RER disruption,
during the morning peak (7 am to 9 am)

x14j,t DisturbanceRER j ,t Log transformation of total duration of the RER disruption,
after the morning peak (9 am to 12 pm)

Fig. 10 BIC criterion calculated for all mixed-membership models on the La Défense count dataset and for
S ∈ (2, ..., 12). The figure on the left includes all the models. The figure on the right does not include the
baseline models (PoiMult and sPoiMult) in order to better visualize the BIC of other models

homogeneous. Results about likelihood, BIC, and the number of segments detected
are summarized in Table 4. The NegPol and sNegPol models are better here except
for the noisy strike period. The likelihoods computed by the different models are
close, but NegPol and sNegPol have smaller BIC values (except for the noisy strike
period) because, as shown in Table 1, they require fewer parameters. In addition, fewer
segments are needed with these models.

This last point brings us back to our objective of identifying a “cleaner” segmenta-
tion, i.e. with segments that are as continuous as possible. To measure this continuity,
we introduce the entropy criterion (Celeux and Soromenho 1996) on the association
weights πs( j,α), which is computed as:

−
∑

s

∑

j

πs( j,α)log(πs( j,α)). (13)
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Table 4 Log-likelihood, BIC
criterion and number of
segments detected on four
well-known periods

Period PLNfull

#seg LL BIC

Normal 5 −141565 316611

Strike 1 −21598 49893

Lockdown 2 −21256 55905

Tram works 2 −24432 62257

Period sPLNfull

#seg LL BIC

Normal 5 −143043 321339

Strike 2 −20424 54948

Lockdown 2 −21618 57336

Tram works 2 −25407 64915

Period NegPol

#seg LL BIC

Normal 4 −143829 304286

Strike 2 −22031 52376

Lockdown 2 −22163 52641

Tram works 1 −28007 60171

Period sNegPol

#seg LL BIC

Normal 2 −144822 298430

Strike 2 −21732 52251

Lockdown 2 −22152 53091

Tram works 1 −27733 59860

These periods are: a so-called normal period at the beginning of 2019,
the period of the first lockdown against Covid19, a period of strikes
and a period of works on the T2 tramway line
The smallest BIC per period is in bold

Note that we can only calculate this criterion on smoothed models because of the
dynamic evolution of πs( j,α). The entropy values are displayed in Fig. 11 for the
sNegPol and sPLNfull models. Entropies are smaller for the sNegPol model which
highlights the capacity of this model to detect more continuous segments than the
sPLNfull model.

Poisson log-normal models, by estimating variances within segments, allow more
separate days to fall in the same segments, not necessarily continuous. Compared
to Poisson log-normal models, “sums and shares” models seems to have a better
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Fig. 11 Entropy criterion calculated for sNegPol and sPLNfullmixed-membershipmodels on theLaDéfense
count dataset and for S ∈ (2, . . . , 12)

Fig. 12 Bar plot representation of time segmentation. Each day is associated with the probabilities of belong-
ing to each segment. Each of the S (= 10) segments has its own color and label

ability to summarize the data into continuous segments. NegPol and sNegPol provide
a reasonable trade-off between the abilities to detect continuous segments, and to
handle overdispersed and correlated count data. For these reasons and the several
advantages found in the smoothed versions with simulated data, we will focus in the
following section on the results associated with the smoothed mixture of Negative
binomial sums and Pólya shares model (sNegPol) with S = 10 segments (according
to the BIC criterion).

5.2.2 Segmentation results on the chosenmodel

Temporal segmentation The temporal segmentation obtained with the model is
shown in Fig. 12. We can observe a richness of segments induced by various context
changes such as maintenance works, strikes, or health measures against the Covid19
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Fig. 13 Typical profiles of total flows found in each segment s. Each profile is compared to that of Normal
2019 i.e. the reference segment (in grey)

pandemic. We detail each segment in Table 5 of “Appendix C” (see the Period char-
acteristics column) 1. This diversity of segments, with few “returns”, underlines the
need for urban operators to adapt to a regularly changing situation. We associate these
segments with typical total flows in the hub λ

(s)
j,t in Fig. 13. Understandably, total

flows have largely decreased since the beginning of the Covid19 pandemic, which
is visible in all segments beyond the First lockdown segment. This result highlights
that at the time of writing this paper, use of the hub has not returned to normal (i.e.,
“Normal 2019” and “Closure of an exit” in Fig. 12) since the beginning of the Covid19
pandemic.

