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Abstract
In this paper, we propose twelve parsimoniousmodels for clusteringmixed-type (ordi-
nal and continuous) data. The dependence among the different types of variables is
modeled by assuming that ordinal and continuous data follow a multivariate finite
mixture of Gaussians, where the ordinal variables are a discretization of some con-
tinuous variates of the mixture. The general class of parsimonious models is based
on a factor decomposition of the component-specific covariance matrices. Parameter
estimation is carried out using a EM-type algorithm based on composite likelihood.
The proposal is evaluated through a simulation study and an application to real data.

Keywords Mixture models · Factor analyzers · Composite Likelihood · EM
algorithm · Mixed-type data

Mathematics Subject Classification 62-07 · 62H25 · 62H30

1 Introduction

In several fields, such as genetics, economics, engineering, social sciences and many
others, data often present a complex structure where variables are measured on differ-
ent scales: some are continuous, some others ordinal. If the goal of the analysis is to find
subgroups in the population, all information should be properly used. In other words,
all the variables should concur symmetrically, i.e. in the same way, to the estimation of
the groups. However, the literature has been for the most part developed for continu-
ous variables. In this framework, several clustering methods exist, mainly divided into
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distance-based, such as k-means, and model-based. Under the model-based approach,
the finite Gaussian mixture models are the most commonly used (Hennig et al. 2015)
for clustering continuous data. They are intensively used in many fields and with
different classification purposes (e.g. unsupervised, semi-supervised and supervised).
Their success is mainly due to their simplicity to be fitted and interpreted. According
to a clustering point of view, they provide a coherent strategy for classifying data
accounting for uncertainties through probabilities. Each mixture component can be
interpreted as a sub-population, i.e. cluster. The same framework cannot be directly
applied to ordinal data. The challenge to model ordinal data is mainly due to the lack
of metric properties. For this reason, among practitioners, it is still common to analyze
ordinal data following a naive approach whereby their nature is ignored. Ranks are
treated as interval-scaled, and thus clustering techniques developed for continuous
data are applied. However, the estimates are biased and the clustering structure may
be wrong (see e.g. Dolan 1994; DiStefano 2002; Rhemtulla et al. 2012 in the SEM
framework; see e.g. Ranalli and Rocci 2016, 2017 in the clustering framework). It fol-
lows that ordinal variables should be modeled properly. This can be achieved adopting
the underlying variable approach (URV, Jöreskog 1990; Lee et al. 1990;Muthén 1984)
where the ordinal variables are assumed to be generated by thresholding some latent
continuous variables. This approach allows us to cluster mixed-type data (continuous
and ordinal variables) satisfying two main requirements: dealing with ordinal data
properly and modeling dependences between ordinal and continuous variables. Both
continuous and ordinal variables follow a heteroscedastic Gaussian mixture model,
by assuming that the ordinal variables are some variates of the mixture only partially
observed through a discretization (see e.g. Ranalli and Rocci 2017; Everitt 1988).
Adopting mixture models for mixed-type data, two main closely related issues should
be faced with when the dimensionality of the data increases: the number of parameters
increases polynomially; a large number of ordinal variables makes the full maximum
likelihood estimation infeasible.
To solve the first issue, the model should be more parsimonious in terms of num-
ber of parameters to estimate. At this aim, appropriate reparameterizations need to
be assumed for the covariance matrices. In literature, there exists a general class of
parsimonious mixture models for continuous data by imposing a factor decomposi-
tion on component-specific covariance matrices. The loadings and variances of error
terms of the factor model may be constrained to be equal or unequal across mixture
components (McNicholas andMurphy 2008; McLachlan et al. 2003; Ghahramani and
Hinton 1996). More precisely, Ghahramani and Hinton (1996) constrains the (vari-
ance) error term equal across groups, McLachlan et al. (2003) imposes no constrains,
and McNicholas and Murphy (2008) use eight models with varying constraints on the
loadings and/or (variance) error terms. This means that even if the number of variables
P is high, it is still possible to estimate the component-specific covariance matrices
with few latent factors K (K << P).
In our proposal, we define a general class of parsimonious mixture models for mixed-
type data by introducing several possible parsimonious reparameterizations for the
covariance matrices starting from the idea of McNicholas and Murphy (2008) formu-
lated only for continuous data. In particular, we introduce twelve models; eight are
defined constrained; four are defined semi-constrained, since they are more flexible.
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In the first class of models, we consider different constraints on the loadings and/or
(variance) error terms. In the second one, the latent factors in each clusters are the
same but with different variances.
As regard the second issue, we note that the maximum likelihood estimation is rather
complex. Indeed the presence of ordinal variables requires the computation of many
high dimensional integrals, whose evaluation is computationally demanding as the
number of ordinal variables increases. The problem is usually solved by substituting
the likelihood function with a surrogate function. More precisely, we replace the full
likelihood with the composite likelihood (Lindsay 1988), defined as the product of
m-dimensional marginals or conditional events. The composite likelihood methods
are flexible ways to create consistent estimators, which inherit the main desirable
properties of the maximum likelihood estimators: under some regularity conditions
(Molenberghs and Verbeke 2005), asymptotically unbiased and normally distributed
with the variance given by the inverse of the Godambe Information (Lindsay 1988;
Varin et al. 2011). Moreover, they have some varying degrees of robustness (Xu and
Reid 2011), they are fully efficient and identical to the full maximum likelihood esti-
mators in exponential families under a certain closure property (Mardia et al. 2009).
In general efficiency is not easy to achieve and it is strictly linked to the design issue,
but in all cases much more efficient in terms of computational complexity. In the
current work, a composite likelihood approach is adopted for model estimation. The
surrogate function is built as the product of all possible marginals of two ordinal and
all continuous variables. However, as long as sparsity is not a problem and computa-
tions are feasible, it is possible to use a higher m, including more ordinal variables.
The computation of parameter estimates is carried out through an EM-type algorithm
based on the complete-data composite log-likelihood.
The remainder of the paper is organised as follows. Section2 introduces the general
model. Section3 describes the estimation procedure and some issues about classifi-
cation, model selection and identifiability. A theoretical comparison with the most
related models some is presented in Sect. 4. While the results of a simulation study
are presented in Sect. 5. A real data analysis is conducted in Sect. 6 and some con-
cluding remarks are pointed out in Sect. 7. The models presented in this work have
been implemented in MatLab code, which may be found online at https://github.com/
moniar412/parsFMMmixdata.

