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Abstract
The inference of mixture regression models (MRM) is traditionally based on the
normal (symmetry) assumption of component errors and thus is sensitive to outliers
or symmetric/asymmetric lightly/heavy-tailed errors. To deal with these problems,
some new mixture regression models have been proposed recently. In this paper, a
general class of robust mixture regression models is presented based on the two-piece
scale mixtures of normal (TP-SMN) distributions. The proposed model is so flexible
that can simultaneously accommodate asymmetry and heavy tails. The stochastic
representation of the proposed model enables us to easily implement an EM-type
algorithm to estimate the unknown parameters of the model based on a penalized
likelihood. In addition, the performance of the considered estimators is illustrated
using a simulation study and a real data example.

Keywords ECME algorithm · Mixture regression models · Penalized likelihood ·
Two-piece scale mixtures of normal distributions

Mathematics Subject Classification 62H30 · 62J20 · 62E17 · 62F10 · 62J05

1 Introduction

Mixture regression models (MRM) have broad applications in many fields including
Engineering,Biology,Biometrics,Genetics,Medicine, Econometrics, Psychology and
Marketing. These models are used to investigate the relationship between variables
which come from several unknown latent homogeneous groups. The MRM was first
introduced by Quandt (1972) and Quandt and Ramsey (1978) as switching regression
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models and Späth (1979) as clusterwise linear regressionmodels. For a comprehensive
survey see McLachlan and Peel (2000).

The maximum likelihood (ML) estimation of the parameter of theMRM is usually
based on the normality assumption. In this regard, many extensive literatures are
available. Applications include marketing (DeSarbo and Cron 1988; DeSarbo et al.
1992; Naik et al. 2007), finance (Engel and Hamilton 1990), economics (Cosslett and
Lee 1985; Hamilton 1989), agriculture (Turner 2000), nutrition (Arellano-Valle et al.
2008), psychometrics (Liu et al. 2011), health (Maleki et al. 2019a), sports (Maleki
et al. 2019b; Maleki and Wraith 2019), telecommunication (Hajrajabi and Maleki
2019; Maleki et al. 2020a; Mahmoudi et al. 2020). The estimators of the parameters
of the normal MRM work well when the error distribution is indeed normal, but
these estimators are very sensitive to the departures from normality. These departures
often appear when the datasets contain outliers, or the error distribution displays an
asymmetric shape or heavy tail. To deal with the departures from normality, many
extensions of this classic model have been proposed. For example, Markatou (2000)
proposed a weight function to robustly estimate the mixture regression parameters.
Bai et al. (2012) used a robust estimation procedure based onM-regression estimation
to robustly estimate the mixture regression parameters. Yao et al. (2014) studied the
MRM assuming that the error terms follow a t distribution which is a generalization of
the mixture of t distribution proposed by Peel andMcLachlan (2000). Also, Song et al.
(2014) introduced a robustmodel andmethod to estimate the parameters ofMRM when
the error distribution is a mixture of Laplace distribution. Another robust MRM based
on the skew normal distribution has been studied by Liu and Lin (2014). Recently,
Zeller et al. (2016) proposed a unified robustMRM when the error term follows scale
mixtures of skew-normal distributions and examined the performance of the estimation
procedure. In this regard, Doğru and Arslan (2017) investigated aMRM based on the
skew-t distribution as a special case of the model proposed by Zeller et al. (2016).

In this paper, a general class of robust mixture regression models based on two-
piece scale mixtures of normal (TP-SMN) distributions proposed by Maleki and
Mahmoudi (2017) is presented. The class of TP-SMN distributions is a rich class of
distributions that includes the well-known family of scale mixtures of normal (SMN ;
Andrews and Mallows 1974) distributions which covers symmetrical/asymmetrical
and lightly/heavy-tailed distributions (see also e.g., Arellano-Valle et al. (2005),
Maleki and Mahmoudi (2017), Moravveji et al. (2019), Bazrafkan et al. (2021),
Hoseinzadeh et al. (2021), Maleki et al. (2021, 2022) and Maleki (2022)). Here, the
family of two-piece scale mixtures of normal distributions is considered and this class
of distribution is extended to the mixture regression setting.

In addition, the class of TP-SMN distributions is an attractive family for modeling
the skewed and heavy-tailed data sets in a much wider range (see e.g., Maleki et al.
(2019c, 2020b), Ghasami et al. (2020) and Maleki (2022)). So, our mixture regression
model based on the two-piece scale mixtures of normal (TP-SMN-MRM) is very
flexible and robust, and can efficiently deal with skewness and heavy-tailed-ness in
the MRM setting. In this work, a penalized likelihood function is also considered to
set the best number of component and after using the stochastic representation of
the suggested model, two extensions of the EM-algorithm (Dempster et al. 1977) are
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developed, including the ECM algorithm (Meng and Rubin 1993) and the ECME
algorithm (Liu and Rubin 1994).

The rest of this paper is organized as follows. In Sect. 2, the researchers review
some properties of the TP-SMN distributions. In Sect. 3, the TP-SMN-MRM is intro-
duced and maximum penalized estimates (MPL) of the proposed model based on
an EM-type algorithm are obtained. In Sect. 4, numerical studies involving simula-
tions with some applications of the proposed models and estimates on real datasets
are presented. In addition, comparison is made with well-known normal competitor
and then symmetrical/asymmetrical and lightly/heavy-tailed scale mixtures of skew-
normal (SMSN ; Branco and Dey, 2001) family in Zeller et al. (2016) which had been
studied previously. Some conclusive remarks are presented in Sect. 4.

2 TP-SMN distributions

2.1 Preliminaries

The two-piece scale mixtures of normal (TP-SMN) family of distributions were con-
structed by the celebrated well-known scale mixtures of normal (SMN ; Andrews and
Mallows 1974) family, based on the methodology of constructing the general two-
piece distributions. The SMN random variable X has the following probability density
function (pdf) and denoted by X ∼ SMN (μ, σ , ν):

fSMN (x ;μ, σ , ν) �
∫ ∞

0
φ
(
x ;μ, k(u)σ 2

)
dH(u; ν), x ∈ R, (1)

whereφ
(·;μ, σ 2

)
represents the pdf of N

(
μ, σ 2

)
distribution, H(·; ν) is the cumulative

distribution function (cdf) of the scale mixing random variable U which was indexed
by parameter ν. By letting k(u) � 1/u, some suitable mathematical properties (such
as appropriate hierarchical forms in the classical inferences and closed form posteriors
in the Bayesian inferences, (see e.g., Zeller et al. (2016) and Barkhordar et al. (2020))
are obtained. Also X ∼ SMN (μ, σ , ν) has the stochastic representation given by

X � μ + σk1/2(U )W , (2)

where W is a standard normal random variable that is assumed independent of U .
The TP-SMN is a rich family of distributions that covers the symmetric/asymmetric

lightly/heavy-tailed distributions and itsmainmembers are two-piece normal (TP-N or
Epsilon-Skew-Normal: Mudholkar and Hutson 2000; Maleki and Nematollahi 2017),
two-piece t (TP-T ), and two-piece slash (TP-SL) distributions.

