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Abstract
In the paper, we revisit the problem of class prior probability estimation with positive
and unlabelled data gathered in a single-sample scenario. The task is important as it
is known that in positive unlabelled setting, a classifier can be successfully learned
if the class prior is available. We show that without additional assumptions, class
prior probability is not identifiable and thus the existing non-parametric estimators are
necessarily biased in general if extra assumptions are not imposed. The magnitude of
their bias is also investigated. The problem becomes identifiablewhen the probabilistic
structure satisfies mild semi-parametric assumptions. Consequently, we propose a
method based on a logistic fit and a concave minorization of its (non-concave) log-
likelihood. The experiments conducted on artificial and benchmark datasets as well as
on a large clinical databaseMIMIC indicate that the estimation errors for the proposed
method are usually lower than for its competitors and that it is robust against departures
from logistic settings.
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1 Introduction

Positive and unlabelled (PU) learning focuses on the setting where the data contains
labelled positive examples and unlabelled ones. Unlabelled examples can be either
positive or negative. In this setting, the true class label Y ∈ {0, 1} is not observed
directly. We only observe the surrogate variable S ∈ {0, 1}, which indicates whether
an example is labelled (and thus positive; S = 1) or unlabelled (S = 0). This type
of data naturally arises in many applications (see Bekker and Davis 2020; Jaskie and
Spanias 2019 for reviews). Below we describe some illustrative examples. As a first
example, consider the problem of predicting disease based on patient characteristics.
Medical databases usually list only diagnosed diseases. However, many diseases, such
as hypertension or diabetes, are often undiagnosed (Walley 2018). Therefore, the
absence of the diagnosis does not mean that the patient does not have the disease in
question. Consequently, we can distinguish three groups of patients: patients with the
diagnosed disease (S = 1 and thus Y = 1); patients without diagnosed disease who
have the disease (S = 0 andY = 1) and finally patients without diagnosed diseasewho
really do not have the disease (S = 0,Y = 0). Importantly, it is not possible to make
a distinction between the second and the third group using observed data. Secondly,
PU data occur frequently in text classification problems (Liu et al. 2003; Fung et al.
2006; Li and Liu 2003). For example, when classifying web page preferences, some
web pages can be bookmarked as positive (S = 1) by the user whereas all other pages
are treated as unlabelled (S = 0). Among unlabelled pages (S = 0), one can find both
positive and negative pages. Thirdly, PU data stems from under-reporting (Sechidis
et al. 2017) which frequently happens in survey data, and it refers to the situation when
some respondents fail to answer a question truthfully. Under-reporting may occur, e.g.
when the question concerns dangerous or unlawful behaviour such as taking illicit
drugs (Bahorik et al. 2014; Chen et al. 2006). So in surveys, one group of respondents
may admit such behaviours truthfully (S = 1 �⇒ Y = 1) and the other group do not
(S = 0). The second group consists of respondents who have engaged in dangerous
behaviours but do not report them (Y = 1, S = 0) and those who have nothing to
report (Y = 0, S = 0). Other examples include modelling wildlife habitat selection
(Ward et al. 2009; Pearce and Boyce 2006), detection of causative genes for various
human diseases (Yang et al. 2014) and predicting drug-target interactions (Lan et al.
2016).

There are many partial observability schemes related to PU learning (we refer to
Section 8 in Bekker and Davis (2020) for detailed discussion, see also Menon et al.
(2015)). Semi-supervised learning is a general related scenario in which the goal is
to learn from labelled and unlabelled data but, in contrast to PU learning, labeled
examples from both classes are assumed to be present in the data (Chapelle et al.
2010). PU setting can be also seen as a special case ofmore general problemof learning
from noisy labels (Natarajan et al. 2013; Frenay and Verleysen 2014) when labels are
incorrectly assigned. In such general scenario, value of the true class variable Y can
be flipped with some probability, i.e. instead Y we observe S = 1 − Y . Probabilities
of incorrect assignment are: ω1 := P(S = 0|Y = 1) and ω2 := P(S = 1|Y = 0).
Obviously, this problem reduces to PU setting forω2 = 0. Evenmore general scenario
is learning from two contaminated distributions (Scott et al. 2013). Finally, PU learning
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can be also seen as a special case of ’coarse data’ analysis (Heitjan and Rubin 1991;
Couso et al. 2017), which covers situations where one does not have access to the
exact value of the class variable Y , but only to some subset of the possible values of
Y that contains it.

It is known that in PU learning, a classifier can be successfully learned if the class
priorα = P(Y = 1) is available (Bekker andDavis 2020; Elkan andNoto 2008).More
precisely, knowledge of the class prior can be used in three ways. The first approach
is represented by so-called post-processing methods which first train classifier using
S as a surrogate variable for Y (which is called non-traditional classification or naive
classification) and then modify output probabilities using the class prior (Elkan and
Noto 2008). The second approach are pre-processingmethods that weigh the examples
using the class prior (Steinberg and Cardell 1992; Lancaster and Imbens 1996; Kiryo
et al. 2017). We refer to Bekker and Davis (2020) (Section 5.3.2) for a description of a
general empirical risk minimization framework in which the weights of observations
depending on α are determined for any loss function. In the third approach, class prior
is incorporated into learning algorithms. A representative algorithm from this group
is POSC4.5 (Denis et al. 2005), which is PU tree learning method.