2 Model

Let yŌ = [y1, . . . , yP−O ] and x = [xP−O+1, . . . , xP ] be Ō = P − O continuous
variables and O ordinal variables, respectively. The associated categories for each
ordinal variable are denoted by ci = 1, . . . ,Ci with i = Ō + 1, . . . , P .
Following the underlying response variable approach, observed variables x are con-
sidered as a discretization of continuous latent variables yO = [yŌ+1, . . . , yP ]. The
latent relationship between x and yO is explained by a threshold model defined as
follows,

γ
(i)
ci−1 ≤ yi < γ (i)

ci ⇔ xi = ci ,
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Table 1 The covariance
structure of latent parsimonious
Gaussian mixture models with
constrained or unconstrained
factor loadings matrix

Model ID Λg Ψ g Isotropic Σg

CCC C C C ΛΛ′ + ψIP
CCU C C U ΛΛ′ + Ψ

CUC C U C ΛΛ′ + ψgIP
CUU C U U ΛΛ′ + Ψ g

UCC U C C ΛgΛ
′
g + ψIP

UCU U C U ΛgΛ
′
g + Ψ

UUC U U C ΛgΛ
′
g + ψgIP

UUU U U U ΛgΛ
′
g + Ψ g

Table 2 The covariance
structure of latent parsimonious
Gaussian mixture models with a
semiconstrained factor loadings
matrix

Model ID Λg Ψ g Isotropic Σg

(SC)CC SC C C ΛLgΛ
′ + ψIP

(SC)CU SC C U ΛLgΛ
′ + Ψ

(SC)UC SC U C ΛLgΛ
′ + ψgIP

(SC)UU SC U U ΛLgΛ
′ + Ψ g

where −∞ = γ
(i)
0 < γ

(i)
1 < . . . < γ

(i)
Ci−1 < γ

(i)
Ci

= +∞ are the thresholds defining
the Ci categories.

according to our proposal y = [yŌ , yO ] follows a finite mixture of factor analyzers
(McNicholas and Murphy 2008; McLachlan et al. 2003; Ghahramani and Hinton
1996)

f (y) =
G∑

g=1

pgφ(μg,ΛgΛ
′
g + Ψ g)

where φ is the multivariate normal density, Λg is the P × K matrix of factor loadings,
andΨ g is the diagonal matrix of uniqueness. The latter can be assumed of the isotropic
form ψgI, leading to the probabilistic principal component analysis model (Tipping
et al. 1999). Each term may be constrained to be equal or unequal across mixture
components. The result of imposing, or not, such constraints generates the family
of the eight parsimonious Gaussian mixture models (PGMMs), described in Table 1
introduced byMcNicholas andMurphy (2008) in the context of continuous data. Each
member of this family of models has a number of covariance parameters that is linear
in data dimensionality. By assuming a common covariance structure, an even more
parsimonious model can be used.
With respect to the proposal of McNicholas and Murphy (2008), we decided to add
some extra flexibility maintaining a certain degree of parsimony. We introduce four
new models, see Table 2, that are in between the first and the last four models of
Table 1 in terms of flexibility. This is achieved by assuming that the matrix of factor
loadings can be written in the form ΛLg , where Lg is a positive definite diagonal
matrix of factor saliences. The interpretation is the following one: the latent factors in
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each clusters are the same but with different variances recorded by the matrices Lg .
This is a particular form of factorial invariance firstly introduced by Cattell (1944) and
then developed by several authors in the context of three-way analysis where the same
variables are measured on the same subjects in different occasions (Carroll and Chang
1970; Harshman et al. 1970). It has been also extended, and successfully applied, to
the case of multi-group factor analysis, where the same variables are observed on
different groups of observations (see Stegeman and Lam 2016 and references there
in).

A nice feature of the semi-constrained models in Table 2 is that, under mild condi-
tions, the factors are unique. In other terms, it is not possible to rotate the factors as in
the classical factor analysis model. This property can be shown by using the following
result found by Kruskal (1977). Let us denote by k-rank(Z) the so-called k-rank of a
matrix Z. It is defined as the largest number k such that every subset of k columns of
Z is linearly independent. Moreover, let (A, B, C) and (AT , BT , CT ) be two triplets
of matrices with K columns such that

Adiag(cg)B′ = AT diag(cTg)B′
T (1)

with g = 1, 2, . . . ,G, where, diag(d) is the diagonal matrix having the elements of
vector d on themain diagonal, cg[cTg] is g-th row of theG×K matrixC[CT ]. Kruskal
(1977) has shown that if

k-rank(A) + k-rank(B) + k-rank(C) ≥ 2K + 2 (2)

then there exists a permutation matrix P and three diagonal matrices DA, DB and DC ,
for which DADBDC = I, where I denotes the identity matrix, such that

AT = APDA,BT = BPDB,CT = CPDC . (3)

In words, if (2) holds then the solution (A, B,C) is unique up to scaling and a simulta-
neous column permutation. Although Kruskal’s condition has been extended by some
other authors (see Giordani et al. 2020 for an overview), what follows is based on such
a condition because practitioners mainly refer to it in their applications. In our case,
let us suppose that the part of the covariance matrices due to the common factors has
not a unique representation and it is possible to write

ΛLgΛ
′ = ΛTLTgΛ

′
T (4)

with g = 1, 2, . . . ,G. Indicating withM the G × K matrix having the diagonal of Lg

as the g-th row, from the Kruskal’s results we deduce that if

2 · k-rank(Λ) + k-rank(M) ≥ 2K + 2 (5)

then Λ[M] differs from ΛT [MT ] only for the scaling and/or position of the columns.
It is very important to note that the inequality (5) is satisfied if Λ and M are of full
column rank, as usual in practical applications.
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For a random i.i.d. sample of size N , the log-likelihood is