Definition 2.1 Following general two-piece distributions from Arellano-Valle et al.
(2005), the pdf of random variable Y ∼ T P − SMN (μ, σ , γ , ν), for y ∈ R is
represented as.

f (y;μ, σ , γ , ν) �
{
2(1 − γ ) fSMN (y;μ, σ(1 − γ ), ν), y ≤ μ, y ≤ μ,

2γ fSMN (y;μ, σγ , ν), y > μ,
(3)

where γ ∈ (0, 1) is the slant parameter, fSMN (·;μ, σ , ν) is given by (1).
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Proposition 2.1 Let Y ∼ T P − SMN (μ, σ , γ , ν), then Y has a stochastic represen-
tation given by.

Y � μ − σ(1 − γ )S1k
1/2(U )|W | + σγ S2k

1/2(U )|W |, (4)

where W is a standard normal random variable that is assumed independent of scale
mixing random variable U ∼ H(u; ν), and under reparameterization σ1 � σ(1 − γ )

and σ2 � σγ , S � (S1, S2)� ∼ Multinomial(1, σ1
σ1+σ2

, σ2
σ1+σ2

), with the following
probability mass function (pmf):

P(S � s) � σ s
1σ 1−s

2

σ1 + σ2
; s1 � 1 − s2 � s � 0, 1.

Proof The pdf of theY ∼ T P−SMN (μ, σ , γ , ν) in (3) is a piecewise function,which
according to the Eq. (2), on its top piece, the 2 fSMN (y;μ, σ(1 − γ ), ν)fory ≤ μ,

pdf, has the following stochastic representation.

[
μ − σ(1 − γ )k1/2(U )|W |

]
∼ SMN (μ, σ (1 − γ ), ν)I (−∞, μ],

and also on its bottompiece, 2 fSMN (y;μ, σγ , ν)fory > μ, has the following stochas-
tic representation

[
μ + σγ k1/2(U )|W |

]
∼ SMN (μ, σγ , ν)I (μ,+∞).

So the random variable Y can obey from the top piece with probability

(1 − γ )
(
� σ1

σ1+σ2

)
when S1 � 1, and can obey from the bottom piece with proba-

bility (γ )
(
� σ2

σ1+σ2

)
when S2 � 1. So combining these stochastic representations and

latent variable S � (S1, S2)� conclude the (4) �
Proposition 2.2 Let Y ∼ T P − SMN (μ, σ , γ , ν),

E(Y ) � μ − b�;
Var(Y ) � σ 2

[
c2k2(ν) − b2c21

]
,

where � � σ(1 − 2γ ), b � √
2/πk1(ν), cr � γ r+1 + (−1)r (1 − γ )r+1 and kr (ν) �

E
(
U−r/2

)
, for which U is the scale mixing variable in (2).

Proof Considering the Proposition 2.4. from Maleki and Mahmoudi (2017), these
results have been obtained �

More statistical properties along with the details of the TP-SMN family were intro-
duced by Arellano-Valle et al. (2005) and Maleki and Mahmoudi (2017).

Proposition 2.3 TheTP-SMN distributionswith the pdf given in (3) can be represented
as the two-component mixture of left and right half SMN distributions with special
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component probabilities as follows:

f (y;μ, σ1, σ2, ν) � 2
σ1

σ1 + σ2
fSMN (y;μ, σ1, ν) I(−∞,μ] (y)

+ 2
σ2

σ1 + σ2
fSMN (y;μ, σ2, ν) I(μ,+∞) (y) ,

where as in (4), σ1 � σ(1 − γ ), σ2 � σγ , and the scale parameter σ and skewness
parameter γ in (3) are recovered in the form of σ � σ1 + σ2 and γ � σ2/(σ1 + σ2).

Proof Considering the pdf (3) and reparameterization σ1 � σ(1 − γ ) and σ2 � σγ ,
the results have been obtained.

Note that in the symmetric positions (γ � 0.5), the TP-SMN distributions are the
well-known SMN distributions attributed to Andrews and Mallows (1971).

2.2 Examples of the TP-SMN distributions

In this section, some particular cases of TP-SMN distributions are considered. Let
Y ∼ T P − SMN (μ, σ , γ , ν), different members of the TP-SMN family accordance
of different distributions for the scale mixing variable U in (4) are as follows:

• Two-piece normal (TP-N):

In this case U=1, with the following pdf,

f (y;μ, σ , γ ) �
⎧⎨
⎩
2(1 − γ )φ

(
y;μ, σ 2(1 − γ )2

)
, y ≤ μ;

2γφ
(
y;μ, σ 2γ 2

)
, y > μ.

• Two-piece t (TP-T ) with ν degrees of freedom:

In this case U ∼ Gamma
(

ν
2 , ν

2

)
, for which kr (ν) � (

ν
2

)r/2 �( ν−r
2 )

�( ν
2 )

, ν > r , with the

following pdf,

f (y;μ, σ , γ , ν) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
�
(

ν+1
2

)
�( ν

2 )
√

πνσ

(
1 + 1

ν

(
y−μ

σ(1−γ )

)2)− ν+1
2

, y ≤ μ;

2
�
(

ν+1
2

)
�( ν

2 )
√

πνσ

(
1 + 1

ν

(
y−μ
σγ

)2)− ν+1
2

, y > μ.

• Two-piece slash (TP-SL):

In this case U ∼ Beta(ν, 1), for which kr (ν) � 2ν
2ν−r , ν > r

2 , with the following
pdf,

f (y;μ, σ , γ , ν) �
{
2ν(1 − γ ) ∫10 uν−1φ

(
y;μ, u−1σ 2(1 − γ )2

)
du, y ≤ μ;

2νγ ∫10 uν−1φ
(
y;μ, u−1σ 2γ 2

)
du, y > μ.
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Fig. 1 Some typical graphs of the light-tailed TP-N densities (left) and heavy-tailed TP-T densities (right)
with various shape, scale and degrees of freedom parameters

Note that the TP-N is a light-tailed density while the TP-T and TP-SL are
heavy-tailed densities. Some asymmetry (with various values of shape parameter
γ � 0.3and0.9,) and symmetry (γ � 0) graphs of the light-tailed TP-N and
heavy-tailed TP-T densities with various scale (σ � 1, 2, 3) and degrees of freedom
(ν � 2, 4, 40) parameters are provided in Fig. 1.

Proposition 2.4 Let Y ∼ T P − SMN (μ, σ , γ , ν). Considering the stochastic repre-
sentation (4) and k(U ) � 1/U , conditional expectation τ � E[SU |y] for the TP-SMN
distribution members are given by:

• TP-N : τ � I (−∞,μ ](y),
• TP-T : τ � ν+1

ν+d ,

• TP-SL: τ � 2ν+1
d

P1(ν+3/2,d/2)
P1(ν+1/2,d j /2)

,

where d �
(

y−μ
m1σ 1+m2σ 2

)2
, for which m1 � I (−∞,μ ](y) and m2 � 1 − m1, and

Px (a, b) denote the distribution function of the Gamma (a, b) distribution evaluated
at x . Note the conditional expectations in Proposition 2.4 are used in the E-step of the
EM-algorithm to obtain the MPL estimates.