The class prior is usually not known (except from situations when, for example,
disease prevalence is known or can be learnt from other studies) and therefore the
problem of its estimation from PU data has attracted significant attention (Elkan and
Noto 2008; Jain et al. 2016; Plessis et al. 2017; Bekker and Davis 2018). There are
three key contributions of the present paper concerning this problem. First, we formally
analyse the problem of prior estimation; we show that in general this problem is ill-
defined in non-parametric setting, i.e. class prior is not identifiable without some
assumptions on conditional distribution of Y given X . We show however that the class
prior becomes identifiable when we impose mild semi-parametric model assumptions
on conditional distribution of Y given X . Secondly, we analyse in detail the most
popular existingmethods: the classicalmethodENproposedbyElkan andNoto (2008),
TIcE algorithm (Bekker and Davis 2018), Partial Matching (Plessis et al. 2017), KM
estimators (Ramaswamy et al. 2016) and MLR (Jaskie et al. 2020). We formally show
that in some situations, some of the above methods underestimate label frequency
c = P(S = 1|Y = 1) and thus overestimate class prior. Finally, we consider the
method based on logistic regression which allows to estimate label frequency and
parameters of the logistic model simultaneously. The method (called JOINT method)
was proposed in recent work (Teisseyre et al. 2020), in the more general context
of estimation of the posterior for PU data. Its main limitation lies in necessity of
the optimization of the non-concave log-likelihood function. Teisseyre et al. (2020)
used simple gradient method, which may fail in some situations. Here we propose a
novel procedure, called CD+MM, that combines cyclic coordinate descent (CD) and
minimization-majorization (MM) algorithms and allows for more stable and efficient
optimization. The method is based on a simple but consequential fact that the log-
likelihood treated as function of logistic parameters is bounded from below by a
concave function. Indeed, the experiments indicate that CD+MM outperforms other
methods, including JOINT method, with respect to estimation error of the class prior.

This paper is organized as follows. In Sect. 2 we introduce notation and basic
assumptions. In Sect. 3 we discuss identifiability of class prior; in Sect. 4 we analyse
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the existing methods; Sect. 5.1 introduces the novel method, Sect. 5.2 compares it
with MLR method (Jaskie et al. 2020), Sect. 6 summarizes the results of numerical
experiments and Sect. 7 concludes the paper.

2 Notation and assumptions

We first introduce basic notations. Let X ∈ X be a feature vector, Y ∈ {0, 1} be a true
class label and S ∈ {0, 1} an indicator of whether an example is labelled (S = 1) or
not (S = 0). We assume that there is some unknown distribution P(Y , X , S) such that
(yi , xi , si ), i = 1, . . . , n is i.i.d. sample drawn from it and data (xi , si ), i = 1, . . . , n,
is observed. Only positive examples (Y = 1) can be labelled, i.e. P(S = 1|X ,Y =
0) = 0. Thus we know that Y = 1 when S = 1 but when S = 0, Y can be either 1
or 0 . As the aim is to learn the distribution of (X ,Y ) and we only observe samples
from distribution of (X , S), where S = Y with a certain probability, this is a partial
observability scenario similar e.g. to a right censoring scheme when Y is observed
provided its value is smaller than value of a censoring variable. In this work we also
adopt a commonly used assumption called SCAR (Selected Completely At Random)
which states that labelled examples are selected randomly from a set of positives
examples, independently from X , i.e.

P(S = 1|Y = 1, X) = P(S = 1|Y = 1). (1)

Parameter c := P(S = 1|Y = 1) is called the label frequency and plays an important
role in PU learning. In particular it is closely related to the class prior α = P(Y = 1)
Elkan and Noto (2008), i.e. we have

α = P(Y = 1) = P(S = 1)/c. (2)

The probability P(S = 1) can be directly estimated as the fraction of labelled exam-
ples. In the proposed method we first estimate c and then use (2) to estimate α, the
similar approach was used e.g. in Bekker and Davis (2018). Under SCAR assumption
we have the following property

P(S = 1|X) = cP(Y = 1|X), (3)

which will be directly used in the proposed method.
In the paper we also take advantage of a representation of variable (X , S) when

SCAR assumption is valid, introduced recently in Teisseyre et al. (2020). Namely, we
have shown that S can be represented as

S = Y · ε, where ε ⊥ (X ,Y ) and ε ∼ Bern(1, p) (4)

(with ⊥ denoting independence), for a certain 0 < p < 1 and where Bern(1, p)
stands for Bernoulli distribution. Indeed, we have S = Y ε ⊥ X given Y , as ε ⊥ (X ,Y )
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implies that ε ⊥ X given Y . Moreover,

P(S = 1|Y = 1) = P(Y ε = 1|Y = 1) = P(ε = 1) = p.

Thus probability of success P(ε = 1) coincides with c. Moreover, it easily follows
from the fact that ε ⊥ X given Y = 1 that P(X |Y = 1) = P(X |S = 1) and thus
conditional distribution of X given Y = 1 is identifiable.
We stress that the scenario we consider here, namely that i.i.d. sample (xi , si ) is
observed, called single sample scenario should be distinguished from case-control
scenario when one sample is drawn from distribution P(X |Y = 1) and the second
one is drawn independently from P(X). The differences between these two schemes
are discussed in (Bekker and Davis 2020).