Typical distributions among the L locations From a spatial point of view one can
study the characteristic distribution of the flows of people in the transport hub within
each segment. Indeed each segment s is associated with a set of typical distributions
among the L locations u(s)

j,t = ((u(s)
j,t,l)l∈1,...L), displayed in Fig. 14 1.1 Depending

on the segments encountered, there is an overuse (in red) or an underuse (in blue)
at certain locations compared to that of “Normal 2019”. For example in the segment
“Strike + RER AWorks” there is an overuse of accesses to and from the metro and an
underuse of accesses to and from the RER, highlighting an expected transfer of users
to the metro line when the RER is stopped.

Considering both total flows (Fig. 13) and spatial distributions (Fig. 14), one can see
that time segments are generally recognizable through both total profiles and spatial
distributions. Two of them (i.e. Decrease P7 and Closure of an exit), however, appear
to be distinguished primarily through spatial distributions only. A description of the
spatial distributions is presented in Table 5 in “Appendix C”.

1 For these sections, only x1,...,8j ,t (see Table 3) are used for computing the results, in order to exclude
non-calendar effects. Thus, the total profiles and spatial distributions section are invariant by day.
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Fig. 14 Typical spatial distributions among the L (=21) locations found in each segment s. Refer to Fig. 1 for
a description of the locations. As a reminder, “O” corresponds to an outgoing flow and “I” to an incoming
flow. Each cell of the heat maps corresponds to a time slot at a given location. For a given cell, the color
reflects the log ratio between the proportion of flows in the current segment and that in the Normal 2019
reference segment. Colors thus reflect the differences between the proportions of flows in each segment and
those of the reference segment, with regards to spatial distribution

Impact of non-calendar factors The impact of exogenous factors is analyzed through
awith- andwithout-factor comparison of typical profiles and spatial distributions.Note
that we prioritized understanding the impact of these factors under normal conditions,
i.e., within the Normal 2019 segment. For each exogenous variable, we will study the
standard profile of total flows with and without the impact of the atypical factor. For
all variables, a heatmap is produced to compare, in the same segment, the distributions
u(s)
j,t of the model built with the atypical factor and the u(s)

j,t of the model without that
factor, using log-ratios. In these heatmaps, the height of each cell is proportional to
the mean count at the corresponding location and time slot across the entire study
period.
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Fig. 15 Typical profiles and spatial distribution. Comparison with and without a concert, within the Normal
2019 segment

The impact of a concert on the use of “La Défense Grande Arche” station is dis-
played in Fig. 15. As expected, typical profiles show an increase in total ridership
during the afternoon, as people arrive at the transport hub in anticipation of the con-
cert. When a concert is held, there is also a peak of entries at 11pm, which represents
people leaving the concert and taking public transportation. From a spatial point of
view, entries to the hub close to the concert hall (P1 I and P2 I) are favored. The
entry point to the metro line (M) is also more used, compared to the reference, which
is not the case for the access to the express regional railway line (E I). We surmise
that people leaving the concert who wish to take the express regional railway line
will prefer another station (“Nanterre-Préfecture”), which is closer to the concert hall.
People wishing to take the metro line have no alternative to the “La Défense Grande
Arche” station, as it is the terminus, and are therefore more likely to be detected in
our study.

