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Abstract
Symbolic Data Analysis (SDA) is a relatively new field of statistics that extends con-
ventional data analysis by taking into account intrinsic data variability and structure.
Unlike conventional data analysis, in SDA the features characterizing the data can be
multi-valued, such as intervals or histograms. SDA has been mainly approached from
a sampling perspective. In this work, we propose a model that links the micro-data and
macro-data of interval-valued symbolic variables, which takes a populational perspec-
tive. Using this model, we derive the micro-data assumptions underlying the various
definitions of symbolic covariance matrices proposed in the literature, and show that
these assumptions can be too restrictive, raising applicability concerns. We analyze
the various definitions using worked examples and four datasets. Our results show that
the existence/absence of correlations in the macro-data may not be correctly captured
by the definitions of symbolic covariance matrices and that, in real data, there can
be a strong divergence between these definitions. Thus, in order to select the most
appropriate definition, one must have some knowledge about the micro-data structure.
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1 Introduction

The volume and complexity of available data in virtually all sectors of society has
grown enormously, boosted by the globalization and the massive use of the Internet.
New statistical methods are required to handle this new reality, and Symbolic Data
Analysis (SDA), proposed by Diday (1987), is a promising research area.

When trying to characterize datasets, it may not be convenient to deal with the
individual data observations (e.g. because the sample size is too large), or we may not
have access to the individual data observations (e.g. because of privacy restrictions).
In conventional data analysis, this problem is usually handled by providing single-
valued summary statistics of the data characteristics (e.g. mean, variance, quantiles).
The analysis can consider multiple characteristics, but these characteristics can only
be single-valued. SDA extends conventional data analysis by allowing the descrip-
tion of datasets through multi-valued features, such as intervals, histograms, or even
distributions (Billard and Diday 2003, 2006; Brito 2014). These features are called
symbolic variables.

Suppose we want to analyze textile sector per country, e.g. in terms of two char-
acteristics: number of customers and profit. Suppose also that we only have access
to summary information per country, and not to the data of each individual company.
Conventional data analysis can only deal with single-valued features, like the profit
variance, profit mean, or the mean number of customers. Instead, in SDA, the features
(the symbolic variables) can be multi-valued, e.g. one feature can be the minimum
and maximum profits, and another can be a histogram of the number of customers.

One of the main benefits of SDA has to do with the way individual data characteris-
tics (e.g. profit or number of customers) are described. In conventional data analysis,
since only single-valued features are available, onemay needmany features to describe
a given characteristic. Moreover, the features are treated in the same way, irrespec-
tive of the characteristic they represent. For example, one may create as features to
characterize the profit of the textile sector the mean, the variance, the maximum, the
minimum, the median, the first and third quartiles, and so on. There is then an inflation
of features to explain a single data characteristic (the profit, in this case). SDA allows
explaining single data characteristics through single symbolic data variables, better
tailored to analyze that specific characteristic, and with potential gains in terms of
dimensionality.

In SDA, the original data is called micro-data and the aggregated data is called
macro-data. In the previous example, the micro-data would be the data of individual
companies (labeledwith the country they belong to), and themacro-data the interval of
profit (betweenmaximum andminimum) or the histogram of the number of customers,
of the companies of each country. Our main interest in this paper is on interval-valued
data (Noirhomme-Fraiture andBrito 2011; Zhang and Sisson 2020), wheremacro-data
corresponds to the interval between minimum and maximum of micro-data values.

SDA is a relatively new field of statistics and has been mainly approached from
a sampling perspective. The works Bertrand and Goupil (2000), Billard and Diday
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(2006) and Billard (2008) introduced measures of location, dispersion, and associa-
tion between symbolic random variables, formalized as a function of the observed
macro-data values. The sample covariance (correlation) matrices were addressed
in the context of symbolic principal component analysis in Chouakria (1998), Le-
Rademacher (2008), Le-Rademacher and Billard (2012), Wang et al. (2012), Vilela
(2015), Oliveira et al. (2017) and more recently in factor analysis (Cheira et al. 2017).
In Oliveira et al. (2017) the authors established relationships between several pro-
posed methods of symbolic principal component analysis and available definitions
of sample symbolic variance and covariance. Other areas of statistics have also been
addressed by SDA like clustering (e.g. de Carvalho and Lechevallier 2009; Sato-Ilic
2011), discriminant analysis (see e.g. Duarte Silva and Brito 2015; Queiroz et al.
2018), regression analysis (see e.g. Lima Neto et al. 2011; Dias and Brito 2017), and
time series (see e.g. Maia et al. 2008; Teles and Brito 2015).

Parametric approaches for interval-valued variables have also been considered (Le-
Rademacher and Billard 2011; Lima Neto et al. 2011; Brito and Duarte Silva 2012;
Duarte Silva and Brito 2015; Dias and Brito 2017; Duarte Silva et al. 2018; Cheira
et al. 2017. Authors in Le-Rademacher and Billard (2011) derived maximum like-
lihood estimators for the mean and the variance of three types of symbolic random
variables: interval-valued, histogram-valued, and triangular distribution-valued vari-
ables. In Lima Neto et al. (2011), authors have formulated interval-valued variables
as bivariate random vectors in order to introduce a symbolic regression model based
on the theory of generalized linear models. The works Brito and Duarte Silva (2012),
Duarte Silva and Brito (2015), and Duarte Silva et al. (2018) have followed a differ-
ent approach. In their line of work, the centers and the logarithms of the ranges are
collected in a random vector with a multivariate (skew-)normal distribution, which is
used to derive methods for the analysis of variance (Brito and Duarte Silva 2012), dis-
criminant analysis (Duarte Silva and Brito 2015), and outlier detection (Duarte Silva
et al. 2018) of interval-valued variables. More recently, the need to specify a micro-
data model for the underlying macro-data was addressed by Zhang and Sisson (2020)
and Beranger et al. (2020). The authors constructed maximum likelihood functions
for symbolic data based on how the macro-data is derived from the micro-data.

Despite of previous work, the area of SDA is lacking theoretical support and our
work is a step in this direction. Preferably, the statistical methods of SDA should be
grounded on populational formulations, as in the case of conventional methods. A
populational formulation allows a clear definition of the underlying statistical model
and its properties, and the derivation of effective estimation methods.

In this paper, we use population formulations of the sample symbolic mean vector,
sample symbolic covariance matrices and sample correlation matrices available in the
literature. To provide an interpretation of each definition, we propose a model that
links the structure of the micro-data and of the macro-data. The model assumes that
the micro-data associated with a certain random interval are not observable (latent),
and has a mean equal to the mean of the interval center. Using the model, we derive
the assumptions on the micro-data structure subjacent to each definition of symbolic
covariance matrices. We also show that the symbolic correlations proposed in the
literature are quantities between −1 and 1, as in the conventional case, independently
of the relationship between the micro- and macro-data. Using worked examples, we
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discuss themeaning of null covariance, and show cases where the existence/absence of
correlation in the macro-data is not captured by the definitions of symbolic correlation
matrices. Finally, we explore the various definitions using real data examples. When
micro-data is available, we select the most appropriate definition for each dataset
using goodness-of-fit tests and quantile-quantile plots, and provide an explanation of
the micro-data based on the covariance matrices. However, the results show that there
can be a large divergence between definitions, meaning that, in general, one needs
some information on the micro-data structure to decide about the most appropriate
definition.