3 Identifiability of class prior

We start by stating an intuitive fact that neither c or α is identifiable for a PU single
sample scenario given a full knowledge of the distribution of (X , S), if no assumptions
on distribution of (X ,Y ) are imposed. This was already noticed for PU case control
scenario inWard et al. (2009), see also Scott (2015). In the present case of single sample
scenario it follows from noting that distribution of X is mixture of two distributions

p(x) = αcpl(x) + (1 − αc)pu(x),

where pl(·) and pu(·) are densities or distribution mass functions of conditional dis-
tributions of X given S = 1 and S = 0, respectively. Note that αc = P(S = 1). We
have that pl(·) coincides with density of X given Y = 1 (see Sect. 2), whereas pu
equals

pu(x) = p(x) − αcpl(x)

1 − αc
= p(x) − αcp(x |Y = 1)

1 − αc
. (5)

Thus mixing proportion is αc and distributions P(X |S = i) of labelled and unlabelled
mixture components depend solely on distributions P(X), P(X |Y = i) and αc. This
means that changing α and c in such a way that their product is constant we obtain
the same distribution (X , S), however the situations when α is small and c is large or
otherwise are very different. Thus neither α or c is identifiable.
The situation changes dramatically when we impose semi-parametric model assump-
tions on conditional distribution of Y given X . We consider so called single index
model (see e.g. Ichimura 1993) and prove directly that the parameters of the corre-
sponding model for aposteriori probability of Y are identifiable. This in turn implies
Fisher consistency of the likelihood method (part (ii)) which is the theoretical under-
pinning of empirical likelihood optimisation considered in this paper. In Remark 1
below we discuss that the considered model satisfies the positive function condition
which is one of the identifiability conditions considered in Bekker and Davis (2020).
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Theorem 1 (i) Let f (s)beanarbitrary strictlymonotone response functionwith values
in [0, 1] such that P(Y = 1|X = x) = f (βT x), for some β = (β0, β1, . . . , βp)

T .
In addition assume that there exists i �= 0, such that βi �= 0 (i.e. Y and X are not
independent). If

c f (βT x) = c̃ f (β̃T x)

for all x ∈ Rp+1 where β̃ = (β̃0, β̃1, . . . , β̃p), then c = c̃ and β = β̃.
(ii) Assume that (X , Y ) is as in (i), c = P(S = 1|Y = 1) and let pc̃,β̃ (x, 1) = P(X =
x, S = 1) = c̃ f (β̃T x)p(x), pc̃,β̃ (x, 0) = P(X = x, S = 0) = 1 − pc̃,β̃ (x, 1). Then
the maximiser of the expected loglikelihood

EX ,S{log pc̃,β̃ (X , S)}

with respect to (c̃, β̃) is unique and equals (c, β).

Part (i) claims that when P(Y = 1|x) is logistic then parameters determining P(S =
1|x), that is c and β are uniquely determined. This is proved by assuming the contrary,
checking the stated equality for the specific values of x and showing that it forces two
possibly different sets of parameters to coincide. In part (ii) it is shown that when the
expected likelihood is maximised, the maximisers correspond to the true parameters
of generating mechanism, which are uniquely determined in view of (i).

Proof (i) Note that β0 is the intercept corresponding to the first coordinate of x which
is equal 1. We first consider a situation when there exists an index i �= 0 such that
βi �= β̃i . Plugging the value x := (1, 0, . . . , 0, (β̃0 − β0)/(βi − β̃i ), 0, . . . , 0) (with
(i+1)th coordinate equal (β̃0−β0)/(βi −β̃i )) into the assumed functional equality we
obtain c = c̃ as f (βT x) = f (β̃T x) �= 0. Taking x := (1, 0, . . . , 0) yields β0 = β̃0.
Considering x = (1, 0, . . . , 1, 0, . . . , 0), with the first and the (i + 1)th coordinate
equal to 1, we obtain βi = β̃i , a contradiction. Thus it is enough to consider the
equality

c f (β0 + βT−0x−0) = c̃ f (β̃0 + βT−0x−0),

where β = (β0, β
T−0)

T . It follows from assumption that we can take coordinate xi such
that βi �= 0 and i > 0. Now considering the sequence x (n) = (1, 0, . . . , 0, sign(βi ) ×
n, 0, . . . , 0), with sign(βi ) × n at the (i + 1)th place, we obtain c̃ f (∞) = c f (∞)

and thus c̃ = c again. Taking x = (1, 0, . . . , 0) yields now β0 = β̃0 and thus in a view
of the first part of the proof β = β̃.
Part (ii) follows from properties of Kullback–Leibler divergence which imply that for
any X = x the conditional expected value ES|X=x {log pc̃,β̃ (x, S)} is maximised by

success probability equal c f (βT x) in view of Information Inequality (see Cover and
Thomas (2006), Theorem 2.6.3). Then it follows from (i) that c and β are uniquely
defined. 	

Some remarks are in order.
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Remark 1 The setting where P(Y = 1|X = x) = f (βT x) and f is some unknown
monotone response function is very flexible semi-parametric model. However, its
assumptions imply that the positive function property is valid which ensures iden-
tifiability (see Bekker and Davis 2020, Section 3.3 for taxonomy of identifiability
assumptions and (Ramaswamy et al. 2016), Definition 9 for the precise statement
of the positive function property called there separability condition with margin α).
Namely, letting A := {x : βT x > t} where t ∈ R is chosen such that f (t) ≥ 1/2 + ε

for some ε > 0 and h(x) being the indicator function of A, it is easy to see that

EX |Y=1h(X) ≥
(1
2

+ ε
) P(X ∈ A)

P(Y = 1)
≥

(1
2

− ε
) P(X ∈ A)

P(Y = 1)
≥ EX |Y=0h(X).

