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Abstract

The H-measure is a classifier performance measure which takes into account the
context of application without requiring a rigid value of relative misclassification
costs to be set. Since its introduction in 2009 it has become widely adopted. This
paper answers various queries which users have raised since its introduction, including
questions about its interpretation, the choice of a weighting function, whether it is
strictly proper, its coherence, and relates the measure to other work.
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1 Introduction

Two-class classification is made on the basis that some objects have a certain property
X while other objects do not. Most statistical and machine learning classification
methods achieve this by initially estimating the probability that objects belong to
each class. The probability estimates are based on observed properties of the objects,
which one believes to be related to the presence/absence of X. Predicted classes are
then obtained by comparing the estimated probabilities of belonging to one of the
classes with a threshold, with objects with a value above the threshold being predicted
to belong to that class, and other objects to the other class. The choice of the threshold
will depend on the problem and the objectives. However, except in certain special
applications, errors occur, with some objects ending up misclassified. In such cases,
the choice of threshold must be made to balance the two types of error to yield an
overall “best” performance. Since “balance” and “best” can be defined in various ways,
this has led to many different ways of defining and measuring classifier performance
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(for reviews, see for example, Hand 1997, 2012; Liu et al. 2014; Jiao and Du 2016;
Tharwat 2020).

One measure of classifier performance is the H-measure (Hand 2009, 2010; Hand
and Anagnostopoulos 2014). This paper presents a reformulated introduction to the H-
measure, describing what has been learnt about its performance since its introduction,
and answering questions which have been raised about it.

The H-measure can be approached in various ways. We originally approached
it (Hand 2009) as a consequence of identifying what is, from one perspective, a
fundamental conceptual weakness in another widely used measure of classifier per-
formance—the Area Under the Receiver Operating Characteristic curve (AUC). We
later discovered that Buja et al. (2005) had also derived it, in a more general context,
approaching it from the direction of understanding boosting methods for improving
statistical classification methods (Friedman et al. 2000). Although the body of this
paper takes our perspective, in Sect. § we examine the broader description of Buja
et al. (2005).

Section 2 reprises the definition of the H-measure, its relationship to the AUC, and
hence its motivation arising from the weakness of that measure. Section 3 describes
the choice of the weight function, which is central to the definition of the H-measure.
Section 4 gives a simple interpretation of the H-measure. Section 5 explores whether
the H-measure is a so-called strictly proper scoring rule. Section 6 looks at how to han-
dle unknown class sizes. Section 7 describes calculation of the H-measure. Section 8
then takes a step back and summarises the elegant derivation of the H-measure and
related measures in a broader context given by Buja et al. (2005). Section 9 looks at
classification contexts where other ways of choosing the classification threshold are
appropriate. Section 10 draws some conclusions.

2 Background

Given two classes of objects, labelled 0 and 1, our aim is to assign new objects to
their correct class. To do this, we use the information in a sample of objects each with
known class memberships (this is called the training set or design set) to construct an
algorithm, a classification model, a classification rule, a measuring instrument, or a
diagnostic system which will yield estimated probabilities of belonging to class 1 (and,
by implication, also for class 0) for future objects. Let g be the estimated probability
that an object belongs to class 1, and define Fp(q) and Fj(g) to be the cumulative dis-
tribution functions of these estimates of probability for objects randomly drawn from
classes 0 and 1 respectively, o and | to be the respective class sizes (alternative
terms sometimes used for the latter are class proportions, ratios, or priors; we dis-
cuss how to handle uncertain class sizes in Sect. 6), F(q) = moFo(q) + w1 F1(q)
to be the overall mixture cumulative distribution function, and fy(q), f1(¢g), and
f(g) = mo fo(qg) + m1 f1(q) to be the corresponding density functions. For a given
training set and a specified way of deriving the classification model, these functions
are known. This paper is concerned with estimating the performance of a classifica-
tion rule based on such known functions. Comparison of performance estimates for
different rules can be used to choose between rules, and to adjust or optimise a rule
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(e.g. enabling parameter optimisation, threshold setting, etc.). However, note that this
paper is not concerned with estimating or comparing the performance of methods of
constructing classification or machine learning rules, which would require also tak-
ing into consideration the randomness implicit in the choice of training sample and
random elements in the estimation algorithm (e.g. in the case of random forests or
cross-validation).

