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Abstract
Multiple imputation (MI) is a popular method for dealing with missing values. How-
ever, the suitable way for applying clustering after MI remains unclear: how to pool
partitions? How to assess the clustering instability when data are incomplete? By
answering both questions, this paper proposed a complete view of clustering with
missing data usingMI. The problem of partitions pooling is here addressed using con-
sensus clustering while, based on the bootstrap theory, we explain how to assess the
instability related to observed and missing data. The new rules for pooling partitions
and instability assessment are theoretically argued and extensively studied by simula-
tion. Partitions pooling improves accuracy, while measuring instability with missing
data enlarges the data analysis possibilities: it allows assessment of the dependence of
the clustering to the imputation model, as well as a convenient way for choosing the
number of clusters when data are incomplete, as illustrated on a real data set.

Keywords Clustering · Consensus clustering · Missing data · Multiple imputation ·
Rubin’s rules · Uncertainty

Mathematics Subject Classification 62H30 · 62D10

1 Introduction

Clustering individuals is an essential task for data science. Clustering aims at parti-
tioning a sample of individuals in several groups (clusters) so that individuals in a
same cluster are similar from a multidimensional point of view, while individuals in
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separate clusters are different. k−means clustering (Forgy 1965), partitioning around
medoids (Kaufman and Rousseeuw 1990), clustering by mixture models (McLachlan
and Basford 1988) or hierarchical clustering (Ward 1963) are some popular methods
for building this partition.

However, data are often incomplete and clustering algorithms cannot be directly
applied on incomplete data. A common strategy to deal with missing values in data
analysis consists in using multiple imputation (Rubin 1976, 1987; Schafer 1997).
Multiple imputation (MI) consists of 3 steps: (1) the imputation of the data set accord-
ing to an imputation model several times (2) the analysis of each imputed data set
according to a substantive model (3) the pooling of the analysis results according to
the Rubin’s rules. Such methods are mainly used for inference in linear models (see
Marshall et al. (2009) for other uses), but not for clustering. For instance, for applying
a regression model on incomplete quantitative data: (1) data can be imputed according
to a Gaussian model (Schafer 1997), (2) the regression model is fit on each imputed
data set, leading to several estimates of the regression coefficients and their associated
variance, (3) regression estimates are averaged and the associated variance is com-
puted. Thus, despite missing values, MI yields a unique estimate of substantive model
parameters and an uncertaintymeasure, which is expressed as a variance estimate. One
major issue for applying clustering after MI is how to apply an equivalent of Rubin’s
rules in this context, i.e. how to apply step 3) ? Basagana et al. (2013), Faucheux et al.
(2020), Bruckers et al. (2017) brought some answers in terms of partitions pooling,
but the question of the uncertainty measure has not been discussed.

Uncertainty in clustering refers to (in)stability and results in various Voronoi tes-
sellations of the metric space. These variations can cover many aspects: the used
clustering algorithm, its initialization, the chosen number of clusters, etc. Here, we
focus on another aspect which is the stability related to sampling. Note that we dis-
tinguish it to the probability in the assignment of an individual to a cluster (easily
obtained for model-based clustering methods), which assesses the uncertainty in clus-
ter assignment, but would remain even if the sample were fixed. See Dudoit and Fridly
(2003) or Bruckers et al. (2017) for related works.

When data are complete, several resampling techniques have been proposed to
assess the clustering stability (Hennig 2007). One main advantage of these methods
consists in being relevant for both distance-based andmodel-based clusteringmethods.
They are generally motivated by the determination of the number of clusters. The
rationale is that a “too" large number of clusters should lead to a significant increase of
instability. Jain andMoreau (1987),Wang (2010), Fang andWang (2012),Mourer et al.
(2020) proposed several approaches in this line. In particular, Wang (2010) proposed
a measure of stability based on cross-validation. Authors demonstrate the asymptotic
selection consistency of their procedure. However, the expected value of this measure
is related to the number of individuals. Consequently, since by data splitting cross-
validation reduces the sample size, the stability estimate could be biased. For this
reason, Fang and Wang (2012) proposed an insightful bootstrap technique avoiding
data splitting.

In this paper, we generallymore focus on the pooling step, both in terms of partitions
pooling and in terms of sample variability with incomplete data. The rest of the paper is
as follows. Based on the literature on consensus clustering and stability assessment in
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the context of complete data, we argue in Sect. 2 how to apply Rubin’s rules after MI.
Then in Sect. 3, our methodology is assessed by simulation. Finally, an application to a
real data set is proposed to determine the number of clusters when data are incomplete.

2 Method

2.1 Notations

Following standard notations for incomplete data analysis, we denote X =
(xi�)1≤i≤n,1≤�≤p the full data set and R = (ri�)1≤i≤n,1≤�≤p the missing data pat-
tern, so that ri� = 0 if xi� is missing and 1 if observed. X and R are the associated
random variables. For a given observation i , the set of observed values is denoted xobsi ,
while the set of missing values is denoted xmiss

i , so that xi = (
xobsi , xmiss

i

)
. Note that

this partition of variables is specific for each observation. Similarly, we denote Xobs

and Xmiss the observed and the missing part of X so that X = (
Xobs, Xmiss

)
. The

distribution of random variable is denoted F . Next, we place ourselves under the stan-
dard missing at random (MAR) assumption, meaning R and Xmiss are independent
conditionally to Xobs Rubin (1976).

2.2 Rubin’s rules

From a frequentist point of view, MI aims at estimating the expected mean and the
expected variance of a statistic Q over the realizations of

(
Xobs, R

)
. For instance,

Q could be the least squared estimator of regression coefficients in a linear model,
or the estimator of correlation between variables, etc. Under the MAR assumption,
consistent estimators can be obtained by ignoring the distribution of R. The associated
estimates are obtained in three steps:

1. M values of Xmiss are drawn from their predictive distribution FXmiss |Xobs , leading
to M imputed data sets

(
Xobs,Xmiss

m

)
1≤m≤M .

2. Q is evaluated on each one, providing a set of point estimates
(
Q̂m

)

1≤m≤M
with

Q̂m = Q
(
Xobs,Xmiss

m

)
, as well as a set of estimated variances (Um)1≤m≤M .

3. These values are aggregated according to the Rubin’s rules (Rubin 1976) leading
to a unique point estimate Q̄ and a unique variance estimate T as follows:

Q̄ = 1

M

M∑

m=1

Q̂m (1)

T = 1

M

M∑

m=1

Um

︸ ︷︷ ︸
Ū

+ 1

M − 1

M∑

m=1

(
Q̂m − Q̄

)2

︸ ︷︷ ︸
B

(2)
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By the second step, we obtain M independent realizations of Q given Xobs . These
realizations are centered around Q

(
Xobs,Xmiss

)
(in expectation), i.e. around the value

of the statistic which would be observed if data were fully observed. Consequently,
their average given by Q̄ in the third step is an unbiased estimate of the expected value
of Q over all observed samples. Thus, Q̄ estimates

EXobs

[
EX

[
Q

(
Xobs, Xmiss

)
|Xobs

]]
(3)

Similarly, Ū = 1
M

∑M
m=1Um estimates the variance of Q over observed samples

and B = 1
M−1

∑M
m=1

(
Q̂m − Q̄

)2
the additional variance related to missing values.