The paper is structured as follows. In Sect. 2 we introduce the model linking the
micro-data with the macro-data of interval-valued symbolic variables and discuss
several worked examples. Section 3 introduces the real data examples. Finally, Sect. 4
presents the conclusions of the paper and gives some directions for future work.

2 Symbolic means, variances, and covariances

In this work, we focus on the study of interval-valued variables (Bock andDiday 2000)
and interval-valued random vectors, as next defined.

Definition 1 X = [L,U ] is an interval-valued random variable defined on the prob-
ability space (Ω,F , P) if and only if L and U are random variables defined on
(Ω,F , P) such that P(L ≤ U ) = 1. A p-dimensional interval-valued random vector
X is a vector of p interval-valued random variables, X1, X2,. . . ,X p, all defined on the
same probability space.

We consider that an interval-valued random variable, X = [L,U ], besides being
represented by the interval limits L andU , is also represented by the center and range
of the interval:

C = L +U

2
and R = U − L. (1)

Similarly a p-dimensional interval-valued random vector X = (X1, X2, . . . , X p)
t

is characterized by the vector (C t , Rt )t where C = (C1, . . . ,Cp)
t is the vector of

centers and R = (R1, . . . , Rp)
t the vector of ranges describing the object, i.e.,

Ci = Li +Ui

2
and Ri = Ui − Li (2)

for i = 1, 2, . . . , p.
In the next subsection, we start by proposing a model that establishes a natural

link between micro-data and macro-data. Afterwards, we derive the means, variances,
and covariances of the micro-data; we refer to these quantities as symbolic means,
symbolic variances, and symbolic covariances.
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2.1 Amodel linkingmicro-data withmacro-data

In this model, we define a random vector A representing micro-data, as a function of
the random vectors of centers and ranges, C and R, that characterize the associated
macro-data, along with a random vector U that characterizes the structure of the
micro-data given the associated macro-data.

Note that a realization of A is a point in the hyper-rectangle associated with the
random interval-valued vector X , characterized by its center, C , and range, R. In
detail, we choose A = (A1, . . . , Ap)

t such that:

A j = C j +Uj
R j

2
, j = 1, 2, . . . , p, (3)

with the weights Uj being random variables with support on the interval [−1, 1].
We observe that Uj R j/2 [that is the term that is added to the center of the j-

th component of the random macro-data, C j , to produce the j-th component of an
associatedmicro-data, namely A j , is the deviation of the j-th component of themicro-
data to the center of the interval of the j-th component of its associated macro-data[
C j − R j/2,C j + R j/2

]
.

By imposing conditions onU , we obtain the mean vector and the covariance matrix
of A, denoted by μ = E(A) and Σ = Var(A), respectively, that have as special case
proposals for the symbolic mean vector and symbolic covariance matrix known in the
literature. In the remaining of this subsection we consider the assumption next stated
(Assumption 1), which in turn leads to Theorem 1.

Assumption 1 The random vector U = (U1,U2, . . . ,Up)
t has zero mean and is

independent of the random vector (C t , Rt )t .

Theorem 1 If Assumption 1 holds then, for j, l ∈ {1, 2, . . . , p} with j �= l:

E(A j ) = E(C j ) (4)

Var(A j ) = Var(C j ) + 1

4
Var(Uj )E(R2

j ) (5)

Cov(A j , Al) = Cov(C j ,Cl) + 1

4
Cov(Uj ,Ul)E(R j Rl). (6)

Proof Let Assumption 1 hold. From the fact that E(Uj ) = 0, Uj is independent of
R j , and the linearity of the expectation operator, it follows that

E(A j ) = E(C j ) + 1

2
E(Uj R j ) = E(C j ) + 1

2
E(Uj )E(R j ) = E(C j ).

Wewill nowobtain the symbolic variances and covariances. From (3)we can derive:

Var(A j ) = Var(C j ) + 1

4
Var(Uj R j ) + Cov(C j ,Uj R j ).
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Moreover, given that Uj and R j are independent random variables and E(Uj ) = 0,
we obtain

Var(Uj R j ) = E(U 2
j )E(R2

j ) − E(Uj )
2E(R j )

2 = Var(Uj )E(R2
j ).

Following a similar reasoning, it can be shown that

Cov(C j ,Uj R j ) = E(Uj )E(C j R j ) − E(C j )E(Uj )E(R j ) = 0

for all values of j . As a result, it follows as wanted that:

Var(A j ) = Var(C j ) + 1

4
Var(Uj )E(R2

j ).

Again from (3) it follows that for j, l ∈ {1, 2, . . . , p} with j �= l;

Cov(A j , Al) =Cov(C j ,Cl) + 1

2
Cov(C j ,Ul Rl) + 1

2
Cov(Uj R j ,Cl)

+ 1

4
Cov(Uj R j ,Ul Rl).

As (Uj ,Ul) is independent of (C j , R j ,Cl , Rl), it can be shown that

Cov(Uj R j ,Cl) = Cov(C j ,Ul Rl) = 0,

and

Cov(Uj R j ,Ul Rl) = E(UjUl)E(R j Rl) − E(Uj )E(Ul)E(R j )E(Rl)

= E(UjUl)E(R j Rl),

thus implying that:

Cov(A j , Al) = Cov(C j ,Cl) + 1

4
Cov(Uj ,Ul)E(R j Rl).

��
The following result, which provides the symbolic mean vector, μ = E(A), and

the symbolic covariance matrix, Σ = Var(A), follows trivially from Theorem 1.

Corollary 1 If Assumption 1 holds then μ = E(C) and

Σ = ΣCC + 1

4
[ΣUU • E(RRt )] (7)

where ΣCC and ΣUU represent the covariance matrix of C and U , respectively, and
• denotes the Schur or entrywise product of matrices.
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2.2 Symbolic covariance and pseudo-correlationmatrices under two scenarios

Wewill now particularise the form of the symbolic covariancematrix for two scenarios
more restrictive than Assumption 1 stated in the previous subsection: the first scenario
in which the weights Uj are uncorrelated random variables, and the second scenario

in which the weights Uj are almost surely equal (represented by
a.s.= ) to a random

variableU . Adding these constraints to Assumption 1, namely that the weightsUj are
zero mean random variables with support on the interval [−1, 1], independent from
(C t , Rt )t , we have the following assumptions for scenarios 1 and 2:

Scenario 1: The weights U1,U2, . . . ,Up are zero mean uncorrelated random vari-
ables with support on [−1, 1] and are independent from (C t , Rt )t .

Scenario 2: U1
a.s.= U2

a.s.= · · · a.s.= Up
a.s.= U , with U being a zero mean random

variable with support on [−1, 1] and independent from (C t , Rt )t .

We note that Scenario 1 corresponds to the least possible linear association between
the weights as they are uncorrelated random variables. In opposition, Scenario 2 corre-
sponds to the highest possible association between theweights as they are equal (almost
surely). Thinking about the hyper-rectangular associated with a givenmacro-data, sce-
nario 1 assumes that micro-data can take any value within the hyper-rectangular, while
in scenario 2 micro-data are restricted to take values in the line segment that connects
the point consisting of all lower interval limit values with the point consisting of all
upper interval limit values.

The result (7), along with Scenarios 1 and 2, lead to two different families of
symbolic covariance matrices, summarised in Corollary 2. In what follows, if Z is
a matrix then Diag(Z) represents a diagonal matrix whose main diagonal have the
values [Z]i i . If z is a vector then Diag(z) represents a diagonal matrix whose main
diagonal have the values of vector z.