To classify an object, its estimated probability of class 1 membership, or “score”
for short, is compared with a threshold ¢, the “classification threshold”, such that
objects with scores greater than ¢ are assigned to class 1 and otherwise to class 0.
This results in two kinds of potential misclassifications: a class 0 object might be
misclassified as class 1, and a class 1 object might be misclassified as class 0. Define
¢ € [0, 1] to be the cost due to misclassifying a class 0 object and (1 — c) the cost due
to misclassifying a class 1 object, and take correct classifications as incurring no cost.
This is the basic and most common situation encountered, but various generalisations
can be made. For example, correct classifications might incur a cost (in that case the
cost scale can be standardised by subtracting the cost of a correct classification and
renormalising c¢); misclassification costs might differ depending on how “severe” is the
misclassification (an object which has a score just on the “wrong” side of the threshold
might incur a different cost from one which is far from the threshold on the wrong
side); misclassification costs (and even the correct classification costs) might depend
on the object, yielding a distribution of costs across the population; costs might not
combine additively; population score distributions might change over time (sometimes
called population drift or concept drift. This is often handled by revising the classifier
periodically. For example, in credit scoring the tradition has been to rebuild every
three years or so, but more advanced methods adaptively update the parameters); and,
perhaps the most important generalisation, more than two classes might be involved
(extending the H-measure to more than two classes is an ongoing project).

We see that, when threshold ¢ is used, the total cost due to misclassification is

L(c; t) = cmo(1 — Fo(1)) + (1 — o)1 F1 (1) ey

For any given cost ¢ a sensible choice of classification threshold ¢ is that which
minimises L(c; t) (we consider other ways of choosing ¢ in Sect. 9). Assuming the
distributions are differentiable on [0, 1], differentiating (1) shows that this is given by
t = T, satisfying

c=m fi(Te)/ f(T;) (2)

But (by definition of 71, f1(q), and f(g)) the ratio 71 f1(q)/ f (g) is the estimated
conditional probability that an object with score g will belong to class 1—esti-
mated from the training set using the specified classifier model or algorithm. That
is w1 f1(q)/ f (q) = q. It follows from (2) that the (estimated) best choice of threshold
to use when c is the cost of misclassifying a class 0 object and (1 — ¢) is the cost of
misclassifying a class 1 object is T, = c.
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112 D. J. Hand, C. Anagnostopoulos

This leads to a minimum classification loss of
L(c) = cmo(1 — Fo(c)) + (1 — o)m1 Fi(c)

In summary, if the cost ¢ (and class sizes and distributions) are known, this gives
us the unique classification threshold to use and the associated consequent minimum
loss. In general, however, costs are difficult to determine and they may not be known
at the time that the classification rule has to be evaluated. For example, in a clinical
setting the severity of misclassifications might depend on what treatments will be
available in a clinic or on the particular characteristics of the local patient population,
or in a credit scoring context the degree of acceptable risk might depend on current
interest rates. More generally, we might want to make comparative statements about
the relative performance of classification rules without knowing the details of the
environment in which they will be applied, with the risk that any particular choice of
costs could be very different from those encountered in practice. For these reasons, we
will integrate over a distribution of costs, w(c) say, chosen to represent one’s beliefs
about the costs to be encountered in the future. A similar point applies if the class
sizes, g and 1, are unknown, but they can, at least in principle, be estimated from
empirical considerations. We discuss this further in Sect. 6.

The overall expected minimum misclassification loss is then

1
L= / [emo(1 = Fo(0)) + (1 — c)mi Fi(c)Jw(c)de 3
0

Substituting ¢ = 1 fi(c)/ f(c) into (3) yields

1
_ w1 f1(c) B 70 fo(€)
L_O/[ fo ot T PO T mFl("’)]w(odc

w(c)

[

dc

1
= o7 g[fl ()1 = Fo(c)) + folc) Fi(c)]

From this we see that, were we to take w(c) = f(c), we would obtain L = L,4
where

f(e)
fle)

1
La=mom / LA = Fo(@) + fo@)F1 ()12 Dde
0

1

=2momy | 1 — / Fo(c) fi(c)de 4

0
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1
The expression f Fy(c) fi(c)dc in (4) is the familiar and widely used measure of

0
performance known as the Area Under the Receiver Operating Characteristic Curve,
denoted AUC (see, for example, Krzanowski and Hand 2009).
Inverting (4), we obtain

AUC =1 — Ly /2mom;

That is, the AUC for a particular classifier is a linear function of the expected
misclassification loss when the cost distribution w is taken to be the overall score
distribution for the classifier being evaluated: w(c) = f(c).