�(θ) =
N∑

n=1

log

⎡

⎣
G∑

g=1

pgφ(yŌn ;μŌ
g ,Σ Ō Ō

g )π(xn;μO|Ō
ng ,ΣO|Ō

g , γ )

⎤

⎦

where

μŌ
g = E[yŌ | g],Σ Ō Ō

g = V(yŌ | g),
μO|Ō
ng = E[yO | yŌn , g],ΣO|Ō

g = V(yO | yŌn , g)

and

π(xn;μO|Ō
ng ,ΣO|Ō

g , γ ) =
∫ γ

(Ō+1)
c1

γ
(Ō+1)
c1−1

· · ·
∫ γ

(P)
cP

γ
(P)
cP−1

φ(yQ;μO|Ō
ng ,ΣO|Ō

g )dyO

is the probability of response pattern xn in the g-th component mixture with mean and
covariance matrix conditioned on the continuous variables. As said before, the covari-
ance matrices could have different structures according to the specific parsimonious
model chosen (see Tables 1 and 2). This likelihood causes non trivial computational
problems due to the presence of multidimensional integrals. In the next section, we
are going to solve this problem through the use of a composite likelihood.

3 Estimation

As suggested in Ranalli and Rocci (2017) and references therein, a composite like-
lihood approach could be adopted. It allows us to simplify the problem by replacing
the full likelihood with a surrogate function based on m-dimensional marginals. It
is a robust estimation method and its estimators have been proven to be consistent,
asymptotically unbiased and normally distributed, under some mild regularity condi-
tions (Lindsay 1988;Varin et al. 2011;Molenberghs andVerbeke 2005). In general they
are less efficient than the full maximum likelihood estimators, or estimators obtained
with a higher m, but in many cases the loss in efficiency is very small or almost null
(Lindsay 1988; Mardia et al. 2009).

In the sequel, we refer to the case based on O(O − 1)/2 marginal distributions
each of them composed of two ordinal variables and Ō continuous variables. The
composite log-likelihood will be the sum of O(O − 1)/2 sub-log-likelihoods, one for
each marginal distribution. In formulas

c�(θ) =
O−1∑

i=1

O∑

j=i+1

N∑

n=1

log

⎡

⎣
G∑

g=1

pgφ(yŌn ;μŌ
g ,Σ Ō Ō

g )π(xi jn ;μ
i j |Ō
ng ,Σ

i j |Ō
g , γ i j )

⎤

⎦ ,
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where π(xi jn ;μ
i j |Ō
ng ,Σ

i j |Ō
g , γ i j ) is the conditional probability of response pattern xi jn ,

i.e. the response pattern xn restricted to only the variables i and j , given all the Ō
continuous variables, i.e. YŌ = yŌn ; while γ i j is the set of thresholds for variables i
and j . This conditional probability is obtained by integrating the density of a bivariate

normal distributionwith parameters (μ
i j |Ō
ng ,Σ

i j |Ō
g ) between the corresponding thresh-

old parameters contained in γ i j . The computation of parameter estimates is carried
out using simultaneously a standard EM algorithm on each sub-likelihood having the
same set of parameters. We start by writing the complete composite log-likelihood
c�c(θ) by introducing the group membership matrix zi j indicating if the observation n
belongs to mixture component g in the sub-likelihood corresponding to the marginal
distribution of the ordinal variables i and j and all the continuous variables, as follows

c�c(θ) =
O−1∑

i=1

O∑

j=i+1

N∑

n=1

G∑

g=1

zi jng log
[
pgφ(yŌn ;μŌ

g ,Σ Ō Ō
g )π(xi jn ;μ

i j |Ō
ng ,Σ

i j |Ō
g , γ i j )

]
,

The E-step requires the computation of the expected value of the complete-data com-
posite log-likelihood given the current estimates of themodel parameters. This is given
by

Q(θ | θ̂
(r−1)

) = Eθ (r−1)

[
c�c(θ; yŌ , x, z | yŌ , x)

]
.

At the r -th iteration, the E-step consists of updating the group membership matrix zi j

of order N × G as

ẑi jng = pgφ(yŌn ;μŌ
g ,Σ Ō Ō

g )π(xi jn ;μ
i j |Ō
ng ,Σ

i j |Ō
g , γ i j )

∑G
h=1 phφ(yŌn ;μŌ

h ,Σ Ō Ō
h )π(xi jn ;μ

i j |Ō
nh ,Σ

i j |Ō
h , γ i j )

,

for i = 1, . . . , Q − 1, j = i + 1, . . . , Q. Then, given the E-step, the M-step is
performed in blocks. First, at iteration r , the mixing weights are updated by averag-
ing the group membership matrices, then the complete composite log-likelihood is
maximized with respect to the other parameters. Since the parameter estimates of the
mixture components do not have a closed form, we use an optimization routine to
obtain all the parameter estimates (apart from p1, . . . , pG). More precisely we use
an optimization routine (“fmincon”) in Matlab based on a quasi-Newton approxima-
tion (for more details see MATLAB (2013)). Any other optimization routines can be
used: in any case, the complete composite log-likelihood needs to be coded, such that
each block of marginals is weighted by the corresponding group membership matrix
updated in the E-step. Given the parameter estimates, the E-step can be performed
once again. The E and M steps are repeated until convergence is reached. We halted
the estimation process and assumed convergence to the maximum when the relative
difference between two consecutive composite log-likelihood values is less than 10−5.
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3.1 Classification

As regards the classification, each observation is assigned to the component with the
maximum fit according to CMAP criterion (Ranalli and Rocci 2017). In a context of
standard mixture models, the classification of the observations is usually based on the
MAP criterion. This means that the observation is assigned to the component corre-
sponding to the maximum fit. However, since the composite likelihood is constructed
as the product of O(O − 1)/2 sub-likelihoods, following the same principle, the fit of
each observation is obtained by multiplying the corresponding O(O − 1)/2 fits

sgn(θ) =
O−1∏

i=1

O∏

j=i+1

[
pgφ(yŌn ;μŌ

g ,Σ Ō Ō
g )π(xi jn ;μ

i j |Ō
ng ,Σ

i j |Ō
g , γ i j )

]
,

In order to express the fit in terms of degree of membership, the fit of each observation
is normalized (i.e. it varies between 0 and 1), that is

maxg
sgn∑g
h=1 sgh

.

