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Abstract

Instance-dependent cost-sensitive (IDCS) learning methods have proven useful for
binary classification tasks where individual instances are associated with variable
misclassification costs. However, we demonstrate in this paper by means of a series
of experiments that IDCS methods are sensitive to noise and outliers in relation to
instance-dependent misclassification costs and their performance strongly depends on
the cost distribution of the data sample. Therefore, we propose a generic three-step
framework to make IDCS methods more robust: (i) detect outliers automatically, (ii)
correct outlying cost information in a data-driven way, and (iii) construct an IDCS
learning method using the adjusted cost information. We apply this framework to
cslogit, a logistic regression-based IDCS method, to obtain its robust version, which
we name r-cslogit. The robustness of this approach is introduced in steps (i) and
(ii), where we make use of robust estimators to detect and impute outlying costs of
individual instances. The newly proposed r-cslogit method is tested on synthetic and
semi-synthetic data and proven to be superior in terms of savings compared to its
non-robust counterpart for variable levels of noise and outliers. All our code is made
available online at https://github.com/SimonDeVos/Robust-IDCS.

B Simon De Vos
simon.devos @kuleuven.be

Toon Vanderschueren
toon.vanderschueren @kuleuven.be

Tim Verdonck
tim.verdonck @uantwerpen.be

Wouter Verbeke

wouter.verbeke @kuleuven.be

Faculty of Economics and Business, Leuven Al, KU Leuven, Naamsestraat 69, Leuven 3000,
Belgium

Department of Mathematics, University of Antwerp, Middelheimlaan 1, Antwerp 2020, Belgium

Department of Mathematics, KU Leuven, Celestijnenlaan 200B, Leuven 3001, Belgium

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-022-00533-3&domain=pdf
http://orcid.org/0000-0002-3032-8678
https://github.com/SimonDeVos/Robust-IDCS

1058 S.De Vos et al.

Keywords Cost-sensitive learning - Instance-dependent costs - Classification -
Outliers - Regression diagnostics - Logistic regression

Mathematics Subject Classification 62J12 Generalized linear models (logistic
models) - 90B50 Management decision making, including multiple objectives

1 Introduction

Classification is a well-studied machine learning task that involves the assignment of
instances to a predefined set of outcome classes. Cost-sensitive classification methods
take into account asymmetric costs related to incorrectly classifying instances across
various classes (Elkan 2001; Verbeke et al. 2020). Such misclassification costs may
either be class-dependent, i.e., equal for all instances of a class, or instance-dependent,
i.e., vary across instances.

Classification methods are adopted to support or automate business decision-
making, e.g., for credit scoring (Petrides et al. 2022) or customer churn prediction
(Lessmann et al. 2021). Note that in both applications, misclassified instances involve
variable costs. For instance, the cost of a misclassified churner equals the future cus-
tomer lifetime value, whereas a misclassified non-churner typically involves a much
smaller cost, i.e., the cost of targeting the customer with the retention campaign. Either
or both may be instance-dependent or class-dependent depending on the characteristics
of the particular application setting.

Abroad variety of cost-sensitive (CS) and instance-dependent cost-sensitive (IDCS)
classification methods have been proposed in the literature as reviewed and experi-
mentally evaluated by Petrides and Verbeke (2022) and Vanderschueren et al. (2022).
A prominent approach that is adopted by both CS and IDCS methods for taking
misclassification costs into account is to weigh instances proportionally with the mis-
classification cost involved when learning a classification model.

In this article, we raise the question of whether IDCS classification methods are
sensitive to outliers and noise in the data. No prior work seems to have addressed
this question, which nonetheless is of significant practical importance given the broad
adoption and potential monetary impact of using biased classification models for
decision-making.

To address these shortcomings, we present the results of a series of experiments to
evaluate the robustness of IDCS classification methods with respect to outlying costs
in the data, which highlight the potential bias and vulnerability of IDCS classification
methods. We propose a robust approach to IDCS classification by extending the exist-
ing cslogit approach (Hoppner et al. 2022). An important benefit is the automatic and
reliable detection of outliers in the data. These outliers may not only spoil the result-
ing analysis (as illustrated in this article) but can also contain valuable information. A
robust analysis can thus provide better insight into the structure of the data.