This seems to provide a justification for the widespread use of the AUC in comparing
classification rules. However, note that the overall score distribution f will generally
be different for different classifiers. This means that, if we choose the distribution w
to be f, the loss L 4 will be calculated using different w cost distributions for different
classifiers. But this is inappropriate: the cost distribution must be the same for all
classifiers we might wish to compare. We would not want to say that, when we used
one classifier, we thought that misclassifying a particular object would be likely to
incur cost cy, but that, when we used a different classifier, misclassifying that same
object would be likely to incur a different cost ¢y. Putting aside the expense of running
an algorithm, we would not want to say that the loss arising from misclassifying a
particular object using logistic regression is more severe than the loss arising from
misclassifying that object using a support vector machine. Our belief about the likely
severities of losses arising from misclassifying objects is an aspect of the problem and
researcher, not of the classification method. In general, the distribution we choose for
the misclassification cost is independent of what classifier we choose.

Since the AUC is equivalent to (i.e. is a linear transformation of) L 4 this also implies
that measuring the performance of different classifiers using the AUC is unreasonable,
at least if the threshold is chosen to minimise loss for each ¢ (we discuss alternatives
in Sect. 9): it is equivalent to using different measuring criteria for different classi-
fiers, contravening the basic principle of measurement that different objects should
be measured using the same or equivalent instruments. This fundamental unsuitabil-
ity of the AUC as a measure of classifier performance had been previously noted by
Hilden (1991), though we were unaware of his work when we wrote Hand (2009).
The dependence of the AUC on the classifier itself means that it can lead to seriously
misleading results, so it is concerning that it continues to be widely used (see Hand
and Anagnostopoulos 2013, for evidence on how widely used it is).

To overcome the problem, we need to use the same w(c) distribution for all clas-
sifiers being compared. This is exactly what the H-measure does, and we discuss the
choice of w in the next section.

As a final point, note that many measures of performance, including the AUC, the
proportion correctly classified, and the F-measure, take values between 0 and 1, with
larger values indicating better performance. To produce a measure which accords with
this convention (Hand 2009), the H-measure is a standardised version of the loss:

H=1- L/Lref (5)
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where
T 1
L = mo / cw(c)dc + my / (1 —c)w(c)de (6)
0 Tl

the value of L when Fy = Fj. This reference value of L is derived by noting that
when Fy = F; the minimum of L is achieved by classifying everything to class O if
cmp < (1 — c)mp and everything to class 1 otherwise. That is, classify all objects to
class 0 whenever ¢ < 71 and to class 1 whenever ¢ > 7. Lyt is the worst case in the
sense that it is the minimum loss corresponding to a classifier which fails to separate
the score distributions of the two classes at all. Of course, in fact even worse cases
can arise—when the classifier assigns classes the wrong way round. For example,
the very worst loss is when the classifier assigns all class O objects to class 1 and all
class 1 objects to class 0, yielding loss cg + (1 — ¢)wry = 79(2c — 1) + 1 —c. In
such cases, we can simply invert all the assigned class labels, yielding a classification
performance better than that of random assignment.

3 What is a good choice for the weight function?

As described in Hand and Anagnostopoulos (2014), ideally each researcher should
contemplate each classification problem and arrive at their own distribution for ¢ which
best matches their understanding of the problem and its implications. However, while
individual problem-specific choice of w is the ideal, it is also useful to have a standard
conventional w that every researcher can use, so that they would produce the same
summary measures from the same data. So what properties might a good default choice
of w have?