3.2 Model selection

In the estimation procedure, we assume that the number of mixture components and
the structure of covariance matrices are fixed. In practice, they are often unknown
and thus, they have to be selected through the data. A criterion to select the best
model could be the so-called composite BIC (Gao and Song 2010). However, its use
requires the computation of the gradient of the contribution of each observation to the
composite log-likelihood, see (Ranalli and Rocci 2017) for details. This makes its use
rather cumbersome or infeasible when the dimensionality of the data increases. For
this reason, in this work, the best model is chosen by selecting the one minimizing the
additive BIC, that is the sum of BICs computed for each sub-likelihood.We refer to the
additive BIC as aBIC. The idea is quite simple. Each BIC should obtain a minimum
on the true model as well as their sum. The only problem in this reasoning is the fact
that the BICs are computed by using the composite likelihood estimates instead of the
full likelihood ones. However, if the sample size is large enough they should not be
very different.

3.3 Identifiability

Afurther important point of the proposedmodel, that isworth to be discussed, is param-
eter identifiability. To estimate both thresholds and component parameters if all the
ordinal variables have three categories at least, we set the first two thresholds to 0 and
1, respectively. This identification constraint allows us to identify uniquely means and
variances of the latent variates of themixture components (ignoring the label switching
problem), as well described in Millsap and Yun-Tein (2004). This parameterization is
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equivalent to that one used by Jöreskog and Sörbom (1996), where the means and the
variances of the latent variables (of the first component, in the mixture framework)
are set to 0 and 1, respectively. There is a one-to-one correspondence between the two
sets of parameters. If there are binary variables, then the unique threshold should be
set to zero while their variances should be set equal to 1 (while their means should be
still kept free). However, this is a necessary condition, but it is not sufficient. Within
a full maximum likelihood approach, it is well known that a sufficient condition for
local identifiability is given by the non singularity of the information matrix; while
a necessary condition is that the number of parameters must be less than or equal to
the number of canonical parameters. Such conditions should be modified when model
parameters are estimated by maximizing a composite likelihood. The sufficient condi-
tion should be reformulated by investigating the Godambe information matrix, that is,
the analogous of the information matrix in composite likelihood estimation. However,
as far as we know, such modification has not been formally investigate yet.
About the necessary condition, we note that in the composite likelihood only some
marginal distributions are involved. It implies that we have to count the number of
canonical parameters only by considering the ones involved in such marginals. As
an example, if there are only ordinal variables the number of canonical parameters is
equal to the number of non-redundant parameters involved in the bivariate marginals.
This equals the number of parameters of a log linear model with only two factor
interaction terms. In particular, given a CŌ+1 ×CŌ+2 × . . . ×CO contingency table
such number is

O∑

i=Ō+1

(Ci − 1) +
O−1∑

i=Ō+1

O∑

j=i+1

(Ci − 1)(C j − 1).

However, heuristically, we are always able to see if a model is not identified, that
is when the same maximized likelihood (or composite likelihood) is obtained with
different parameter estimates.
The factorial reparameterisation of a component-specific covariance is not uniquely
identified formodels in Table 1. Indeed, we note that it has the same rotational freedom
that characterizes the classical factor analysis model. Only the subspaces generated by
the columns ofΛg are identified. In order to estimate such subspaces, we impose some
constraints on the model parameters, in complete analogy with what is usually done
in the factor analysis model. In this way, we select a particular solution, one which
is convenient to find, and leave the experimenter to apply whatever rotation he thinks
desirable, as suggested by Lawley and Maxwell (1962). In particular, we require a
lower triangular form in the first K rows of the loading matrix. Of course, after the
estimation the parameter matrices can be rotated to enhance the interpretation. In
Sect. 2, we have shown that such rotational freedom disappears for models in Table 2.
However, in this case the columns of the matrix of factor loadings Λ can be arbitrarly
rescaled by adjusting the matrices Lg accordingly. We remove such ambiguity by
settingL1 = I. It is important to say that rules for the identifiability of a factor analysis
model (Shapiro 1985), like the so-called Ledermann bound (Ledermann 1937) for the
number of factors

123



390 M. Ranalli, R. Rocci

K ≤ P + (1 − √
8P + 1)/2,

hold for the unconstrained models, while, probably, they could be relaxed for the
constrained ones. Finally, wemention that in factor analysis there is the possibility that
the estimate of the variance of the error term for a variable, the so-called uniqueness,
is exactly zero. Such possibility is named an Heywood case and considered, in the
factor analysis field, an improper solution because it corresponds to assume that one
of the common factors coincides with one of the variables. In our experience, we did
not encounter Heywood cases, however, if this would happen we suggest to introduce
some constraints, e.g. Ψ = ψgI, or eliminating some variables causing the Heywood
case (see Farooq 2022 and references there in).

4 Relatedmodels

The present proposal can be considered an extension of the work (Ranalli and Rocci
2017) where mixed type data, with ordinal and continuous variables, is used to cluster
a sample of observations. The model is a finite mixture of Gaussians were some
variates, the ones corresponding to the ordinal variables, are observed only trough a
discretization. The parameters are estimated by maximizing a composite likelihood
built on three blocks. The first is given by all the continuous variables, the second by
all the bivariate marginals obtained considering pairs of ordinal variables, the third by
the marginals obtained considering one ordinal variables and all the continuous ones.
In this paper we refined this scheme eliminating the first two blocks and extending the
third including two ordinal variables and all the continuous in each sub-likelihood.
This modification allowed us to improve computational efficiency without worsening
the quality of the estimates. Another improvement over (Ranalli and Rocci 2017) is the
introduction of several possible parsimonious reparameterizations for the covariance
matrices starting from the idea of McNicholas and Murphy (2008) formulated only
for continuous data. A similar approach has been also adopted by Mcparland and
Gormley (2015). It is a model based clustering procedure for data of mixed type based
on latent variables. The latters, following amixture ofGaussian distributions, generates
the observed data of mixed type: continuous, ordinal, binary or nominal. It employs
a parsimonious diagonal covariance structure for the latent variables, leading to six
clusteringmodels that varying in complexity. Eachmodel can be estimated by using the
package clustMD available in R. Themain differences with our approach are that the
thresholds parameters are estimated in a separate step using the single variables, even
nominal variables are considered but it is essentially based on the local independence
assumption, i.e. the variables are independent conditionally to the groups. As a side
note, it is necessary to caution the reader on the presence of a further model in the
R package clustMD, called BD model, although there is no theoretical explanation
about the assumptions underlying the corresponding data generation process. Due
to the lack of information about the model and the method/algorithm used for the
parameter estimation, we decided to exclude it from themain analysis. In the following
simulation study, we focus only on the first six parsimonious models included in the
R package clustMD. However, as explicitly requested by an anonymous reviewer,
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we have also considered the BD model as possible competitor of our proposal in the
supplementary material, although given the lack of its description, we have not been
able to make reasonable comments on results.