Thus separability condition with margin α holds with α = εP(X ∈ A)/P(Y = 1)
and β = P(X ∈ A)/(2P(Y = 1)).

Remark 2 Observe that in the above Theorem we assume that Y and X are not inde-
pendent. Note that this is obviously necessary. Indeed, when Y is independent from X ,
it is not possible to infer anything about Y (and S) using X . In such situation the class
prior cannot be identified using solely knowledge of S. Part (ii) states that when the
model for (X ,Y ) is correctly specified then log-likelihood method based on (X , S) is
Fisher consistent (Li and Duan 1989). In particular, the above result holds true for the
logistic response function and also for f being the cumulative distribution function of
the standard normal distribution which corresponds to the probit model. It is known
that fitting logistic model is robust to misspecification of the response function under
parametric assumptions on distribution of X (Li and Duan 1989; Mielniczuk and Teis-
seyre 2016) what suggests that estimation of c will also enjoy this property. This will
be investigated for artificially generated data in Sect. 6. In Sect. 5.1 we focus on the
case when the conditional distribution of Y given X is logistic.

4 Existingmethods of class prior estimation: theoretical analysis

In this section we review and discuss all available (best to our knowledge) non-
parametric methods of class prior estimation except methods based on parametric
models including the new proposal which are discussed in the next section.

4.1 Elkan-Noto estimator

We first consider Elkan–Noto estimator of c (cf. Elkan and Noto (2008)) denoted by
e1 on p. 214 of their paper. It is introduced under tacit separability assumption stating
that supports of conditional distributions of X given Y = 1 and Y = 0 are disjoint.
The estimator is defined as follows

ĉEN = 1

|A|
∑
i∈A

P̂(S = 1|Xi ), (6)
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whereA is a labelled part of a test sample T , namelyA = {i : (Xi , Si ) ∈ T : Si = 1}
and estimator P̂ of P is based on training sample U independent of T . We show below
that limit of ĉEN is c under the separability condition but differs from it if the condition
is not satisfied.

Lemma 1 Assume that estimator P̂(S = 1|X = ·) is uniformly consistent i.e.

sup
x

|P̂(S = 1|X = x) − P(S = 1|X = x)| → 0 (7)

in probability then

ĉEN → EX P2(S = 1|X)

P(S = 1)
(8)

in probability when sample size n = |T | tends to infinity. When the separability
assumption holds, the limit in (8) equals c, i.e. ĉEN is consistent.

Intuitively, the proof exploits the idea that since ĉEN is given as an average of random
variables, Law of Large Numbers allows us to study its limit. Before we prove the
result, we discuss its consequences. First, we note that if Y is independent of X and
thus S is independent of X , we have that the limit in (8) equals P(S = 1) ≤ P(S =
1)/P(Y = 1) = c.Moreover, considering representation S = Y ε, discussed in Sect. 2,
it is easy to see that c = P(Y ε = 1|Y = 1) = P(ε = 1) whereas

EX P2(S = 1|X)

P(S = 1)
= P2(ε = 1)EX P2(Y = 1|X)

P(Y = 1)P(ε = 1)
= P(ε = 1)

EX P2(Y = 1|X)

P(Y = 1)
.

Thus the estimator is not consistent in general and multiplicative bias is
EP2(Y = 1|X)/P(Y = 1). Note that it holds

EX P2(Y = 1|X)

P(Y = 1)
≤ EX P(Y = 1|X)

P(Y = 1)
= P(Y = 1)

P(Y = 1)
= 1

with the inequality above being strict in discrete case if for some x there is 0 < P(Y =
1|X = x) < 1. In the separability case, when we have P(Y = 0|X = x) = 1 or
P(Y = 1|X = x) = 1 for any x , inequality above becomes equality and the limit
in (8) is c. When the separability condition does not hold, the bias of ĉEN is always
negative and increases with c. In particular, it is easily checked that in the case of
Example 1 discussed below the multiplicative bias equals 0.68.
We also note that consistency assumption (7) in the Lemma is satisfied for discrete
finite X when |U | → ∞ in view of weak Law of Large Numbers and in general case,
as S is binary, from uniform consistency of nonparametric regression estimators (cf.
e.g. Bierens 1983, for uniform consistency of kernel estimators).
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Proof From consistency assumption (7) it easily follows that the limit of ĉEN is the
same as the limit

1

|A|
∑
i∈A

P(S = 1|Xi ) = n

n1

1

n

∑
i∈T

P(S = 1|Xi )I {Si = 1} =: I1 × I2, (9)

where n1 = |A|. Obviously I1 = n/n1 → P(S = 1)−1 in probability and in view of
the weak Law of Large Numbers

I2 → E(X ,S)

(
P(S = 1|X)I {S = 1}

)
.

We compute the above limit for discrete X , in the general case proof is similar.

E(X ,S)

(
P(S = 1|X)I {S = 1}

)
=

∑
x∈X

P(S = 1, X = x)

P(X = x)
P(S = 1, X = x)

=
∑
x∈X

P2(S = 1, X = x)

P2(X = x)
P(X = x)

= EP2(S = 1|X). (10)

From convergences of I1 and I2 the result readily follows. 	