Following an ANOVA decomposition, the total variance T is expressed as the sum of
a within imputation variance (Ū ) and a between imputation variance (B), so that T
estimates

EXobs

[
VarX

[
Q

(
Xobs, Xmiss

)
|Xobs

]]

︸ ︷︷ ︸
wi thin

+ VarXobs

[
EX

[
Q

(
Xobs, Xmiss

)
|Xobs

]]

︸ ︷︷ ︸
between

(4)

Note that according to the values of
(
Xmiss
m

)
1≤m≤M , Q̄ randomly varies around

its expectation given Xobs . When M is small, this additional variability cannot be
ignored. For this reason, B is generally corrected to account for it. Such a correction
is obtained by multiplying B by (1 + 1/M) (Schafer 1997).

Compared to single imputation, MI accounts for the variability due to missing
values thanks to the between variance B. The ratio B/T is helpful for interpretation
since it assesses the robustness of the final analysis results to the imputation model
(van Buuren 2018).
Challenges and motivations Rubin’s rules (Eqs. 1 and 2) have been developed for
statistic Q in R (Marshall et al. 2009). However, a clustering algorithm does not lie
within this scope, since it can be expressed as a categorical variable Ψ with values in
the set of partitions of n observations in K clusters at the most. Thus, this paper aims to
developnew rules in the context of cluster analysis: a first rule to pool theM realizations
ofΨ obtained from each imputed data set, as well as a second rule to compute a unique
associated uncertainty measure which accounts for sample variability and missing
values. Such an innovative methodology would offer a new way for applying any
cluster analysis method on incomplete data.

2.3 Partitions pooling

In the context of clustering, partitions pooling refers to consensus clustering. Based
on the literature in this research field when data are complete, we are going to propose
an equivalent of the first rule (Eq. 1).
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2.3.1 Consensus with complete data

Consensus clustering has been addressed by several authors since several decades (see
e.g. Day (1986), Vega-Pons and Ruiz-Shulcloper (2011) for a survey). The main idea
of consensus clustering is to agglomerate the separate partitions

(
Ψ j

)
1≤ j≤J (called

contributory partitions) into a global partition that must be as similar as possible to
the contributory partitions according to an index, like the Rand index defined as the
proportion of agreements between partitions, i.e. 1

n(n−1)

∑
(i,i ′) δi i ′ where δi i ′ is equal

to 0 if individuals i and i ′ belong to the same cluster in one partition and not in the
other; and δi i ′ is equal to 1 otherwise. These contributory partitions can be due to
various algorithms, or several tuning parameters, several sets of features etc. Recently,
Jain (2017) brought a strong theoretical framework to consensus clustering by seeing
a consensus algorithm as an estimate of the partition minimizing the expected sum of
the dissimilarity δ with all separate partitions (over all partitions). More precisely, the
expected partition is defined as follows

argminΨ ∈Pn,K

∫

Pn,K

δα(Ψ �, Ψ )dπ(Ψ �) (5)

where π is a probability distribution on the partition space Pn,K of n observations in
K clusters at the most, δ a dissimilarity function and α a positive real. An estimator
of (5) can be defined as the partition minimizing the loss function from the observed
contributory partitions

(
Ψ j

)
1≤ j≤J :

L(Ψ ) =
J∑

j=1

δα(Ψ ,Ψ j ) (6)

By this theoretical framework, Jain (2017) extends the notion of mean (dedicated
to real statistic) to the context of partitions.

However, because of the huge number of partitions, minimizing (6) is highly chal-
lenging. The literature mainly deals with α tuned to 1 or 2, referred asmedian partition
problem. Vega-Pons and Ruiz-Shulcloper (2011) distinguished four families of meth-
ods for solving it: non-negative matrix factorization (NMF) based methods, Mirkin
distance-based methods, Kernel methods and genetics algorithms. The first two have
interesting theoretical properties.

NMF methods consists in rewriting the median partition problem as

argminH ‖ M − H ‖2 (7)

where ‖ . ‖ denotes the Frobenius norm, H (n × n) denotes a connectivity matrix
(meaning H = (hii ′)1≤i,i ′≤n with hii ′ = 1 if the individuals i and i ′ are in a same
cluster and hii ′ = 0 otherwise) andM = 1

J

∑J
j=1H j denotes the mean of the connec-

tivity matrices
(
Hj

)
1≤ j≤J associated to each contributory partition Ψ j (1 ≤ j ≤ J ).
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The constraint that H must be a connectivity matrix can be expressed as an opti-
mization over the set of the orthogonal matrices (Li et al. 2007). The solution of this
problem under orthogonality constraint corresponds to the partition minimizing the
loss function given in Eq. (6). NMF is a powerful method widely used for solving
many optimization problems (beyond the clustering framework) in several fields. One
of the main theoretical strengths of the method is the monotone convergence of the
optimization algorithm used.

Mirkin distance-basedmethods focus onminimizing the loss function (6) for δ cho-
sen as the number of disagreements between partitions (called Mirkin distance). The
Mirkin distance does not make the problem less complex, but it has been widely stud-
ied and benefits from theoretical results. For example, when the solution is restricted
to the set of contributory partitions, the error cannot exceed two times the one obtained
by the global optimum (Filkov and Skiena 2004).

Note that many other methods have been proposed to perform consensus clustering,
like the popular Cluster based Similarity Partitioning Algorithm (CSPA), which con-
sists in re-clustering the individuals from the average (M) of the connectivity matrices
associated to the contributory partitions. However, those methods cannot be expressed
as a median partition problem and consequently cannot be justified from an inferential
point of view. See Vega-Pons and Ruiz-Shulcloper (2011), Strehl et al. (2002) for a
review.

2.3.2 Partitions pooling after MI

Partitions pooling after MI aims at aggregating several partitions varying by the
imputed values only. As the first Rubin’s rule is motivated by inferential argument,
consensus clustering based on the median partition problem is theoretically appealing
since it directly extends the notion of expected mean to the clustering framework,
providing a straightforward application of the first Rubin’s rule to clustering. Among
the consensus methods based on the median partition problem, genetics algorithms
do not offer theoretical guaranties, while kernel-based methods seem irrelevant in the
context of MI. Indeed, since imputed values are generated independently from their
predictive distribution, we assume all contributory partitions should have the same
weight. Thus, only NMF-based methods and Mirkin distance-based methods provide
a suitable way to pool partitions after MI. Formally, our equivalent of the first Rubin’s
rule for clustering after MI is as follows:

Ψ̄ = argminΨ

M∑

m=1

δ(Ψ ,Ψm) (8)

with Ψm is the partition obtained from
(
Xobs,Xmiss

m

)
and δ the Mirkin distance, or

equivalently
argminH ‖ M − H ‖2 (9)

withM = 1
M

∑M
m=1Hm and Hm the connectivity matrix associated to Ψm .
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Following Jain (2017), the obtained partition estimates the theoretical partition
minimizing the expected sum of the dissimilarity δ with all separate partitions given
Xobs .