Transport disruptions on the express regional railway line have a substantial effect
on the transport hub use as shown in Fig. 16. The selected model highlights the delay
phenomenon for morning arrivals (i.e., lower ridership on morning time slots). As
expected, this phenomenon is not visible on a disrupted evening peak, as people are
already present at the transport hub. There is an impact on transfers between the
express regional railway and metro lines (i.e., ME and EM count locations). Dis-
ruption during the morning peak period tends to increase pedestrian flows between
metro and RER (i.e., people arrive by metro, then exit the transport hub through the
RER station). It also increases RER-to-metro access as people shift to the metro line
to leave the hub and go to Paris. The RER line is strongly impacted, especially in
the morning, due to the absence of all the users who failed to reach the transport
hub.
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Fig. 16 Typical temporal profiles and spatial distributions. Comparison with and without express regional
railway disruptions, within the Normal 2019 segment. Two separate disruptions are modeled here: one
during the morning peak (green rectangle) and one during the evening peak (blue rectangle) (color figure
online)

6 Conclusion

This paper sets up a statistical model to segment multidimensional mobility time
series, whose dynamics evolve according to characterized periods. Two strategies
inspired from the literature, namely “sums and shares” models and “Poisson log-
normal” models, are compared for this task, both in terms of likelihood and segment
consistency. Each strategy has advantages and disadvantages. For example, the
Poisson-Multinomial model cannot take into account overdispersions, nor correla-
tions, which is not the case for the other models. The Negative Binomial - Dirichlet
Multinomial model can take correlations into account, but they will always be pos-
itive or negative. The Poisson log-normal models seem to be more flexible and fit
the observed data better (when only considering likelihoods). The “sums and shares”
models seem to detect continuous segments better, which is more consistent with the
reality of our case study. Moreover, there are benefits to using logistic regressions of
spline functions to express the probability of each day belonging to which segment.
This encoding seems to provide the model with a better capacity for detecting local-
ized and/or low impact events. We chose to apply a smoothed Negative binomial and
Pólya sharesmixturemodel to analyzemobility data collected at amajor transport hub.
The regression coefficients of these models are dependent on the segments to which
they belong. Furthermore, a set of atypical events was incorporated in the model for
their impacts to be studied: we have thus considered concerts and public transport
disruptions.

Operationally, this work reveals how various restrictions to combat the Covid19
pandemic significantly affected pedestrian flow dynamics in the transportation hub.
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These restrictions were not the only events that impacted use of the hub over the long
term. The study of the impact of atypical factors reveals how pedestrian flows react
accordingly. We found that given situations, whether a time segment or an exogenous
factor, may lead to specific over- and under-use of particular locations. This type of
study is replicable to any situation where a large set of count data is available and
where the aim is to synthetize information from typical spatio-temporal profiles from
distinct periods. We are thinking of the field of mobility, extended to the study of a
public transport network or a city where the characterization of human travel patterns
is of great importance. For example, in the case of road traffic, this type of model
could be used to search for typical traffic situations within a city, to help set up a traffic
control system adapted to each type of situation. This type of problem can also emerge
in ecology, genomics, or others. In the field of genomics, this could help to segment
the expression dynamics of a group of genes and to identify within these segments
subgroups of over or under expressed genes. In ecology, we could imagine an extan-
sion to the work proposed in Chiquet et al. (2021) by adding a temporal dimension.
The models we used could segment the time into homogenous periods during which
communities of different species are distributed similarly between various sites. For
example, we might observe interdependent prey-predator communities whose abun-
dances between different sites vary over a year. These models can be helpful to study
the impact of covariates, isolated from the rest and potentially within different peri-
ods.

Further investigations are required to overcome some of the limitations of this type
of modeling, including:

• An exogenous factor can either be explicitly coded in the model or left to be found
by the model. This decision induces variability when constructing segments.

• It is necessary to have a sufficient quantity of exogenous data. Increasing the number
of segments means that the exogenous factors are modeled in increasingly specific
contexts, for which fewer data is available.

Furthermore, additional work could be done to include an autoregressive term in these
models. This inclusion could help account for the intrinsic variability of each day in
the model, potentially changing the allocation of days to segments (Ren and Barnett
2020). This study paves the way for more advanced clustering or prediction modeling
work. In particular, it allows periods with variable flow dynamics to be distinguished,
which can be helpful when predicting ridership in specific contexts.

