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Abstract
Model-based recursive partitioning (MOB) can be used to identify subgroups with
differing treatment effects. The detection rate of treatment-by-covariate interactions
and the accuracy of identified subgroups using MOB depend strongly on the sample
size. Using data from multiple randomized controlled clinical trials can overcome the
problem of too small samples. However, naively pooling data from multiple trials
may result in the identification of spurious subgroups as differences in study design,
subject selection and other sources of between-trial heterogeneity are ignored. In order
to account for between-trial heterogeneity in individual participant data (IPD) meta-
analysis random-effect models are frequently used. Commonly, heterogeneity in the
treatment effect ismodelled using randomeffectswhereas heterogeneity in the baseline
risks is modelled by either fixed effects or random effects. In this article, we propose
metaMOB, a procedure using the generalized mixed-effects model tree (GLMM tree)
algorithm for subgroup identification in IPD meta-analysis. Although the application
of metaMOB is potentially wider, e.g. randomized experiments with participants in
social sciences or preclinical experiments in life sciences, we focus on randomized
controlled clinical trials. In a simulation study, metaMOB outperformed GLMM trees
assuming a random intercept only and model-based recursive partitioning (MOB),
whose algorithm is the basis for GLMM trees, with respect to the false discovery
rates, accuracy of identified subgroups and accuracy of estimated treatment effect.
The most robust and therefore most promising method is metaMOB with fixed effects
for modelling the between-trial heterogeneity in the baseline risks.
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1 Introduction

For precision medicine it is crucial to identify subgroups which benefit differently
from a specific drug or are exposed to particular harm. When subgroups are defined
by single biomarkers or combinations of biomarkers, different treatment effects in sub-
groups imply treatment-by-biomarker interactions. We use the term biomarker here
for not just genetic biomarkers, but also by other baseline patient characteristics as e.g.
demographic variables (Biomarker 2001). The biomarkers involved in treatment-by-
interactions are called predictive biomarkers, whereas prognostic markers predict the
course of a disease. Several statistical approaches for identifying subgroups with dif-
ferential treatment effects were proposed, e.g. review papers of Lipkovich et al. (2017),
Ondra et al. (2016). For subgroup identificationmethods, specifically tree-basedmeth-
ods, one of the important factors influencing the performance is sample size as has
been shown in Sies and Van Mechelen (2017), Alemayehu et al. (2018), Huber et al.
(2019). Data from one randomized controlled study are therefore often not sufficient
for the identification of subgroups. The sample size can be increased by pooling data
from multiple studies investigating the same treatment or intervention. Although we
consider randomized controlled trials here, the interest in identifying interactions of
biomarkers and interventions is potentially wider, e.g. randomized experiments with
participants in social sciences or preclinical experiments in life sciences. For instance,
Patel et al. (2016) developed a repository of individual participant data (IPD) consisting
of 19 randomized controlled trials in order to investigate whether some patient popu-
lations suffering from low back pain benefit differently from treatment. Cuijpers et al.
(2007) conducted an IPDmeta-analysis consisting of sixteen studies to investigate the
effect of active scheduling as behavioural treatment of depression. Analysing differ-
ential effects in subgroups was also part of their research. Another example of an IPD
is the International Weight Management in Pregnancy (i-WIP) database. The i-WIP
Collaborative Group collected data from 36 randomized controlled trials in order to
investigate the overall and differential effects of interventions based on diet and phys-
ical activity during pregnancy, primarily on gestational weight gain and maternal and
offspring composite outcomes (The International Weight Management in Pregnancy
(i-WIP) Collaborative Group 2017). Differences in the study designs, study popula-
tions, quality of the studies, choice of comparator intervention or other study-specific
influences can cause heterogeneity in baseline (control group) outcomes as well as in
treatment effect sizes from one study to another. We discuss these two (very different)
types of heterogeneity in turn. One approach to address the heterogeneity in the base-
line is to use models with stratified intercepts which estimates a separate intercept for
each trial. Alternatively, the study intercepts can be considered as random assuming a
suitable distribution (e.g. normal). Whereas the approach with stratified intercept does
not have to make any assumptions regarding the distribution of intercepts across stud-
ies, a (parametric) random intercept approach needs fewer parameters to be estimated
(Legha et al. 2018). Incorporating between-study heterogeneity in the treatment effect
into the modelling can be achieved by using random-effect models. Various types of
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random-effectmodels have been suggested for aggregatedmeta-analysis. Jackson et al.
(2018) give an overview of random-effect models in meta-analysis for binary outcome
data. Between-study variations of the treatment effect are addressed by assuming the
treatment effects to be normally distributed in all of the models presented by Jackson
et al. (2018). Variations of the models arise due to different assumptions regarding the
heterogeneity in the baseline risks or the independence of the random treatment and
random baseline effects. In IPD meta-analysis models one-stage approaches using
generalised mixed effect models are increasingly used for the analysis (Simmonds
et al. 2015). One-stage models do not need to aggregate the IPD in a first step in
order to analyse them with an appropriate meta-analysis models in the second step.
Legha et al. (2018) focus on different approaches regarding the baseline outcomes
for modelling the between-trial heterogeneity in one-stage IPDmeta-analysis models.
Although, it is not the main objective of Kontopantelis, one-stage models modelling
the heterogeneity in the baseline differently are also compared inKontopantelis (2018).