Based on other techniques, clustering after MI has been previously investigated.
Some authors have proposed stacking centroids or stacking imputed data sets for
dealingwith several imputed data sets (Plaehn 2019).We can note that stacking ignores
the differences between imputed data sets. Among other methods, Basagana et al.
(2013) proposed a general framework for consensus by previously investigating the
choice of the number of partitions and the choice of the subset of variables retained
for clustering. For a given number of clusters and a set of variables, consensus is
performed by majority vote over the contributory partitions. More recently, Bruckers
et al. (2017) proposed a consensus for functional data. For achieving this goal, they
first identify the indicator matrices associated to each contributory partition and then,
they look at the fuzzy matrix minimizing the Euclidean distance over the indicator
matrices. The consensus partition is then obtained by majority vote (Dimitriadou et al.
2002). Like CSPA, this approach in two steps cannot be considered as based on the
median partition problem (Vega-Pons and Ruiz-Shulcloper 2011). Lately, Faucheux
et al. (2020) proposed consensus based on the MultiCons algorithm (Al-Najdi et al.
2016). The algorithm presents many advantages, in particular it allows a visualization
of the hidden cluster structure in the data set, but it does not aim at minimizing the
median partition problem (Al-Najdi et al. 2016, p. 16).

While these other methods yield a unique partition from several imputed data sets,
this partition cannot be expressed as an estimator of a theoretical partition, contrary
to those based on the median partition problem.

2.4 Instability pooling

Based on the literature in cluster stability when data are complete, we now propose
an equivalent of the second rule (Eq. 2).

2.4.1 Instability with complete data

Assessing the instability in clustering is important for data analysis. For achieving this
goal, resampling methods are appealing, especially when the clustering algorithm is
distance-based, like k-means, k-medoids or hierarchical clustering. Wang (2010) and
Fang and Wang (2012) proposed two ways for computing instability measure from
any clustering algorithms. The first one is based on cross-validation, while the second
is based on bootstrap. Since the cross-validation method tends to underestimate the
instability (Wang 2010; Fang and Wang 2012), the bootstrap method appears like
more relevant. The main idea consists in defining a theoretical distance (instability)
δ between clusterings based on the sample distribution FX . Then, this distribution is
mimicked by bootstrap and the distance is evaluated from each bootstrap replicate.
Finally, distances are aggregated by averaging.More precisely, the theoretical distance
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δFX between two clusterings Ψ and Ψ ′ is defined by

δFX (Ψ j , Ψ j ′) = PFX {I (
VΨ j (X) = VΨ j

(
X ′)) + I

(
VΨ j ′ (X) = VΨ j ′

(
X ′)) = 1}

(10)
where X and X ′ are independently drawn from the distribution FX and VΨ j (X) is the
Voronoi cell for X according to the partition given by Ψ j . This distance measures the
probability of disagreement between both clusterings.

Based on this definition, the instability of Ψ is defined as

EXn∼Fn
X ,X̃n∼Fn

X

[
δFX

(
Ψ

(
Xn) , Ψ

(
X̃n

))]
(11)

i.e. as the expectation over all random samples of size n of the distances between
partitions given by clustering trained on them.

Fang and Wang (2012) proposes an estimate of (11) by bootstrap: C bootstrap

pairs
(
Xc, X̃c

)

1≤c≤C
are drawn from the empirical distribution F̂n . From each one,

Ψ is evaluated. Both estimates are used to classify the individuals of X according to
the Voronoi cells defined by each partition (e.g. by considering the closest centroid).
Finally, the instability of the clustering is estimated by

Uboot = 1

C

C∑

c=1

δF̂n

(
Ψ (Xc) , Ψ

(
X̃c

))
(12)

with

δF̂n

(
Ψ (Xc) , Ψ

(
X̃c

))
= 1

n2

n∑

i=1

n∑

i ′=1

∣
∣
∣
∣I

(
VΨ (Xc) (xi ) = VΨ (Xc) (xi ′ )

) − I

(
V

Ψ
(
X̃c

) (xi ) = V
Ψ

(
X̃c

) (xi ′ )

)∣
∣
∣
∣

(13)

Note that δF̂n corresponds to the proportion of disagreements between both par-
titions of X (up to the scalar factor n

n−1 ) and can be viewed as a normalized Mirkin
distance. Fang andWang (2012) indicate moderate values ofC (20 or 50) are sufficient
for a precise instability assessment. Furthermore, this instability can be assessed for
distance-based or non-distance-based clustering algorithms.

2.4.2 Instability with incomplete data

Following previous developments for complete data, the instability with missing data
can be defined as the expectation given in (11) over observed data. Following the
second Rubin’s rule, such an instability can be decomposed as the sum of a within
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instability (Eq. 14) and a between instability (Eq. 15):

EXobs ,X̃obs

[
EX ,X̃

[
δFX |Xobs

(
Ψ

(
Xobs, Xmiss

)
, Ψ

(
X̃obs, X̃miss

))
|Xobs

]]
(14)

EXobs ,X̃obs

[
δFX

(
Ψ

(
Xobs, Xmiss

)
, Ψ

(
X̃obs, X̃miss

))
|Xobs

]
(15)

Following Eq. (2), the within instability (Eq. 14) can be estimated from imputed

M data sets
(
Xobs,Xmiss

m

)
1≤m≤M by:

Ū = 1

M

M∑

m=1

Uboot
m (16)

whereUboot
m is the instability estimated from

(
Xobs,Xmiss

m

)
according to Eq. (12) and

the between instability (Eq. 15) can be estimated by:

B = 1

M2

M∑

m=1

M∑

m′=1

δF̂X |Xobs

(
Ψ

(
Xobs,Xmiss

m

)
, Ψ

(
Xobs,Xmiss

m′
))

(17)

where δF̂X |Xobs
(
Ψ

(
Xobs,Xmiss

m

)
, Ψ

(
Xobs,Xmiss

m′
))

corresponds to the proportion of

disagreements between partitions obtained from imputed data sets m and m′ as in Eq.
(13). We note this expression does not depend on the mean partition, while the rule in
Eq. (2) depends on the mean. For this reason, no correction for small values of M is
required here.