4.2 TIcE estimator

We now discuss recent estimator of c introduced in Bekker and Davis (2018). It relies
on the observation that SCAR assumption i.e. conditional independence of X and S
given Y implies that for any A ⊆ X

c = P(S = 1|Y = 1) = P(S = 1|X ∈ A,Y = 1) (11)

and the right hand side above is equal

P(S = 1, X ∈ A,Y = 1)

P(X ∈ A,Y = 1)
= P(S = 1|X ∈ A)

P(Y = 1|X ∈ A)
. (12)

Thus if A is such a set that P(Y = 1|X ∈ A) ≈ 1 (known as positive subdomain
assumption and A is called an anchor set in Bekker and Davis (2020)) then c may
be estimated as a fraction of observations with S = 1 such that their concomitant X
falls into A. This is an essence of the proposed method in which A is found using
induction tree built on the training sample and P(S = 1|X ∈ A) is estimated using
testing sample. Denote by ĉT I cE the resulting estimator (TIcE standing for ’Tree
Induction for c Estimation’). Such an approach will not yield satisfactory results if
P(Y = 1|X ∈ A) is bounded away from 1 for any set A. Consider the following
simple example.
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Example 1 Let (X ,Y ) be such that both X and Y take values 0, 1 with probability 1/2
and

P(Y = 1|X = 1) = P(Y = 0|X = 0) = 0.8.

Thus the anchor set A in this case (taken as a set maximising P(Y = 1|X ∈ A))

equals A = {X = 1} and for any S such that S ⊥ X |Y the corresponding value of
c = c(S) will satisfy

c = P(S = 1|X = 1)

P(Y = 1|X = 1)
= 10

8
P(S = 1|X = 1).

Divide data into training (i.e. ’tree’ using Authors’ terminology) and testing (i.e. ’esti-
mation’ ) data as in Bekker andDavis (2020) using (default) proportion 1:4 and let n be
the total number of observations, Test = (4/5)n be the size of estimation data. More-
over, using notation from Bekker and Davis (2018), let Test (X = 1) be the expected
number of observations from estimation data with X = 1 and

Lest (X = 1) = P(S = 1|X = 1)Test (X = 1) = 8

10
× 1

2
× 4

5
× n × c

the expected number of observations from estimation data with X = 1 and S = 1.
Using value of δ defined by equation (8) on p. 2714 in Bekker and Davis (2018), we
can obtain ’ideal’ value of ĉT I cE from the equation

ĉ := Lest (X = 1)

Test (X = 1)
− ε, (13)

where the correction (error) term equals to ε = (ĉ(1− ĉ)(1−δ)/δTest (X = 1))1/2 and
is derived from the one-sided Chebyschev inequality. The ’ideal’ value is the output
value of the algorithm (cf. definition of clow in Algorithm 1 of Bekker and Davis 2018)
when an estimated anchor set {Se : a∗ = v} in the algorithm is replaced by the true
anchor set {X = 1}. Note that value of δ is given by (8) in Bekker and Davis 2018).
Figure 1 shows values of ’ideal’ ĉT I cE obtained from (13) (red dots) and actual values
of ĉT I cE (light red dots) for 100 trials and for c ranging from 0 to 1 and n = 103 and
n = 104. The performances of other methods discussed in the paper is also shown
for comparison. KM2 estimator is discussed in Sect. 4.4 whereas MLR, JOINT and
CD+MMmethods are introduced in Sect. 5. It is seen that ĉT I cE underestimates true c
with pronounced bias for larger c and that bias is not negligible even for n = 104. The
situation does not improve even with ’ideal’ ĉT I cE when the anchor set is assumed
known. The reason for this behaviour is, that for any A, probability P(Y = 1|X ∈ A)

is significantly smaller than 1. The Elkan–Noto estimator performs similarly, on the
other handKM2 defined below has the smaller bias and the CD+MMmethod proposed
in this paper is approximately unbiased in this case.
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Fig. 1 Example 1. Values of ĉT I cE (light red dots) for 100 trials and ’ideal’ ĉT I cE (red dots) for n =
103, 104 (colour figure online)

4.3 Partial matching

PE estimator proposed in du Plessis and Sugiyama (2014) is based on a par-
tial matching in terms of the Pearson divergence defined as PE(p(x), q(x)) =∫
(p(x) − q(x))2/p(x) dx and is approximately unbiased under separability assump-

tion. Namely, it is proposed to find the minimiser of PE(a × f (x |Y = 1), f (x))
over a > 0 and then consider its estimator as an estimator of α. Note that α f (x |Y =
1) ≈ f (x) only for such x that (1− α) f (x |Y = 0) ≈ 0. It is easily derivable that the
minimiser equals

(∫
P2(x |Y = 1)

p(x)
dx

)−1

= P(Y = 1)

1 − (1 − P(Y = 1))A,
(14)

where A = ∫
p(x |Y = 1)p(x |Y = 0)/p(x) dx and the equality follows from (5). This

quantity is estimable as both p(x) and p(x |Y = 1) = p(x |S = 1) are observable.
The estimator is approximately unbiased under the separability assumption i.e. when
the class-conditional densities have disjoint supports, as then A = 0. Otherwise, it is
positively biased and thus suffers from intrinsic bias problem. We also note that the
minimiser equals

(∫
p(x)P2(Y = 1|X = x)

P2(Y = 1)
dx

)−1

= P2(Y = 1)

EP2(Y = 1|X)
= α

{
EP2(Y = 1|X)

P(Y = 1)

}−1

which shows that estimation of the minimiser will lead to biased estimator of α. Note
also that the multiplicative constant above is the reciprocal of the multiplicative bias
of ĉEN . In view of the correspondence between α and c (cf. (2)) this suggests close
correspondence between PE estimator and Elkan-Noto estimator.
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4.4 KM estimators (Ramaswamy et al. (2016))