3 Mixture Regressionmodel using the TP-SMN distributions

3.1 The TP-SMN-MRM

In this section, the mixture regression model where the random errors follow the
two-piece scale mixtures of normal distributions (TP-SMN-MRM) is examined. It is
defined as

Y |(Zg � 1
) � x�βg + εg, g � 1, . . . ,G, (5)
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where G is the number of components (groups) in mixture regression model, Zg �
1, g � 1, . . . ,G, set for the gth component, such that P

(
Zg � 1

) � πg, g � 1, . . . ,G,
βg � (β1g, . . . , βpg)� is a vector of regression coefficient (fixed explanatory vari-
ables) parameters, Y is a response variable, and x � (x1, . . . , xp)� is a vector of
fixed explanatory variables which is independent of the random errors εg. In the pre-
sented methodology εg ∼ T P − SMN

(
μg, σg, γg, νg

)
, g � 1, . . . ,G, where μg �

bg
(
1 − 2γg

)
σg(orμg � bg�g,�g � (

1 − 2γg
)
σg) for which bg � √

2/πk1
(
νg
)
, and

k1(·) was defined in proposition 2.2. Also, note that due to the Proposition 2.2., the
errors have zero mean

(
E
(
εg
) � 0

)
. For computational convenience, the parameter of

mixing distribution H
(·; νg), g � 1, . . . ,G are assumed equal as ν1 � · · · � νG � ν.

The identifiability of finite mixtures has been studied by Teicher (1963) to ensure that
ourMRM is identifiable. In addition, in this study, the maximum likelihood inferential
paradigm is used and so label switching has no practical implications and arises only
as a theoretical identifiability issue that can usually be resolved by specifying some
ordering on the mixing proportions in the form of π1 > . . . > πG . Note that in cases
where mixing proportions are equal, a total ordering on other model parameters can
be considered.

Using an auxiliary random variable Z � (Z1, . . . , ZG)� (independent of x), for
which Zg � 1, g � 1, . . . ,G, set the regression model in (5) for the gth component,
such that P

(
Zg � 1

) � πg, g � 1, . . . ,G, then the density of response variable Y is
given by

fMR(y; x,�) �
G∑

g�1

πg f
(
y; x, θg

)
, (6)

where f
(·; x, θg

)
is the pdf of T P − SMN

(
x�βg + μg, σg, γg, ν

)
and θg �(

β�
g , σg, γg, ν

�
)
, g � 1, . . . ,G or according to the representation of Proposition

2.3, θg �
(
β�
g , σ1g, σ2g, ν

�
)
, g � 1, . . . ,G and � � (

π1, . . . , πG , θ�
1 , . . . , θ�

G

)�
.

In the viewpoint of classical inferences, using the observations (Yi , xi ), i � 1, . . . , n,
the parameter � is traditionally estimated by maximization of the log-likelihood of

an IID sample (Y , x)�, where Y � (Y1, . . . ,Yn)� and x � (
x�
1 , . . . , x�

n

)�
as

�(�) �
n∑

i�1

log fMR(yi ; xi ,�).

In applications, existence of too many components imply that the mixture models
may overfit the data and yield poor interpretations, while existence of too few compo-
nents, imply that the mixture models may not be flexible enough to approximate the
true underlying data structure. So, estimating the true number of components in the
mixturemodels is very important. In order to solve this issue, we have used a penalized
log-likelihood function to avoid overestimating or underestimating them, given by
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�P (�) � �(�) − nλD f .MR

G∑
g�1

[
log
(
ε + πg

)− log(ε)
]
, (7)

where �(�) is the log-likelihood function, λ is a tuning parameter, ε is a very small
positive number, say 10−6, and D f .MR is the number of free parameters for each
component. For the TP-N-MRM, TP-T-MRM and TP-SL-MRM, each component has
D f .MR � p + 4, and for TP-CN-MRM each component has D f .MR � p + 5 number
of free parameters. Huang et al. (2017) had used this penalty term in the structure of
likelihood function of the mixture of Gaussian model.

To obtain the proposed maximizer given by penalized log-likelihood (7), there is
not an explicit solution, so an EM-type algorithm (Dempster et al. 1977; McLachlan
and Peel, 2000) is considered.

3.2 The observed informationmatrix

In this section, the observed information matrix of the TP-SMN-MRM, defined as
J(�| y) � − ∂2�P (�)

∂�∂�� , where �P (�) � ∑n
i�1 �Pi (�), for which

�Pi (�) � log
G∑

g�1

πg f
(
yi ; xi , θg, ν

)− λD f .MR

G∑
g�1

[
log
(
ε + πg

)− log(ε)
]
.

It is well known that, under some regularity conditions, the covariance matrix of
the MPL estimates �̂ can be approximated by the inverse of J(�|y). So, the square
roots of its diagonal elements have been considered as the standard deviations of the
MPL estimates in the real applications. Thus, following Basford et al. (1997) and Lin
et al. (2007),

J(�| y) �
n∑

i�1

ĵ
�
i ĵ i ,

where ĵ i � ∂�Pi (�)
∂�

∣∣∣
���̂

, and now consider the vector ĵ i which is partitioned into

components corresponding to all the parameters in � as

ĵ i �
(
ĵi,π1 , . . . , ĵi,πG−1 , ĵ

�
i,β1

, . . . , ĵ
�
i,βG

, ĵi,σ1 , . . . , ĵi,σG , ĵi,γ1 , . . . , ĵi,γG , ĵ
�
i,ν

)�
,

where its coordinate elements for g � 1, . . . ,G are given by

ĵi,πg � f
(
yi ; xi , θg, ν

)− f (yi ; xi , θG, ν)

fMR(yi |xi ,�)
− λD f .MR

[
1

ε + πg
− 1

ε + πG

]
,
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ĵ i,βg
� πgDβg

(
f
(
yi ; xi , θg, ν

))
fMR (yi ; xi ,�)

, ĵi,σg

� πgDσg

(
f
(
yi ; xi , θg, ν

))
fMR (yi ; xi ,�)

, ĵi,γg � πgDγg

(
f
(
yi ; xi , θg, ν

))
fMR (yi ; xi ,�)

,

and

ĵ i,ν �
∑G

g�1 πgDν

(
f
(
yi ; xi , θg, ν

))
fMR(yi ; xi ,�)

,

for which Dα

[
f
(
yi ; xi , θg, ν

)] � ∂ f
(
yi ; xi , θg, ν

)
/∂α, for α � βg, σg, γg, ν.