The following section outlines related work on IDCS learning and discusses both
cslogit and robustness. Next, in Sect. 3, a series of simulations on synthetic data
is presented that motivate the need for robust IDCS learning which we develop in
Sect. 4. Section 5 presents the results of a series of experiments that illustrate the
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excellent performance of the proposed robust IDCS learning method, denoted r-cslogit,
in comparison with both logit and cslogit. We conclude and present directions for future
research in Sect. 6.

2 Related work

Elkan (2001) introduces a learning paradigm where different misclassification errors
incur different penalties depending on the predicted and actual class, with applications
to, for example, detecting transaction fraud and credit scoring. The benefits and costs
of different predictions can be summarized in a two-dimensional instance-dependent
cost matrix with one dimension for the predicted value and another dimension for the
ground truth. Given these benefits and costs, each new instance should be assigned
to the class that leads to the lowest expected cost, which is calculated by means of
conditional probabilities.

2.1 IDCS learning, cslogit, and robustness

For certain applications, benefits and costs depend not only on the class but also on the
instance itself. Therefore, instance-dependent cost-sensitive learning considers a more
detailed, lower level of granularity than class-dependent costs. For these applications,
using instance-dependent costs instead of class-dependent costs leads to a decreased
total misclassification cost (Brefeld et al. 2003; Vanderschueren et al. 2022).

Several instance-dependent cost-sensitive methodologies have been proposed in the
literature, with recent overviews given by Petrides and Verbeke (2022) and Vander-
schueren et al. (2022). Especially relevant to our work are methodologies that adjust
the learning algorithm to incorporate instance-dependent costs. Instance-dependent
cost-sensitive variants have been proposed for several common machine learning clas-
sifiers, such as boosting (Fan et al. 1999; Zelenkov 2019; Hoppner et al. 2022), support
vector machines (Brefeld et al. 2003), decision trees (Sahin et al. 2013; Bahnsen et al.
2015), and logistic regression (Bahnsen et al. 2014; Hoppner et al. 2022).

In this work, we will build upon an instance-dependent cost-sensitive version of
logistic regression. Following Hoppner et al. (2022), we will refer to this method as
cslogit. Logistic regression is a widely used method for binary classification tasks. To
extend logistic regression to its IDCS counterpart, Bahnsen et al. (2016) and Hoppner
et al. (2022) propose an objective function that combines both cost-sensitivity and
instance-dependent learning, resulting in instance-dependent costs for optimization.
The application of this objective function yields significant improvements in terms of
higher savings compared to cost-insensitive or class-dependent cost-sensitive models
in the context of, for example, credit scoring and transaction fraud detection.

Classical nonrobust methods for regression, such as least squares or maximum
likelihood techniques, try to fit the model optimally to all the data. As a result, these
methods are heavily influenced by data outliers. This implies that outliers may bias the
parameter estimates and confidence intervals and thus hypothesis tests may become
unreliable and/or uninformative. In contrast, robust methods can resist the effect of
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outliers to avoid distorted results and false conclusions. As an important benefit, they
allow the automatic detection of outliers as observations that deviate substantially
from the robust fit. It is important to note that the detected outliers are not neces-
sarily errors in the data. The presence of outliers may reveal that the data are more
heterogeneous than has been assumed and that it can be handled by the original sta-
tistical model. Outliers can be isolated or may come in clusters, indicating that there
are subgroups in the population that behave differently. Many different approaches to
robust regression have been proposed and a good overview can be found in reference
works such as Huber and Ronchetti (2009), Maronna et al. (2019) and Rousseeuw
and Leroy (1987). In the context of generalized linear models (GLMs), various robust
alternatives have been presented, such as Cantoni and Ronchetti (2001), Bergesio and
Yohai (2011), Valdora and Yohai (2014), Ghosh and Basu (2016) and Stefelova et al.
(2021). Robust logistic regression has been studied by Kiinsch et al. (1989), Mor-
genthaler (1992), Carroll and Pederson (1993), Bianco and Yohai (1996), Croux and
Haesbroeck (2003), Bondell (2005), Bondell (2008), Monti and Filzmoser (2021) and
Hosseinian and Morgenthaler (2011).