For subgroup identificationmethods some approaches have been suggested in order
to account for trial heterogeneity. However, these approaches are not sufficiently
flexible and they use rather simplistic models in order to account for between-trial
heterogeneity. Subpopulation treatment effect pattern plot for meta-analysis (Meta-
STEPP) (Wang et al. 2016) for example is a method developed for investigating
treatment heterogeneity across one continuous covariate only. Meta-STEPP accounts
for variations of the treatment effect across trials by two different approaches: A
fixed-effect (Wang et al. 2016) and a random effect (Wang et al. 2018) meta-analysis
approach. Nevertheless the investigation of multiple covariates at a time and there-
fore, the detection of possible multi-way interactions with the treatment indicator are
not possible in this framework. For tree-based subgroup identification methods some
approaches to account for between-study heterogeneity are available. Accounting for
between-study heterogeneity in tree-based methods is crucial as ignoring heterogene-
ity can lead to the identification of spurious splitting variables and therefore spurious
subgroups as shown by Sela and Simonoff (2012).

For SIDES (Lipkovich et al. 2011) and model-based recursive partitioning (MOB)
(Seibold et al. 2016; Zeileis et al. 2008) extensions have been proposed, which adapt
the algorithm by Sela and Simonoff (2012), allowing to account for heterogeneity, see
Mistry et al. (2018), Fokkema et al. (2018), respectively. However, both investigate a
simpler model assuming heterogeneity in the baseline only. Systematic combinations
of tree-based subgroup identification methods and meta-analysis models which are
adequately complex and flexible have not been investigated yet.

In this work, we introduce metaMOB which combines commonly made assump-
tions in meta-analysis models with generalized linear mixedmodel-tree (GLMM-tree)
algorithm by Fokkema et al. (2018). We investigate metaMOB’s performance com-
pared to the original MOB (Seibold et al. 2016; Zeileis et al. 2008) and to the
GLMM-tree investigated in Fokkema et al. (2018) in an extensive Monte-Carlo simu-
lation study using a structured approach (Benda et al. 2010). Furthermore, we evaluate
the impact of using different assumptions on the baseline effect for metaMOB.

The remainder of this paper is organized as follows. In Sect. 2 we outline the
subgroup identification method MOB and its extension GLMM-trees. Moreover, we
present different mixed-models appropriate for IPD meta-analysis in Sect. 2.1. In
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Sect. 2.2 we introduce metaMOB. In the following section we compare the perfor-
mance of two variations of metaMOB to MOB and the GLMM-tree investigated by
Fokkema et al. (2018) in a simulation study. Finally, we discuss advantages and limi-
tations of the investigated methods in Sect. 4.

2 Methods

We consider IPD data from k = 1, . . . K randomized controlled trials investigating
the same experimental treatment against the same control on an outcome variable Y .
We assume that each of these trials has nk participants. The outcome of participant i of
trial k is denoted by yik and tik refers to the observed treatment group. Furthermore, the
IPD data consists of p baseline covariates denoted by X1, . . . , X p; These covariates
are only used for partitioning. In addition we assume that each participant is included
in one trial only.

The treatment variable T takes the value 1 for patients in the experimental treatment
group and 0 for patients in the control group.

Seibold et al. (2016) use the algorithm of MOB (Zeileis et al. 2008) for exploratory
subgroup identifications. MOB assumes that in presence of subgroups there is no
single global model fitting the data well. Therefore, MOB partitions the dataset with
respect to some covariates X1, . . . , X p in order to improve the model fit. For MOB
a model for modelling the outcome has to be defined first. Using generalized linear
models (GLM),wemodel the expected outcome E(yik) of a patient given the treatment
indicator tik through a linear predictor and a suitable link function g(·) assuming that
all observations are drawn from the same population.

E(yik |tik) = μik

g(μik) = γ + θ tik (1)

Partitioning the data for improving the data fit in presence of subgroups leads to
separate GLMs in each obtained subgroup j ( j = 1, . . . , J ):

g(μi jk) = γ j + θ j tik . (M0)

Since we assume that the subgroup structure is not known, it is not possible to simply
estimate the parameters γ j , the intercept term of subgroup j , and the treatment effect
θ j of subgroup j .