Corollary 2 Under Scenario 1 the symbolic covariance matrix, denoted by Σ (1), has
the form

Σ(1) = ΣCC + ΣUU

4
Diag

(
E(RRt )

)
, (8)

where ΣUU = Diag
(
Var(U1), . . . ,Var(Up)

)
. Moreover, if all U j share the same

variance (i.e. Var(Uj ) = Var(U1) for j ∈ {2, 3, . . . , p}), then Σ (1) simplifies to:

Σ(1) = ΣCC + Var(U1)

4
Diag

(
E(RRt )

)
. (9)

Under Scenario 2 the symbolic covariance matrix, denoted by Σ (2), has the form

Σ(2) = ΣCC + Var(U )

4
E(RRt ). (10)

Proof Let us first assume that the conditions of Scenario 1 hold. This implies that the
conditions of Assumption 1 hold as well and, in particular, that Eq. (7) holds. As, in
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addition,ΣUU = Diag
(
Var(U1), . . . ,Var(Up)

)
, since the weightsU1,U2,…,Up are

uncorrelated random variables, we conclude that (8) holds. Moreover, as (9) follows
trivially from (8), we conclude that (9) holds as well.

Let us now assume that the conditions of Scenario 2 hold. This implies that the
conditions of Assumption 1 hold as well and, in particular, that Eq. (7) holds. As, in
addition, Cov(Uj ,Ul) = E(UjUl) = E(U 2) = Var(U ), for j, l ∈ {1, 2, . . . , p} since
U1

a.s.= U2
a.s.= · · · a.s.= Up

a.s.= U , we conclude that (10) holds. ��
Different particular forms of the symbolic covariancematricesΣ(1) andΣ(2) will be

derived in the next subsection, alongwith conditions on theweightsUj thatmay lead to
such symbolic covariance matrices. However, we will first address pseudo-correlation
matrices associated with the matrices Σ(1) and Σ(2), starting by the definition of
pseudo-correlation matrix associated with a square matrix with positive diagonal
entries.

Definition 2 If Λ = [λ jl ] j,l∈{1,2,...,p} is a square matrix with positive diago-
nal entries, then the associated pseudo-correlation matrix, denoted by ρ(Λ) =
[[ρ(Λ)] jl ] j,l∈{1,2,...,p}, is given by

[ρ(Λ)] jl = λ jl√
λ j jλll

, j, l ∈ {1, 2, . . . , p}. (11)

We should stress that ifΛ is the covariancematrix of a given p-dimensional random
vector, then ρ(Λ) is the correlation matrix of the same random vector. Notice that,
however, when dealing with the way some interval correlations are defined in the
literature, the so-called symbolic covariance matrix may not be a covariance matrix
in the classical sense. For example, in some works from the literature, the (in fact,
pseudo) covariance matrix of a p-dimensional interval-valued random vector X =
(X1, . . . , X p)

t , where X j = [C j − R j/2,C j + R j/2], j = 1, . . . , p, is defined as:

Varδ(X) = Var(C) + δDiag(E(RRt )),

for a givenpositive value of δ. Particular values for δ are: δ = 1
4 ,

1
8 ,

1
24 ,

1
36− φ(3)

6(2Φ(3)−1)

(Cazes et al. 1997), and δ = 1
12 (Wang et al. 2012). Thus, case p = 2, if X2 = X1 then

Covδ(X1, X2) = Cov(C1,C2) = Var(C1) and Varδ(X2) = Varδ(X1) = Var(C1) +
δE(R2

1)/2. Thus, the entry (1,2) of the (pseudo) correlation matrix is

Corδ(X1, X2) = Var(C1)

Var(C1) + δE(R2
1)/2

.

Thus, if X1 is not a conventional random variable i.e. P(R1 = 0) < 1, then
Corδ(X1, X2) �= 1 even that X1 = X2. As a result, the pseudo-correlation matrix
of (X1, X2)

t is not a correlation matrix in case P(R1 = 0) < 1.
In the next theorem we show that the absolute values of the entries of the pseudo-

correlation matrices associated with the matrices Σ(1) and Σ(2) [see Eqs. (8) and (10)]
are smaller or equal to one. In other words, symbolic pseudo-correlations associated
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with thematricesΣ(1) andΣ(2) are quantities between−1 and 1, as in the conventional
case [providedΣ(1) andΣ(2) have finite entries, which is essentially the case whenever
C1,C2, . . . ,Cp, R1, R2, . . . , Rp are random variables with finite moments of order
two].

Theorem 2 If X is such that Σ(1) in the form given by Eq. (9) has only finite entries,
then

∣∣
∣[ρ(Σ(1))] jl

∣∣
∣ ≤ 1 for j, l ∈ {1, 2, . . . , p}. (12)

Similarly, if X is such that Σ(2) given by Eq. (10) has only finite entries, then

∣∣∣[ρ(Σ(2))] jl
∣∣∣ ≤ 1 for j, l ∈ {1, 2, . . . , p}. (13)

Proof We first suppose that Σ(1) given by Eq. (9) has only finite entries, in which case
[ρ(Σ(1))] j j = 1, for all j ∈ {1, 2, . . . , p}, follows trivially. Secondly, we consider
arbitrary indices j, l ∈ {1, 2, . . . , p} such that j �= l and note that, using the Cauchy-
Schwarz inequality applied to the random pair (C j ,Cl), we obtain, as wanted,

∣
∣∣[ρ(Σ(1))] jl

∣
∣∣ =

∣∣Cov(C j ,Cl)
∣∣

√
[Var(C j ) + Var(U1)E(R2

j )][Var(Cl) + Var(U1)E(R2
l )]

≤
√
Var(C1)Var(C2)√

[Var(C j ) + Var(U1)E(R2
j )][Var(Cl) + Var(U1)E(R2

l )]
≤ 1.

We now assume that Σ(2) given by Eq. (10) has only finite entries, in which case
[ρ(Σ(2))] j j = 1, for all j ∈ {1, 2, . . . , p}, follows trivially. We next consider arbitrary
indices j, l ∈ {1, 2, . . . , p} such that j �= l and note that, using the Cauchy-Schwarz
inequality applied to the randompair (C j ,Cl),Holder’s inequality applied to te random
pair (R j , Rl), and making δ = Var(U )/4, we obtain:

∣∣
∣[ρ(Σ(2))] jl

∣∣
∣ ≤ |Cov(C j ,Cl)| + δ E(R j Rl)√

[Var(C j )| + δE(R2
j ][Var(C j )| + δ E(R2

j ]

≤
√
Var(C j )Var(Cl) + δ

√
E(R2

j )E(R2
l )

√
[Var(C j )| + δ E(R2

j ][Var(C j )| + δ E(R2
j ]

.
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Table 1 List of symbolic covariance matrices Σk , k = 1, 2, . . . , 8, and scenario along with additional
constraints on the weights Uj or U under which one has Σ = Cov(A) = Σk

Symbolic covari-
ance matrix

Definition Scenario (U1,U2, . . . ,Up) or U

Σ1 ΣCC 1 or 2 P(Uj = 0) = 1, ∀ j or P(U = 0) = 1

Σ2 ΣCC + 1

4
E(RRt ) 2 U ∼ Unif{−1, 1}

Σ3 ΣCC + 1

12
E(RRt ) 2 Var(U ) = 1

3

Σ4 ΣCC + 1

4
Diag

(
E(RRt )

)
1 Uj ∼ Unif{−1, 1}, ∀ j

Σ5 ΣCC + 1

12
Diag

(
E(RRt )

)
1 Var(Uj ) = 1

3 , ∀ j

Σ6 ΣCC + 1

8
Diag

(
E(RRt )

)
1 Uj ∼ InvTriangular[−1, 0, 1]

Σ7 ΣCC + 1

24
Diag

(
E(RRt )

)
1 Uj ∼ Triangular[ − 1, 0, 1]

Σ8 ΣCC + δ8Diag
(
E(RRt )

)

with δ8 = 1
36 − φ(3)

6(2Φ(3)−1)

1 Uj = Z |Z ∈ [−1, 1], Z ∼ N (0, 1
9 )

Thus,
[
[ρ(Σ(2))] jl

]2
is smaller or equal to

Var(C j )Var(Cl) + δ2E(R2
j )E(R2

l ) + 2δ
√
Var(C j )E(R2

l )Var(Cl)E(R2
j )

Var(C j )Var(Cl) + δ2E(R2
j )E(R2

l ) + δ
(
Var(C j )E(R2

l ) + Var(Cl)E(R2
j )

) .