The mixture of factor analyzers model Ghahramani and Hinton (1996) has been
extended to the mixed type data by McParland et al (Mcparland et al. 2014, 2017).
Compared to our proposal there are some differences: the authors estimate the model
using a Bayesian approach; furthermore, they consider even variables measured on a
nominal scale but constrain the diagonal matrix of uniqueness, Ψ in our notation, to
be equal to the identity matrix in each component.

Finally, it is important to say that there are approaches where the variables does not
play a symmetric role. For example, this happens in Murphy andMurphy (2020) were
the model for each component is a regression and the distribution of some continuous
variables is formulated conditionally to some covariates that could be categorical. A
similar example is the proposal of Ingrassia et al. (2015) where the regressions are
univariate and the covariates are randomwith a joint distribution built on the hypothesis
of local independence.

5 Simulation study

In this section, we illustrate and discuss the results of a large simulation study aimed
at assessing the effectiveness of the maximum composite likelihood estimator under
different settings in terms of sample size, number of components and factors, number
of variables and categories. The composite estimator has been also compared to the full
likelihood one, in terms of precision and computational time. A further comparison
has been done in terms of the Adjusted Rand index (Hubert and Arabie 1985) by
considering the naive approach, i.e. our model treating all variables as they were
continuous, and the six parsimonious models of clustMD (Mcparland and Gormley
2015). Furthermore, as explicitly requested by an anonymous reviewer, we have also
considered the BDmodel as possible competitor of our proposal in the supplementary
material. Finally, we tested the effectivness of the aBIC in finding the correct number
of components.

The experiments are conducted generating the data from the (SC)UU model with
eight variables, four continuous and four ordinal with four categories. In some exper-
iments the number of variables and categories has been increased to 15 (of which
10 are ordinal) and 10, respectively. For G = 2, we specify the mixture weights by
pg = [0.30, 0.70], while the group-specific mean vector by

μ1 = [−0.5, 0.5, 1, 1,−1, 2,−2,−1],
μ2 = [1.5, 1.5, 0, 0, 1, 0, 2, 0].

For G = 3, we specify the mixture weights by pg = [0.25, 0.35, 0.40] and we added
the further group-specific mean vector,

μ3 = [−0.5,−0.5,−1,−1, 0,−2, 0,−1].
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At last, Λ is randomly drawn from a uniform distribution on the interval [−1, 1], the
diagonal elements ofLg are randomlydrawn fromauniformdistribution on the interval
[0, 2], and a reasonable level of error was added by generating the diagonal elements of
Ψ g from a uniform in [0, 1]. The thresholds for the ordinal variables are [0, 1, 2]when
the categories are four.When the categories are five or ten, the thresholds for the ordinal
variables are [0, 1, 1.5, 2.5] and [0, 1, 1.5, 1.833, 2.166, 2.499, 2.832, 3.165, 3.498],
respectively.

Maximum composite likelihood estimates are computed by following the EM-
like algorithm previously described. We halted the estimation process and assumed
convergence to the maximum when the relative difference between two consecutive
composite log-likelihood values is less than 10−5. To initialize the model parameters,
weworked out the output of theGaussianmixturemodel where we treated all variables
as they were continuous. The initial values for the thresholds have been computed as
follows: for each variable, we have considered the empirical relative frequency of
each category and then we have minimized the quadratic difference between this
frequency and the corresponding probability of the mixture. As regards the factor
loadings, starting from the specific-component covariance matrix (the output of the
Gaussian mixture model) we estimate a factor analysis model. Then we rotate the
obtained loading matrix in order to obtain a lower triangular form for the square sub-
matrix given by the first K columns. The error variances are obtained as the difference
between the main diagonal of the within covariance matrix of the Gaussian mixture
model output and ΛgΛ

′
g . We averaged Λg to get Λ. Finally Lg is set to 1. Of course,

this inizialitazion can be adapted properly to accommodate the other cases listed in
Tables 1 and 2. The choice of initial values influences the speed of convergence of the
algorithm and its ability to reach the global maximum. We suggest to use a rational
start because, in our experience, a purely random initialization is generally extremely
worse than our rational start in terms of local optima and computational time.However,
our rational start does not guarantee to reach the global optimum and further studies
are needed to improve it.

We analyzed the performance of an estimator by computing for each sample the
Euclidean squared distance between the estimates and the true values for different set
of parameters: group-specific means (μc, μo), thresholds (γ ), mixture weights (p),
factor loadings (Λ), saliences (L), uniqueness (Ψ ). These indexes serve to evaluate
the accuracy of the estimators. In order to identify uniquely the sign of the columns
of the loading matrices, in the simulation study, we impose the first non-zero element
in each column to be positive. The performance of recovering the cluster structure
is measured by the Adjusted Rand Index (ARI) (Hubert and Arabie 1985), which is
a measure of agreement between the estimated and the true cluster memberships. It
takes its maximum (value one) in case of perfect agreement.
in what follows, we describe the different experiments that compose our simulation
study.
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5.1 Efficiency of the composite estimator

In this experiment we assess the performances of the composite likelihood estimator
over different scenarios obtained combining three factors: number of observations
(N = 500, 1000), number of groups (G = 2, 3) and number of latent factors
(K = 2, 4). For each of the scenarios, we generated 250 samples and compute the
aforementioned measures of performance. The results are depicted in Table 3.
Overall, we note a normal behaviour of the composite estimator. The sample size N
and the model complexity influence the imprecision of the estimates and the goodness
of classification. In particular, when N increases the imprecision decreases while the
ARI increases, i.e. the estimator performs better. On the contrary, when the model
complexity increases, in terms of the number of components G and/or latent factors
K , the estimator efficiency decreases.