Denote by F and H the distribution functions of X given S = 0 and S = 1, respectively
and note that (5) implies that F can be represented as a mixture

F(x) = α − αc

1 − αc
H(x) + 1 − α

1 − αc
G(x),

whereG is distribution of X given Y = 0. Following (Ramaswamy et al. 2016), denote
the mixing proportion by κ∗ = (α −αc)/(1−αc) and note that estimator of α may be
obtained from the equality α = κ∗(1− P(S = 1)) + P(S = 1) once κ∗ is estimated,
as S is observable. The problem of estimating κ∗ is approached by transforming PU
data into Reproducing Kernel Hilbert Space (RKHS)H by appropriate function φ and
solving this problem in H. More specifically, it is shown that κ∗ can be recovered by
truncating either the distance function d(λ) = infw∈C ||λφ(F̂)+(1−λ)φ(Ĥ)−w||H,
where the set C consists of convex combinations of transformed data points and || · ||H
denotes the norm of H, or the gradient of d(λ). In this way two estimators KM1 and
KM2 are obtained, which are shown to be consistent under appropriate conditions
(Theorems 12 and 13 in Ramaswamy et al. 2016). The advantage of the results is that
they hold provided the positive function condition is valid, which is weaker than the
anchor set condition (see Ramaswamy et al. 2016, Section 4). Disadvantage is that
the formal consistency result holds only when permissible truncation thresholds for
d or its gradient depend on the unknown κ∗ which we want to estimate. Thus the
studied versions of estimators are not necessarily consistent. Theoretical comparison
of KM1 and KM2with other proposals seems out of reach at the moment. The relevant
numerical analysis is provided in the following section. We stress that KM1 and KM2
are based on fully nonparametric approach whereas the method proposed here relies
on the assumption that distribution of Y given X is logistic.

5 Estimating the class prior via logistic regression

5.1 CD+MM algorithm: description and its properties

In the following we introduce CD+MM algorithm which attempts to optimize log-
likelihood function of PU data. We compare it with JOINT method introduced in
Teisseyre et al. (2020) and discuss why the new method is beneficial. For standard
supervised scenario, the logistic regression involves optimizing log-likelihood func-
tion

n∑
i=1

[yi log(σ (xTi b)) + (1 − yi ) log(1 − σ(xTi b))], (15)

with respect to b = (b0, . . . , bp), where σ(t) := exp(t)/(1 + exp(t)) is sigmoid
logistic function and posterior probability P(Y = 1|X = x) is assumed equal to
σ(xT b∗) for a certain b∗ ∈ Rp+1. Obviously, for PU data, this approach is not feasible
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as we do not observe Y and the loss function has to be based on S. To tackle the
above problem, we can use equality P(S = 1|X) = cP(Y = 1|X). In this context
we mention (Jaskie et al. 2020) who used modified logistic function to approximate
P(S = 1|X). We write the observed log-likelihood function

L(c, b) =
n∑

i=1

[si log(cσ(xTi b)) + (1 − si ) log(1 − cσ(xTi b))]. (16)

The main idea of the proposed approach is to maximise the above function simul-
taneously with respect to b and c. This has been already investigated in Teisseyre
et al. (2020) as JOINT Method which relied on simple gradient algorithm to max-
imise L(c, b) where it is shown that such approach works on par or better than other
competitors for estimating aposteriori probability P(Y = 1|X = x). However, it is
known that L(c, b) is not a concave function jointly in both arguments (see Song and
Raskutti 2020, p. 5). This can be seen by noting that the sum in (16) over si = 0 is not
concave as a function of b and can dominate the remaining sum over si = 1 (which
is concave) to that effect that L(c, ·) will not be concave.1 Thus, despite established
good performance of JOINT Method, it may fail to find a global maximum of L(c, b)
by using gradient search. Below we introduce a different method of searching for
maximizer of L(c, b) and show this gives improvement for the problem of estimating
class prior. It is based onMinorization–Maximisation (MM) algorithm (see e.g. Lange
2010) in which a (non-concave) criterion function is bounded from below by a concave
function at each step of iteration procedure. Under mild conditions it is shown that the
maximizers of the lower bounds in the consecutive iterations yield a non-decreasing
sequence of criterion function values.

Define function Lb(c) := L(c, b), to be profile log-likelihood function i.e. the
log-likelihood treated as a function of c for fixed b. Below we prove its concavity by
showing that its second derivative is non-positive.

Lemma 2 Function Lb(c) is concave with respect to c.

Proof The proof follows from a simple calculation showing that

∂2

∂2c
Lb(c) = −

n∑
i=1

( si
c2

+ (1 − si )σ 2(xTi b)

(1 − cσ(xTi b))
2

)
≤ 0

which implies that Lb(·) is concave. 	

Define function Lc(b) := L(c, b), i.e. profile log-likelihood function for fixed c.
Moreover, let X be a n × p matrix of features, whose i th row is xTi ; v(xTi b) :=
σ(xTi b)(1 − σ(xTi b)), Σ is n × n diagonal matrix with

v(xTi b)

σ (xTi b)(1 − cσ(xT1 b))
= 1 − σ(xTi b)

1 − cσ(xTi b)
,

1 We thank Wojciech Rejchel for pointing out this reasoning to us.

123



1052 M. Łazęcka et al.

i = 1, . . . , n on the diagonal; s = (s1, . . . , sn)T and p = (cσ(xT1 b), . . . , cσ(xTn b))
T .