The total instability is given by the sum of Eqs. (16) and (17):

T = 1

M

M∑

m=1

Uboot
m + 1

M2

M∑

m=1

M∑

m′=1

δF̂X |Xobs

(
Ψ

(
Xobs,Xmiss

m

)
, Ψ

(
Xobs,Xmiss

m′
))

(18)
Note that without missing values, Eq. (18) is equivalent to the instability proposed

in Fang andWang (2012).More generally, T is positive and bounded by 2. The value of
0 is reached if K = 1 or if the clustering is constant whatever the incomplete sample.
The less stable the clustering is, the larger T will be. A large value of the between
instability compared to the total one indicates a strong dependence of the clustering
to the imputation model.

2.5 Summary

Based on above developments, the full procedure to perform cluster analysis after
multiple imputation can be summarized as follows:

Imputation From an incomplete data set, generate M imputed data sets according
to a predefined multiple imputation method
Analysis For m in {1 . . . M}:
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1. build a partition Ψm from the mth imputed data set
2. compute Uboot

m the associated instability:
(a) by resampling individuals with replacement, generate C bootstrap pairs(

Xc, X̃c

)

1≤c≤C
from the mth imputed data set

(b) for each bootstrap pair c in {1 . . .C}
– perform cluster analysis from

(
Xc, X̃c

)

1≤c≤C
to obtain a pair of par-

titions
(
Ψc, Ψ̃c

)

– classify the n individuals of the mth imputed data set according to Ψc

and Ψ̃c to obtain a pair of partitions
(
Ψ ′
c, Ψ̃

′
c

)

– compute the proportion of disagreements betweenΨ ′
c and Ψ̃ ′

c asU
c
m =

1
n2

∑
(i,i ′) δi,i ′ where δi i ′ is equal to 0 if individuals i and i ′ belong to

the same cluster in one partition and not in the other; and δi i ′ is equal
to 1 otherwise

(c) compute the instability associated toΨm byaveragingUboot
m = 1

C

∑C
c=1U

c
m

Pooling The set of partitions (Ψm)1≤m≤M and the set of associated instability
estimates

(
Uboot
m

)
1≤m≤M are aggregated as follows:

First rule (partitions pooling) usingNMF orMirkin basedmethods, compute
the consensus partition as

Ψ̄ = argminΨ

M∑

m=1

δ(Ψ ,Ψm)

where δ(Ψ ,Ψm) denotes the number of disagreements between partitions Ψ

and Ψm (Mirkin distance)
Second rule (instability pooling) compute the total instability as:

T = 1

M

M∑

m=1

Uboot
m + 1

M2

M∑

m=1

M∑

m′=1

δ (Ψm, Ψm′) /n2

Note that an implementation is provided through the R package clusterMI which is
available at the web page of the first author.

3 Simulations

After proposing rules for pooling clusterings after MI, we highlight how the pooled
results vary according to the data structure. Furthermore, we investigate their robust-
ness to the number of imputed data setsM . TheR code used for simulations is available
on demand.
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3.1 Simulation design

3.1.1 Data generation

Full data are simulated according to a p multivariate Gaussian mixture model with
two mixture components:

X ∼ π1Np (μ1,Σ (ρ)) + π2Np (μ2,Σ (ρ))

where p = 10, π1 = π2 = 1/2, μ1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), μ2 =
(0, 0, 0, 0, 0, 2, 2, 2, 2, 2) and

Σ (ρ) =

⎛

⎜⎜⎜
⎝

I5 0
0

1 ρ ρ ρ ρ

ρ 1 ρ ρ ρ

ρ ρ 1 ρ ρ

ρ ρ ρ 1 ρ

ρ ρ ρ ρ 1

⎞

⎟⎟⎟
⎠
. Several configurations are investigated by varying the

number of individuals n ∈ {25, 50, 100, 200}, the correlation between variables ρ ∈
{0.3, 0.6}. For each configuration, S = 200 data sets are generated. For each data
set, several missing data patterns are considered varying by the percentage of missing
values τ ∈ {0.1, 0.3, 0.5} and their distribution: Prob(ri� = 0) = τ for all 1 ≤ i ≤ n
and 1 ≤ � ≤ p (MCAR mechanism) or Prob(ri� = 0) = Φ(aτ + xi1) for all
1 ≤ i ≤ n and 2 ≤ � ≤ p with Φ the cumulative distribution function of the standard
normal distribution (MAR mechanism) and aτ a constant to control the percentage
of missing values in expectation. Thus, 9600 incomplete data sets are investigated.
Note the computational cost to investigate each one does not allow a larger number of
replications.

3.1.2 Methods

Each incomplete data set is imputed according to two MI methods accounting for the
structure of individuals (Schafer 2003)

– JM-DP: MI using a non-parametric extension of the mixture model namely the
Dirichlet process mixture of products of multivariate normal distributions (Kim
et al. 2014). The number of components is bounded by 5. The number of iterations
for the burn-in period is tuned to 500 and the number of skipped iterations to keep
one imputed data set after the burn-in period is tuned to 100.

– FCS-RF: MI by random forest (Doove et al. 2014). The number of iterations for
the multivariate imputation by chained equations algorithm is tuned to 10.

For each method, the number of imputed data sets M varies in {1, 5, 10, 20, 50}.
Note that the case M = 1 corresponds to single imputation. Then, k-means clustering
is performed on each imputed data set (using 2 clusters, standardization of variables
and 100 initializations) and partitions are pooled according to the proposed rules.More
precisely, the mean partition is estimated using the NMF clustering based method (Eq.
(8)) as proposed in Li et al. (2007) and also using a Mirkin distance-based method
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(Eq. (9)) calledSimulated-Annealing-One-element-Move (SAOM) (Filkov andSkiena
2004). Furthermore, the total instability is computed according to Eq. (18).

As benchmark, k-means clustering is also performed on the full data and on the
complete cases. In addition, k-means through a bagging procedure based on boot-
strap (Dudoit and Fridly 2003) is investigated on full data, while k-means through the
k-pod algorithm (Chi et al. 2016) is investigated on incomplete data. This later algo-
rithm overcomes missing values in k-means by optimizing the k-means criterion over
observed values only. For achieving this goal, a majorization-minimization algorithm
is used, consisting in alternating clustering of individuals (by k-means) and imputation
of incomplete observations by the coordinates of their associated centroid.

3.1.3 Criteria

The accuracy of the consensus partition is assessed according to the mean (over the
S generated data sets) of the adjusted rand index (ARI) (Hubert and Arabie 1985)
between the consensus partition and the reference one known by simulation. The
mean (over the S generated data sets) of the intra instability Ū , the mean of the
between variability B, and the mean of the total instability T are reported for each
configuration.

3.2 Results

3.2.1 Partitions pooling

Figures 1 and 2 summarize results over the S = 200 simulations for both mechanisms
(averages and interquartile ranges are available in “Tables 3 and 4 in Appendix”).
Performances for MI methods consider M = 50 imputed data sets, the influence of M
is discussed in Sect. 3.2.3. Note that because complete-case analysis does not cluster
all individuals (compared to MI methods or clustering on full data), the following
process is applied for a fair comparison: first, complete cases are clustered using
kmeans clustering. Then, based on their observed profile, each incomplete case is
classified according to the closest centroid. If the data set did not contain complete
cases, then a cluster would be assigned at random for each incomplete case. Thus, the
resulting partition concerns all observations.