MOB grows a tree in order to find local models (see M0) which fit the data better.
MOB partitions the data when the model parameters of M0 are not stable over the
considered covariatesX. The instability of themodel parameters are assessed using the
M-fluctuation by Zeileis and Hornik (2007) or a permutation test when the assumption
of normally distributed partial scores may not hold. More precisely the MOB tree is
obtained using the following algorithm:

1 Start with all observations included in the root node
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2 Fit model M0 to all observations in the given node by estimating the model param-
eters via minimizing the objective function �((Y , X), γ, θ) (e.g. the negative
log-likelihood)

3 Asses parameter instabilitieswith respect toX1, . . . ,Xp byusing theM-fluctuation
test proposed byZeileis andHornik (2007) or permutation test. The tested hypothe-
ses are

Hγ, j
0 : ψγ ((Y ,X, T ), γ̂ , θ̂) ⊥ X j , j = 1, . . . , p

H θ, j
0 : ψθ((Y ,X, T ), γ̂ , θ̂) ⊥ X j , j = 1, . . . , p,

with ψγ and ψθ denoting the partial score functions of γ and θ , respectively.
4 If at least one of the 2 × p null hypotheses can be rejected at a pre-specified
nominal level (using Bonferroni multiplicity adjustment), select covariate X j∗
with the lowest p-value as splitting variable.

5 Compute the split point for the chosen variable X j∗ by optimizing the sum of the
objective functions of the conceivable subsets.

6 Repeat Steps 2 to 5 until none of the hypotheses in Step 3 can be rejected or some
other stopping criteria (e.g. minimum number of observations in a node) is met.

Since MOB was developed to identify non-overlapping subgroups based on data
from one single study, MOB ignores the clustered structure of the data. Fokkema
et al. (2018) proposed an algorithm extending MOB in order to allow the assumption
of heterogeneity between clusters. The extended algorithm called GLMM-trees uses
mixed models in order to model data from K studies. In contrast to GLMs (as used in
MOB) assuming independent and identically distributed observations, mixed models
assume that observations between studies are independent but observations within
each study are correlated. The algorithm of GLMM-trees allows to detect treatment-
by-subgroup interactions and non-linearities in generalized linearmixed-effectmodels
(GLMM). Fokkema et al. (2018) restricted their analyses to GLMMs with cluster-
specific random intercepts fitting the following model in each subgroup j obtained by
partitioning the data:

g(μi jk) = γ j + θ j tik + b0k . (M1)

The centred random intercepts bk are normally distributed bk with expectation 0
and variance τ 20 . GLMM-trees using model M1 are referred to as MOB-RI in the
following.

A random-intercept model allows only the baseline outcome to vary from study
to study whereas the treatment effects are assumed to be the same across studies.
This assumption corresponds to a common-effect meta-analysis model which is also
known under the term fixed-effect meta-analysis model. The assumption of estimating
the same true treatment effect in every trial is a strong assumption (Jackson et al. 2018).
Therefore, the random-effects model is more plausible. Random-effects models for
meta-analyses are outlined in Sect. 2.1.
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2.1 GLMMs for meta-analysis

Heterogeneous treatment effects are usually expected in meta-analysis. However, this
assumption has not been evaluated in the context of GLMM-trees so far. Several
models for random-effect meta-analyses have been suggested. Jackson et al. (2018)
examined seven models for random-effect meta-analyses with binary outcome using
aggregated data. Legha et al. (2018) compare two approaches for one-stage IPDmeta-
analysis: random-effect models with either random or stratified intercepts. These two
approaches for modelling the baseline are also considered in Jackson et al. (2018),
Kontopantelis (2018). The random-effects model with stratified intercepts is defined
as follows:

g(μik) = γk + θk tik + εik

with θk = θ + b1k

and b1k ∼ N (0, τ 21 ) (2)

The baseline for trial k is denoted by γk and is assumed to be fixed. The model
parameter θk describes the treatment effect in trial k which is assumed to be normally
distributed with mean θ and a between-trial variance τ 21 .

The model for meta-analysis accounting for both heterogeneity in the treatment
effect and in the baseline by using random effects is defined in Eq. 3:

g(μik) = γk + θk tik + εik

with γk = γ + b0k, θk = θ + b1k

and b0k ∼ N (0, τ 20 ) and b1k ∼ N (0, τ 21 ) (3)

The centered random effects b0k and b1k are assumed to be normally distributed.
As in most models considered in Jackson et al. (2018) we assume that the random
effects b0 and b1 are independent.

2.2 metaMOB

As for MOB, metaMOB assumes that in the presence of subgroups the parameters θ

and γ of Eqs. 3 and 2 may not describe the data well. Therefore, the data is partitioned
in J disjoint subgroups by using a tree model. Using the model described in Eq. 3
which is analogous to the Simmonds and Higgins’ model with random study-specific
effects (Jackson et al. 2018), we fit the following model to each subgroup j identified
by the algorithms described in Sect. 2.3:

g(μi jk) = γ j + b0k + θ j tik + b1k tik, (M2)

where b1k ∼ N (0, τ 21 ) and all b1k are independent. As forM1 we assume that the fixed
effects γ and θ are subgroup specific, also referred to as local parameters, whereas

123



Subgroup identification in individual participant data… 803

the random effect part is assumed to be global, meaning that the random effects are
the same across the identified subgroups.