2.2 Preliminaries

The dataset D consists of N observed predictor-response pairs {(x;, y,-)}lN: , and is
used to train a binary classification model s(.). The costs C; correspond to the cost
matrix defined in Table 1.

This binary classification model predicts a probability score s; € [0, 1] for each
instance i based on the features x;. Depending on the classification threshold ¢, s; is
converted to a predicted class y; € {0, 1}.

For models trained with AEC (Eq. 3), savings remain relatively stable across differ-
ent thresholding strategies (Vanderschueren et al. 2022). Therefore, we use a default
threshold of 0.5.

A binary logistic regression predicts a probability score that an observation belongs
to the positive class. This probability score is calculated by Eq. (1), where S is the bias
term, B ... B4 the learned weights and x; are the features of a particular observation
i

Si = S(po.p) (Xi) = # where z = Bo + Bixi1 + Baxi2a + ... + Baxia. (1)
This probability score is then compared to a threshold to categorize each of these
observations into classes. The objective function of a logistic regression is the likeli-
hood that is maximized or the cross-entropy loss that is minimized. For a single sample
with true label y; € {0, 1} and a probability score s; = P(Y = 1), the cross-entropy
loss is presented by Eq. (2):

Liog(viv 1) = — (v log(sy) + (1 = yi) log(1 ) ). @)

Note that this equation does not take into account any costs. Because this objective
function assigns equal weights to each misclassification, it does not necessarily corre-
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Table 1 Symmetric cost matrix Actual 0 Actual 1

for cslogit
Predicted as 0 Ci(0]10)=0 CiO|1)=A4;
Predicted as 1 Ci(110)=A; Ci1|1H)=0

spond to the underlying business problem where costs are to be minimized. The reason
for this is twofold: misclassification costs are different per class and per instance. The
real business objective is to minimize the average expected total cost of the binary
classifier.

We build upon the instance-dependent cost-sensitive logistic (cslogit) model as
proposed by Bahnsen et al. (2016) and Hoppner et al. (2022). Cslogit minimizes an
instance-dependent cost-sensitive objective function corresponding to the real busi-
ness objective of minimizing costs in domains such as customer churn prediction,
credit scoring, and direct marketing (Thai-Nghe et al. 2010; Claude Sammut 2017).
Dependent on this business objective, also other cost matrices can be considered. For
example, Hoppner et al. (2022) propose the cost matrix C; (0 | 0) =0, C; (0 | 1) = A;,
Ci(1]0) =cy,and C;(1 | 1) = ¢y for the detection of transfer fraud where cy is a
fixed administrative fee. Alternatively, Bahnsen et al. (2014) propose the cost matrix
Ci(010)=0,Ci(0]1)=Lgq, C;(1|0) =r; + C%p,and C;(1 | 1) = O for credit
scoring where Lgg4 is the loss given default, 7; is the loss in profit by rejecting what
could have been a good customer, and C}“r p is the cost related to the assumption that
the financial institution will not keep the amount of the declined applicant unused.
However, the reason for this work is to address the need for robustness and to propose
a solution to solve this potential issue in a generic way, regardless of its application.
Therefore, to present an application-agnostic methodology and preferring the most
simple cost matrix, this work utilizes a symmetric cost matrix.

Equation (3) shows the average expected cost (A EC), the cost-sensitive objective
function that is used by cslogit, given a symmetric cost matrix, as shown in Table 1:

AEC(s(D)) = %E[Cost(s(D)) | X1
| X
- N;(yi[s,-cia | D+ (1= s)Ci(0 | D]
+(1 = y)siCi(110) + (1 —5)Ci (0 | 0)])
1
= N;(A,-(y,-(l — 5+ (1= y)s). 3
In Eq. (3), each observation i is a pair of d features x; = (x;1, ..., xig) and a binary

response label y; € {0, 1}.