For both mechanisms, the ARI over the S data sets when the contributory partitions
are pooled using NMF or when they are pooled using SAOM remain generally close.
However, both MI methods show higher ARI values with NMF pooling when the
number of individuals and the proportion of missing values increase.

As expected, the ARI obtained by MI is close to the one obtained without missing
values (Full or Full-boot) when the proportion of missing values τ equals 0.1, and the
difference is larger when this proportion increases. Furthermore, clustering after MI
outperforms complete-cases analysis even if the proportion of missing values is small.
Compared to the direct application of kmeans using the k-pod algorithm, similar ARI
are observed for aMCARmechanism, butMI outperforms under theMARmechanism
for a moderate (τ = 0.3) or large (τ = 0.5) proportion of missing values.
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(a) (b)

Fig. 1 Accuracy of the clustering procedure under a MCAR mechanism: distribution of the adjusted rand
index over the S = 200 generated data sets varying by the number of individuals (n), the correlation
between variables (ρ) and the proportion of missing values (τ ) for various imputation methods (JM-DP
or FCS-RF), various consensus methods (NMF or SAOM). For each case, clustering is performed using
k-means clustering. As benchmark, ARI obtained by applying k-means on complete-cases (CCA), using
k-pod algorithm (kpod), on full data (Full) or using a bagging procedure (Full-boot) are also reported

A large number of individuals slightly increases the ARI and decreases the
interquartile range in MI, while it only decreases the interquartile range when data are
full.

Finally, the ARI is usually higher when data are imputed using JM-DP than FCS-
RF. It could be expected since JM-DP is based on an imputation model close to the
model used for data generation, while FCS-RF is based on a non-parametric model.

3.2.2 Instability pooling

Table 1 gathers the average ofwithin instability, between instability and total instability
over the S = 200 data sets for configurations under a MCARmechanism with n = 50
or n = 200 individuals (see “Table 6 inAppendix” for aMARmechanism andTables 5
for n ∈ {25, 100}).

As expected, the total instability is always higher by using MI (M = 50) instead
of SI (M = 1) for all configurations. Furthermore, clustering instability is generally
smaller when using MI instead of complete-case analysis and higher compared to
clustering instability when data are full. We note the average between instability (B)
tends to increase when the proportion of missing values increases. This behavior was
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(b)(a)

Fig. 2 Accuracy of the clustering procedure under a MAR mechanism: distribution of the adjusted rand
index over the S = 200 generated data sets varying by the number of individuals (n), the correlation
between variables (ρ) and the proportion of missing values (τ ) for various imputation methods (JM-DP
or FCS-RF), various consensus methods (NMF or SAOM). For each case, clustering is performed using
k-means clustering. As benchmark, ARI obtained by applying k-means on complete-cases (CCA), using
k-pod algorithm (kpod), on full data (Full) or using a bagging procedure (Full-boot) are also reported

expected. More surprisingly, the within instability (Ū ) is also increasing with the
proportion of missing values, even if this increase remains relatively smaller. This is
highlighted for small values of n. Such a behavior can be explained by overfitting of the
imputation models. Indeed, FCS-RF as non-parametric imputation method requires a
large number of observations, while JM-DP as complexmodel requires a large number
of observations to fit accurately the data structure. For this reason, when the number
of individuals is small, the imputed values are highly variable, yielding to an increase
of the within instability. This behavior is more severe when the proportion of missing
values is large. Note that instability using the k-pod algorithm is not considered since
the method only returns a partition from incomplete data, but no instability measure.

3.2.3 Influence ofM

As underlined in Sect. 2.4.2, the instability given by the second rule does not depend
(in expectation) on the number of imputed data sets (if M ≥ 2). As regard the partition
accuracy, a large number of imputed data sets should bring the consensus partition
closer to the partition obtained from full data. Figure 3 reports the influence of M on
the ARI for MI using JM-DP and NMF consensus.
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Table 1 Instability of the clustering procedure under a MCAR mechanism: average within-instability (Ū )
average between-instability (B) and average total instability (T ) over the S = 200 generated data sets for
various number of individuals (n), correlation between variables (ρ) and proportion of missing values (τ )

n ρ τ M JM-DP FCS-RF Full CCA

Ū B T Ū B T T T

50 0.3 0.1 1 0.08 0.00 0.08 0.07 0.00 0.07 0.06 0.13

50 0.3 0.1 50 0.08 0.06 0.14 0.07 0.06 0.13 0.06 0.13

50 0.3 0.3 1 0.13 0.00 0.13 0.11 0.00 0.11 0.06

50 0.3 0.3 50 0.13 0.19 0.32 0.10 0.16 0.27 0.06

50 0.3 0.5 1 0.17 0.00 0.17 0.14 0.00 0.14 0.06

50 0.3 0.5 50 0.17 0.37 0.54 0.15 0.31 0.45 0.06

50 0.6 0.1 1 0.08 0.00 0.08 0.07 0.00 0.07 0.06 0.13

50 0.6 0.1 50 0.08 0.06 0.14 0.07 0.06 0.13 0.06 0.13

50 0.6 0.3 1 0.13 0.00 0.13 0.10 0.00 0.10 0.06

50 0.6 0.3 50 0.12 0.20 0.32 0.10 0.16 0.26 0.06

50 0.6 0.5 1 0.17 0.00 0.17 0.14 0.00 0.14 0.06

50 0.6 0.5 50 0.17 0.37 0.54 0.14 0.30 0.44 0.06

200 0.3 0.1 1 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.04

200 0.3 0.1 50 0.01 0.03 0.04 0.01 0.04 0.06 0.01 0.04

200 0.3 0.3 1 0.01 0.00 0.01 0.02 0.00 0.02 0.01 0.16

200 0.3 0.3 50 0.01 0.10 0.11 0.02 0.14 0.16 0.01 0.16

200 0.3 0.5 1 0.04 0.00 0.04 0.04 0.00 0.04 0.01

200 0.3 0.5 50 0.04 0.25 0.29 0.04 0.26 0.30 0.01

200 0.6 0.1 1 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.04

200 0.6 0.1 50 0.02 0.03 0.05 0.02 0.05 0.06 0.02 0.04

200 0.6 0.3 1 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.16

200 0.6 0.3 50 0.02 0.10 0.11 0.02 0.13 0.15 0.02 0.16

200 0.6 0.5 1 0.04 0.00 0.04 0.03 0.00 0.03 0.02

200 0.6 0.5 50 0.04 0.25 0.29 0.03 0.24 0.28 0.02

Two imputation methods are investigated (JM-DP or FCS-RF) using M = 1 or M = 50 imputed data
sets. For each case, clustering is performed by k-means. As benchmark, ARI obtained by applying k-means
clustering on full data (Full) or complete-case analysis (CCA) are also reported (not possible for a large
proportion of missing values)

For all configurations, a large value of M tends to increase the ARI meaning a large
number of imputed data sets tends to increase clustering accuracy. The increase is
even more important as the proportion of missing values is large or as the number of
individuals is small.