Hand (2009) suggested it was reasonable that w should decay to 0 as ¢ approaches
0 and 1. After all, for example, setting w(0) # 0 means we believe it is possible
that misclassifications of class 0 points incur no cost at all, while misclassifications of
class 1 points incur a cost of 1. Under such circumstances it is hardly a classification
problem at all, since then the optimum strategy is simply to take every object as class
0. This led to the suggestion that a beta distribution should be used:

1
b(c; a,p) =@ D1 - c)<ﬁ*1>//c<“*1>(1 —o)# Ve
0

Hand and Anagnostopoulos (2014) noted that in dramatically unbalanced appli-
cations, such as fraud detection in retail banking, one would typically regard
misclassifications of the smaller class (in this example, fraudulent transactions) as
more costly than misclassifications of the larger class (legitimate transactions). After
all, if a small number of cases (the members of the smaller class) each incurred a small
misclassification cost, then very little loss would be incurred by misclassifying them
all. This led them to propose that a reasonable choice for the mode of the threshold
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Notes on the H-measure of classifier performance 115

distribution would be ¢ = ;. If class O is the larger class, then, since c is the cost of
misclassifying objects from class 0, this choice means that misclassifications of this
larger class each incur a smaller cost (71 = 1 — mg), whereas if class O is the smaller
class, then misclassifications of this smaller class each incur a greater cost.

Since the beta distribution has its mode at (@ — 1)/(« + B — 2), setting this to 7|
determines one of the two degrees of freedom in the distribution. Hand and Anag-
nostopoulos (2014) discuss various choices to fix the other and recommend using
o =14 my, B =14 mg. Thus the basic H-measure uses

w(c) =b(c; 1471, 1+ m) @)

In summary, the H-measure is given by Eq. (5) using (3), (6), and (7).

4 What does the H-measure mean?

For performance measures to be adopted and used, they must have meaningful and

preferably straightforward interpretations. As far as the AUC is concerned, we see
1

from its basic definition, f Fy(c) fi(c)dc, that it is the expected proportion of class

0 objects correctly classifged when the expectation is taken over the distribution of
the probability scores of class 1 objects. At first glance, this appears to treat the
classes asymmetrically, but this is easily remedied. For example, we saw in Hand and
Anagnostopoulos (2013) that

1 713 + 7r12
AUC = —— [ [moFo(c) + mi(1 — Fi(e)]f(c)de — ———
2oy Ao

That is, the AUC is a linear function of the expected proportion correctly classified
when expectation is taken over the overall mixture distribution of probability scores.
Using our earlier terminology, we say that the AUC is “equivalent to” the expected
proportion correctly classified when this averaging distribution is used. A similar
expression for the AUC in terms of the expected proportion incorrectly classified can
easily be derived.

These straightforward and accessible interpretations have probably helped the
widespread adoption of the AUC as a measure of classifier performance. They do
not, however, do anything about the fundamental incoherence at its core: in all three
of them, the expectation is taken over a distribution which is classifier-dependent,
so that the measuring instrument changes according to what is being measured. The
fact that the AUC is easy to interpret does not overcome the fact that it is potentially
misleading.

The invariance of the AUC to monotonic increasing transformations of the score
scale—immediately obvious from its definition—shows that it depends on only the
rank order of the test set points, not on their actual numerical scores. AUC can thus be
regarded as a measure of separability between classes, or refinement. Indeed, for uses
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116 D. J. Hand, C. Anagnostopoulos

other than measuring classification accuracy this is a perfectly valid and useful inter-
pretation. However, as we show in Sect. 9, this interpretation makes an assumption
about the relative importance of the different ranks when combined into an overall
measure. This assumption is unlikely to be appropriate for most real practical classi-
fication problems.

Another interpretation of the AUC is also often quoted, which also follows imme-
diately from the basic definition: the AUC is the probability that a randomly drawn
class 0 object will have a lower score than a randomly drawn class 1 object. This
interpretation is fine for some uses of the AUC, but is hardly relevant to most classifi-
cation problems because, generally, the objects do not arrive in pairs, with one known
to be from each class. More typically they arrive individually, or if in groups then we
normally do not know how many belong to each class. (There are unusual exceptions).

But what about interpreting the H-measure? Lger is the expected minimum loss
due to misclassification when the classes are not at all separable, that is when the
probability score distributions fy(s) and fi(s) are identical. This means that is the
amount that a classifier reduces the expected minimum loss from a classifier which
failed to separate the classes at all. The H-measure is thus the fractional improvement
in expected minimum loss that the classifier yields, compared with a classifier which
randomly assigns the points to classes. Expectation here is of course over whatever w
distribution the researcher adopts—the beta distribution defined above if our default
convention is used.