To determine the coordinate elements of the ĵ i , let us define ζig(ω) �
EH
[
uωexp

(− 1
2umig

)]
, where mig � d2ig

σ 2
g ρ2

g
is the Mahalanobis distances for which

dig � yi − x�
i βg − μg, and hereafter ρg � 1 − γg if dig ≤ 0 and ρg � γg if dig > 0.

So, we have

Dβg

[
f
(
yi ; xi , θg, ν

)] � 2√
2π

[
1

σ 3
g

ζig

(
3

2

)
digxi

]

Dσg

[
f
(
yi ; xi , θg, ν

)] � 2√
2π

[
1

σ 4
g ρ2

g

(
dig + μg/2

)
ζig

(
3

2

)
− 1

σ 2
g

ζig

(
1

2

)]
,

Dγg

[
f
(
yi ; xi , θg, ν

)] � 2√
2π

(
sign

(
dig
) dig
σ 3
g ρ3

g
− b

σ 2
g ρ2

g

)
ζig

(
3

2

)
,

where ζig(·) in the above relations, and also Dν

[
f
(
yi ; xi , θg, ν

)]
for the TP-SMN-

MRM members, are given by:

(i) TP-N-MRM:

ζig(ω) � exp

(
−1

2
mig

)
,

Dν

[
f
(
yi |xi , θg, ν

)] � 0;

(ii) TP-T-MRM:

ζig(ω) � 2ωνν/2�(ν/2 + ω)

�(ν/2)
(
ν + mig

)ν/2+ω
,
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Dν

[
f
(
yi ; xi , θg, ν

)] � 1

2
f
(
yi ; xi , θg, ν

) [
ψ

(
ν + 1

2

)
− ψ

(ν

2

)
− 1

ν

− log
(
1 +

mig

ν

)
+ (ν

+ 1)
mig + μg

[
1 + νψ

(
ν−1
2

)− νψ
(

ν
2

)]√
mig

ν2 + νmig

]
;

(iii) TP-SL-MRM:

ζlig(ω) � ν�(ν + ω)(
mig/2

)ν+ω P1
(
ν + ω,mig/2

)
,

Dν

[
f
(
yi ; xi , θg, ν

)] � ν−1 f
(
yi ; xi , θg, ν

)
+ ν f

(
yi ; xi , θg, ν − 1

)
;

where Px (a, b) denotes the distribution function of the Gamma (a, b) distribution
evaluated at x .

3.3 Maximum penalized estimation of themodel parameters

In this section, an efficient EM-type algorithm for MPL estimation of the parameters
of TP-SMN-MRM is developed using an incomplete-data framework. To do this pro-
cedure, beside all the observations (Yi , xi ), i � 1, . . . , n defines the latent random
vector as Zi � (Zi1, . . . , ZiG)�, i � 1, . . . , n, where

Zig �
{
1, if the i th observation belongs the gth component;
0, otherwise.

Therefore, under the above approach the latent random vector Zi , i � 1, . . . , n has
the following multinomial pmf:

P(Zi � zi ) �
G∏

g�1

π
zig
g ; i � 1, . . . , n,

such that
∑G

g�1 πg � 1, πg > 0, g � 1, . . . ,G and

Yi
∣∣zig � 1 ∼ T P − SMN

(
x�
i βg + μg, σg, γg, ν

)
, g � 1, . . . ,G.

So, using the stochastic representation of the TP-SMN family given by (4), the
following hierarchical representation is considered

Yi |Ui , Si j � 1, Zig � 1 ind.∼ N
(
x�
i βg + μg, u

−1
i σ 2

g j

)
IAi (yi )

2− j IAc
i
(yi )

j−1,

123



Robust mixture regression modeling based on two-piece scale… 191

Ui
∣∣Zig � 1 ind.∼ H(ui ; ν),

Si |Zig � 1 ind.∼ Multinomial

(
1,

σg1

σg1 + σg2
,

σg2

σg1 + σg2

)
,

Zi i .i .d.∼ Multinomial(1, π1, . . . , πG), (8)

for i � 1, . . . , n, g � 1, . . . ,G and j � 1, 2, where Ai � (−∞, x�
i βg + μg

]
and

N (·)IA(·) denotes the univariate normal distribution truncated on the interval A.
The hierarchical representation (8) of the TP-SMN-MRM is used to obtain the

MPL estimates via an EM-algorithm called ECME algorithm. It is a generalization
of the ECM algorithm introduced by Meng and Rubin (1993). It can be obtained
by replacing some CM-steps which maximize the constrained expected complete-
data penalized log-likelihood function with steps that maximize the correspondingly
constrained actual likelihood function.

Let y � (y1, . . . , yn)�, u � (u1, . . . , un)�,s � (s�1 , . . . , s�n )
�

and z �
(z�1 , . . . , z�n )

�
for which si � (si1, si2)�, and zi � (zi1, . . . , ziG )� for i � 1, . . . , n,

so considering the complete data yc � ( y�, u�, s�, z�)� and using the hierarchical
representation in (8) of the TP-SMN-MRM, the complete log-likelihood function is
given by

�cp
(
�| yc

) � c +
n∑

i�1

G∑
g�1

ziglogπg −
n∑

i�1

G∑
g�1

ziglog
(
σg1 + σg2

)

− 1

2

n∑
i�1

G∑
g�1

2∑
j�1

zigsi j ui
σ 2
g j

(
Yi − x�

i βg − μg

)2

− nλD f .MR

G∑
g�1

[
log
(
ε + πg

)− log (ε)
]
,

where c is a constant and independent of �.

Letting �̂
(k)

the estimates of � at the kth iteration, the conditional expectation of
complete log-likelihood function ignoring constant is given by

Q
(
�|�̂(k)

)
�

n∑
i�1

G∑
g�1

ẑ(k)ig logπg −
n∑

i�1

G∑
g�1

ẑ(k)ig log
(
σg1 + σg2

)

− 1

2

n∑
i�1

G∑
g�1

2∑
j�1

ẑsu(k)
ig j

σ 2
g j

(
Yi − x�

i βg − μg

)2
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− nλD f .MR

G∑
g�1

[
log
(
ε + πg

)− log(ε)
]
,

where ẑ(k)ig � E
[
Zig
∣∣yi , �̂(k)

]
is determined by using known properties of conditional

expectation, as

ẑ(k)ig �
π̂

(k)
g f

(
yi ; xi , θ̂

(k)
g

)
∑G

g�1 π̂
(k)
g f

(
yi ; xi , θ̂

(k)
g

) ; i � 1, . . . , n, g � 1, . . .G,

for which f
(·; x, θg

)
was defined in the (6), and ẑsu(k)

ig j � E
[
Zig Si jUi

∣∣yi , �̂(k)
]

�
ẑ(k)ig τ̂

(k)
ig j , for which τ̂

(k)
ig j values can be easily derived from the Proposition 2.4.

Now, this EM-type algorithm (ECME) is described to obtain theMPL estimates of
the parameters of TP-SMN-MRM.