Similar results have been observed when data are imputed by FCS-RF (“Fig. 8 in
Appendix”) or when a MAR mechanism is considered (see “Fig. 9 in Appendix” for
imputation by FCS-RF and Fig. 7 for imputation by JM-DP).

Figure 4 reports the influence of M on the instability forMI using JM-DP and NMF
consensus.
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(b)(a)

Fig. 3 Accuracy of the clustering procedure according toM : adjusted rand index over the S = 200 generated
data sets varying by the number of individuals (n), the correlation between variables (ρ) and the proportion
of missing values (τ ) generated under a MCAR mechanism. Data sets are imputed by JM-DP varying by
the number of imputed data sets (M). For each data set, clustering is performed using k-means clustering
and consensus clustering is performed using NMF

As expected, for M ≥ 2 the instability is constant whatever the proportion of
missing values, the number of individuals or the correlation between variables. Similar
results are observed when data are generated under a MAR mechanism or when data
are imputed by FCS-RF (see “Figs. 10, 11, 12 in Appendix”).

3.3 Complement: number of clusters

As written in the introduction, having an instability measure with missing values
can provide a way for estimating the number of clusters from incomplete data. To
assess the second rule with regards to this goal, a complementary simulation study
is conducted by considering a grid for the number of clusters. More precisely, after
multiple imputation, k-means clustering is applied for K in {2, . . . , 5}. By applying
the second rule, a value of instability TK is obtained from each value from the grid.
The estimated number of clusters is given by

argminK∈{1,...,Kmax } TK . (19)

Results are reported in Table 2. The number of clusters is accurately estimated when
performing imputation by JM-DP, but a small number of observations or a large pro-
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(a) (b)

Fig. 4 Instability according to M : total instability (T ) over the S = 200 generated data sets varying by the
number of individuals (n), the correlation between variables (ρ) and the proportion of missing values (τ )
generated under a MCAR mechanism. Data sets are imputed by JM-DP varying by the number of imputed
data sets (M). For each data set, clustering is performed using k-means clustering and consensus clustering
is performed using NMF

portion of missing values leads to an upper bias. This behaviour is similar to complete
case analysis (even if the method cannot always be applied). Results when using FCS-
RF leads to K = 4 or K = 5 in most of the cases. Better performances of JM-DP
compared to FCS-RF were expected since JM-DP is well tailored to account for the
clustered structure of observations (Audigier et al. 2021).

4 Application

In addition to estimating the instability in clustering, the second rule can be used
for tuning the number of clusters with missing values. The animals data set from
the cluster R package (Maechler et al. 2019) is used as an example (Kaufman and
Rousseeuw 1990). It describes 20 animals by six binary variables (warm-blooded, can
fly, vertebrate, endangered, live in groups, have hair). Five individuals are incomplete
(see “Table 7 in Appendix”).

We propose to perform hierarchical clustering using the flexible UPGMA method
(Belbin et al. 1992). Flexible UPGMA can be seen as a generalization of the aver-
age method which ensures the desirable monotonicity property of the algorithm. For
achieving this goal, data are imputed M = 50 times according to a log-linear model
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Fig. 5 Instability estimation in hierarchical clustering according to the number of clusters. Data are imputed
using a log-linear model (MI-cat) with M = 50 imputed data sets. The instability with complete-case
analysis (CCA) is also reported

(Schafer 1997), which is considered as the gold standard for binary variables. Then,
hierarchical clustering is applied on each imputed data set for a given number of clus-
ters K . Finally, the clustering instability T is assessed using the second rule. This
process is repeated for K varying in {2, 3, 4, 5}. Results are presented in Fig. 5 and
instability using only complete cases is also reported.

Using MI, the instability is the smallest for K = 4 clusters, suggesting a consensus
clustering in 4 clusters. Results for complete-case analysis are less clear, but a partition
in two clusters could be suggested. A larger number could be inappropriate compared
to the number of complete cases (15).

Comparison between the consensus partition obtained by NMF in four clusters
and the one obtained by hierarchical clustering on complete cases in two clusters are
presented through a principal factor map (Fig. 6).

The partition obtained by complete-case analysis gathers mammals with birds in
the first cluster, while insects and fishes are gathers in the second. On the opposite,
consensus clustering after MI in four clusters isolates mammals in the first cluster,
or insects in the fourth. Furthermore, it allows suitable clustering of incomplete indi-
viduals: lion among mammals, spider among insects, salmon and frog with herring,
lobster with ant (both have the same observed profile cf “Table 7 in Appendix”).
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(a) (b)

Fig. 6 Animals data set: visualization of partitions through the principal factor map obtained using the
iterative MCA algorithm (Josse et al. 2012)

5 Discussion

Multiple imputation is awidely usedmethod for dealingwithmissing values.However,
applying Rubin’s rules with clustering remained unclear: 1) how to pool the partitions
obtained from each imputed data set? In this paper, we argue to use median partition-
based methods for pooling partitions. In particular, NMF methods are theoretically
and computationally attractive for achieving this goal. 2) How to assess the instability
of the clustering with missing values? Based on Fang and Wang (2012), we propose
a new rule for assessing the stability with missing values. An associated R package
entitled clusterMI is available at the web page of the first author

From a practical point of view, the first rule provides accurate clustering with miss-
ing values. Indeed, even without missing data, Dudoit and Fridly (2003) have shown
bagging procedures based on bootstrap improve clustering accuracy. By generating M
times the imputed values and aggregating the partitions obtained from each imputed
data set, a similar improvement is observed with multiple imputation. It has been high-
lighted that the accuracy is sensitive toM , particularly when the number of individuals
is small or the proportion of missing values is large. Simulations show M = 50 is
generally enough, but M can be tuned by investigating the evolution of the pooled
partition according to the number of imputed data sets.

The second rule allows calculation of an additional between instability B related
to missing values. This instability has the advantage to be robust to the choice of M .
Availability of a between instability is precious in practice for several uses. Firstly, it
provides a new way for dealing with the number of clusters when data are incomplete.
This is particularly useful for distance-based clustering methods like k-means or k-
medoids. Secondly, the ratio B/T provides a new way to highlight how the partition
is robust to the missing values (van Buuren 2018).

In this work, we assumed data were already imputed. It could be also interesting
to investigate more deeply the suitable imputation method according to the clustering
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method applied on each imputed data set. The topic is commonly discussed under the
term congeniality (Meng 1994; Schafer 2003). Simulation results subtend a sensitivity
to the imputation method both in terms of accuracy and instability which is substanti-
ated by recent research (Audigier et al. 2021). We also assumed data were missing at
random, but beyond the difficulty to impute non-missing at random data, the proposed
rules could be directly applied.