Code availability R-code and simulated data used are available in the GitHub repository https://github.com/
pdenailly/segmentation_models
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Appendix A: Mixture of sums and shares model estimation

Given z j,s = 1 and x j,t , the series y j,t are distributed according to the following
mixture model:

p(y j,t ;α, γ , r , ξ) =
S∑

s=1

πs( j;α)g(v j,t |x j,t , γ s, rs)h(y j,t |v j,t , x j,t , ξ s), (A1)

with γ = (γ s)s=1,...,S , r = (rs)s=1,...,S and ξ = (ξ s)s=1,...,S . The parameters of the
model are estimated with the Expectation Maximization (EM) algorithm (Dempster
et al. 1977)which requires a complete data log-likelihoodmaximization. The complete
data log-likelihood can be written:

Lc(α, γ , r , ξ) =
S∑

s=1

J∑

j=1

T∑

t=1

z j,s log
(
πs( j;α)g(v j,t |x j,t , γ s , rs)h(y j,t |v j,t , x j,t , ξ s)

)
.

(A2)

Given the initial value of the parameters ξ (0), γ (0), r (0) and α(0), the following two
steps are repeated until convergence.

• Expectation step (E) The expectation of the completed log-likelihood is evaluated
knowing the observed data Y and the set of current parameters: ξ (c), γ (c), r (c) and
α(c).

Q(α(c), γ (c), r (c), ξ (c)) =
S∑

s=1

J∑

j=1

T∑

t=1

E
ξ (c),γ (c),r (c),α(c)[z j,s |Y ] (A3)

log
(
πs( j;α(c))g(v j,t |x j,t , γ

(c)
s , r (c)

s )h(y j,t |v j,t , x j,t , ξ
(c)
s )

)
, (A4)

where

E
ξ (c),γ (c),r (c),α(c)[z j,s |Y ] = τ

(c)
j,s (A5)

= πs( j;α(c))
∏

T g(v j,t |x j,t , γ
(c)
s , r (c)

s )h(y j,t |x j,t , v j,t , ξ
(c)
s )

∑
s′ πs′( j;α(c))

∏
T g(v j,t |x j,t , γ

(c)
s , r (c)

s )h(y j,t |x j,t , v j,t , ξ
(c)
s )

. (A6)

The a posteriori probabilities that each day j belongs to segment s, τ (c)
j,s , are updated

at each iteration of step E.
• Maximization step (M) Parameters ξ (c+1), γ (c+1), r (c+1) and α(c+1) that maximize

Q(α(c), γ (c), r (c), ξ (c)) are calculated. It is possible to rewrite this quantity as:

Q(α(c), γ (c), r (c), ξ (c)) = Q1(α
(c)) + Q2(γ

(c), r (c)) + Q3(ξ
(c)) (A7)
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where

Q1(α
(c)) =

S∑

s=1

J∑

j=1

τ
(c)
j,s log(πs( j;α(c))) (A8)

Q2(γ
(c), r (c)) =

S∑

s=1

J∑

j=1

T∑

t=1

τ
(c)
j,s log(g(v j,t |x j,t , γ

(c)
s , r (c)

s )) (A9)

Q3(ξ
(c)) =

S∑

s=1

J∑

j=1

T∑

t=1

τ
(c)
j,s log(h(y j,t |x j,t , v j,t , ξ

(c)
s )). (A10)

The maximisation of Q1 consists in solving a weighted multinomial logistic regres-
sion. New values of α can be found using iterative procedures such as iteratively
reweighted least squares (IRLS) (Holland andWelsch 1977). This problem is solved
with with the multinom function of the nnet package (Ripley et al. 2016). Q2 is
the log-likelihood corresponding to a negative binomial generalized linear model.
Its maximisation is solved through an alternating iteration process provided by the
glm.nb function in theMASS package (Ripley et al. 2013).Within each segment s, for
a given value of r (c)

s the linear model is fitted using an IRLS method. Next for fixed
found γ

(c)
s parameters, the r (c)

s parameter is estimated with score and information
iterations. The two steps are alterned until convergence and γ

(c+1)
s and r (c+1)

s are
found. Note that τ (c)

j,s are here used as prior weights in the fitting process. The crite-
rion Q3, which is associated to a weighted Dirichlet multinomial regression model,
is solved with theMGLM package (Kim et al. 2018). Because Dirichlet multinomial
distribution does not belong to the exponential family, IRLS method is not used,
as the expected information matrix is difficult to calculate. The method used here
combine the minorization-maximization (MM) (Lange et al. 2000) algorithm and
the Newton’s method. MM and Newton updates are computed at each iteration and
the one with the higher log-likelihood is chosen.