Across multiple models, the total cost as a metric is not unambiguously inter-
pretable, as datasets with high instance-dependent costs might have a higher total
misclassification cost but still have a better relative score. Proceeding with the idea
of normalizing the total classification costs of a model presented in Whitrow et al.
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(2009), Bahnsen et al. (2014) introduce a more interpretable metric: Savings. This
metric represents the relative improvement of the cost of a newly proposed model,
Cost(s(D)), compared to the cost of using an empty model that assigns all instances
to a single class, Costeppry (D). CoSteppry (D) is calculated by taking the minimum
of the costs incurred when classifying all instances as either belonging to the negative
or positive class:

CoStempry(D) = min {Cost (so(D)) , Cost (s1(D))} . 4

Using the Costempry(D) of an empty model as a factor to normalize total costs,
Savings of the model s(D) are calculated by Eq. (5):

Cost(s(D))

Savings (s(P)) =1 — ———.
gs (@) COStempty(D)

)

3 Sensitivity analysis

Data can contain outliers in terms of misclassification costs due to various reasons, such
as missing data, invalid observations, or typos. By incorporating instance-dependent
costs in the learning algorithm, outliers in these misclassification costs could poten-
tially have a large impact on instance-dependent cost-sensitive learning methodologies
such as cslogit. Therefore, we test the sensitivity of cslogit to these outliers and exam-
ine to what extent this is a shortcoming of this method.

3.1 Simulation setup

We analyze the sensitivity to outlying costs through a series of simulations on syn-
thetic data. The different synthetic datasets all share the following properties. Each
observation is visualized by a dot, with the size of the dot corresponding to its mis-
classification cost. The positive class is presented in red and the negative class in blue.
Each observation has, other than its misclassification cost and label, two features: X
and X;. X is the feature for the misclassification cost A. For the positive class, this
cost is positively related to X . Cases of the negative class have a negative relation
between X and their cost. The underlying function is given by Eq. (6):
A { 20 + 2xy; for the positive class , ©)

" 7120 — 2x;; for the negative class.

Panel (b) and (c) in Fig. 1 visualize this equation.

X is the feature that determines the two distributions of classes 0 and 1. The two
class distributions are a 2-dimensional Gaussian, sharing the same standard devia-
tions. Observations from the negative class are sampled from N (uo, 002, Vo, 102, 0)
and observations from the positive class from N (i1, 012, Vi, 112, 0).

o and w1 are both equal to 0, while vg = —5 and v = 5. The variances crg, 1'3, 012
and 77 are equal to 4. As there is no correlation between the two dimensions X; and
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@ negative class

x2

@ positive class

1 -
“loo 75 -50 -35 00 25 S0 75 100 “100 75 -50 -25 00 25 50 75 100 “lo0 75 -50 -25 00 25 50 75 100
X1 x1 x1

(a) Class distribution (b) Generated costs: (c) Generated costs:
negative class positive class

Fig. 1 The setup for synthetic data. Panel a displays the distribution of the negative and positive class,
dependent on X». Panels b and ¢ represent the misclassification costs of observations from the negative and
positive classes as a linear function of X, generated by Eq. (6). The three panels all show a sample of size
50 per class

X7, p is equal to 0. The cases of the positive class have a higher X, value than the
cases of the negative class. Panel (a) in Fig. 1 displays these class distributions by
which data are generated.

To generate outliers, both in the synthetic setup (Sects. 3 and 5.1) and in the sen-
sitivity analysis on real data (Sect. 5.2), the multivariate distribution of X remains
unchanged since we only focus on outliers in the observed costs of instances. We use
the Tukey-Huber contamination model to generate the cost distribution with outliers
where the Dirac function is applied to generate costs of any size (Maronna et al. 2019).