E-step Given � � �̂
(k)

and using the above calculations, we compute ẑ(k)ig and

ẑsu(k)
ig j for j � 1, 2, g � 1, . . . ,G andi � 1, ..., n.

CM-step Update �̂
(k+1)

by maximizing Q
(
�|�̂(k)

)
over � with the following

updates:
Update π̂g; g � 1, . . . ,G, with given ε is very close to zero, by using straightfor-

ward calculations, we obtain

π̂ (k+1)
g � Max

⎧⎨
⎩0,

1

1 − λGD f .MR

⎡
⎣
∑n

i�1 ẑ
(k)
ig

n
− λD f .MR

⎤
⎦
⎫⎬
⎭.

The penalized log-likelihood and the number of effective clusters (with non-zero
proportions) evolved during the iterations of the ECME algorithm works as follows: it
starts with a pre-specified large number of components (for example G� 10 in the last
section), and whenever a mixing probability is shrunk to zero by CM-step (for exam-
ple π̂

(k)
g < 0.01forg � 1, 2, . . .Ginthelastsection), the corresponding component is

deleted, thus fewer components are retained for the remaining ECME iterations. Here
we abuse the notation G for the number of components at beginning of each ECME
iteration, and through the updating process, G becomes smaller and smaller. For a
given ECME iteration step, it is possible that none, one, or more than one components
are deleted (see e.g., Huang et al. (2017)). Note that our proposed penalized likeli-
hood method is significantly different from various Bayesian methods in the objective
function and theoretical properties. When a component is eliminated, i.e., the mixing
weight of that component is shrunk to zero, the objective function of our proposed
method changes continuously. So above estimation of πg is different of any maximum
a posteriori (MAP) estimation of them.
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Update β̂g; g � 1, . . . ,G, by

β̂
(k+1)
g �

(
n∑

i�1

�̂
(k)
ig xi x�

i

)−1 n∑
i�1

�̂
(k)
ig

(
Yi − μ̂(k)

g

)
xi ,

where �̂
(k)
ig � ẑsu(k)

ig1/σ
2
g1 + ẑsu(k)

ig2/σ
2
g2.

Update σ̂g j ; g � 1, . . . ,G, j � 1, 2, by solving the following equations

n∑
i�1

ẑ(k)ig

(
σg1 + σg2

)−1 �
n∑

i�1

[
σ−3
g j ẑsu

(k)
ig j ê

2(k+1)
ig + (−1) j+1b�̂(k)

ig ê(k+1)
ig

]
,

where eig � Yi − x�
i βg − b

(
σg1 − σg2

)
. Note that the above equation is a cubic

equation for each σg j in the form of σ 3
g j + c1σg j + c2 � 0 such that c1, c2 < 0, so this

cubic equation has unique root in the (0,+∞) interval.
CML-step In the last step, update ν̂ by maximizing the actual marginal log-

likelihood function, as

ν(k+1) � argmaxν

n∑
i�1

log
G∑

g�1

π̂ (k)
g f

(
yi ; xi , β̂

(k+1)
g , σ̂

(k+1)
g1 , σ̂

(k+1)
g2 , ν

)
,

where f
(·; x, θg

)
is defined in (6).

The proposed ECME algorithm works as follows: it starts with a pre-specified
large number of components, and due to updating π̂

(k+1)
g , g � 1, . . . ,G, when-

ever a mixing probability is shrunk to zero, the corresponding component is
deleted, and as result fewer components are retained for the remaining EM itera-
tions. The iterations are repeated until a suitable convergence rule is satisfied, e.g.,∣∣∣�
(
�̂

(k+1)
)
/�
(
�̂

(k)
)

− 1
∣∣∣ ≤ 10−4 where �(·) is the actual log-likelihood, was defined

in the Sect. 3.1.

3.4 Selection of tuning parameter andmodel selection

To obtain the final estimate of the mixture model by maximizing (7), one needs to
select the tuning parameter λ. For standard LASSO (Tibshirani 1996) and SCAD (Fan
and Li 2001) penalized regressions, there are many methods to select λ, and in this
work we have used BIC function in Wang et al. (2007). Here we define a BIC(λ)

value as

BIC(λ) �
n∑

i�1

log
Ĝ∑

g�1

π̂g f
(
yi ; xi , β̂g, σ̂g1, σ̂g2, ν̂

)− 1

2
ĜD f .MR logn,
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and estimate λ by

λ̂ � argmaxλBIC(λ),

where Ĝ is the estimate of the number of TP-SMN-MRM components.
The BIC(λ) value is useful for selecting an appropriate model with the best num-

ber of components, for the given data with adequate sample size, but in this study,
four criteria are also considered in simulations in order to select the best fittedMRM.
They are maximized log-likelihood values, the Akaike information criterion (AIC;
Akaike 1974), the Bayesian information criterion (BIC; Schwarz 1978) and the effi-
cient determination criterion (EDC; Resende andDorea 2016). The above criteria have
the general following form

krn − 2�
(
�̂
∣∣ y),

where �
(
�̂
∣∣y) is the actual log-likelihood, k is the number of free parameters that

has to be estimated in the model and the penalty term rn is a convenient sequence of
positive numbers. Additionally, the values rn � 2, rn � logn and rn � 0.2

√
n, for

the AIC, BIC and EDC are used respectively. Fewer values of the AIC, BIC and EDC
criteria indicate choosing the best model.

4 Numerical study

In this section, some simulations and a real dataset to show the satisfactory perfor-
mances of the proposed model are considered.

4.1 Simulations

In this section, three parts of simulations are presented. In the first part, we have
some simulations for TP-SMN-MRM parameters recovery by simulating from them
and estimating the proposed MPL estimates to show the satisfaction of the proposed
estimations. In the second part, by choosing some various sample sizes, the consistency
properties of the proposed model and estimation methods are shown. Finally, in the
third part of simulations, using an asymmetry and heavy-tailed distribution that belong
to the class of scale mixtures of skew-normal (SMSN) distributions, a similar MRM
to ours is generated to show the performances (robustness, misspecification and right
classification) of our models to model the data with unknown structure. Note that in
the all parts of numerical studies, the search range of tuning parameter is interval of
(0, 10), and the maximum initial (pre-specified) number of components is set to be 10.

4.1.1 Part1: recovery of parameters

The followingTP-SMN-MRM with two componentswas considered in three scenarios.
In the first one, both components had skewed behavior between week up to moderate,
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in the second one, both components had skewed behavior between moderate up to
strong, and in the third one, a component had skewed behavior between week up to
moderate and another component had skewed behavior betweenmoderate up to strong.
The simulated model is given by

{
Yi � x�

i β1 + ε1,with Probability π

Yi � x�
i β2 + ε2,with Probability 1 − π,

where x�
i � (1, xi1, xi2) for i � 1, . . . , n, such that xi1 ∼ U (0, 1) and independent

of xi2 ∼ N (0, 1), and, ε1 and ε2 follow the TP-SMN distributions, as the assumption
given in (5).