Appendix B: Poisson log-normal mixturemodel estimation

The series y j,t are distributed according to the following mixture model:

p(y j,t ;α, ρ,�) =
S∑

s=1

πs( j;α)

∫

RP

⎡

⎣
P∏

p=1

g(y j,t,p|θ j,t,p)

⎤

⎦m(θ j,t |ρs,�s)dθ j,t ,

(B11)

with ρ = (ρs)s=1,...,S and� = (�s)s=1,...,S . g is a Poisson distribution andm a Gaus-
sian distribution function. The EM algorithm can be used for parameter estimation
but finding the expected value of the complete data log-likelihood requires estimating
the conditional expectations E(Z jsθ j,t |y j,t , ρs,�s) and E(Z jsθ j,tθ

′
j,t |y j,t , ρs,�s)
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which are intractable. These conditional expectations can be calculated with an EM
algorithm coupled with a Markov chain Monte Carlo (MCMC-EM) algorithm as pre-
sented in thework of Silva et al. (2019), which however comeswith a heavy calculation
load. We refer instead to the work presented by Chiquet et al. (2019) that uses varia-
tional approximation which is an approximate inference technique. The idea behind
variational inference is to use Gaussian densities and approximate complex posterior
distributions by minimizing the Kullback–Leibler divergence between the true p(θ)

and approximating densities q(θ). The marginal log-likelihood for y j,t can be written
as

log p(y j,t ) = F(q(θ j,t ), y j,t ) + DKL(q(θ j,t )|p(θ j,t )), (B12)

with DKL(q(θ j,t )|p(θ j,t )) the Kullback-Leibler divergence between p(θ j,t ) and
q(θ j,t ). F(q(θ j,t ), y j,t ) is the expression of the variational lower bound of the log-
likelihood. This is the criterion that we aim to maximize in the parameter estimation
process. In the case of the Poisson-Lognormal model, q is assumed to be a Gaussian
distribution:

q(θ j,t ;m j,t ,S j,t ) = N (θ j,t ;m j,t ,S j,t ), (B13)

withm j,t andS j,t = diag(S j,t ) the variational parameters associatedwith sample y j,t
at day j and time slot t. To minimize the Kullback–Leibler divergence, the variational
lower bound has to be maximized. The complete data log-likelihood can be written as
follows:

Lc(α, ρ,�,m, S) =
S∑

s=1

J∑

j=1

T∑

t=1

z j,s log(πs( j;α))+

S∑

s=1

J∑

j=1

T∑

t=1

z j,s[F(q(s)(θ j,t ), y j,t ) + DKL(q(s)(θ j,t )|p(s)(θ j,t ))],

(B14)

where DKL(q(s)(θ j,t )|p(s)(θ j,t )) is the Kullback–Leibler divergence between

p(θ j,t |y j,t , z j = s) and q(s)(θ j,t ) with q(s)(θ j,t ) = N (m(s)
j,t ,S

(s)
j,t ). And the varia-

tional lower bound of the log-likelihood for each observation y j,t is

F(q(s)(θ j,t ), y j,t ) = 1

2
log |S(s)

j,t | − 1

2
(m(s)

j,t − xTj,tρs)
′�−1

s (m(s)
j,t − xTj,tρs) − tr(�−1

s S(s)
j,t )−

1

2
log |�s | − P

2
+ (m(s))

′
j,ty j,t −

P∑

p=1

(exp(m(s)
j,t,p + 1

2
s(s)
j,t,p) + log(y j,t,p!)).

(B15)

The EM algorithm is used to estimate the parameters and the following two steps are
repeated until convergence.
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• Expectation step (E) The expectation of the completed log-likelihood is evaluated
knowing the observed data Y , the set of current parameters ρ(c), �(c) and α(c) and
variational parameters m(c)

j,t , S
(c)
j,t .