Given these settings for instance-dependent costs and class distribution, observa-
tions of the negative class with a high associated cost are expected to be located in the
third quadrant and observations of the positive class with a high associated cost in the
first quadrant. The symmetric cost matrix used for the examples on synthetic data is
presented in Table 1 as introduced in Sect. 2.2.

3.2 Results

Within each setting, two classifiers are compared: logit and cslogit. They are both
linear classifiers and propose a distinctly different decision boundary based on the
training data. Since the data are only two-dimensional, these decision boundaries can
be visually represented by lines. The logit and cslogit model’s proposed boundaries
are respectively coloured in red and blue. The normal behavior of both models in the
default settings of examples on synthetic data is visualized in Panel a of Fig. 2.

4 Robust IDCS

To overcome the sensitivity of instance-dependent cost-sensitive classifiers to outlying
costs, we introduce a three-step framework to make IDCS methods robust by detecting
outliers and adapting their cost matrix. Hence, the final model will be trained using a
less volatile and more rigid set of costs. The resulting robust classification model will
also yield automatic outlier detection. The concrete implementation of this framework
is represented by Algorithm 1.
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logit logit

cslogit cslogit

(a) Example on synthetic data: (b) Example on synthetic data:
Optimal behavior of logit and cslogit Influence of outliers on cslogit

logit

cslogit

(c) Example on synthetic data:
Influence of noise on cslogit

Fig. 2 The instability of cslogit’s decision boundary.This figure motivates the need for a robust version of
cslogit. Three examples of synthetic data where logit and cslogit are tested are shown. Panel a shows the
normal behavior of cslogit and logit in the default case. Panel b displays the case where a large outlier
is added. The blue decision boundary of cslogit shifts, while the red decision boundary of logit remains
stable. Note that the effect of the outlier can be subtle, i.e. it pulls on the decision boundary resulting in
a slight rotation, without actually being classified correctly. Panel ¢ displays the case where random noise
is added to the misclassification costs. The decision boundary of cslogit shifts even further, resulting in an
almost perpendicular boundary in comparison with Panel a. We further elaborate on the exact setting of the
examples on synthetic data in Sect. 5.1 (colour figure online)

To estimate the misclassification costs of observations in a robust manner in step
1, a regression with Huber loss is applied. Concretely, we estimate the cost A; of
observation i as a function of its features x; and label y; with a linear regression with a
Huber loss function: A i = f(x;, yi). A formalization of robustness in statistics started
with the work of Huber (1964). Interestingly, his ground-breaking results and well-
known loss function are still widely used today in the field of statistics and machine
learning. The Huber loss function is defined by Eq. (7). This results in a regression
that is less sensitive to outliers than traditional regression methods, which often use a
squared error loss.

2 for |a] <4,
la] — ) otherwise.

L
Ly(a) = { 5 ™

@ Springer



Robust instance-dependent cost-sensitive... 1065

Algorithm 1 Robust IDCS

Input: D = {(x;, A;,y;) : i = 1,..., N} wherex; is a feature vector, A; is the associated misclassification
cost and y; € {0, 1} is the response label of an observation i.

Output: Robust IDCS predictions y of label y

1: Step 1: Detect outliers.

2: Train a linear regression model with Huber loss so that: A= fX Y

3: Initialize set Sy p/jer 1= ¥

4: for each observation i do

5 if absolute value of the standardized residuals > 2.5 then

6: add observation (x;, A;, y;) to set Sy iier
7

8

remove observation (X;, A;, y;) from D

end if
9: end for
10: Step 2: Impute instance-dependent misclassification cost.
11: for each observation i in S, ¢7j¢r dO
12:  replace A; with Ai
13: end for
14 D' :=DU Soutlier
15: Step 3: Apply the IDCS method.
16: Apply cslogit to the new set D'.

60 T T T

"""""" Estimation

Cost

Observation

Fig.3 Cost estimation in function of X

Next, to detect outliers, we compare the absolute value of the standardized residuals
with a cutoff value of a normal distribution (Rousseeuw and Hubert 2011). If this value
exceeds 2.5, we consider it an outlier and add it to the initially empty set Syysiier-

The observed cost A; of observation i is operationally defined as an outlier if, for
an estimator A = f(X,Y), the absolute value of the standardized residual ¢; is larger
than 2.5.