5.2 Comparison between the composite and the full likelihood estimators

In this experiment we compare the composite likelihood with the full likelihood
approach. This allows us to evaluate both the statistical efficiency (the full likeli-
hood is more precise) and the computational efficiency (the composite likelihood is
much faster). We generated 250 samples of size N = 500, with G = 3 components
and K = 4 latent factors. Table 4 displays the results in terms of imprecision indexes
and computational time.

In terms of error in parameter estimation, the full likelihood is slightly more effi-
cient. However, it is more than 4 times in median and 11 times in mean slower than the
composite likelihood. It follows that the loss in statistical efficiency of the composite
likelihood is well paid in terms of computational time.
The experiment has been extended by considering on the same samples even the
naive approach, where the ordinal variables are considered as continuous, and six
models of the clustMD package. Being different models with different parameters,
the performances have been compared only in terms of goodness of recovery by using
the ARI. The results are depicted in Table 5.

In terms of recovering the clustering structure, the full likelihood is the best one,
even if the composite likelihood shows similar results (0.80 vs. 0.79 in terms ofmeans).
The ARI for the naive case is 0.6 in mean. The six parsimonious models show ARI
values inferior to the others, between 0.58 and 0.60. This is probably due to the fact
they assume a local independence that in this case is false.

5.3 The effect of a higher number of categories

In this experimentwe evaluate the effect of a higher number of categories for the ordinal
variables. This allows us to evaluate how the error in parameter estimation changeswith
different number of categories. Thismeans that somecategories could have zero or very
low frequencies, but this is not a problem for the algorithm. Furthermore we compare
the clustering performance, in terms of ARI, of the proposal with the naive case (i.e.
our model treating all variables as they were continuous) and six parsimonious models
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Table 4 Quartiles, mean and
standard deviation (in brackets)
of the imprecision indexes for
the parameter estimates obtained
by maximizing the composite
likelihood and the full likelihood
over 250 samples generated
from the model (SC)UU with
G = 3, K = 4, N = 500

Full likelihood case
q0.25 q0.50 q0.75 x̄ (std)

μc 0.0199 0.0411 0.6961 0.5193 (0.8298)

μo 0.0342 0.0726 0.5093 0.3537 (0.4880)

γ 0.0126 0.0245 0.0505 0.0358 (0.0352)

p 0.0001 0.0003 0.0010 0.0008 (0.0014)

Λ 0.4029 0.5050 0.6103 0.5166 (0.1655)

L 0.2723 0.3382 0.4099 0.3459 (0.1133)

Ψ 0.0824 0.1014 0.1230 0.1041 (0.0284)

Composite likelihood case

q0.25 q0.50 q0.75 x̄ (std)

μc 0.0092 0.0177 0.8184 0.5717 (1.0149)

μo 0.0155 0.0306 1.0790 0.5936 (0.9846)

γ 0.0068 0.0157 0.0267 0.0224 (0.0228)

p 0.0001 0.0003 0.0007 0.0008 (0.0016)

Λ 0.4720 0.6055 0.7713 0.6229 (0.2138)

L 0.3015 0.4771 0.6981 0.5314 (0.2966)

Ψ 0.0338 0.0508 0.0945 0.0686 (0.0458)

Computational Time Ratios

Full
Composite 2.2040 4.3822 7.3894 11.4821 (25.7926)

The last row contains the same statistics for the distribution of the ratios
of the computational times

Table 5 Quartiles, mean and
standard deviation (in brackets)
of the ARI for the estimated
partition obtained by different
estimators over 250 samples
generated from the model
(SC)UU with G = 3, K = 4
and N = 500

q0.25 q0.50 q0.75 x̄ (std)

Full 0.7450 0.8907 0.9416 0.8048 (0.1906)

Composite 0.6933 0.8876 0.9397 0.7945 (0.2021)

Naive 0.4194 0.5108 0.8935 0.6103 (0.2421)

EII 0.4540 0.5846 0.7233 0.5892 (0.1814)

VII 0.4512 0.5781 0.7290 0.5839 (0.1832)

EEI 0.4384 0.6238 0.7666 0.6031 (0.2105)

VEI 0.4314 0.6089 0.7528 0.5925 (0.2140)

EVI 0.4245 0.5981 0.7636 0.5996 (0.2128)

VVI 0.4233 0.5919 0.7547 0.5944 (0.2117)

available in the package clustMD. We considered the following design: number of
observations (N = 500), number of groups (G = 2, 3) and number of latent factors
(K = 4). The number of variables is 8 of which 4 are ordinal. For the ordinal variables
we considered two cases: 5 or 10 categories for each ordinal variable. The other
model parameters are generated as described previously under the model (SC)UU .
We generated 250 samples.
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Table 6 displays the results in terms of imprecision indexes and ARI values. As
regards the performances of the composite likelihood estimator, overall we noted
that when the model complexity increases in terms of the number of components G or
higher number of categories, the estimator efficiency decreases. In terms of recovering
the clustering structure, we noted that in some cases the algorithm of six models
available in the R package clustMD was not able to provide a solution. Looking at
the ARI values our proposal is still the best one (mean values varying between 0.78
and 0.87), the naive case results to be the worst (mean values varying between 0.46
and 0.71). The six parsimonious models show lower ARI values; the mean values are
between 0.54 and 0.84.