The model fitted in each partition j assuming fixed baseline effects in each study
is defined as:

g(μi jk) = γ jk + θ j tik + b1k tik, (M3)

where the fixed-effects γ jk and the mean treatment effect θ j are assumed to be
subgroup specific. For model M3 the number of parameters to be estimated increases
with an increasing number of identified subgroups and increasing number of trials.

Themethod assumingM2 to be the underlyingmodel for the tree growing procedure
is called metaMOB-RI, as a random intercept is assumed for the baseline effects. The
tree growing procedure using the model with a stratified intercept, M3, is referred to
as metaMOB-SI in the following.

The subgroup definitions identified by metaMOB are assumed to apply to all trials.
However, depending on the choice of the underlying model, different treatment and
baseline effects are estimated within subgroups for different trials.

2.3 Algorithm

Models M0 to M3 can be represented by the model equation

g(μi j ) = aiT
(

γ j
θ j

)
+ zTi b, (4)

where b is a vector of random effects, vector zTi is the i-th row of the design matrix Z
for the random effects, vector aiT is the i-th row of the design matrix A for the fixed
effects. The coefficient vector of the fixed effects is denoted by (γ j , θ j )

T . For model
M2 e.g. vector b of Eq. 4 is b = (b01, . . . , b0K , b11, . . . , b1K )T . Vector zi is a vector
of length 2K , indicating to which study patient i belongs. Subject i enrolled in the
active treatment arm of study k has the value 1 at position k and K + k. A subject i
enrolled in the placebo arm of study k is a unit vector with value one at position k. And
vector ai of Eq. 4 is of length 2K with value 1 at position k and the value indicating
the treatment patient i was assigned to at position K + k.

The vectors b, ai and zi depend on the chosen model (M0–M3). The algorithm for
MOB-RI, metaMOB-RI and metaMOB-SI is outlined in the following.

1 Set r = 0 and all values b̂(r) to 0.
2 Set r = r+1. Estimate a GLM tree using zTi b̂

(r−1) as an offset. The random effects
part is treated as offset because it is assumed to be equal across all subgroups and
it is treated as known.

3 Fit the chosen linear mixed effect models (model M1, M2 and M3) with terminal
node j(r) from the GLM tree estimated in the previous step.
Extract posterior predictions b̂(r) from the estimated model.
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4 Repeat (2) and (3) until the log-likelihood of the model in the previous steps
converges. This is usually the case, when the estimated tree does not change from
previous iterations.

3 Simulation study

In Sect. 2 we outlined four models used for the subgroup identifications procedure
MOB, GLMM-tree and metaMOB. Model M0 corresponds to a simple GLM ignor-
ing the clustered structure of the data. MOB as proposed by Seibold et al. (2016)
aims at achieving a better model fit by fitting Model M0 to each resulting partition.
The tree-methods accounting for clustered data by assuming M1, M2 and M3 to be the
underlyingmodels for the algorithm inSect. 2.3 are referred to asMOB-RI,metaMOB-
RI and metaMOB-SI, respectively. In our simulation study using the Clinical Scenario
Evaluation (CSE) framework (Benda et al. 2010) we compared the performance of
MOB, MOB-RI, metaMOB-RI and metaMOB-SI in different IPD settings described
in Sect. 3.1. CSE structures the simulation study into three parts, namely assumptions,
options and metrics. Dmitrienko and Pulkstenis (2017) use a different terminology for
the three components. The three components are named data models, analysis mod-
els and evaluation models. Assumptions define the data generation process, options
describe the methods applied to the data and metrics specify the criteria for evaluating
the methods applied to the data. The performance is assessed by different measures
presented in Sect. 3.3. The computational details and the chosen tuning parameters
for the algorithms are given in Sect. 3.2.

3.1 Assumptions: simulation settings

Each dataset generated for our simulation study consists of a continuous response Y ,
a binary treatment variable T and 15 covariates for each subject i = 1, . . . , nk of
k = 1, . . . , K trials. For simplicity, we assume that each trial has the same number
of observations n1 = . . . = nK . The total number of observations is denoted by N .
The treatment indicator T is either 0 or 1, each with a probability of 0.5. Adapted
from Dusseldorp et al. (2010), Fokkema et al. (2018) the 15 covariates X1,…,X15 are
drawn from amultivariate normal distributionwithμX1 = 10, μX2 = 30, μX4 = −40
and μX5 = 70. The other means are drawn from a discrete uniform distribution on
the interval [−70, 70]. The variance of all X p is set to σ 2

X p
= 100. Furthermore, all

15 covariates are correlated with ρ = 0.3. The outcome Y is generated by yik =
f (xik, tik) + b0k + b1k ∗ tik + εik , with εik ∼ N (0, 52), b0k ∼ N (0, τ 20 ) and b1k ∼
N (0, τ 21 ). The values for the varied parameters are presented in Table 1. For each
setting resulting from combining these parameters 2000 datasets are generated.