As it can be easily proved, for all non-negative values of x and y, 2
√
xy ≤ (x + y).

Thus, making x = Var(C j )E(R2
l ) and y = Var(Cl)E(R2

j ), we conclude that, as

wanted,
[
[ρ(Σ(2))] jl

]2 ≤ 1. ��

2.3 Eight particular forms of symbolic covariancematrices

In Table 1 we list 8 particular forms for the symbolic covariance matrix,Σ , along with
the scenario and additional constraints on the weights U1,U2, . . . ,Up or U that may
give rise to them.These aremerely sufficient conditions, not necessary ones.Moreover,
in Fig. 1, we provide an illustration of the associated micro-data for the 2-dimensional
case; i.e., we display the possible values of A = (A1, A2)

t , for k = 1, 2, . . . , 8.
The first form (k = 1) is obtained under Scenario 1 with the weightsUj being zero

with probability one, or equivalently under Scenario 2 with the weight U being zero
with probability one, corresponding to the case where the ranges are not taken into
account. In such case A

a.s.= C , leading to Σ = Σ1 = Cov(C). As illustrated in Fig.
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Fig. 1 Representation of possible values of A = (A1, A2)
t , such thatΣ = Σk , k = 1, . . . , 8. In orange we

represent the support of the random vector A and crosses denote one possible realization of A for each k

1(1) for the 2-dimensional case, the micro-data associated with this model is always
at the center of the interval-valued object.

The second form (k = 2) is obtained under Scenario 2 when the weight U has
unit variance; this along with U having zero mean and support on [−1, 1] implies
thatU follows a discrete Uniform distribution on {−1, 1}. Then, Var(U ) = 1 leads to
Σ = Cov(A) = Σ2, in view of (10). The micro-data associated with this model is at
one of the two vertices (C1−R1/2,C2−R2/2, . . . ,Cp−Rp/2)t or (C1+R1/2,C2+
R2/2, . . . ,Cp + Rp/2)t , chosen with equal probability. The 2-dimensional case is
illustrated in Fig. 1(2).

The third form (k = 3) is obtained under Scenario 2when theweightU has variance
1/3, as it is the case when U follows a continuous Uniform distribution on [−1, 1].
Then, Var(U ) = 1/3 leads to Σ = Cov(A) = Σ3, in view of (10). Note that whenU
follows a continuous Uniform distribution on [−1, 1], the micro-data associated with
the model is at the line segment with endpoints (C1 − R1/2,C2 − R2/2, . . . ,Cp −
Rp/2)t and (C1 + R1/2,C2 + R2/2, . . . ,Cp + Rp/2)t , which passes through the
vector of centers (C1,C2, . . . ,Cp)

t . Figure 1(3) illustrates the 2-dimensional case.
With a similar reasoning, we may conclude that the fourth form (k = 4) is obtained

under Scenario 1 when the weightsU1,U2, . . . ,Up are independent random variables
with discrete Uniform distribution on {−1, 1}. Since Var(Uj ) = 1, for all j , in view of
(9), we conclude that Σ = Cov(A) = Σ4. Micro-data associated with this model are
at one of the vertices of the hyper-rectangle corresponding to the Cartesian product
(C1− R1/2,C1+ R1/2)×(C2− R2/2,C2+ R2/2)×· · ·×(Cp− Rp/2,Cp+ Rp/2),
with the same probability, 1/2p, as illustrated in Fig. 1(4), for the 2-dimensional case.
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The fifth form (k = 5) is obtained under Scenario 1 when U1,U2, . . . ,Up are
uncorrelated random variables with common variance 1/3; note that is the case when
theweightsUj are independent randomvariableswith continuous uniform distribution
on [−1, 1], independent from (C, R). Since Var(Uj ) = 1/3, for all j , in view of
(9), it follows that Σ = Cov(A) = Σ5. In case the weights Uj are independent
random variables with continuous uniform distribution on [−1, 1], independent from
(C t , Rt )t , the micro-data follow a p-dimensional continuous uniform distribution on
the hyper-rectangle corresponding to the Cartesian product (C1−R1/2,C1+R1/2)×
(C2 − R2/2,C2 + R2/2) × · · · × (Cp − Rp/2,Cp + Rp/2). This case is illustrated
in Fig. 1(5), for the 2-dimensional case.

The sixth form (k = 6) models micro-data that can take any value inside the
immediately above mentioned hyper-rectangle but showing a tendency to be located
near its vertices. The points are spread according to a p-dimensional inverse triangular
distribution. Finally, the remaining two forms (k = 7 and k = 8) model micro-data
mainly located near the center of the same hyper-rectangle, with more concentration
near the center of the hyper-rectangle in the case k = 8 (p-dimensional multivariate
truncated normal distribution) than in the case k = 7 (p-dimensional multivariate
triangular distribution). The covariance matrices Σ6 and Σ7 can be obtained from
(9) noting that: Var(Uj ) = 1/2 for k = 6, and Var(Uj ) = 1/6 for k = 7. In case
k = 8, the form of Σ8 follows from the fact that if Z has normal distribution with
zero mean and Var(Z) = 1/9, Z ∼ N (0, 1

9 ), then Var(Uj ) = Var(Z |Z ∈ [−1, 1]) =
1
9 − 2φ(3)

3(2Φ(3)−1) , where
2φ(3)

3(2Φ(3)−1) 
 2.96× 10−3, and φ(·) and Φ(·) are, respectively,
the probability density function and cumulative distribution function of the standard
normal distribution.

Cazes et al. (1997) have also addressed the modelling of micro-data, but under the
restriction of fixed macro-data (i.e. macro-data with deterministic interval limits). In
their work, they have consideredmicro-datamodels that fit under Scenario 1, as it is the
case of the forms k = 1, 4, 5, 6, 7, 8. However, they have not related the structure of
micro-data with the definitions of symbolic covariances matrices for interval-valued
random variables. Specifically, they considered U1,U2, . . . ,Up to be independent
random variables with (i) inverse triangular distribution with parameters {−1, 0, 1}
(we refer to this case as k = 6), (ii) triangular distribution with parameters {−1, 0, 1}
(k = 7), and (iii)Normal distribution truncated to [−1, 1], with zeromean and standard
deviation approximately equal to 1/3 (k = 8). These constraints on the micro-data are
worth considering since they bring alternative modelling possibilities to the forms
k = 1, 4, 5.