Q(ρ(c), �(c),α(c),m(c),S(c)) =
S∑

s=1

J∑

j=1

T∑

t=1

τ
(c)
j,s log(πs( j;α(c)))+

S∑

s=1

J∑

j=1

T∑

t=1

τ
(c)
j,s Eρ(c),�(c),α(c),m(c)

j,t ,S
(c)
j,t

[F(q(s)(θ j,t ), y j,t )+

DKL (q(s)(θ j,t )|p(s)(θ j,t ))],
(B16)

with τ
(c)
j,s = E

ρ(c),�(c),α(c),m(c)
j,t ,S

(c)
j,t

[z j,s |Y ]. The variational lower bound of the log-

likelihood is used to approximate τ
(c)
j,s :

τ
(c)
j,s = πs( j;α(c))

∏T
t=1 exp(F(q(s)(θ j,t ), y j,t ))

∑S
h=1 πh( j;α(c))

∏T
t=1 exp(F(q(h)(θ j,t ), y j,t ))

. (B17)

Note that this approximation is used in the R package PLNmodels.
• Maximization step (M) The maximization step is divided into two parts:

– Conditionally on ρs and �s and given τ j,s , variational parameters m(c)
j,t and S(c)

j,t

are updated. Because F(q(s)(θ j,t ), y j,t ) is strictly concave with respect to m(c)
j,t

and S(c)
j,t , it is possible to obtain S(c+1)

j,t with the fixed-point method and m(c+1)
j,t

with Newton’s method.
– Knowing τ

(c)
j,s , m

(c+1)
j,t and S(c+1)

j,t parameters ρ(c+1), �(c+1) and α(c+1) are
obtained.

Appendix C: Description of the time segments

See Table 5.
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Table 5 Time segmentation

Name Period characteristics Total flows and spatial distribution

Normal 2019 Early 2019 excluding school holidays.
Reference period

X regional trains Brings together periods during which
the exchanges between express
regional railway and regional train
lines decrease strongly. A slope
failure in June 2019 interrupting the
“U” line, a strike in december 2019
and extensive maintenance works on
the RER line in August 2020

Strong loss of incoming and
outgoing flows to and from
regional trains (R) access

Summer holidays
2019

July and August 2019 Decrease in total flows. No major
differences in spatial distributions

Closure of an exit Closure of an exit from regional trains
to esplanade

No changes in total flows. For
spatial distributions the differences
are barely visible except for a
decrease in the number of passages
through the P1 exit and some
modifications to the R access

Decrease P7 The conditions here are the same as
those of the Closure of an exit
segment

No differences for total flows.
Unexplained decrease in the use of
exit P7; this may be a period
during which the counting sensor
had a technical problem. The other
locations suffer the same
consequences as in the Closure of
an exit segment

Strike + RER A
Works

Period characterized by a massive
mobilization against the reform of the
French pension system and some
periods during which maintenance
works occurred on RER line in Paris

Strong decrease in express regional
railway use (i.e. incoming,
outgoing) and regional train use
due to their partial operation or to
lack of interchanges

First lockdown First lockdown period due to the
Covid19 pandemic

Almost total loss of total flows.
Westfield (P12) access closed and
not used as a result. Because of the
very small number of people who
visited the hub during this period,
it is difficult to link strong changes
in the use of other accesses with
actual changes in route choice
behavior
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Table 5 (continued)

Name Period characteristics Total flows and spatial distribution

Relaxed first
lockdown

First stage of lifting lockdown, with
restrictions

Almost total loss of total flows. Total
loss at the Westfield mall (P12)
and central pedestrian esplanade
(P7) access points. Consequent
increase in the use of both northern
(P5) and southern (P6) access
points to the esplanade

Normal 2020 Period without curfew or lockdown in
2020, a “back-to-normal” period

Strong loss of total flows. Decrease
in use of Westfield shopping mall
(P12) accesses in the evening

Tram Works Periods of maintenance works on the
tramway line

Total loss of incoming flows to
tramway (T) access

Description of typical profiles. Descriptions are made in comparison of the Normal 2019 reference profile
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