We investigated different data-generating models by varying the functional rela-
tionship of the outcome and the covariates f (·) as defined in Table 2. The Null model
is used for investigating the false discovery rate. Sim A or Sim B are based on the tree
structure in Fig. 1 adapted from Dusseldorp et al. (2010) and Fokkema et al. (2018).
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Table 1 Scenarios considered in the simulation study

Parameter Values

Number of trials K 5, 10

Sample size N 200, 500, 1000

Heterogeneity in baseline τ0 0, 5, 10

Heterogeneity in treatment τ1 0, 2.5, 5, 10

Correlation between b0 or b1
and one of the X p variables

b0 (or b1) and all X p uncorrelated, b0 (or b1) correlated
with one of the splitting variables (correlation r ≈
0.42), b0 (or b1) correlated with one of the
non-splitting variables (correlation r ≈ 0.42)

Table 2 Functional relationship of the outcome and the covariates for the simulation study

Setting Functional relationship

Null model f (·) = 0

Sim A f (·) is given by the tree structure presented in Fig. 1
with γ j1 = . . . = γ j K = μγ j , for j = 1, . . . , 4

Sim B f (·) is given by the tree structure presented in Fig. 1
with intercepts drawn from normal distributions:
γ1k ∼ N (17.5, τγ ),
γ2k ∼ N (30, τγ ),γ3k ∼ N (17.5, τγ ),
γ4k ∼ N (42.5, τγ ) for k = 1, . . . , K

The true data-generating model for settings with γ j1 = . . . = γ j K = μγ j is either
M0, M1 or M2 depending on the values of τ 20 and τ 21 . Drawing the overall mean for
each study within a subgroup from a normal distribution corresponds to M3 being
the data generating model. Settings using Fig. 1 with equal intercept across studies
within one subgroup are going to be referred to as Sim A and settings with study-
specific intercepts will be referred to as Sim B, respectively. Furthermore, it has to be
noted that for evaluating the false discovery rate using the Null model, all X p are non-
splitting variables. Therefore, b0 or b1 are either uncorrelated with all of covariates,
or correlated with a non-splitting covariate.

3.2 Options: methods and their tuning parameters

For the computation we used the software environment R (Core 2020). Version 1.2-3
of the R package partykit (Hothorn and Zeileis 2015) was used for growing MOB
described in Sect. 2. For the MOB-RI and the two variations of metaMOB we used
Version 0.1-2 of the R package glmertree. Since our simulations study focuses on
a continuous outcome the functions used for the tree algorithms are called lmtree
for MOB and lmertree for MOB-RI and metaMOB. The stopping criteria were
set to 5% level of significance for the test in the splitting criterion and a minimum
number of 20 observations in the terminal nodes. Furthermore, we set the tolerance in
the argument check.conv.grad of lme4 (Version 1.1-21) to a five times higher value
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Fig. 1 The treatment-by covariate interactions are adopted from Dusseldorp et al. (2010), Fokkema et al.
(2018) for settings SimA and SimB. X1,X2 and X5 denote the covariates defining the subgroups. θ denotes
the true fixed treatment effects and γ the true fixed intercepts. μγ represents the mean of the intercepts
which are drawn from a normal distribution in Setting Sim B

than the default. The glmertree package uses lme4 for step 3 of its algorithm (see
Sect. 2.3). The mixed models fitted for MOB-RI and metaMOB using lme4’s default
value have a poor convergence. Eager and Roy (2017) argue that convergence issues
with the max|grad| tolerance arising from the preset tolerance in the check.conv.grad
argument is the least problematic of convergence errors. Moreover, they state that in
practice many researcher tend to ignore these convergence errors if no other conver-
gence issues are present. For metaMOB and MOB-RI we use REML estimation for
fitting the linear mixed effect models (Step 3 of the algorithm, see Sect. 2.3). The
formulas used in the functions lmtree or lmertree for the four algorithms are
given below:

– MOB: y ∼ factor(trt) | x1+ ... +xp
– MOB-RI: y ∼ factor(trt) | trial| x1+ ... +xp
– metaMOB-RI: y ∼ factor(trt) | (1|trial)+(trt-1|trial)| x1+ ... +xp
– metaMOB-SI: y ∼factor(trial)+factor(trt) | (trt-1|trial)| x1+ ... +xp

trt is the vector including the treatment indicator, trial is a vector indicating
to which trial an observation belongs and x1, ...+xp are the vectors of the p
covariates considered as potential predictive markers. The simulation study can be
reproduced using the supplementary online material.

3.3 Metrics: performance criteria

The performance of the methods was assessed by different measures as false discov-
ery rate, number of identified subgroups, tree accuracy and the correlation of the true
and estimated treatment effects in the identified subgroups. Furthermore, we evalu-
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ate the computation time of the four algorithms and convergence problems. These
performance criteria are explained in more detail below. The frequency of times the
algorithm identifiedmore than onefinal subgroup althoughnonewas present is referred
to as false discovery rate. The false discovery rate is also often referred to as Type I
error rate, although strictly speaking no test is performed. The null hypothesis, that no
treatment-covariate interaction is present, is rejected when a tree with at least one split
is identified. The number of identified subgroups corresponds to the number of termi-
nal nodes. The tree accuracy takes the number of identified subgroups into account and
additionally evaluates the selection of the splitting covariate and the selected cut-off
value. A tree is considered to be accurate if the identified tree has the correct number
of terminal nodes, all splitting variables are selected correctly and when the selected
cut-off values for the split denoted by c are in the interval c ± 5 with 5 corresponding
to the population standard deviation.