5 Is the H-measure a strictly proper scoring rule?

A “probability scoring rule” (Winkler and Jose 2010) provides a numerical measure of
the accuracy of methods of estimating probabilities. A “proper scoring rule” (Dawid
2007) is such a measure which has the property that its minimum value occurs when the
estimated probability of class membership, g, equals the expected probability of class
membership; that is, the minimum value occurs when g = Ey(y|g), where y € {0, 1}
is the true class label. Thus a proper scoring rule takes its minimum value when the
probability estimates are calibrated. If this minimum is unique, then the scoring rule
is said to be “strictly proper” (Gneiting and Raftery 2007).

As can be seen from the earlier discussion, a classification performance measure
can be described as an average of probability scores (of some kind), averaged over
the distribution of predictor vectors describing the objects. Equivalently, classifica-
tion performance measures are averages of probability scores over the distribution
of classification scores resulting from the classification rule. As such it is not really
meaningful to ask whether a classification performance measure itself is strictly proper
or not, but it is meaningful to ask whether the probability scoring rule on which it is
based is strictly proper.
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Notes on the H-measure of classifier performance 117

For the H-measure, the loss for an object with true class label y € {0, 1} and
classifier-estimated probability g of belonging to class 1 is

1

L@»o:/kmpda—w+a—wnmﬂﬂmow ®)
0

where 1(, is the indicator function, taking the value 1 when condition a is satisfied
and 0 otherwise. Defining 1 £ Ey(ylq), this is a proper scoring rule if

arg min E,(L(q, =
gqe[(l)’l] y(L(g,y) =n

To see if this is the case, note that

1

m@@4»=/kmMa—m+a—@myﬂw@@ ©)
0
q 1
=(1- n)/cw(c)dc +n / (1 —c)w(c)de (10)
0 q

Differentiating this with respect to g gives

dEy(L(q, y))/dg = [(1 — nqw(g) —n(l — qw(g)] = (g — Nw(q)

This is zero when g = 1. The second derivative at ¢ = n reduces to w(g) which is
positive on the region of support of w, so that L takes its minimum at ¢ = n, and the
loss measure is strictly proper. Note that this does not depend on the shape of w.

In Sect. 9 we review the elegant generalisation by Buja et al. (2005) which
approaches things from the opposite direction.

6 What about the class sizes?

For simplicity of exposition, so that we could focus on one source of uncertainty
at a time, throughout this discussion we have assumed that the class sizes, 7y and
71, were known. Uncertainty about the class sizes is usually of a different character
from uncertainty about the costs. Class size is an empirical issue, at least in principle
subject to exploration by data collection. In particular, the way the training set was
drawn will shed light on the underlying population proportions of each of the classes.
If the training set was a random sample from the overall population, then the class
sizes in the training set can be taken to be proportional to estimates of the class sizes in
the population. More generally, biased sampling procedures can be adjusted to yield
population class size estimates.
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118 D. J. Hand, C. Anagnostopoulos

If there is considerable uncertainty about the class sizes (for example, when the
future application population is unknown or is expected to evolve over time) then, just
as we could choose a distribution for ¢, so we can choose a distribution for g (and
hence by implication also of m; = 1 —mp). Also, although as with the cost distribution
this will ideally come from consideration of the problem, a default conventional form
can also be useful. Once again, we suggest a beta distribution, this time with mode at
2 v(mg) = b(mo; 2, 2).

This leads to

1

H=1- / LG reydmo (11)
Lyt (o)
0
where
1
L(mo) = f [emo(1 — Fo(c)) + (1 — ) (1 — 7o) F1(c)]w(c)dc (12)
0
41 1
Lies(m0) = nO/cw(c)dc + m f (1 —c)w(c)de (13)
0 Ty
v(mo) = b(mo; 2,2) = 6mo(1 — 7o) (14)
and

=M1 — )™

fol ul=m0(1 — u)™du

w(c) = w(c|mo) = b(c; 2 — mo, 1 +mo) = 15)

since 1 + w1 = 2 — mp in the beta parameters, and where we have explicitly drawn
attention to the fact that the distribution of c¢ is conditional on the value of .