Figure 3 further clarifies the concept of a conditional outlier on the setting of
synthetic data where noise is added to the observed costs, as is displayed in Fig. 2c.
In this figure, the black line displays the estimated costs, as predicted by the linear
regression model with Huber loss (Algorithm 1, line 2). The red dots represent the
costs of observations in function of X;. Consider the two observations A and B. To
check whether their observed costs are outliers, we look at the standardized residuals,
represented by the grey vertical lines for those two observations. Both observations
A and B have an observed cost of 50. The standardized residual of A exceeds 2.5,
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1066 S.De Vos et al.

Table2 Symmetric cost matrix for r-cslogit

y=0 y=1
o A 3 A _ AAi = f(x;,y;) if outlier,
$=0 Ci(0]0)=0 GOID= Aj otherwise
. A | Aj = f(xj.y;) if outlier, ) _
y=1 Ci(110)= { A; otherwise Giain=0

whereas for B it is smaller than 2.5. Consequently, although both observations have
the same cost, the cost of A is considered an outlier, whereas the cost of B is not.

By doing so, the costs A that are outliers, conditional on their features X and label
Y, are detected. In step 2, the observed outlying costs A of all observations in Syy/jer
are imputed with their estimated counterpart A. This results in a robust cost matrix
(Table 2).

Equation (8) retakes the cost-sensitive objective function AEC, given by Eq. (3),
but adapts it to the new robust cost-matrix given by Table 2. Indicator function 1,
takes value 1 if the cost A; of observation i is classified as an outlier.

AEC(s(D))

%E[Cost(s(D)) | X]

N
— 3 (A= + - 0s)

i=1

+(1 = 10) (Ar O (1 =)+ (1 - y»s»)} ®)

5 Results

This section discusses the performance of logit, cslogit and the novel r-cslogit on
synthetic data and tests their sensitivity on real data with additional outliers. In the
reported experiments, symmetric cost matrices are taken into account. However, the
use of alternative cost matrices as presented in Sect. 2.2 yields similar results concern-
ing robustness.

The performance of binary classification algorithms is typically measured by label-
ing one class as positive and the other class as negative and constructing a confusion
matrix. Positive classes are typically used to describe the minority class and negative
classes are used to describe the majority class. From the confusion matrix, we count
the following numbers. True Negatives (TN) is the number of correctly classified neg-
ative cases. False Positives (FP) is the number of negative cases incorrectly classified
as positive. False Negatives (FN) is the number of positive cases incorrectly classified
as negative. True Positives (TP) is the number of correctly classified positive cases.
With these numbers, we define Sensitivity or Recall, Specificity, and Precision
by Egs. 9, 10, and 11:
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TP
Sensitivity = Recall = ———— )
TP+ FN
Specificit TN (10)
ecificity = ————
pectltaty = o N Fp
. TP
Precision = —— (11
TP+ FP

Equation 12 defines F'1-measure, which is the Harmonic mean of precision and
recall.
_ 2 precision - recall

P = — (12)
precision + recall

The area under the receiver operating curve (AUC) of a classifier can be interpreted
as a measure of the probability that a randomly chosen minority case is predicted to
have a higher score than a randomly chosen majority case. Therefore, a higher AUC
indicates better classification performance (Hoppner et al. 2022). Class distributions
and misclassification costs are not taken into account in calculating the AUC.

Equation 13 defines the Brier score, where s; is the predicted probability and y; is
the observed outcome. This metric measures the mean squared difference between the
predicted probability and the actual outcome and is used to assess whether the model’s
predictions are calibrated probabilities. A lower score is better.