3.4 Results

3.4.1 Convergence and computation time

The GLMM-algorithm described in Sect. 2.3 is an iterative algorithms which stops
when the difference of the log-likelihood criterion of the corresponding mixed-effect
model M1, M2 orM3 from two consecutive iterations is below a threshold. This is the
case when trees of subsequent iterations do not change. MOB-RI, metaMOB-RI and
metaMOB-SI always converged within 2 to 3 iterations steps within our simulation
study. As threshold for the convergence criterion we used the default value of the
glmertree R-package, namely abstol = 0.001.

Convergence problems of MOB-RI and metaMOB are due to fitting linear
mixed-effects regression models (M1,M2 or M3) in each iteration step. The lme4
R-package reports two different convergence warnings for MOB-RI, metaMOB-RI
and metaMOB-SI. The most frequent of the convergence warnings, more than 80%
of all the warnings in our simulations, is the warning Eager and Roy (2017) assume
to be the least problematic. Another problem for fitting the models M1, M2 and M3
in the simulation study arises due to the evaluation of the scaled gradient. However,
convergence problems were rare in the simulation study, see Table 3. The largest num-
ber of obtained convergence warnings across the three MOB algorithms accounting
for clustered data was obtained by metaMOB-RI which uses model M2 and therefore
estimates the variance component of two random effects. In practise, researches often
simplify their random effect structure in the presence of convergence problems. If
metaMOB-RI’s underlying mixed-model is the model of choice and researches are
faced with convergence problems, metaMOB-SI should be used instead. This is also
recommended by Kontopantelis (2018) for IPD meta-analysis one-stage models. Fur-
ther operation characteristics as for example the tree accuracy are based on cases
without convergence warnings.

All simulations are conducted using R 3.6.0 (64 bit) on the GWDG (Gesellschaft
fuer wissenschftliche Datenverarbeitung mbH Goettingen) High Performance Cluster
(IntelCascadeLake-based systems2×48cores, 192GBRAM), located inGoettingen,
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Table 3 Frequency of convergence problems using MOB-RI, metaMOB-RI or metaMOB-SI

MOB-RI (%) metaMOB-RI (%) metaMOB-SI (%)

Null Model (162 Settings) 0.02 1.59 0.07

Sim A (324 Setting) 0.05 1.61 0.07

Sim B (162 Settings) 0.05 1.39 0.06

For each setting 2000 simulation runs were performed

Germany. The computation time of MOB is the smallest, since the data partition is
only performed once. The mean computation time for MOB is ∼ 2 s. MOB-RI and
metaMOB-RI need ∼ 5 s on average for growing a tree adjusting for between-study
heterogeneity and metaMOB-SI needs ∼ 7 s for growing a tree. The computation
times for all methods seem reasonable. The maximum calculation time was 215 s
using metaMOB-RI.

3.4.2 False discovery rate

The false discovery rate is assessed by using the Null model for data generation.
When the random effects b0 or b1 are not correlated with one of the covariates the
false discovery rates lie below 0.055 for all the considered settings and methods. False
discovery rates slightly larger than 0.05 are mainly observable for settings including
2000 observations in total. Benefits of using methods accounting for the between trial
heterogeneity asMOB-RI, metaMOB-RI andmetaMOB-SI are observable in the false
discovery rates for settings in which the random effects b0 or b1 are correlated with one
of the splitting candidates. Figure 2 shows, that MOB’s false discovery rate increases
with increasing variance of the random intercept τ 20 , whereas MOB-RI, metaMOB-RI
and metaMOB-SI’s false discovery rates are smaller when no treatment heterogeneity
between studies is present. When the variance of both random intercept and random
slope are unequal to zero resulting in M2 being the true underlying model, the use of
MOB-RI results in higher false discovery rates (see Fig. 2) since it does not adjust for
heterogeneity in the treatment effect. A correlation of the random slope b1 with one of
the covariates additionally adds to spurious detections of subgroups using MOB-RI.
This is depicted in Fig. 3. metaMOB-RI’s and metaMOB-SI’s false discovery rates are
not strongly influenced by the presence of random effects or a correlation of random
effects with a splitting candidate. For the two variations of metaMOB we mainly
observe false discovery rates close to 0.05.