7 Estimation

Since the beta distribution w in (15) has the form c¢“(1 — c)b, the arguments of the
integrals in L in (13) can also be expressed in terms of beta distributions, yielding

B2+ my, 14+ mp)
B(l 4y, 1 4+ mp)

B+ m,2 + mo)
B(l 4+, 1 —l—no)}

Lyef =m0 B (152 4+ 1, 1 4 70)

+711|:1—B(771;1+m,2+ﬂ0)
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1
where B(c; a, b) is the cumulative beta distribution and B(a, b) = f B(c; a, b)dc.
0

This is straightforward to evaluate using standard statistical software.

From Eq. (12), L (o) is the expected value of
[cro(1 — Fp(c)) + (1 —¢)(1 — o) F1(c)] when ¢ has distribution w(c|mg), and
from Eq. (11) H is 1 minus the expected value of the ratio L(mg)/Lyef(79) When g
has distribution v (;rg). The simplest approach to estimation in terms of coding effort
is to estimate these two expected values using a Monte Carlo approach, generating
random observations from w(c|mp) and v(mp). An estimate of Fp(c) is given directly
by the proportion of class O data values which are less than ¢, and an estimate of
F1(c) is given directly by the proportion of class 1 data values which are less than c.

8 The H-measure from the opposite direction

The discussion above began with a comparison of a probability estimate with a clas-
sification threshold. Misclassifications—when class 1 objects had a class 1 estimated
probability below the threshold, or class 0 objects had a class 1 estimated probability
above the threshold—were taken to incur costs. Balancing these costs over a distribu-
tion of likely values for the misclassification cost led to an overall measure of the loss
incurred by a classifier.

In contrast, motivated by the need to gain a deeper theoretical understanding of
why boosting (Friedman et al. 2000) is effective in classification problems, Buja et al.
(2005) begin by focusing on the accuracy of the probability estimates themselves,
writing a general loss for class 1 estimated probability ¢ and true class y as

L(g,y)=0—y)Lo(g) +yLi(1—gq),

where Lg(gq) is the loss due to misclassifying a class 0 point when the estimated
class 1 probability is g, with similar for L;(g). They then used a result described
in Shuford et al (1966), Savage (1971), Dawid (1986), and Schervish (1989) which
shows that if Ly and L are differentiable then L is a proper scoring rule if and only if
Ly(q) = w(g)g and L (1 — q) = w(g)(1 — g) for some weight function w(g) > 0
on (0, 1) satisfying certain conditions. Moreover the scoring rule is strictly proper if
w(g) > 0 almost everywhere on (0, 1).
This leads to

Ey(L(q,y)) =0 —mnLo(g) +nL1(1—q)

1
= / [(1 —nclygse +n(l — c)l[qfc]]w(c)dc
0

q 1

=(1- n)/cw(c)dc—i—r]/ (1 —c)w(c)de
0 q
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120 D. J. Hand, C. Anagnostopoulos

which is Eq. (10). That is, if the probability scoring rule is proper then it has the form
of a mixture of cost-weighted misclassification losses, with a distribution w(c) for the
costs. Thus Buja et al. (2005) have proceeded in the opposite direction from us. Where
we began with the cost-weighting and ended with the rule being proper, their result
shows that the cost-weighted representation is natural, and not merely an artefact of a
way of describing the classification problem.

Buja et al. (2005) explore possible choices for w, showing how appropriate choices
lead to log-loss (the negative of the log-likelihood of the Bernoulli model), squared
error loss, and boosting loss. Like us (Hand and Anagnostopoulos 2014), they also
note the merits of using a Beta distribution as w. In our definition of the H-measure,
we have taken w(c) = b(c; 1 + w1, 1 + ), as in (7).

In summary, while we began our derivation of the H-measure from the recogni-
tion that the AUC used different cost-weighting distributions for different classifiers,
Buja et al. (2005) have shown that the use of different cost-weighting distributions is
equivalent to using different loss functions when evaluating the estimated probability
of class 1 membership: general versions of the H-measure, with carefully chosen w
distributions, are the essence of measuring classifier performance. And from the per-
spective of the route we took, the work of Buja et al. (2005) demonstrates that the AUC
is equivalent to using different probability scoring functions to evaluate the accuracy
of the estimates of the probability of belonging to class 1 for different classifiers.