Furthermore, we assumed all contributory partitions have the same number of clus-
ters K , but the methodology can be directly applied for various number of clusters,
like in hierarchical clustering where the number is generally unknown in advance.
Indeed, NMF consensus clustering is essentially based on the average of the con-
nectivity matrices associated to each contributory partition. Such an average can be
obtained whatever the number of clusters since the dimensions of each connectivity
matrix depends only on the number of individuals which is constant for all parti-
tions. The only requirement is that the clustering method allows classification for new
individuals. Even if this classification is always possible, certain classification meth-
ods are connected to certain clustering methods. For instance, classification using the
closest centroid is suitable for k-means or k-medoids, while quadratic discriminant
analysis could be more reliable for Gaussian mixtures. For other clustering methods,
anyone of these classificationmethods could be used, but the robustness to the stability
measurement should require more research.

Finally, several NMF-based methods are available for partitions pooling. In this
paper, we focus on the multiplicative rules method as proposed in Li et al. (2007)
which is the most common method, but which is not necessarily the most efficient.
Among alternatives, alternating least squares algorithms are notably recommended
for large scale data (Andrzej Cichocki and ichi Amari 2009).
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Appendix

Partitions pooling

See Tables 3 and 4.
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Instability pooling

See Tables 5 and 6.

Table 5 Instability of the clustering procedure under a MCAR mechanism: average within-instability (Ū )
average between-instability (B) and average total instability (T ) over the S = 200 generated data sets for
various number of individuals (n), correlation between variables (ρ) and proportion of missing values (τ )

n ρ τ M JM-DP FCS-RF Full CCA

Ū B T Ū B T T T

25 0.3 0.1 1 0.14 0.00 0.14 0.12 0.00 0.12 0.11 0.16

25 0.3 0.1 50 0.13 0.08 0.22 0.12 0.07 0.19 0.11 0.16

25 0.3 0.3 1 0.18 0.00 0.18 0.15 0.00 0.15 0.11

25 0.3 0.3 50 0.17 0.26 0.43 0.15 0.20 0.35 0.11

25 0.3 0.5 1 0.19 0.00 0.19 0.18 0.00 0.18 0.11

25 0.3 0.5 50 0.19 0.43 0.63 0.18 0.37 0.55 0.11

25 0.6 0.1 1 0.13 0.00 0.13 0.12 0.00 0.12 0.11 0.16

25 0.6 0.1 50 0.13 0.09 0.22 0.12 0.07 0.20 0.11 0.16

25 0.6 0.3 1 0.17 0.00 0.17 0.15 0.00 0.15 0.11

25 0.6 0.3 50 0.17 0.26 0.44 0.15 0.20 0.34 0.11

25 0.6 0.5 1 0.19 0.00 0.19 0.17 0.00 0.17 0.11

25 0.6 0.5 50 0.19 0.43 0.63 0.17 0.37 0.54 0.11

100 0.3 0.1 1 0.03 0.00 0.03 0.03 0.00 0.03 0.02 0.09

100 0.3 0.1 50 0.03 0.04 0.06 0.03 0.05 0.08 0.02 0.09

100 0.3 0.3 1 0.05 0.00 0.05 0.05 0.00 0.05 0.02

100 0.3 0.3 50 0.05 0.15 0.20 0.04 0.15 0.19 0.02

100 0.3 0.5 1 0.12 0.00 0.12 0.08 0.00 0.08 0.02

100 0.3 0.5 50 0.11 0.30 0.42 0.08 0.28 0.36 0.02

100 0.6 0.1 1 0.03 0.00 0.03 0.03 0.00 0.03 0.03 0.10

100 0.6 0.1 50 0.03 0.04 0.07 0.03 0.05 0.08 0.03 0.10

100 0.6 0.3 1 0.05 0.00 0.05 0.04 0.00 0.04 0.03

100 0.6 0.3 50 0.06 0.16 0.22 0.05 0.14 0.19 0.03

100 0.6 0.5 1 0.11 0.00 0.11 0.08 0.00 0.08 0.03

100 0.6 0.5 50 0.11 0.31 0.41 0.08 0.26 0.34 0.03

Two imputation methods are investigated (JM-DP or FCS-RF) using M = 1 or M = 50 imputed data
sets. For each case, clustering is performed by k-means. As benchmark, ARI obtained by applying k-means
clustering on full data (Full) or complete-case analysis (CCA) are also reported (not possible with a large
proportion of missing values)

123



650 V. Audigier, N. Niang

Table 6 Instability of the clustering procedure under a MAR mechanism: average within-instability (Ū )
average between-instability (B) and average total instability (T ) over the S = 200 generated data sets for
various number of individuals (n), correlation between variables (ρ) and proportion of missing values (τ )