2.4 How to choose a particular form of symbolic covariancematrix?

The formulation (3) allows us to write:

Uj = 2(A j − C j )

R j
(14)
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Fig. 2 Simulated values of (U1,U2)
t according to the symbolic models listed in Table 1 for k = 1, . . . , 8

for j = 1, 2, . . . , p. Thus, if we have a dataset for which macro-data and micro-data
are available, we can obtain a realization u j ofU using the relation u j = 2(a j−c j )/r j ,
with a j , c j , and r j being the realizations of A j ,C j , and R j , respectively. Based on u j ’s,
evidences about the distributional form of the random weights Uj may be explored,
leading to the choice of the symbolic covariance (correlation) matrix (see Table 1) that
better fits the data under study.

The scatter plots in Fig. 2, represent 300 simulated values of (U1,U2)
t , accord-

ing to the eight models described in Table 1, illustrating typical patterns of points
following each of the distributional models considered in the previous subsection,
k = 1, 2, . . . , 8.

Note that we may use the procedure described in this section for other models
not considered above under Scenario 1 and Scenario 2. The practitioner may obtain
new symbolic covariance matrices (based on new distributional forms for the random
weights Uj ) better suited to particular datasets.

In Sects. 3.1 and 3.4 , we exemplify the choice of the distributional model for the
Uj ’s based on the available micro-data and macro-data for two specific datasets.
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2.5 State of the art

In the literature, there are several alternative definitions of sample symbolic covariance
matrix. In all definitions, the sample symbolicmean vector is x̄ = (x̄1, . . . , x̄ p)t where
x j = ∑n

i=1 ci j , j = 1, . . . , p. Choosing the sample mean of the centers as the sample
symbolic mean makes sense, in particular, under the assumption that the micro-data
associated with an interval follows a symmetric distribution on that interval.

In Oliveira et al. (2017) the sample counterparts of definitions 1 to 5 of covariance
matrices were written in terms of the sample covariance matrix of the centers and the
sample second order moment of the ranges. The population versions of the existing
proposals are listed in Table 1.

The sample equivalent of Σ1 was proposed by Billard and Diday (2003), and is
the most straightforward approach, since in its essence follows the definition of the
conventional sample variance and covariance of the interval centers. It has the disad-
vantage of ignoring the contribution of the ranges to the sample symbolic variance and
covariance. To overcome this limitation, de Carvalho et al. (2006) proposed a sample
variance definition based on the squared distances between the interval limits, and
generalized this idea to define the associated sample covariance. Such definitions led
to the sample equivalent of Σ2. A third alternative, proposed by Bertrand and Goupil
(2000), is obtained from the empirical density function of an interval-valued vari-
able, assuming that the micro-data follows a Uniform distribution. The corresponding
covariance was introduced by Billard (2008), and is based on the explicit decompo-
sition of the covariance into within sum of products and between sum of products.
Jointly they define the sample equivalent of Σ3.

Other sample alternatives for covariance matrices were proposed in the context of
symbolic principal component analysis (SPCA) for interval data. In one of the SPCA
approaches, the authors define a symbolic sample covariance and use their eigenvectors
as the weights of the sample symbolic principal variables. The sample version of Σ4
is part of the SPCA method called the vertices method and introduced in Cazes et al.
(1997). In the same paper, the authors considered other distributions for themicro-data
that led to the sample versions of definitions 6 to 8 of Table 1. The sample counterpart
of Σ5 was also proposed as a part of a symbolic principal component estimation
method called Complete-Information-based Principal Component (Wang et al. 2012).

2.6 Null symbolic correlation

One of the reasons that makes the correlation coefficient so popular and used is its abil-
ity to quantify the strength of linear associations between pairs of random variables.
Modeling real problems using linear combinations has the appeal of leading to under-
standable interpretations and the associated mathematical problems are, in general,
easily solved. Linear combinations of input variables have been of central importance
in classical multivariate methodologies, like principal components analysis, factor
analysis, canonical correlation analysis, discriminant analysis, linear regression mod-
els, among others (Johnson and Wichern 2007).
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Table 2 Cases where the symbolic covariance definitions lead to unexpected results

Case Pictorial representationa Covariance structure Covk (X1, X2)

k = 2, 3 k = 4, 5

1 Cov(C1,C2) = 0
Cov(R1, R2) = 0

�= 0 = 0

2 Cov(C1,C2) = 0
Cov(R1, R2) �= 0

�= 0 = 0

3 or Cov(C1,C2) = −δkE(R1R2)
Cov(R1, R2) = 0 or
Cov(R1, R2) �= 0

= 0 �= 0

aThe pictorial representation of covariance matrix patterns follows the proposal of Filzmoser et al. (2014)

Given that the correlation is a measure of linear association, a null value does not
ensure the independence between random variables, but gives indication that there is
no linear (and only linear) association between them. In the symbolic framework, the
meaning of uncorrelated interval-valued variables is of importance and is analyzed in
this subsection.

As discussed previously, in the literature there are two families of definitions of sym-
bolic correlations (covariances). In the first family (Scenario 1), only the association
between the centers of the interval-valued random variables are taken into consider-
ation, namely Covk(X j , Xl) = Cov(C j ,Cl), for k = 1, 4, 5, . . . , 8 (see Table 1);
to make the discussion easier, we only consider cases k = 1, 4, 5 of this family.
The second family (Scenario 2) takes the ranges’ contribution into consideration by
adding the second order cross-moment of the ranges, weighted according to each def-
inition: Covk(X j , Xl) = Cov(C j ,Cl) + δkE(R j Rl), for k = 2, 3, with δ2 = 1/4 and
δ3 = 1/12. The first observation is that any association between centers and ranges
that may exist is not detected by the symbolic covariances, since the definitions do not
include any cross term between centers and ranges. Another potential pitfall is that we
can devise cases where existing associations among ranges or among centers are not
detected by the symbolic covariance definitions. Table 2 summarizes some of these
problems, which will be discussed next.

Example 1 Let X1 and X2 be two interval-valued random variables, characterized by
(Ci , Ri ), i = 1, 2, where μ is the expected value and Ψ the covariance matrix of the
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random vector (C1,C2, R1, R2)
t . In this example, we consider

μ = (0, 0, 1.5, 1.5)t and Ψ =

⎡

⎢⎢
⎣

1
0 0.5
0 0 0.64
0 0 0 0.04

⎤

⎥⎥
⎦ , (15)

which corresponds to Case 1 of Table 2, leading to the following symbolic covariance
matrices:

Σ1 =
[
1
0 0.5

]
, Σ2 =

[
1.723
0.562 1.073

]
, Σ3 =

[
1.241
0.188 0.691

]
,

Σ4 =
[
1.723
0 1.073

]
, Σ5 =

[
1.241
0 0.691

]
. (16)

Clearly, no linear associations between centers and ranges exist, but Σ2 and
Σ3 show a non-null symbolic correlation (0.414 and 0.203 for definitions 2 and
3, respectively), indicating moderate and weak associations. According to these
two definitions and the discussion of Sect. 2, Covk(X1, X2) = Cov(A1, A2) =
Cov(C1 +U R1

2 ,C2 +U R2
2 ), for k = 2, 3. Thus, since the centers and the ranges are

non-correlated randomvariables, we conclude that the detected association is due toU ,
which is shared by themicro-data pair (A1, A2). Indeed, the root cause for this problem
is the assumption that U1

a.s.= U2, which artificially induces a positive association.
To illustrate these findings, we generate a sample of size 30 of centers and ranges

from a multivariate normal distribution with the parameters of Eq. (15). The matrix
plot and the corresponding symbolic bivariate scatter plot are shown in Fig. 3. Both
plots confirm the absence of linear associations, contradicting the symbolic correla-
tions obtained with definitions 2 and 3 [see Eq. (16)]. To further deepen this issue,
we simulated 20 micro-data points according to the reasoning presented in Sect. 2.1,
for definitions 3 and 5. The generated A values, represented in Fig. 4, show a strong
positive association between the micro-data for k = 3, and no association for k = 5.