9 Other ways of choosing the classification threshold

In Sect. 2 we said that, for any given cost ¢, a “sensible” choice of classification thresh-
old 7 is that which minimises L(c; t). However, other ways of choosing ¢ are possible.
In an extensive and comprehensive investigation, Herndndez-Orallo et al. (2012) term
this dimension of classifier evaluation the threshold choice method, exploring vari-
ous ways the threshold might be chosen. They cross-classify this dimension with the
operating condition dimension of classifier evaluation, which includes such things as
the misclassification cost distribution and class imbalance, to produce a unified way
of looking at a number of classifier performance metrics.

One special case arises when the classification threshold is chosen independently
of the cost ¢. We see from (1) that, when the cost is chosen from a distribution w(c)
and the threshold independently chosen from a distribution u(¢) we obtain the overall
expected loss

11
L= / / [emo(1 — Fo(2)) 4+ (1 — )y F1(¢)Jw(c)u(t)dcdt
00

1
= / [E(c)mo(1 = Fo(r)) + (1 — E(c))my F1(2)Ju(t)dr (16)
0
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It is clear from (16) that this leads to an L which is equivalent to taking all misclas-
sifications of a class 0 object as incurring cost E(c) and all contrary misclassifications
as incurring cost 1 — E(c), regardless of the classification threshold. If this approach
were to be adopted, it then seems strange adopting a distribution for ¢ at all, since L
can be minimised by choosing u(¢) to be a delta function located at the threshold ¢
which satisfies

E(c) =m fi()/ f(1)

as we saw in (2). If, nonetheless, one does wish to adopt a distribution for #, then some
rationale has to be found for making the choice of its form. Flach et al. (2011) have
explored this, taking a uniform distribution for c, so that E(c) = 1/2, and adopting
u(t) = f(¢). From (16) we see immediately that this leads to a linear function of the
AUC. On this basis, Flach et al. (2011) claim to have derived a coherent interpretation
of the AUC. This is correct, but, as they also point out, taking u(¢) = f(¢) is equivalent
to choosing, with equal probability, the scores of each of the test objects to act as the
threshold. That s, it is equivalent to using only the rank-order information in the scores
of the test set objects.

Now, by definition, choosing 7 on the basis of ¢ (for example, to minimise the loss
for each possible value of ¢ or to minimise the loss for the expected value of ¢) requires
relating the ¢ scale to the ¢ scale, and this presupposes a calibration of the scores to
some numerical scale—often, but not necessarily, a probability scale. However, if the
test set objects are simply rank-ordered, without an associated numerical scale, then ¢
cannot be chosen in this way and the choice must be based on choosing a rank as the
threshold (or, more formally, just below some rank). For example, we could say we
will classify as class O those test set objects which rank in the lowest 10%, or perhaps
the lowest 90%, of all test set objects and so on. Then we could evaluate performance
by seeing what proportion of the class 0 objects have been correctly classified as class
0. And there are variants of this. For example, we could set the threshold to select the
lowest 10% ranks of class O test set objects (instead of all test set objects), and see
what overall misclassification rate this led to. These sorts of approaches correspond
to variants of screening, with the proportion to be selected fixed in advance. They are
useful strategies provided one can decide beforehand what is an appropriate proportion
to choose.

Unfortunately, in many situations it is difficult to know what proportion (or rank)
one might want to choose—just as it was difficult to choose costs, as discussed above.
In such cases, an alternative to picking a particular proportion or rank to define the
threshold is to average the performance (the proportion of class 0 objects correctly
classified, the misclassification rate, or whatever you like) if we were to choose the
proportion according to some distribution. For example, we could with equal proba-
bility choose the rank of each of the class 1 test set points as the thresholds. If we then
take, as the performance measure, the average proportion of class 0 points correctly
classified using these thresholds, we obtain the AUC. This is what Flach et al. (2011)
have done.