n ρ τ M JM-DP FCS-RF Full CCA

Ū B T Ū B T T T

(a) n ∈ {25, 50}
25 0.3 0.1 1 0.14 0.00 0.14 0.12 0.00 0.12 0.11 0.14

25 0.3 0.1 50 0.13 0.09 0.22 0.12 0.08 0.20 0.11 0.14

25 0.3 0.3 1 0.17 0.00 0.17 0.15 0.00 0.15 0.11 0.16

25 0.3 0.3 50 0.17 0.27 0.44 0.15 0.22 0.37 0.11 0.16

25 0.3 0.5 1 0.19 0.00 0.19 0.17 0.00 0.17 0.11

25 0.3 0.5 50 0.19 0.41 0.60 0.17 0.36 0.53 0.11

25 0.6 0.1 1 0.13 0.00 0.13 0.13 0.00 0.13 0.11 0.13

25 0.6 0.1 50 0.13 0.10 0.23 0.12 0.08 0.20 0.11 0.13

25 0.6 0.3 1 0.17 0.00 0.17 0.15 0.00 0.15 0.11 0.15

25 0.6 0.3 50 0.17 0.26 0.42 0.15 0.21 0.35 0.11 0.15

25 0.6 0.5 1 0.19 0.00 0.19 0.17 0.00 0.17 0.11

25 0.6 0.5 50 0.19 0.41 0.60 0.17 0.36 0.52 0.11

50 0.3 0.1 1 0.08 0.00 0.08 0.07 0.00 0.07 0.06 0.09

50 0.3 0.1 50 0.08 0.07 0.15 0.07 0.07 0.14 0.06 0.09

50 0.3 0.3 1 0.12 0.00 0.12 0.10 0.00 0.10 0.06 0.14

50 0.3 0.3 50 0.12 0.22 0.34 0.10 0.19 0.30 0.06 0.14

50 0.3 0.5 1 0.17 0.00 0.17 0.14 0.00 0.14 0.06 0.15

50 0.3 0.5 50 0.17 0.36 0.53 0.14 0.33 0.47 0.06 0.15

50 0.6 0.1 1 0.08 0.00 0.08 0.07 0.00 0.07 0.06 0.09

50 0.6 0.1 50 0.08 0.08 0.15 0.07 0.06 0.14 0.06 0.09

50 0.6 0.3 1 0.12 0.00 0.12 0.10 0.00 0.10 0.06 0.14

50 0.6 0.3 50 0.12 0.22 0.34 0.10 0.19 0.29 0.06 0.14

50 0.6 0.5 1 0.16 0.00 0.16 0.14 0.00 0.14 0.06 0.16

50 0.6 0.5 50 0.16 0.36 0.53 0.14 0.32 0.46 0.06 0.16

(b) n ∈ {100, 200}
100 0.3 0.1 1 0.03 0.00 0.03 0.03 0.00 0.03 0.02 0.04

100 0.3 0.1 50 0.03 0.05 0.07 0.03 0.06 0.09 0.02 0.04

100 0.3 0.3 1 0.05 0.00 0.05 0.05 0.00 0.05 0.02 0.09

100 0.3 0.3 50 0.05 0.19 0.24 0.05 0.18 0.23 0.02 0.09

100 0.3 0.5 1 0.11 0.00 0.11 0.08 0.00 0.08 0.02 0.15

100 0.3 0.5 50 0.11 0.33 0.43 0.08 0.31 0.39 0.02 0.15

100 0.6 0.1 1 0.03 0.00 0.03 0.03 0.00 0.03 0.03 0.04

100 0.6 0.1 50 0.03 0.05 0.08 0.03 0.06 0.09 0.03 0.04

100 0.6 0.3 1 0.05 0.00 0.05 0.05 0.00 0.05 0.03 0.10

100 0.6 0.3 50 0.05 0.19 0.24 0.05 0.17 0.21 0.03 0.10

100 0.6 0.5 1 0.10 0.00 0.10 0.08 0.00 0.08 0.03 0.15

100 0.6 0.5 50 0.10 0.33 0.43 0.08 0.30 0.37 0.03 0.15
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Table 6 continued

n ρ τ M JM-DP FCS-RF Full CCA

Ū B T Ū B T T T

200 0.3 0.1 1 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.02

200 0.3 0.1 50 0.01 0.04 0.05 0.01 0.05 0.07 0.01 0.02

200 0.3 0.3 1 0.01 0.00 0.01 0.02 0.00 0.02 0.01 0.05

200 0.3 0.3 50 0.01 0.15 0.16 0.02 0.17 0.19 0.01 0.05

200 0.3 0.5 1 0.03 0.00 0.03 0.03 0.00 0.03 0.01 0.11

200 0.3 0.5 50 0.04 0.29 0.33 0.04 0.30 0.33 0.01 0.11

200 0.6 0.1 1 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.02

200 0.6 0.1 50 0.02 0.04 0.06 0.02 0.05 0.07 0.02 0.02

200 0.6 0.3 1 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.06

200 0.6 0.3 50 0.02 0.14 0.16 0.02 0.16 0.18 0.02 0.06

200 0.6 0.5 1 0.03 0.00 0.03 0.03 0.00 0.03 0.02 0.12

200 0.6 0.5 50 0.03 0.28 0.31 0.03 0.28 0.32 0.02 0.12

Two imputation methods are investigated (JM-DP or FCS-RF) using M = 1 or M = 50 imputed data
sets. For each case, clustering is performed by k-means. As benchmark, ARI obtained by applying k-means
clustering on full data (Full) or complete-case analysis (CCA) are also reported (not possible with a large
proportion of missing values)

Influence ofM

Accuracy

See Figs. 7, 8 and 9.

(a) (b)

Fig. 7 Accuracy of the clustering procedure according toM : adjusted rand index over the S = 200 generated
data sets varying by the number of individuals (n), the correlation between variables (ρ) and the proportion
of missing values (τ ) generated under a MAR mechanism. Data sets are imputed by JM-DP varying by the
number of imputed data sets (M). For each data set, clustering is performed using k-means clustering and
consensus clustering is performed using NMF
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(b)(a)

Fig. 8 Accuracy of the clustering procedure according toM : adjusted rand index over the S = 200 generated
data sets varying by the number of individuals (n), the correlation between variables (ρ) and the proportion
of missing values (τ ) generated under a MCAR mechanism. Data sets are imputed by FCS-RF varying by
the number of imputed data sets (M). For each data set, clustering is performed using k-means clustering
and consensus clustering is performed using NMF

(a) (b)

Fig. 9 Accuracy of the clustering procedure according toM : adjusted rand index over the S = 200 generated
data sets varying by the number of individuals (n), the correlation between variables (ρ) and the proportion
of missing values (τ ) generated under a MAR mechanism. Data sets are imputed by FCS-RF varying by
the number of imputed data sets (M). For each data set, clustering is performed using k-means clustering
and consensus clustering is performed using NMF
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Instability

See Figs. 10, 11 and 12.

(a) (b)

Fig. 10 Instability according to M : total instability (T ) over the S = 200 generated data sets varying by the
number of individuals (n), the correlation between variables (ρ) and the proportion of missing values (τ )
generated under a MAR mechanism. Data sets are imputed by JM-DP varying by the number of imputed
data sets (M). For each data set, clustering is performed using k-means clustering and consensus clustering
is performed using NMF
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(a) (b)

Fig. 11 Instability according to M : total instability (T ) over the S = 200 generated data sets varying by the
number of individuals (n), the correlation between variables (ρ) and the proportion of missing values (τ )
generated under a MCARmechanism. Data sets are imputed by FCS-RF varying by the number of imputed
data sets (M). For each data set, clustering is performed using k-means clustering and consensus clustering
is performed using NMF

(a) (b)

Fig. 12 Instability according to M : total instability (T ) over the S = 200 generated data sets varying by the
number of individuals (n), the correlation between variables (ρ) and the proportion of missing values (τ )
generated under a MAR mechanism. Data sets are imputed by FCS-RF varying by the number of imputed
data sets (M). For each data set, clustering is performed using k-means clustering and consensus clustering
is performed using NMF
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Application

See Table 7.

Table 7 Animals data set War Fly Ver End Gro Hai

Ant 0 0 0 0 1 0

Bee 0 1 0 0 1 1

Cat 1 0 1 0 0 1

Cpl 0 0 0 0 0 1

Chi 1 0 1 1 1 1

Cow 1 0 1 0 1 1

Duc 1 1 1 0 1 0

Eag 1 1 1 1 0 0

Ele 1 0 1 1 1 0

Fly 0 1 0 0 0 0

Fro 0 0 1 1 0

Her 0 0 1 0 1 0

Lio 1 0 1 1 1

Liz 0 0 1 0 0 0

Lob 0 0 0 0 0

Man 1 0 1 1 1 1

Rab 1 0 1 0 1 1

Sal 0 0 1 0 0

Spi 0 0 0 0 1

Wha 1 0 1 1 1 0
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