Example 2 This example illustrates the Case 2 of Table 2. Here we consider

μ = (0, 0, 1.3, 1.3)t and Ψ =

⎡

⎢⎢
⎣

1
0 0.5
0 0 0.16
0 0 0.07 0.04

⎤

⎥⎥
⎦ , (17)

a scenario where the centers are uncorrelated but where there is a strong linear asso-
ciation between the two ranges, Cor(R1, R2) = 0.875. These choices lead to the
following symbolic covariance matrices:

Σ1 =
[
1
0 0.5

]
, Σ2 =

[
1.462
0.440 0.933

]
, Σ3 =

[
1.154
0.147 0.644

]
,

Σ4 =
[
1.462
0 0.933

]
, Σ5 =

[
1.154
0 0.644

]
. (18)
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(2) Symbolic bivariate scatter plot.

Fig. 3 Data generated according to Example 1, where the centers and the ranges are uncorrelated
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Fig. 4 Sample of 20 micro-data pairs, A = (A1, A2)
t , per symbolic object. Data generated according

to Example 1. In the left plot, the red (blue) dots correspond to the left lower (right upper) vertex of the
rectangle that represents each macro-data object (color figure online)

Definitions 1, 4, and 5 all lead to null symbolic correlations, disregarding the
strong linear association that exists between the two ranges. Such association is clearly
illustrated in Fig. 5, which corresponds to a sample of size 30 of centers and ranges
from a multivariate normal distribution with the parameters of Eq. (17). The high cor-
relation between the two ranges is apparent in the plot matrix of Fig. 5(1). Regarding
the symbolic bivariate scatter plot of Fig. 5(2), the dependence among rangesmanifests
itself in the relationship between the rectangle lengths. In fact, since we are working
with a multivariate normal distribution, then E(R2|R1 = r) = 0.0840 + 0.4375r ,
meaning that the average ratio between the rectangle lengths should be approximately
0.4375, which is confirmed by Fig. 5(2).

However, even if definitions 2 and 3 lead to non-null symbolic correlation between
X1 and X2 (0.377 and0.170, for k = 2 and k = 3, respectively), this is due to themicro-
data structure assumed by these definitions, and not to the actual association between
the two ranges. In fact, the values would be exactly the same for all eight definitions,
would μ and Ψ take the values of Eq. (17) except for [Ψ ]3,4 = Cov(R1, R2) = 0.
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(2) Symbolic bivariate scatter plot.

Fig. 5 Data generated according to Example 2, where centers are uncorrelated and ranges are highly
correlated

As pointed out before, this is an important limitation of all eight symbolic correlation
(covariance) definitions, presented in Table 1.

Example 3 In this example, we illustrate one of the possible scenarios of Case 3 of
Table 2. Assuming

μ = (0, 0, 3, 3)t and Ψ =

⎡

⎢⎢
⎣

1
−9δk 9
0 0 0.8
0 0 0 0.2

⎤

⎥⎥
⎦ , (19)

leads to the following symbolic covariance matrices:

Σ1 =
[
1
0 9

]
, Σ2 =

[
3.45

0 11.30

]
, Σ3 =

[
1.817

0 9.767

]
,

Σ4 =
[

3.45
−2.25 11.30

]
, Σ5 =

[
1.817

−0.752 9.767

]
. (20)

The example is built such that there is an association between the two centers which
remains unnoticed by definitions 2 and 3. In these definitions, the contribution of the
ranges to the symbolic correlation, which is always positive, can be compensated by
a negative correlation between the centers. Specifically, in this example, there is a
high negative correlation between the centers (Cor(C1,C2) = −0.75, for k = 2), but
this correlation is masked by the positive contribution of the ranges. To confirm this,
we generated again 30 observations from a multivariate normal distribution, with the
parameters of Eq. (19) and k = 4 (δk = 1/4). The negative association between the
centers is apparent in Fig. 6 but, as mentioned above, this is not captured by definitions
2 and 3.
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(2) Symbolic bivariate scatter plot.

Fig. 6 Data generated according to Example 3 (for k = 4), where centers are correlated and ranges are
uncorrelated

3 Analysis of datasets

In this section, we explore four datasets to illustrate the concepts and results derived
previously. The first dataset is the Iris data, which corresponds to four different char-
acteristics of flowers from three different species. The observations are artificially
grouped by location, which defines, together with the species, the macro-data object
to be studied.

The next two datasets are Internet traffic data. Internet traffic data is particularly
amenable to SDA for two reasons. First, with the increase in Telecommunication’s
link speeds and in the volume of data stored in Internet sites and repositories (the
Big Data problem), it becomes impractical (due to excessive computational costs)
to store all measured data (e.g. the arrival time and size of each individual packet
observed at a given high-speed link). In this case, the analyst can only have access
to summary data (e.g. the maximum and minimum packet sizes observed in a given
time period), which can be handled with advantage as a symbolic variable. Second,
Internet traffic has several levels/views organized hierarchically (e.g. the packet level,
the session level, and the application level) and often, when analyzing one level, there
is no interest in having detailed information on the lower levels. For example, when
studying TCP connections–session level–we need to have information on the patterns
of the packet arrival times and packet sizes of the connection, but not on the arrival
time and size of each individual packet that belongs to the connection–packet level.
The work in Rahman et al. (2020) also presents an application of SDA to Internet
traffic data analysis.

The last dataset corresponds to one year monthly credit card expenses of five dif-
ferent types, for which both the micro-data and the macro-data are available.

3.1 Iris data

The iris data is probably one of the best known and most used datasets in multivariate
analysis, and is also a reference among the SDA community. In the Iris dataset, there is
a total of 150 plants, 50 plants from each one of 3 different species (setosa, versicolor,
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and virginica), and each plant is characterized in terms of sepal length, sepal width,
petal length, and petal width. Billard and Diday (2006) hypothetically associated sets
of five plants of the same specie to a location. In this case, each macro-data object
corresponds to a location of (five) plants from the same specie, and is characterized
by four interval-valued variables (sepal length, sepal width, petal length, petal width)
(p = 4). Since there is a total of 150 plants and 5 plants per location, the number of
macro-data objects is 30 (n = 30), 10 per specie.

In order to visualize the data, we developed a R Core Team: R (2015) function to
produce a matrix of all possible combinations of symbolic bivariate scatter plots and
the corresponding sample symbolic correlations (available upon request). Figure 7
gives an example. The diagonal panels of the matrix show the names of the variables.
The lower panels (below the diagonal) show the scatter plots: in the (i, j) panel, i < j ,
each symbolic object is represented by a rectangle whose length and height correspond
to the interval values of the i-th and j-th observations. The upper panels show the
sample symbolic correlations: the (i, j) panel, i > j , shows the sample correlations
that correspond to the ( j, i) scatter plots. Each sample symbolic correlation panel
has eight values, each corresponding to one of the definitions introduced in previous
sections. Inspired by similar R functions, we call this plot symbolic pairs.