Gradient of Lc(b) with respect to b is of the form

∇Lc(b) = XTΣ(s − p). (17)

We consider function

Ψc(b, b
0) := Lc(b

0) + (b − b0)T∇Lc(b
0) − 1

8
(b − b0)T XT X(b − b0).

Note that Ψc(·, b0) is concave. The following Lemma gives the lower bound for func-
tion Lc(b). The lower bound will serve as a proxy to be maximised in MM algorithm
and it is obtained by bounding from below the second term in Taylor expansion of
Lc(b).

Lemma 3 The following inequality holds: Lc(b) ≥ Ψ (b, b0) for any vector b0.

Proof We denote by Li,c(b) the i th summand of (16) treated as a function of b. We
first calculate a form of a second derivative of Li,c(b) using (17). Namely, noting that
σ ′(t) = σ(t)(1 − σ(t)) = v(t), we have for si = 1 and xi = (xi1, . . . , xip)T

∂2

∂b j∂bk
Li,c(b) = −xi j xikv(xTi b)

and for si = 0, using the fact that v′(t) = v(t)(1 − 2σ(t)) we have

∂2

∂b j∂bk
Li,c(b) = −cxi j xik

[v(xTi b)(1 − 2σ(xTi b))(1 − cσ(xTi b)) + cv2(xTi b)

(1 − cσ 2(xTi b))
2

]

= −cxi j xikv(xTi b)
(cσ 2(xTi b) − 2σ(xTi b) + 1)

(1 − cσ 2(xTi b))
2

.

Observe that

c(cσ 2(xTi b) − 2σ(xTi b) + 1)

(1 − cσ 2(xTi b))
2

= (1 − cσ(xTi b))
2 + c − 1

(1 − cσ 2(xTi b))
2

≤ 1,

as c ≤ 1 and 0 ≤ σ(s) ≤ 1. Thus denoting by H(b) = ∇2Lc(b) =
(

∂2

∂b j ∂bk
Lc(b)

)
j,k

Hessian of Lc(b) with respect to b and taking into account the inequality v(t) ≤ 1/4
we have that

H(b) ≥ −1

4
XT X , (18)

where ′ ≥′ above denotes matrix ordering (A ≥ B when A − B is a positive semi-
definite matrix). For (18) we additionally used XTΔX ≤ XT X when Δ is a diagonal
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matrix with all elements on the diagonal not larger then 1. Taylor expanding Lc(b)
around b0 we have

Lc(b) = Lc(b
0) + (b − b0)T∇Lc(b

0) + 1

2
(b − b0)T H(b̃∗)(b − b0)

where b̃∗ belongs to the interval [b0, b]. Using inequality (18) for the Hessian with
H(b) replaced by H(b∗) it follows that

(b − b0)T H(b̃∗)(b − b0) ≥ −1

4
(b − b0)T XT X(b − b0),

what combined with the previous inequality gives the proof of the Lemma. 	


Algorithm 1: Minorization-Maximization (MM) for optimizing Lc0(b)

Input : Observed data (xi , si ), number of iterations T , convergence threshold ε, c0.
Initialize: b̂0 = (0, . . . , 0)T ,
for t=1,2,…,T do

b̂t = argmaxb Ψc0 (b, b̂
t−1)

if max j |b̂t−1
j − b̂tj | < ε then

break loop

Output : b̂t

The result below shows that in the consecutive iterations t = 1, 2, . . . the values of
Lc0(b̂

t ) form a nondecreasing sequence. This in practical termsmeans its convergence
to the local minimum.

Theorem 2 Let b̂0 ∈ Rp and b̂t = argmaxb Ψc0(b, b̂
t−1) for t ≥ 1. Then

Lc0(b̂
t−1) ≤ Lc0(b̂

t ).

Proof Proof of the Theorem follows from properties of Minorization-Maximization
(MM) algorithm (see e.g. inequality (5.69) inHastie et al. (2015) applied to the negative
loglikelihood). Indeed, in view of Lemma 3 we have Lc(b) ≥ Ψ (b, b0), moreover
Lc(b0) = Ψ (b0, b0) from the definition of Ψ (b, b0) and Ψ (·, b0) is concave. 	


Theorem2 justifiesAlgorithm1which for a given value of c0 and b̂t−1 yields b̂t such
that Lc0(b̂

t−1) ≤ Lc0(b̂
t ) by maximizing Ψc0(·, b̂t−1). Note here that maximization

of Ψc0(·, b̂t−1) is fast as it is simple maximization of the quadratic function. This
provides very plausible justification for applying MM algorithm in this case.
We now describe a novel algorithm CD+MM which combines MM algorithm with
Cyclic Coordinate Descent (CD), see Algorithm 2 for the pseudo-code. The algorithm
works as follows. We cyclically iterate through b and c, one at a time, maximizing the
objective function with respect to each coordinate at a time. After (t − 1)th iteration

123



1054 M. Łazęcka et al.

in which b̂t−1 is obtained, ĉt is sought by maximising function Lb̂t−1(c) with respect

to c (note that in the view of Lemma 2 this a concave function of c) and then b̂t is
obtained by maximising Lĉt (b), which is done using Algorithm 1.