3.4.3 Tree accuracy

In settings using Sim A as data generating model, the accuracy of MOB-RI and MOB
deteriorates with increasing heterogeneity in the treatment effect if the heterogeneity
of the treatment effect is correlated with one of the splitting candidates (see Fig. 4).
The accuracy of the trees obtained by MOB or MOB-RI is slightly larger in set-
tings in which the treatment heterogeneity is correlated with X1, X2 or X5, one of
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Fig. 2 False discovery rate in setting with b0 correlated with one of the covariates but b1 uncorrelated.
Dotted line at value 0.05 indicates the pre-specified level of significance used as stopping criteria in the
algorithm. Rows represent the variance of the random treatment effect and columns represent sample sizes
and number of trials (color figure online)

Fig. 3 False discovery rate for settings with b1 correlated with one of the covariates but b0 uncorrelated.
The dotted line at value 0.05 indicates the pre-specified level of significance used as stopping criteria in the
algorithm (color figure online)

the subgroup-defining covariates, compared to settings in which the treatment hetero-
geneity is correlated with a non-splitting variable. Without b1 and X being correlated
(see first column of Fig. 4), no difference between the four methods with regard to
tree accuracies is observable. For uncorrelated b1 and X, but X and b0 correlated,
accuracies much smaller than one are only observable for for MOB. MOB-RI adjusts
for between trial heterogeneity in baseline characteristics using a random intercept.
Therefore, smaller accuracies forMOB-RI are only observable in settings with τ 21 �= 0
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Fig. 4 Tree accuracy for Sim A (M2 as data-generating mechanism) with b0 and the covariates X are
uncorrelated. The correlation of b1 and the covariates X is varied (columns). Different variances of the
random intercept are presented in the three rows of the figure (color figure online)

and X and b0 correlated (results not shown). The deterioration of the accuracy with
increasing variance of the treatment heterogeneity usingMOB andMOB-RI is mainly
due to estimated trees with too many splits. It seems that MOB and MOB-RI, which
do not adjust for heterogeneity in the treatment effect, try to capture this heterogeneity
which is linked to covariates by further splitting the data. However, the additional
splits are not necessarily performed on covariates correlated to the between-trial het-
erogeneity.

Using M3 as data generating model as is Sim B, we observe that metaMOB-SI
which is using the correct model identifies trees closest to the true underlying tree (see
Fig. 5). However, in settingswithout between-trial heterogeneity in the treatment effect
or without correlation of the random treatment effect and one of the potential splitting
covariates, the mean accuracies of MOB, MOB-RI and metaMOB-RI are not much
smaller than the tree accuracy of metaMOB-SI. Larger variations in trial and subgroup
specific intercepts as the presence of between-trial heterogeneity in the treatment
effect result in smaller tree accuracies of MOB, MOB-RI and metaMOB-RI due to
their model misspecification. Although metaMOB-RI accounts for heterogeneity in
both, the baseline and the treatment effect, the assumption for the baseline is not
flexible enough for this setting. The underlying model of metaMOB-RI assumes that
the between-trail heterogeneity of the baseline effects is the same across all subgroups,
which is not the case in Sim B.

3.4.4 Correlation of the estimated and true individual treatment effect

For the correlation of the estimated and true individual treatment effect the treatment
effects are calculated on a test sample. For this calculation, the patients of the test
data are assigned to a subgroup according to the grown tree. Based on this subgroup
assignment model M0 to model M3 are fitted. The model is chosen according to the
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Fig. 5 Tree accuracy for SimB (M3 as data-generatingmechanism). The correlation of b1 and the covariates
X is varied (columns). Different variances for the subgroup and trial specific intercepts are presented in the
three rows (color figure online)

Fig. 6 Correlation of true and estimated treatment effect identified subgroups in Sim A. Figure includes
only settings in which b0 and the covariates are not correlated (color figure online)

MOB algorithm used for growing the tree. The true treatment effect in the estimated
subgroups is calculated by a weighted mean of the true treatment effect θ . The weights
are based on the number correctly assigned patients to each of the true subgroups.
Simulations runs which failed to grow a tree, runs with convergence problems of M1
to M3 on the test data and runs in which not all identified subgroups are present in
the test data are omitted for the calculation of the mean correlations of the settings
presented in Fig. 6.

Figure 6 shows that MOB and MOB-RI’s correlation of true and estimated treat-
ment effect decreases when random effects are misspecified by MOB’s underlying
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model. This is the case in settings with τ 21 �= 0 for both MOB and MOB-RI and in
setting with τ 20 �= 0 for MOB only. For both metaMOB-RI and metaMOB-SI, which
have more general models underlying the tree algorithm, correlations close to 1 are
observable throughout the considered settings shown in Fig. 6. The results presented
in Fig. 6 consider a larger absolute treatment effect difference, e.g. standardized treat-
ment effects |θ1/σε | = |θ3/σε | = 1 with σε = 5. As the probability of identifying
the correct treatment-by subgroup interaction decreases with decreasing treatment-by
subgroup interaction effects Alemayehu et al. 2018; Huber et al. 2019, we can also
expect smaller correlations of true and estimated treatment effects in the identified
subgroups similar to the results in Fokkema et al. (2018).