700 samples were generated from the above model with n � 400 from the TP-N ,
TP-T and TP-SL models the following parameter values:

β1 � (β01, β11, β21)
� � (1, 3, 5)�,β2 � (β02, β12, β22)

�

� (5,−2,−6)�, π � 0.4, σ1 � σ2 � 2,

and, γ1 � 0.45, γ2 � 0.55 (for the first scenario), γ1 � 0.05, γ2 � 0.95 (for the
second scenario) and γ1 � 0.1, γ2 � 0.6 (for the third scenario), for which ν � 4 has
used in the TP-T-MRM and TP-SL-MRM.

The maximum likelihood estimation via the proposed ECME algorithm for each
samplewas calculated, and the average values ofMPL estimates and the corresponding
standard deviations (SD) of theMPL estimates across all samples were computed and
recorded in Tables 1, 2 and 3. The results indicated us that all the point estimates are

Table 1 Mean and standard deviations (SD) ofMPL estimates based on 700 samples from theTP-SMN-MRM
with true values of parameters in the parentheses (Scenario 1)

Model TP-N-MRM TP-T-MRM TP-SL-MRM

Parameter Mean SD Mean SD Mean SD

β01(1) 1.0004 0.1307 0.9971 0.1403 0.9988 0.1692

β11(3) 3.0041 0.2012 2.9901 0.2133 3.0234 0.2923

β21(5) 4.9922 0.1972 5.0024 0.3018 5.0408 0.3239

β02(5) 5.0014 0.1653 5.0032 0.2893 4.9918 0.3432

β12(−2) − 2.0033 0.1319 − 1.9961 0.1492 − 2.0103 0.1360

β22(−6) − 5.9170 0.0867 − 6.0073 0.1069 − 6.0005 0.1233

σ1(2) 2.1301 0.0823 2.1083 0.0715 1.9702 0.0911

σ2(2) 1.9650 0.0904 2.1045 0.0643 2.1217 0.0908

γ1(0.45) 0.4483 0.0213 0.4502 0.0176 0.4511 0.0209

γ2(0.55) 0.5514 0.0225 0.5507 0.0200 0.5511 0.0223

ν(4) – – 4.0122 0.3904 4.3420 1.0218

π(0.4) 0.4001 0.0176 0.4006 0.0200 0.3997 0.0197
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Table 2 Mean and standard deviations (SD) ofMPL estimates based on 700 samples from theTP-SMN-MRM
with true values of parameters in the parentheses (Scenario 2)

Model TP-N-MRM TP-T-MRM TP-SL-MRM

Parameter Mean SD Mean SD Mean SD

β01(1) 0.9984 0.1283 0.9968 0.1301 1.0012 0.1593

β11(3) 3.0037 0.1973 3.0045 0.2065 2.9905 0.3001

β21(5) 5.0032 0.1345 4.9972 0.1837 5.0082 0.2329

β02(5) 4.9963 0.2043 5.0021 0.2532 5.0015 0.2574

β12(−2) − 2.0030 0.1432 − 2.0052 0.1504 − 1.9971 0.1378

β22(−6) − 6.0009 0.1045 − 6.0064 0.1122 − 5.9182 0.1276

σ1(2) 1.9732 0.0838 2.0983 0.0563 1.9843 0.0813

σ2(2) 2.0109 0.0546 2.0837 0.0838 2.1193 0.0781

γ1(0.05) 0.0467 0.0013 0.0511 0.0053 0.0513 0.0076

γ2(0.95) 0.9484 0.0025 0.9510 0.0073 0.9580 0.0054

ν(4) – – 3.8720 0.4038 4.2530 0.9873

π(0.4) 0.3989 0.0227 0.4021 0.0301 0.4083 0.0234

Table 3 Mean and standard deviations (SD) ofML estimates based on 700 samples from the TP-SMN-MRM
with true values of parameters in the parentheses (Scenario 3)

Model TP-N-MRM TP-T-MRM TP-SL-MRM

Parameter Mean SD Mean SD Mean SD

β01(1) 1.0021 0.1098 1.0042 0.1411 1.0044 0.1446

β11(3) 2.9863 0.2018 2.9898 0.2042 3.0526 0.2878

β21(5) 4.9968 0.1564 4.9963 0.2019 5.0103 0.2409

β02(5) 5.0064 0.2101 5.0037 0.2555 4.9979 0.2365

β12(−2) − 1.9980 0.1290 − 2.0066 0.1432 − 1.9984 0.1201

β22(−6) − 5.9907 0.1211 − 6.0073 0.1232 − 6.0100 0.1341

σ1(2) 2.0657 0.0837 2.0757 0.0802 2.0937 0.0901

σ2(2) 1.9873 0.0838 2.1002 0.1092 2.1219 0.0979

γ1(0.1) 0.1083 0.0020 0.0973 0.0031 0.1108 0.0108

γ2(0.6) 0.6108 0.0053 0.5936 0.0044 0.6110 0.0098

ν(4) – – 4.1093 0.3109 4.2018 0.6094

π(0.4) 0.4087 0.0198 0.4074 0.0422 0.4093 0.0277
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quite accurate in all the three considered scenarios. Thus, the results suggest that the
proposed EM-type algorithm produced satisfactory estimates of the proposed models
on the all proposed scenarios.

4.1.2 Part2: consistency of estimations and convergence of BIC

In the further simulation study with various sample sizes, generating the following
model given by

{
Yi � 1 − 2xi1 + ε1, wi thProbabili t yπ � 1/2
Yi � 2 + 3xi1 + ε2, wi thProbabili t y1 − π � 1/2,

for i � 1, . . . , n, such that xi1 ∼ U (0, 1), and, ε1 and ε2 follow the TP-SMN distri-
butions with the following parameters and as the assumption given in (5),

σ1 � 1, σ2 � 2, γ1 � 0.25, γ2 � 0.75, ν � 3.

1000 samples from the abovemodel for sample sizes n � 50, 100, 250 and n � 450
were generated respectively. Table 4 reports the mean squared errors (MSE) and the
absolute bias (Bias) of theMPL estimates in each sample j(� 1, . . . , 1000) in a way
that for each parameter θ ∈ �, is defined respectively by.

Bias(θ) � 1

1000

1000∑
j�1

∣∣θ̂ j − θ j
∣∣andMSE(θ) � 1

1000

1000∑
j�1

(
θ j − θ̂ j

)2
.

As it can be noticed from the Table 4, by increasing the sample size, the absolute
biases and MSE of the MPL estimates tend to approach zero. These results indicate
that the proposedMPL estimates of the TP-SMN-MRM based on the ECME algorithm
do possess good consistency properties.

We consider further simulations with 100 samples with lengths of n � 300 from
the above TP-SMN-MRM, where ε1 and ε2 follow the proposed TP-T distribution. We
plotted the BIC(λ) for each sample during the ECME algorithm in Fig. 2 (left) and
also Barplot of mean of estimated numbers of components from 100 samples in Fig. 2
(right). Diagrams of BIC(λ) show their monotonic behavior and converging during
the ECMEalgorithm.AlsoBarplot ofmean of estimated numbers of components show
the true number of components (which is two-components) has the most frequency,
which are convergence of the number of components during the ECME algorithm.
These results together show the performances of the proposed estimates of the work
with reasonability of choosing the best number of components.