In Fig. 7, the locations are colored according to the specie: black for setosa, blue
for versicolor, and red for virginica. We notice a strong positive association between
petal length and width, and a slightly lower positive association between sepal and
petal length, and between sepal length and petal width. In general, locations associated
with the setosa specie have smaller center values and inner variability in all variables.
Furthermore, versicolor’s locations have the highest center values and slightly higher
inner variability when compared with virginica’s locations, in terms of petal width
and length. Similar patterns, although not so clear, are noticed in terms of sepal and
petal length. We also notice that petal length and width give a good separation among
species. These patterns are also observed in the micro-data.

3.2 Internet traffic redirection attacks

Traffic redirection attacks deviate Internet traffic from its normal routes, allowing
attackers interposed between the source and destination of the communications (man-
in-middle attackers), to gain access to sensitive information, and/or to degrade the
network delay, among other motivations. This type of attack explores vulnerabilities
in the BGP protocol, which is responsible for the Internet-wide routing of information.
The attack provokes an increase in the round-trip time (RTT) of the communications
(from the source to the destination and back to the source), and this feature is usually
used to detect the attack. However, the attack is difficult to detect when the attacker is
located close to the source or the destination.

Salvador and Nogueira (2014) proposed a monitoring infrastructure to detect traffic
redirection attacks. This platform comprises a set of geographically dispersed moni-
toring servers (probes) that periodically measure the RTT to hosts under surveillance
(targets). In this case, it may be possible to detect stealthy attacks through suitable
statistical processing of the RTTs measured by the various probes.
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Fig. 7 Symbolic bivariate scatter plots and corresponding sample symbolic correlations of Iris data (the
k-th row of (i, j)-th entry has Ĉork (Xi , X j ), k = 1, . . . , 8). Black rectangles represent locations of setosa,
blue of versicolor, and red of virginica (color figure online)

To evaluate the RTT, each probe makes 10 RTT measurements every 120s. These
RTTmeasurements form themicro-data, but we have only access to the, average, mini-
mum, andmaximumRTT values computed over the 10 individual RTTmeasurements.
The RTT interval (minimum and maximum) forms the macro-data that we study in
this example.

In our example, there are four probes located in Amsterdam, Chicago, Los Angeles
(LA), and Johannesburg, and the target is in Hong Kong. During the measurement
period, two different attacks were performed, one redirecting the traffic through
Moscow and the other through Los Angeles (a site different from the Los Ange-
les’s probe). A total of 2286 RTT interval measurements were collected, where 1799
observations correspond to regular traffic, 241 to traffic redirected through Los Ange-
les and 246 to traffic redirected through Moscow. For further details on the dataset
please see Subtil (2020).
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By plotting the average RTT versus interval center and by looking to its sample
correlation (always higher than 0.979), we found evidence that the micro-data is sym-
metrically distributed within the intervals, validating one of the assumptions required
in the definitions of symbolic covariancematrices. Thematrix of scatter plots and asso-
ciated symbolic correlations based on the eight definitions under study are summarized
in Fig. 8.

The bivariate plots seem to indicate that probes located in LA and Chicago separate
the regular traffic (black rectangles) from the one redirected through Moscow (blue
rectangles). Moreover, this redirection induces a significant increase in RTT values.
This justifies the high correlation detected by all sample symbolic definitions of corre-
lation, ranging from 0.896 for definition 4 to 0.950 for definition 1 (see second row and
third column of the matrix displayed in Fig. 8). This Figure also suggests that probes
Amsterdam and Johannesburg cannot detect the two attacks. The RTTs measured by
these two probes seem to follow a fairly similar pattern, which justifies its medium
correlation according to all symbolic definitions.

The most important observation regarding this example is that, for each of the six
probe pairs, the sample symbolic correlation is approximately the same in all eight
definitions. This is because all definitions privilege the center of the interval against
the range and, in this dataset, the correlation between centers is much stronger than
between ranges. Note that in all definitions, the center term has weight one, while the
maximum weight associated with the range term is 1/4. To confirm the dominance of
centers over ranges, we obtained the sample correlations between the centers:

P̂CC =

⎛

⎜⎜
⎝

1.000
−0.124 1.000
−0.030 0.950 1.000
0.615 0.321 0.357 1.000

⎞

⎟⎟
⎠ ,

As it can be seen, these correlations are close to the ones of Fig. 8. For example,
the symbolic correlations between Amsterdam and Chicago probes are all close to
[ P̂CC ]2,1 = −0.124.

3.3 Internet traffic of backbone networks

This dataset corresponds to Internet traffic observed in backbone networks (at the
core of the Internet), and includes a mixture of Internet applications and attacks,
namely Web browsing, file sharing, streaming, video, port scans, and snapshots. It
was analyzed in Oliveira et al. (2017) using Symbolic Principal Component Analysis
for interval-valued data. The dataset comprises 917 traffic objects, corresponding to
packets flows of specific applications and attacks, called datastreams. Five traffic
characteristics were measured for each datastream, in intervals of 0.1 s: (i) number of
upstream packets, (ii) number of downstream packets, (iii) number of upstream bytes,
(iv) number of downstream bytes, and (v) number of active TCP sessions. The values
of these characteristics forms the the micro-data. The macro-data corresponds to the
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Fig. 8 Symbolic bivariate scatter plots of traffic redirection attacks and respective symbolic correlations.
The target is Hong Kong. Black, red, and blue objects represent regular traffic, traffic redirected through
Los Angeles, and traffic redirected through Moscow, respectively (color figure online)

interval (minimum and maximum) values of each traffic characteristic, computed over
each datastream.

As a preprocessing step, we corrected the asymmetry among the micro-data, to
allow using the definitions of symbolic covariance matrices presented in Sect. 2.

In this example, there is a strong association between the centers and ranges of the
first four variables. Thus, the definitions that do not take the ranges into consideration
when defining the sample covariance lead to low correlations, and the remaining
definitions lead to very high correlations. To illustrate this, we consider definitions 3
and 5, where definition 5 does not account for the ranges in the sample covariance.
The corresponding sample correlation matrices are:

P̂3 =

⎛

⎜
⎜⎜⎜
⎝

1.000
0.942 1.000
0.986 0.917 1.000
0.893 0.908 0.915 1.000
0.084 0.243 0.076 0.269 1.000

⎞

⎟
⎟⎟⎟
⎠

, P̂5 =

⎛

⎜
⎜⎜⎜
⎝

1.000
0.262 1.000
0.337 0.239 1.000
0.205 0.163 0.219 1.000

−0.074 0.057 −0.081 0.068 1.000

⎞

⎟
⎟⎟⎟
⎠

.

As it can be seen, the sample correlations obtained with definitions 3 and 5 have
significantly different values.
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3.4 Credit card data

This example considers a known symbolic dataset, used in Billard and Diday (2003,
2006), that has the merit of having the macro- as well as the micro-data available.
The micro-data corresponds to the monthly expenses (in dollars) of three persons,
recorded over 12 months, on five different items: food, social entertainment, travel,
gas, and clothes. There is a total of 1000 records. The credit card issuer is interested
in characterizing the monthly expenses of each person, during one year, over the
five different expense types. In our case, each macro-data object corresponds to the
expenses of one person in one month, and is characterized by five interval-valued
variables, one for each expense type (p = 5). Since there is a total of 3 persons and
12 months, the number of macro-data objects is 36 (n = 36). The five interval-valued
variables are X1, (food), X2 (social entertainment), X3 (travel), X4 (gas), and X5
(clothes).