4 Discussion

We proposed metaMOB, a tree based method, allowing to identify treatment-by
subgroup interactions while accounting for between-trial heterogeneity in IPD- meta-
analysis settings. The method metaMOB falls into the broad class of GLMM-trees
introducedbyFokkemaet al. (2018) and is applicable in IPD-meta-analyseswith larger
number of trials. GLMM-trees allow to estimate randomeffect parameters and to apply
recursive partitioning to the data as proposed by Zeileis et al. (2008). The approach
used in the algorithm for GLMM-trees was also adapted in PALM-trees Seibold et al.
(2018) which allows to estimate further fixed effects which are constant over all groups
instead of random effects. GLMM-trees were only investigated for a simpler mixed
model, namely a random intercept model, underlying the partitioning. We referred
to the investigated GLMM-tree as MOB-RI, model-based recursive partitioning with
a random intercept. In a simulation study, we evaluated the performance of MOB,
MOB-RI and metaMOB in IPD meta-analysis settings with continuous response. We
considered two variations of metaMOB, namely metaMOB-RI and metaMOB-SI.
Both methods model between-trial variations of the treatment effect using random
effects as commonly done in random-effects meta-analysis. However, metaMOB-RI
and metaMOB-SI differ in their assumptions regarding the baseline effects. One of
the models assumes the between-trial heterogeneity in the baseline effect to be fixed.
Therefore, the method uses a stratified intercept approach (metaMOB-SI), whereas
the other model assumes the heterogeneity in the baseline effect to be random as well
(metaMOB-RI). The simulation study showed that all four considered methods per-
form similarly well in terms of false discovery rate and identifying correct subgroups,
when no between-trial heterogeneity is present or when between-trial heterogeneity
is independent from potential splitting candidates and can therefore not be explained
by any of the covariates. However, we believe it is reasonable to assume that het-
erogeneity between trials is linked to one or more patient-level covariates, since the
composition of the trial populations in terms of patient characteristics contributes to
the heterogeneity between trials. For those settings, the simulation study showed that
misspecifying the structure of the between-trial heterogeneity results in less accurate
trees and high false discovery rates. The misspecified between-trial heterogeneity also
affects the estimated treatment effects in the identified subgroups. The correlation of
the estimated and true treatment effect in the identified subgroups decreases when
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we model the data with simpler models compared to the more complex true model.
As assumptions regarding treatment effect heterogeneity between trials and a correla-
tion between heterogeneity and covariates seem reasonable in IPD meta-analysis, we
can conclude that MOB and the MOB-RI are not the best option for subgroup iden-
tification in IPD meta-analysis settings. The method metaMOB-SI showed the best
performance with regard to false discovery rate, accuracy of identified subgroups and
estimated treatment effect throughout all considered simulation settings. Compared to
metaMOB-RI, metaMOBwith stratified intercepts has also less convergence problems
as only one random effect has to be estimated. Commonly, one of the main interest in
random-effects meta analysis is obtaining an unbiased summarized treatment effect
based on several studies by accounting for between-trial heterogeneity, which is done
by both metaMOB-RI and metaMOB-SI. However, metaMOB-SI’s underlying model
does not impose a constraint on the baseline effects as it is done by metaMOB-RI’s
underlying model. Therefore, metaMOB-SI is more flexible. It has to be kept in mind,
however, that the number of parameters which have to be estimated for metaMOB-
SI increases with increasing number of trials and also with increasing number of
identified subgroups. This might lead to inconsistent estimators as described by the
Neyman–Scott problem (Neyman and Scott 1948).

Therefore, the number of subgroups which can be identified by metaMOB-SI is
strongly restricted for meta-analysis with smaller sample sizes and numerous included
studies.

The analysis of data from few trials, however, may cause difficulties in estimating
the between-trial variance. Especially higher fractions of estimates of the between-trial
heterogeneity in the treatment effect (τ1) equal to zero in meta-analyses with few trials
(Friede et al. 2017) may negatively affect subgroup identification using MOB-RI or
metaMOB. Further research on the performance of metaMOB for IPD-meta-analysis
settings with few trials is needed. Therefore, investigators should aim to include larger
numbers of trials for the application of metaMOB as suggested by the simulation
results.

Although we considered continuous outcomes only in our simulation study, the
proposed approach is applicable more widely including binary endpoints, since the
implementation by Fokkema et al. (2018) is based on generalizedmixed effect models.
Therefore, metaMOB might also be applicable to discretely measured time-to-event
outcomes as the log-likelihood of a discrete time-to-event model and a regression
model for a binary outcome are equivalent (Schmid et al. 2016). However, the assess-
ment of the properties of metaMOB with discrete time-to-event endpoints is subject
to future research.

SIDES for IPD meta-analysis (Mistry et al. 2018) is similar to MOB-RI regarding
the assumptions of the between-trial heterogeneity. Both account for between-trtial
heterogeneity in the baseline only. Both, SIDES for IPD meta-analysis and the
GLMM-tree framework, however, do not account for between-trial heterogeneity in
the treatment effect within identified subgroups. It is assumed that the between-trial
heterogeneity accounted for by random effects is constant across identified subgroups.
As between-trial variations of the treatment-by subgroup interactions are reasonable
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assumptions research for identifying subgroups in such settings using tree-basedmeth-
ods is needed.
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