N
) 1
Brier = N 21: (si — yi)? (13)
1=

5.1 Synthetic data

In this section, we reuse the examples on synthetic data introduced in Sect. 3.1 to
demonstrate how the possible shortcomings of cslogit can be countered by deploying
the more robust r-cslogit. Figure 4 displays the decision boundaries of logit, cslogit
and r-cslogit in red, blue and green, respectively.

5.1.1 Synthetic data: three settings

The basic setting of the examples on synthetic data in Panel a is the same as explained
in Sect. 3.1. In Panel b, an additional outlier of the positive class is added in the third
quadrant with a cost equal to 400. The robust method first estimates its cost with a
linear Huber regression to be 13.75 and flags it as an outlier. Next, the cost for this
instance of 400 is changed to its estimated cost of 13.75. In Panel c, we add noise to
the costs. Hence, the misclassification costs are generated by Eq. (14), where the noise
€; is sampled from a lognormal distribution with parameters u =2 and o = 1.5.
A= { 20 4 2x1; + ¢; for the positive class , (14)

! 20 — 2x1; + ¢; for the negative class.
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5.1.2 Description of results

Figure 4 visualizes the decision boundaries of the three models. In Panel a, the decision
boundaries of cslogit and r-cslogit overlap as regression with Huber Loss can perfectly
predict the underlying function of associated misclassification costs as a function of X
in the absence of noise or outliers. Panel b displays the case where one outlier is added.
The decision boundary of the logit model is not affected by the size of misclassification
costs. Hence, it is not influenced by the outlier and remains unchanged, demonstrating
normal behavior as defined before. The blue decision boundary of the cslogit model
is strongly influenced by outliers. The objective function takes into account the full
misclassification costs of the observations in the training set, including the excessive
outliers. As a consequence, the behavior of the cslogit model has been completely
disrupted. This is strongly in conflict with its normal behavior, as the decision boundary
is almost tilted by a quarter turn. This tilted decision boundary results in poor predictive
classification power, making the cslogit model to be of inferior quality. The green
decision boundary of r-cslogit remains largely unchanged, as it is robust against the
single added outlier.

Performance metrics are summarized in Table 3. We consider the cost-sensitive
metric Savings introduced in Sect. 2.2 and cost-independent metrics Sensitivity,
Specificity, F1, AUC, and Brier score.

r-cslogit outperforms logit and cslogit in terms of Savings when we add an outlier
and noise. Moreover, the performance in terms of Savings remains unchanged after
adding an outlier. In the default case of setting one, r-cslogit and cslogit are equiv-
alent, as they make the exact same predictions. When considering cost-insensitive
metrics, logit performs best. A full analysis on synthetic data where we experiment
with different settings of class imbalance and outlier size can be found in Appendix
A.

5.2 Sensitivity analysis on real data

In this section, we analyze the sensitivity of the three methods in an experiment with
real data where we add an additional outlier, gradually increasing in size. To add
outliers, we randomly select an observation and change its class label and instance-
dependent misclassification cost.

This setup is similar to the second setup with synthetic data as presented in the
previous section. The performance is measured by the cost-sensitive metric Savings
as described before as well as the cost-independent metrics Sensitivity, Specificity,
F1, AUC, and Brier score. The measurement of performance makes use of five-fold
cross-validation with a stratified split on class distribution that is repeated twice with
a different random initialization.

5.2.1 Description of the dataset

The dataset on which the three methods are tested is the Kaggle Credit Card Fraud
Detection dataset (ULB 2018). The dataset dates from September 2013 and contains
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— logit — logit
cslogit —— cslogit
— r-cslogit — r-cslogit
(a) Example on synthetic data: (b) Example on synthetic data:
Default case One outlier

logit
cslogit

r-cslogit

(c¢) Example on synthetic data:
Additional noise

Fig. 4 Superiority of r-cslogit. The red decision boundary of logit remains unchanged, as it is not cost-
sensitive. The blue decision boundary of cslogit differs strongly per example, as the model is prone to
outliers and noise. The green decision boundary of r-cslogit is stable against outliers and handles noise in
misclassification costs quite well. In Panel a, the blue and green decision boundaries coincide

transactions made by European credit cardholders. A total of 492 out of 284,807
transactions are fraudulent, resulting in a high class imbalance. The numerical input
features V1, V2,..., V28 are the results of a PCA transformation to anonymize
the dataset. Time and Amount have not been transformed. The feature Time is
not taken into consideration in this experiment and is therefore dropped in the pre-
processing phase. The feature Amount is the transaction amount, which is of high
importance in cost-sensitive instance-dependent learning and translates into our set-
ting as the instance-dependent misclassification cost. The feature Class € {0, 1}
indicates whether a transaction is fraudulent or not.