4.1.3 Part3: robustness, misspecification and classification

In this part, the performance of the TP-SMN-MRM to cluster observations with
unknown structure in the weakly and strongly separated datasets (homogeneous and
heterogeneous, respectively) was investigated. In addition, a comparison was made to
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Fig. 2 BIC(λ) of 100 samples during the ECME algorithm (left) and Barplot of mean of estimated numbers
of components from 100 samples (right)

find the applicability of some classic procedures to choose between the underlying TP-
SMN-MRM for simulated data from another similar model which is anMRM based on
the skew-t distributions (Branco and Day, 2001). To do the proposed simulations, the
number of components (G � 2), sample size (n � 700) and the following parameter
values were fixed in the two schemes strongly and weakly separated models. Then,
without loss of generality, 700 samples from the proposed skew-t-MRM were arti-
ficially generated and, for each sample, the Normal-MRM, TP-N-MRM, TP-T-MRM
and the TP-SL-MRM were fitted. The proposed skew-t-MRM had the asymmetric
and heavy tails behavior and it was expected that the TP-T-MRM and (possibly the
TP-SL-MRM) has the best fitting on them to have a robust inference.

Also, the quality of the classification of each mixture model is important. In this
study, the methodology proposed by Liu and Lin (2014) is followed. The correct
classification rate (CCR) index is based on the estimate of the posterior probability
(̂zig) assigned to each subject, i.e., the maximum value of the ẑig, g � 1, . . . ,G
determines that an observation yi belongs to its corresponding component of the
mixture. So for tth (t � 1, . . . , 700) sample of the 700 samples, the number of correct
allocations (which are known in simulations) divided by the sample size n � 700,
has been embedded as CCRt and mean of correct classification rate (MCCR) was
computed using the mathematical average of correct classification rate in the form
of MCCR � 1

700

∑700
t�1 CCRt . Also mean of the number of the correct allocation

(MCA) which is the average number of correct allocations on 700 samples has been
considered.

Two schemes of the strongly and weakly separated models are given by:

• Strongly separated model:

{
Yi � 3 + 2xi1 + ε1, wi th Probabili t y π � 0.3
Yi � −1 − 2xi1 + ε2, wi th Probabili t y 1 − π � 0.7,

123



200 A. Zarei et al.

for i � 1, . . . , 700, such that xi1 ∼ U (0, 1), and, ε1 and ε2 follow the skew-t
distributions with zero mean, scale parameters σ1 � 1, σ2 � 1, shape parameters
λ1 � −3, λ2 � +3, and degrees of freedom ν � 4. Figure 3 shows a scatter plot
and a histogram for one of these simulated samples.

• Weakly separated model:

{
Yi � 3 + 2xi1 + ε1, wi thProbabili t y π � 0.3
Yi � 1 − 1xi1 + ε2, wi thProbabili t y 1 − π � 0.7,

for i � 1, . . . , 700, such that xi1 ∼ U (0, 1), and, ε1 and ε2 follow the skew-t
distributions with zero mean, scale parameters σ1 � 2, σ2 � 1, shape parameters
λ1 � −5, λ2 � +5, and degrees of freedom ν � 2. Figure 3 shows scatter plots and
histograms for one of these simulated samples on each scheme.
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Fig. 3 a Histogram and b scatterplot of the strongly separated simulated skew-t MRM. c Histogram and
d scatterplot of the weakly separated simulated skew-t MRM
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Table 5 Correctness of classification analysis of the TP-SMN-MRM for 700 samples artificially generated
from the skew-t-MRM

Schemes Strongly separated model Weakly separated model

Fitted model MCA SD of MCA MCCR MCA SD of MCA MCCR

Normal-MRM 586.5461 98.0560 0.8379 449.8742 120.0874 0.6427

TP-N-MRM 611.9475 61.0933 0.8742 508.2844 87.0947 0.7261

TP-T-MRM 661.4231 42.7584 0.9449 597.7452 77.0931 0.8539

TP-SL-MRM 649.6031 57.9094 0.9280 586.3846 82.7463 0.8377

Table 6 Percentages that the best fitted TP-SMN-MRM are chosen using some model selection criteria

Schemes Strongly separated model Weakly separated model

Condition
examined

AIC (%) EDC
(%)

Log-likelihood
(%)

AIC (%) EDC
(%)

Log-likelihood
(%)

TP-T vs
Normal

100 100 100 100 100 100

TP-T vs
TP-N

98.57 98.57 98.57 98.85 98.85 98.85

TP-T vs
TP-SL

97.86 97.86 97.86 98.49 99.49 99.49

Fitting the several models that belong to the TP-SMN-MRM on the generated
datasets from the skew-t-MRM in the both strongly and weakly separated schemes,
the MCA and standard deviation (SD) of correct allocations on 700 samples, as well
as theMCCR are presented in Table 5. Note larger values indicate better classification
results.

For each fitted model, the AIC, EDC and the log-likelihood criterion were com-
puted. The percentage rates at which the best model was chosen for each criterion
are recorded in Table 6. Note that as it was expected, all the criteria have satisfactory
behavior, in that, they favor the best model, that is, the TP-T-MRM. Figure 4 shows
the AIC values for each sample and the best (expected and robust) TP-T-MRM and
TP-N-MRM.

4.2 Application

In this section, the proposed models and methods on datasets which the first represent
the perception of musical tones by musicians are illustrated as they are described
in Cohen (1984), and the second represent the US census population and poverty
percentage estimates by county.
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Fig. 4 AIC values of 700 samples with blue line for TP-T-MRM and black dashed line for TP-N-MRM

4.2.1 Tone perception data

In the well-known data, a pure fundamental tone with electronically generated over-
tones added was played to a trained musician. In this experiment, the subjects were
asked to tune an adjustable tone to one octave above the fundamental tone and their
perceived tone was recorded versus the actual tone. A number of 150 trials from the
same musician were recorded in this experiment. The overtones were determined by
a stretching ratio which is the ratio between the adjusted and the fundamental tone.
The experiment was designed to find out how the tuning ratio affects the perception
of the tone and decide which of the two musical perception theories was reasonable.
So we consider the actual tune ratio as the explanatory variable x and perceived tone
ratio as the response variable Y .

The scatter plot and the histogram of the perceived tone ratio are plotted in Fig. 5.
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Fig. 5 a Scatterplot and b histogram of the tone perception data
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These plots demonstrate that there are two groups with separate trends in the dataset
and they have a non-normal distribution. Based on the realizations of the data, Cohen
(1984) discussed two hypotheses which were called the interval memory hypothesis
and the partial matching hypothesis. Many have considered and modeled this data
using a mixture of linear regressions framework, see DeVeaux (1989), Viele and Tong
(2002), Hunter and Young (2012), Yao et al. (2014), Zeller et al. (2016) and Doğru and
Arslan (2017). Zeller et al. (2016) and Doğru and Arslan (2017) propose the robust
mixture regression using the SMSN distributions which are similar counterparts of the
TP-SMN distributions.