Choosing the threshold uniformly from the ranks of the class 1 objects immediately
prompts the question of why accord them equal probability of being chosen? We could
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have put more weight on the lower ranks, for example. To illustrate, I might know
that only a small proportion of the population suffer from a particular disease, so I
will want my classifier to flag up only a small proportion of the incoming people,
even if I do not know exactly what small proportion I will be able to investigate
more rigorously. (If I'm trying to identify people who are likely to be suffering from
Stoneman Syndrome—about 1 in 2 million people—I will not want to flag 90% of the
population as possibly having it and deserving more detailed investigation).

One answer might be that the uniform distribution represents ignorance about the
circumstances under which the classifier will be applied in the future. But that’s not
really right: it represents a particular choice. For example, if | is the number of class
1 test set objects, the uniform distribution says that we think it equally likely that
we will want to classify a proportion 1/n1 and a proportion (n; — 1)/n; of the class
1 points as belonging to class 1. That’s a very strong assumption (and, worse, it’s
hidden: people are making this assumption without realising it). To the extent that it is
a poor representation of the circumstances under which the classifiers will be applied,
it could give a very misleading impression of relative performance.

If the scores have been calibrated to some numerical scale, the question of “why
choose a uniform distribution on the ranks?” corresponds to “why do we believe
that threshold values occurring near the mode of the estimated class 1 probability
distribution for the particular classifier, f(¢), should be preferable to other values?”.
This leads us back to the fact that f (¢) is classifier-dependent, and the inappropriateness
of the AUC for comparing classifiers if numerical scores have been produced (such as
estimated class 1 membership probabilities).

10 Conclusion

Hand and Till (2001) describe the widely used AUC measure of classification per-
formance as concentrating “attention on how well the rule differentiates between the
distributions of the two classes, ... not influenced by external factors which depend on
the use to which the classification is to be put.” It is an “internal” measure, making no
reference to matters such as the relative severity of different types of misclassification.
However, the assessment of a classification measure cannot take place in a vacuum,
but must always depend on the application: in assessing a classifier we are asking
“how good is the classifier for such and such a role?”, not least because a classifier
good in one application may be poor in another. This is why Hand (1997) concludes
by saying “The opening sentence of this book posed the question, Which is the best
type of classification rule? We can now answer that question. The answer is: It depends
...”. One consequence of the failure to take context into account is that the AUC is
incoherent, in the sense that it is equivalent to the expected proportion of class 0 objects
misclassified (or class 1 objects, or overall objects, or correctly classified) but where
the distribution yielding the expected value varies from classifier to classifier. It is not
comparing like with like. The AUC is certainly a coherent measure of separability
between classes, since it is based solely on the order of scores of the test set objects,
and not on the numerical values of those scores. However, separability is not the same
as classification performance since separability appears to ignore the central role of
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the classification threshold. But this is deceptive: implicit in the AUC when viewed
in this way is a hidden assumption that each rank of the test set objects is equally
likely to be chosen as the threshold. This is an unrealistic assumption in most practical
applications.

The H-measure tackles the incoherence of the AUC by introducing costs for the
different types of misclassification. If the costs were known, the optimal threshold
would be known and the problem would reduce to that of summarising a standard
two-by-two confusion matrix of true class labels by predicted class labels. However, it
is common that precise values of the costs are not known at the time that the classifiers
must be evaluated—earlier we gave the example of evaluating a medical diagnostic
system when the future misclassification severity would depend on what treatment
options would become available. To tackle such situations, we take the expectation
over a distribution of likely cost values. Ideally this distribution should be chosen
by the researcher on the basis of their knowledge of the problem—Iike a Bayesian
prior. And, indeed, we recommend that researchers always try to come up with such
a distribution. However, it is also useful to have a standard default distribution which
can be used to yield a conventional measure. We have recommended a particular form
of beta distribution for this role. We then generalised to cover the case when the class
sizes are also unknown.

More generally, Buja et al. (2005) have demonstrated that choice of different func-
tions for the cost distribution is equivalent to using different loss functions for different
classifiers when estimating the class membership probabilities. It seems difficult to see
why one would want to minimise (for example) log-loss when using a neural network,
but squared error loss when using a random forest.

Since the introduction of the H-measure in 2009, and its subsequent refinement in
later years, researchers have raised various questions about it, such as how to interpret
it and whether it is strictly proper. This paper has attempted to provide answers to
these questions.
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