The symbolic bivariate plots and the corresponding sample symbolic correlations
are showed in Fig. 9, where each person is represented with a different color. It can
be said that clothes separate relatively well the three persons. The highest sample
symbolic covariances (on absolute value) are the ones between food and clothes (pos-
itive values, varying between Ĉor4(X1, X5) = 0.342 and Ĉor2(X1, X5) = 0.519)
and gas and clothes (negative values, varying between Ĉor2(X4, X5) = −0.335 and
Ĉor1(X4, X5) = −0.674). Thus, subjects with high expenses on clothes tend to have
high food and lower gas expenses.

The results regarding the sample symbolic correlation show that there can be a
significant divergence among the eight definitions, which can even have different
signs. For example, in the sample correlation between food and gas, seven definitions
lead to negative sample correlations (with values between −0.401 and −0.074), and
definition k = 2 leads to a positive sample correlation (0.261). This also happens in
the case of Iris data and the sample correlation between sepal length and width, as can
be seen in Fig. 7.

In fact, for k = 2 and k = 3, the symbolic covariance is a balance between the
center’s effect, measured by the termCov(C j ,Cl) (which can take positive or negative
values), and the range’s effect, measured by the term δkE(Ri R j ) (which can only take
positive values); the weight δk is 1/4 for k = 2 and 1/12 for k = 3. In this example,
̂Cov(C1,C4) = −8.953 and Ê(R1R4) = 81.740. Thus, for δ2 = 1/4, the importance
of the ranges overcomes the negative covariance between the centers, leading to a
positive correlation. Contrarily, for k = 3, the smaller weight δ3 = 1/12 leads to a
negative correlation.

Another clear example of divergence between definitions is the sample symbolic
correlation between money spent on food and social entertainment. In this case, the
sample correlation ranges from Ĉor4(X1, X2) = 0.028 to Ĉor2(X1, X2) = 0.712.

The divergence between the sample symbolic correlations obtained through the
various definitions motivates searching for the most appropriate definition, which can
be done since the micro- and macro-data are both available. To address this issue, we
represent in Fig. 10 the values of the random variables, Uj , describing the (linearly)
transformed micro-data, according to (3). In this example, the macro-data were not
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Fig. 9 Symbolic bivariate scatter plots of credit card data and respective symbolic correlations. There are
three subjects with monthly expenses measured over a year, colored differently (color figure online)

observed directly, but results from the aggregation of the micro-data, according to the
credit card issuer criteria. Thus, some of the observed values are used to define the
observed interval limits, and to avoid distorting the results, we removed them from
the analysis.

The scatter plots and sample correlations between concretizations of Uj and Ul

( j �= l) of Fig. 10 give indication that these random variables are uncorrelated and
that the most promisingmodels among the eight introduced above (see Table 1) are: (i)
continuousUniform, (ii) Triangular, and (iii) truncatedNormal distribution, associated
with Σ5, Σ7, and Σ8, respectively.

We tested these three hypotheses applying goodness of fit tests (we used the
Anderson–Darling test Anderson 2011) but the null hypothesis was always rejected.
This can be explained by the high number of observations, whichmakes a small depar-
ture from the theoretical model statistically significant, even though it might not be
significant from the practical point of view.
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Fig. 10 Credit card linearly transformed micro-data, u j , and respective sample correlations

To overcome this problem, we made quantile-quantile plots with 95% pointwise
envelopes (using function qqPlot from package car Fox and Weisberg 2011 in R),
and obtained the percentage of points outside the envelope as a measure of goodness
of fit. The Triangular distribution achieved the best results. In this case, the percentage
of points outside the 95% envelope range between 1.72% (for social entertainment) to
9.61% (for food). In Fig. 11, we show these two quantile-quantile plots, which confirm
the goodness of fit. From this result, we conclude that definition k = 7 is the most
appropriate for this dataset. Being so, the chosen sample symbolic correlation matrix
is

P̂7 =

⎛

⎜⎜
⎜⎜
⎝

1.000
0.078 1.000
0.041 0.204 1.000

−0.346 0.055 0.158 1.000
0.471 0.051 −0.236 −0.631 1.000

⎞

⎟⎟
⎟⎟
⎠

.
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Fig. 11 Linearly transformed micro-data quantile-quantile plots, for Triangular[−1, 0, 1] distribution. Per-
centage of points outside the 95% envelope: 9.61% for (1) food (U1, worst case) and 1.72% for (2) social
entertainment (U2, best case), where Uj = 2(A j − C j )/R j , j = 1, 2, . . . , 5

For example, there is amedium-sized symbolic positive correlation (0.471) between
money spent on food and clothes and a stronger association (even though negative)
between gas and clothes (−0.631).

3.5 Discussion

Theprevious examples show that different definitionsmay lead to quite different results
(symbolic sample correlationmatrices), depending on themicro-data. Thus, in order to
decide on the most appropriate definition, one must have some information about the
micro-data structure of the specific case under analysis.Moreover, different definitions
may reveal different, but equally interesting, aspects of the data. For example, in
Oliveira et al. (2017), which uses the dataset of Sect. 3.3, definitions 3 and 5 were
used to obtain the sample Symbolic Principal Components and associated scores. In
this case, definition 3 highlighted a good separation between the various applications,
while definition 5 detected the existence of 3 subgroups in the file sharing application
(Torrent) [see Fig. 1 of Oliveira et al. (2017)].

We also point out that the existence of different definitions, although it introduces
the problem of choosing between them, enriches the set of available statistical tools
for exploratory analysis.

4 Conclusions

The low cost of information storage combined with recent advances in search and
retrieval technologies has made huge amounts of data available, the so-called big
data explosion. New statistical analysis techniques are now required to deal with the
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volume and complexity of this data, and Symbolic Data Analysis (SDA) is a promising
approach.

In this paper we propose a model linking the micro-data with the macro-data of
interval-valued symbolic variables, which takes a populational perspective. In this
model the micro-data is defined as a random vector which is a function of the cen-
ters and ranges associated with the macro-data and random weights characterizing
the structure of the micro-data given the associated macro-data. The model defines
two scenarios where the various definitions of symbolic covariance matrices already
proposed in the literature arise as particular cases. These scenarios correspond to two
extreme situations regarding the random weights: in the first scenario the weights are
independent random variables and in the second one they are equal variables (almost
surely); in both scenarios, the weights are zero mean and uncorrelated latent variables.
These conditions on the randomweights imply that the current definitions of symbolic
covariance matrices rely on micro-data assumptions that may be too stringent, raising
applicability concerns. Clearly, more research is required in this area.

We discuss in detail several cases where the existence or absence of correlations
in the macro-data is not correctly captured by the definitions. These inconsistencies
are explained by the (too restrictive) underlying micro-data assumptions. These cases
also highlight that, in the context of current definitions, a null symbolic covariance
can not be interpreted as absence of association. This reinforces the need for further
research on how to measure associations between interval-valued variables.

The analysis of four different datasets further explores the various definitions of
symbolic covariance matrices. We show that, when using real data, there can be a
large divergence between the various definitions, in particular when there is a strong
association between the ranges in the data. Thus, in order to select themost appropriate
definition, onemust have some knowledge about themicro-data structure. For datasets
where both themicro- andmacro-data are availablewewere able to select the definition
that better explains the data. We also highlight that different definitions may reveal
different aspects of the data, which can be used in exploratory data analysis.
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