The proposed TP-SMN-MRM was expanded to model the data. Using the ECME
algorithm, theMPL estimates together with their corresponding standard errors (based
on the square root of invers of the observed information matrix form Sect. 3.2) of
the parameters from the Normal-MRM, TP-N-MRM, TP-T-MRM, TP-SL-MRM and
the skew-t-MRM (as asymmetry heavy-tailed competitor) are presented in Table 7.
According to the recorded model selection criteria, numbers and elapsed time (s)
of algorithm iterations (N.I. and E.T., respectively) in Table 8, the best fitted TP-
SMN-MRM of the tone perception data is the TP-T-MRM. Observing the estimated
parameters of the best fitted model, it is concluded that the model which is based on
the asymmetric distribution with heavier tails provides a better fit compared to the
ordinary, normal and the TP-N distribution.

Figure 6 shows the scatter plot of the data set with the lightly and heavy tailed fitted
TP-N-MRM and TP-T-MRM, respectively, and clustering of the dataset. Clustering of
the data based on the fitted skew-t-MRM is also in the Fig. 7. In Fig. 8, we plot the
profile log-likelihood of the parameter ν for the TP-T-MRM and skew-t-MRM in all
of ECME algorithm iterations.

4.2.2 US population and poverty percentage counties data

In this subsection we consider a dataset which is provided in “usmap” package from R
software called “countypop” and “countypov” which are the 2015 population estimate
(in number of people) for the corresponding county (see also, https://www.census.gov/
programs-surveys/popest.html), and the 2014 poverty percentage estimate (in percent
of county population) for the corresponding county (see also, https://www.census.
gov/topics/income-poverty/poverty.html), respectively. We consider the logarithm of
population estimate as the explanatory variable and poverty estimate as the response
variable.MPL estimates and their corresponding standard errors of the parameters from
the TP-T-MRM (the best fitted TP-SMN-MRM) and the skew-t-MRM on the dataset
are presented in Table 9. The estimations of the shape parameters (γg, g � 1, 2) and
degrees of freedom (ν) of the fittedTP-T-MRM, show that both of the fitted components
have skewbehavior and are heavy-tailed.Also, the estimation of regression coefficients
of components and Fig. 9, which are the clustering the US counties dataset based on
the fitted TP-T-MRM the skew-t-MRM, demonstrates us that, in the first component
the levels of poverty percentage are more than the second. Also in the first component
by increasing the population estimates, poverty percentage estimates are decreasing,
while in the second component it seems the population estimates are not effective on
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Table 8 Some model selection criteria, numbers and elapsed time of algorithm iterations (N.I. and E.T.,
respectively) for the fitted TP-SMN-MRM and skew-t-MRM of the tone perception data

Model Selection
criteria

Normal-MRM TP-N-MRM TP-T-MRM TP-SL-MRM Skew-t-MRM

Log-likelihood 105.2510 144.2888 217.5689 195.7090 215.9857

BIC(λ) 80.1978 119.2357 187.5090 165.6452 186.0273

AIC − 194.5020 − 270.5778 − 417.1378 − 371.4180 − 413.9714

BIC − 170.4169 − 243.4821 − 390.0420 − 341.3116 − 386.8757

EDC − 190.9061 − 266.5324 − 413.0924 − 366.9231 − 409.9260

N.I 21 20 8 18 12

E.T 29.04 28.73 20.34 36.92 27.24
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Fig. 6 The scatterplots and clustering of the tone perception data based on the lightly and heavily tailed
fitted TP-N-MRM and TP-T-MRM

the poverty percentage estimates. Clustering the US counties based on the proposed
fitted TP-T-MRM is provided in the US map in Fig. 10.

5 Conclusion

Finite mixture of regression models is a research area with several applications. In
the current study, a model called the TP-SMN distributions was proposed based on a
flexible class of symmetric/asymmetric and lightly/heavy tailed distribution. In fact,
the proposed model is a generalization of the work carried out by Yao et al. (2014)
and Liu and Lin (2014) that can efficiently and simultaneously deal with skewness
and heavy-tailed-ness in the mixture regression model setting. Also we have used the
penalized likelihood to have the best number of components, and the robust proposed
model allows the researchers on different areas to analyze data in an extremely flexible
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Fig. 7 The scatter plot and clustering of the tone perception data based on the skew-t-MRM
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Fig. 8 Plots of the profile log-likelihood on the EM-algorithm iterations of the parameter ν for fitting the
perception data with a two component TP-T-MRM (left) and skew-t-MRM (right)

methodology. AnEM-type algorithmwas employed and some simulation studies were
presented to show that this algorithm gives reasonable estimates. After obtaining the
MPL estimates via the ECME algorithm, they were easily implemented and coded
with existing statistical software such as the R package, and the R code is available
from us upon request. Results of the work indicated that using the TP-SMN-MRM
leads to a better fit, solves the outliers’ issues and gives a more precise picture of
robust inferences. It is intended to pursue a fully Bayesian inference via the Markov
chain Monte Carlo method on the proposed model in future research.
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Table 9 MPL estimation results with their standard errors for fitting TP-T-MRM on the US population and
poverty percentage counties data

Model TP-T-MRM Skew-t-MRM

Component g � 1 g � 2 g � 1 g � 2

Parameter Est S.E Est S.E Est S.E Est S.E

β0g 30.7825 0.0903 14.4010 0.0714 11.6434 0.0965 27.0811 0.0932

β1g −
0.7610

0.0110 −
0.0417

0.0094 0.0068 0.0135 −
0.6070

0.0114

σg 9.1269 0.0814 7.5820 0.0633 3.1360 0.0813 5.2881 0.0620

γg 0.6858 0.0064 0.6713 0.0055 0.1740 0.0401 0.0940 0.0076

πg 0.4350 0.0463 0.5650 0.0463 0.4558 0.0470 0.5442 0.0417

ν 6.4796 0.0741 6.4796 0.0741 7.2925 0.0752 7.2925 0.052

λ 0.1699 0.2501

Log-likelihood − 10,336.63 − 10,425.65

BIC(λ) − 10,384.48 − 10,476.14

AIC 20,691.26 20,869.30

BIC 20,745.74 20,923.78

EDC 20,774.16 20,952.20

N.I 12 13

E.T 82.34 452.56
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Fig. 9 Clustering of theUS counties based on the estimatedTP-T-MRM to population and poverty percentage
estimate data (light color is due to the first cluster and dark color is due to the second cluster
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Fig. 10 The scatterplot and clustering of the US population and poverty percentage estimate data based on
the TP-T-MRM (left) and skew-t-MRM. Top members (red color) are due to the first cluster and bottom
members (blue color) are due to the second cluster
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