5.4 The effect of larger number of ordinal variables

Finally, in the last experiment we evaluate the effect of higher number of ordinal vari-
ables. This allows to evaluate how the sparsity in the data could affect the parameter
estimation and the classification performances. This means that some profiles could
have zero or very low frequencies, but this is not a problem for the algorithm. Fur-
thermore we compare the clustering performance, in terms of ARI, of the proposal
with the naive case (i.e. our model treating all variables as they were continuous)
and six parsimonious models available in the package clustMD. We considered the
following design: number of observations (N = 1000), number of groups (G = 2, 3)
and number of latent factors (K = 4). The number of variables is 15 of which 10 are
ordinal. We considered 5 categories for each ordinal variable.
For G = 2, we specify the group-specific mean vector by

μ1 = [0.5, 0.5, 1, 1, 0.5, 0.5, 1, 1, 1, 1,−1, 2,−2,−1,−1],
μ2 = [1.5, 1.5, 0, 0, 1.5, 1.5, 0, 0, 0, 0, 1, 0, 2, 0, 0].

For G = 3, we added the further group-specific mean vector,

μ3 = [0.5,−0.5,−1,−1, 0.5,−0.5,−1,−1,−1,−1, 0,−2, 0,−1,−1].

The other model parameters are generated as described previously under the model
(SC)UU . We generated 250 samples.

Table 7 displays the results in terms of imprecision indexes and ARI values. As
regards the performances of the composite likelihood estimator, we do not observe
particular issues. Once again when the complexity of the model increases in terms of
number of components G, the estimator efficiency decreases, as expected. In terms
of recovering the clustering structure, we noted that is many cases the algorithm of
six models available in the R package clustMD was not able to provide a solution,
especially when G = 3. This is may be due to the presence of zero frequency cat-
egories. Also in this case, we noted that as the number of groups increases the ARI
values decrease, even if, less compared to the previous cases. This may be explained
by a larger sample size (N = 1000). More in details, looking at the ARI values, our
proposal is still the best one- the mean values are equal to 0.97 and 0.79 for G = 2
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Table 8 Percentage distribution of the number of components chosen by aBIC over 250 samples generated
from the model (SC)UU with G = 3, K = 2 and N = 1000

Criterion G = 2 G = 3 G = 4

aBIC 1.20% 82.80% 16.00%

and G = 3, respectively. The naive model results to be the worst when G = 3 (mean
value is 0.53), while the other six parsimonious models show lower ARI values in
mean, varying between 0.69 and 0.85 when G = 2 and between 0.64 and 0.66 when
G = 3.

5.5 A simulation study for themodel selection

To complete our large simulation study, we tested the effectivness of the aBIC in
finding the correct number of components.
We considered the following design: number of observations (N = 1000), number of
groups (G = 3) and number of latent factors (K = 2). The number of variables is 8 of
which 4 are ordinal. The ordinal variables have 5 categories. The other model param-
eters are generated as described previously under the model (SC)UU . We generated
250 samples. For each sample we fitted the true model, keeping fixed the number
of latent factors. Further works are needed to calibrate the penalization term for the
additive BIC.

Looking at the results of 8, the aBIC is able to choose the right number for com-
ponents most of the times (82.80%). In conclusion, even if the idea of measuring
the complexity of the model by counting the number of parameters involved in each
sub-likelihood may seem simplistic, in this context it gives good results. This does not
exclude that further improvements are possible and needed.

6 Real data analysis

We apply the proposal to a set of data taken from the survey carried out by the Ital-
ian National Statistical Institute (ISTAT) in 2015 on academic graduates’ vocational
integration by interviewing a sample of graduates who attained the university degree
four years before. The aim of the survey is to detect graduates’ employment condi-
tions about four years after graduation. We select the following variables: final grade
for high school, age at graduation, final grade for the MSc degree, seven variables to
detect job satisfaction, four variables to detect the propensity to move abroad, monthly
income, length of study (in years), and gap between graduation and job (inmonths).We
focus only on students of Master degree in Economics and Statistics. Furthermore we
restricted the analysis to the observations with non-missing values. The final dataset
is composed of 1033 students and 16 variables (12 ordinal variables and 4 continuous
variables). The seven variables to detect job satisfaction have 11 categories, while the
four variables to detect the propensity to move abroad have 4 categories. We fitted
twelve models to the data for G = 2, 3, 4 and K = 1, 2, 3, and computed the additive
BIC values for each model. The values are shown in Fig. 1.
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Fig. 1 Model selection according to additive BIC with G = 2, 3, 4 and K = 1, 2, 3

The best model is that one minimizing the additive BIC. The model with the lowest
additive BIC value was a three component mixture with the UUU covariance structure
with a single common factor. The factors are changing over the groups, as well as
the error terms for each variable. The Table 9 reports the empirical medians and
proportions within each group.

Looking at Table 9, it is possible to note that the first two groups are very similar
in terms of final grade, satisfaction with the current job, and salary, although median
values and proportions are slightly different in terms of willingness to move abroad.
On the other hand, in the third group the final mark, the satisfaction with the current
job and the monthly income are the lowest, making this group quite different in terms
of academic graduates’ vocational integration. More in detail, the first group is the
smallest (18.48%) and it is composed by the youngest graduates. They got the highest
median value as final mark for the degree (110); they are very happy and satisfied with
their current work; they are also willing to move abroad only for better qualification
(93.10%) or higher salary (69.83%); their monthly median income is 1750 euros, and
finally, 50% of graduates started to work just two months after their graduation. The
second group is the largest (55.83%), composed mainly by graduates that got 108
as median final mark for the degree. Furthermore, they are quite satisfied with their
current job; they want also move abroad for better qualification (70.07%) or higher
salary (70.07%), although the percentages are lower than those in the first group; 50%
of graduates found job at most threemonths after graduation and their monthlymedian
income is 1700 euros. The last group is composed by of 26% of graduates. Half of
them got 106.5 or less as final median mark; they are not so satisfied with their current
job, mainly in terms of long term (43.83%), salary (43.21%) and career perspectives
(40.12%). However, the proportions of graduates that want to move abroad is very
similar to the second group; 50% of graduates found their job at most three months
after the degree, but their monthly median income is the lowest, that is 1300 euros.
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Table 9 Empirical medians and proportions with each group based on the classification given by the best
model, i.e. UUU with G = 3 and K = 1