5.2.2 Results

Table 4 contains the results of a 2 x 5-fold cross validation procedure for the Kaggle
Credit Card Fraud Detection dataset. We measure each classifier’s performance aver-
aged over the ten (2 x 5) test sets with the metrics Savings, F1, AUC, Sensitivity,
Specificity, and Brier score where instance-independent thresholds are applied.

@ Springer
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Fig.5 Sensitivity analysis on Performance in function of outlier size
real data 0.7 T T T T T T
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In terms of Savings, logit is always outperformed by cslogit and r-cslogit. When
adding an outlier, r-cslogit outperforms cslogit. Note that the performance of r-cslogit
remains stable for all considered metrics when increasing the size of the outlier. In
terms of cost-insensitive metrics AUC, Speci ficity, and Brier score, logit performs
best. In terms of F'1 and Sensitivity, logit is outperformed by either cslogit or r-
cslogit. This could be due to the effect of class imbalance and is in line with previous
findings of Hoppner et al. (2022) The results in terms of Savings are visualized in Fig.
5. Since the logit model is not cost-sensitive, its performance remains constant after
adding an outlier. The performance of cslogit is strongly disrupted after the cost of the
outlier is set to 1 M or larger. This corresponds with the shift of the two-dimensional
linear decision boundary, as shown by the findings of the examples on synthetic data.
Even though the dataset contains over 280,000 instances, a single outlier, albeit a large
outlier, can unhinge the cslogit method. When increasing the misclassification cost
of a single outlier, the performance of r-cslogit remains stable. It is certainly more
robust to this additional noise than its nonrobust counterpart, as the individual outlier
is detected and its cost is imputed with an estimated, expected cost. The shaded areas in
Fig. 5 represent the variability of performance over different folds in cross-validation.
In contrast to the variability of cslogit, which increases drastically, the variability in
the performance of r-cslogit remains stable.

6 Conclusion

Instance-dependent cost-sensitive (IDCS) learning methods take into account variable
misclassification costs across instances in the training data in learning a classification
model. This allows for optimizing the performance of the resulting classification model
in terms of the misclassification costs rather than the classification accuracy.

In this article, we present the results of a series of experiments on synthetic data to
demonstrate the sensitivity of IDCS methods to outliers and noise in the data. We show
that the resulting classification model may be highly sensitive to outlying instance-
dependent costs, in learning an instance-dependent cost-sensitive classification model.
Consequently, using existing cost-sensitive models in the presence of noise or outliers
can result in large misclassification costs.

@ Springer
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To address this potential vulnerability, we propose a generic, IDCS-method-
independent, three-step framework to develop robust IDCS methods with respect to
the effects of random variability and noise. In the first step, instances with outlying
misclassification costs are detected. In the second step, outlying costs are corrected
in a data-driven way. In the third step, an IDCS learning method is applied using the
adjusted instance-dependent cost information.

This generic framework is subsequently applied in combination with cslogit, which
is alogistic regression-based IDCS method, to obtain its robust version named r-cslogit.
The robustness of this approach is introduced in the first two steps of the generic
framework by making use of robust estimators to detect and impute outlying costs of
individual instances. The newly proposed r-cslogit method is tested on synthetic and
semi-synthetic data. The results show that the proposed method is superior in terms of
cost savings when compared to its non-robust counterpart for variable levels of noise
and outliers.

Funding No funds, grants, or other support was received.
Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

Appendix A Results on synthetic data

See Tables 5 and 6.
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