Median or π̂ for Group 1 Group 2 Group 3
(18.48%) (55.83%) (25.69%)

Grade for High School 88 90 86

Age at Graduation [> 25] 73.28% 76.95 88.89%

Grade for Degree 110 108 106.5

Happy for Duties [6, 10] 98.28% 93.64% 72.22%

Happy for Long Term [6, 10] 93.97% 87.02% 43.83%

Happy for Independence/Responsibilities [6, 10] 100.00% 93.91% 79.01%

Happy for Knowledge from University [6, 10] 87.93% 74.44% 56.17%

Happy for Salary [6, 10] 90.51% 80.66% 43.21%

Happy for Career [6, 10] 96.55% 82.91% 40.12%

Happy for Professional growth [6, 10] 95.69% 89.93% 63.58%

Moving abroad for Qualification (Much or Enough) 93.10% 70.07% 75.31%

Moving abroad for Salary (Much or Enough) 69.83% 70.07% 70.99%

Moving abroad for Opportunity (Much or Enough) 50.00% 50.59% 55.56%

Moving abroad for Personal reasons (Much or Enough) 25.00% 39.34% 36.42%

Total Monthly Income 1750 1700 1300

Gap between Degree and Job 2 3 3

Table 10 Correlations between the variables and the single common factor of each group

Variables Group 1 Group 2 Group 3

Grade for High School 0.81 0.16 0.76

Age at Graduation [> 25] 0.79 0.64 0.73

Grade for Degree 0.71 −0.75 0.65

Happy for Duties [6, 10] 0.89 0.89 0.79

Happy for Long Term [6, 10] 0.56 0.94 0.74

Happy for Independence/Responsibilities [6, 10] 0.57 0.86 0.76

Happy for Knowledge from University [6, 10] 0.88 0.78 0.77

Happy for Salary [6, 10] 0.72 0.73 0.50

Happy for Career [6, 10] 0.74 0.74 0.79

Happy for Professional growth [6, 10] 0.83 0.86 0.64

Moving abroad for Qualification (Much or Enough) 0.47 0.58 0.74

Moving abroad for Salary (Much or Enough) 0.88 0.77 0.86

Moving abroad for Opportunity (Much or Enough) 0.74 0.88 0.70

Moving abroad for Personal reasons (Much or Enough) 0.81 0.96 0.76

Total Monthly Income 0.57 0.84 0.52

Gap between Degree and Job 0.69 0.97 0.65
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In each group we have a single factor that is, being unique, a sort of overall. Looking at
the correlations between the variables and the latent factors, we note that, as expected,
they are all positive (see Table 10). The only exception is the grade for degree in the
second group that is negative. It implies that this variable in the second group has a
negative correlationwith the other variables while they are positive in the other groups.
In practice, in the second group a higher grade is associated with a lower degree of
happiness and willingness to move. A possible explanation could be that in this group
the expectations of the students are strictly relatedwith the grade for degree: high grade
implies high expectations that are rarely satisfied; low grade implies low expectations
that are easier to satisfy.

Furthermore we fit the data with six flexible models available in the R package
clustMD. However we noted some issues: if some categories have zero frequencies
or there are many categories, the algorithms are not able to provide a solution. To
overcome this issue, we merged the categories such that all the categories have non-
zero frequencies and the number of categories is reduced. The solutions are not directly
comparable. For this reason we did not report the results.

7 Discussion

In this paper, we have introduced a general class of parsimonious Gaussian mixture
models for clustering ordinal and continuous variables. It includes known parameter-
izations proposed for continuous data as mixture of factor analysers and mixture of
probabilistic principal component analysis as special cases. In order to increase the
flexibility, we also introduced a new parameterization introduced in the context of
multiway and multigroup data. The main advantage is that the number of covariance
parameters grows linearly with the number of variables, rather than polynomially.
This feature, along with the maximum composite likelihood estimation, makes the
application of such models possible even for high dimensional mixed type data. The
effectiveness of the proposal has been tested through a simulation study. Additionally,
this class ofmodels appears to be particularly good atmodelling situationswhere some
of the variables are highly correlated within the groups, as expected in high dimen-
sional data. The application to the university graduates’ employment conditions about
four years after graduation in Italy indicates that the model gives excellent clustering
performance. The clusters found using the models showed greater ability to capture
the group structure, by defining the main features of the graduates in each group.

Finally, we summarize some limits and possible extensions of our proposal. First of
all, we note that counting and nominal variables are not considered. Their introduction
would be quite easy under a local independence assumption, i.e. assuming that the
observed variables are independent within the components. However, this assumption
is in contrast with the spirit of this work where the dependencies among the variables
within a component are modelled trough a factor analysis model. Such a modelling is
not trivial; for example some authors argue that in some cases factor analysis is not
applicable to nominal data (Revuelta et al. 2019), and probablywould lead to a different
way to build the composite likelihood. All in all, further studies are needed. Another
direction of extension of the present work is to introduce other ways to constrain the

123



Composite likelihood methods for parsimonious model-based… 405

parameters of the factor analysis model across the groups. As an example,McNicholas
and Murphy (2010) propose to rewrite the diagonal matrix of the uniqueness Ψ g as
the product of a scalar ωg and a diagonal matrix Δg , having the determinant equal
to 1. New parsimonious parameterizations are obtained constraining the first or the
second factor of the product to be the same across the components. In our model, such
constraints could be applied to the uniqueness matrices and to the saliences matrices
Lg . Other models could be simply obtained by allowing the number of factors to be
cluster specific. However, this does not mean that finding the best fitting model based
on information criteria is so trivial. Indeed it may result to be time consuming, sincewe
need to simultaneously choose G, K1, . . . , KG , and the covariance parameterisation.
To overcome this issue it could be useful adopting a penalization approach. As an
example, by introducing a lasso term, as explored in a different context (see e.g.
Khalili and Chen (2007); Chen and Khalili (2008)), it may be possible to define a
regularization path for the model selection. This would allow us to fit a lower number
of models and to choose the best one based on a pre-specified information criterion.
This potential solution could be developed in a future work.
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