Algorithm 2: Cyclic coordinate descent + Minorization-Maximization
(CD+MM)
Input : Observed data (xi , si )
Initialize: b̂0 = (0, . . . , 0)T , ĉ0 = 0.5
for t=1,2,… do

ĉt = argmaxc Lb̂t−1 (c)

b̂t = argmaxb Lĉt (b) # use MM Algorithm 1

Output : ĉt

5.2 MLR estimator and its comparision with JOINTmethod

The idea of MLR estimator (Jaskie et al. 2020) is as follows. First note that c ≤
maxx P(S = 1|x) (and equality holds when maxx P(Y = 1|x) = 1)) and thus c
can be estimated as ĉ = maxx P̂(S = 1|x), where P̂(S = 1|x) is some estimator
of posterior probability. In MLR method, the following parametric model is used to
estimate P(S = 1|x)

gMLR(x, b, γ ) = 1

1 + b2 + exp(−γ T x)
, (19)

where b > 0 and γ ∈ Rp+1. Estimator (b̂, γ̂ ) is obtained using gradient-based
algorithms. Then noting that maxx gMLR(x, b, γ ) = 1/(1 + b2) one considers ĉ =
1/(1 + b̂2). Assume now, similarly to JOINT method, that aposteriori probability
P(Y = 1|x) is logistic, i.e. P(Y = 1|x) = σ(βT x). The following Lemma clarifies
the relation between (c, β) and (b, γ ).

Lemma 4 Assume that P(Y = 1|x) = σ(βT x), βi �= 0 for at least one i ≥ 1 and for
certain (b, γ T )T and all x ∈ Rp+1 it holds that

P(S = 1|x) = cσ(βT x) = gMLR(x, b, γ ). (20)

Then we have

γ0 = ln c + β0, γ−0 = β−0, c = 1

1 + b2
, (21)

where βT = (β0, β
T−0) and γ T = (γ0, γ

T−0).

Proof Similarly to the Proof of Theorem 1, by choosing appropriate values of x we
deduce the relations between parameters of the two competing models.
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Fig. 2 Density functions of distributions X |Y = 0 and X |Y = 1 for simulation models 1 and 2

The proof easily follows from (20) after noting that for any i ≥ 1 such that βi �= 0
(existence of such i is guaranteed by assumptions) and taking xn = (0, . . . ,−(βi ) ×
n, 0 . . . , 0)T , where non-zero element is placed at (i + 1)th coordinate, it implies
that P(S = 1|xn) is equivalent to c exp(β0 − |βi | × n) when n tends to infinity.
Comparison with the rate of convergence of RHS of (21) for xn yields that βi = γi
and c exp(β0) = exp(γ0). If βi = 0 by similar reasoning we obtain γi = 0. Thus we
obtain the first two desired equalities. The last one follows immediately. 	


We note that although (21) suggests that gMLR(x, b, γ ) yields equivalent parametri-
sation of P(S = 1|X) to that given by (c, β), this is not true. This is due to subtle but
crucial difference. Namely, in contrast to c and β which are independent parameters,
b and γ are not algebraically independent in view of equality γ0 = − ln(1+b2)+β0,
where β0 is an unknown constant. This entails that b and γ may not be treated as
independent parameters while performing gradient-based optimization. In particular,
the derivative of gMLR(x, b, γ ) with respect to b is not −2b/(1+b2 + exp(−γ T x))2.
Inadequate estimation may be expected in particular for small c when the absolute
value of γ0 in the view of (21) becomes large. This is indeed confirmed by our numer-
ical analysis in the next section.

6 Experiments

In the experiments we compare the performance of the proposed method CD+MM
with the following methods: JOINT method (Teisseyre et al. 2020), TIcE (Bekker
and Davis 2018), EN (Elkan and Noto 2008), MLR Jaskie et al. (2020), KM1, KM2
(Ramaswamy et al. 2016). We do not show the results for Partial Matching method
(du Plessis and Sugiyama 2014) due to similarity with EN estimator discussed above.
The source code of ourmethod is available at https://github.com/teisseyrep/PU_class_
prior.
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Fig. 3 Estimation error |α − α̂| (averaged over 100 simulations) wrt c for simulation model 1. Parameters:
b = 1, 2, α = 0.1, 0.25, 0.5 and n = 5000

6.1 Simulationmodels

We generate artificial data as follows. First Y is drawn from Bernoulli distribution
with α = P(Y = 1). We consider α = 0.1, 0.25, 0.5. Observed binary variable S is
generated in such a way that P(S = 1|Y = 1) = c, where c is treated as a parameter
ranging from 0.1 to 0.9 and P(S = 1|Y = 0) = 0. Then X1 is generated using
conditional distributions described below. We consider 2 scenarios:

– Simulation model 1 X1 is generated using conditional distributions X1|Y = 0 ∼
N (0, 1) and X1|Y = 1 ∼ N (b, 1), where b is a parameter.

– Simulation model 2 X1 is generated using conditional distributions X1|Y = 0 ∼
N (0, 1) and X1|Y = 1 ∼ 0.25N (0, 1) + 0.75N (b, 1).

Figure 2 shows density functions corresponding to conditional distributions of X1|Y =
0 and X1|Y = 1 for the simulation models. Parameter b controls the dependence
strength between X1 and Y . We consider two values b = 1 and b = 2. Larger value
of b corresponds to stronger dependence between X1 and Y . In order to make a
task more challenging, we also add spurious noise variables X2, . . . , X10, generated
from N (0, 1), independently from Y and let X = (X1, . . . , X10). Note that model 1
corresponds to logistic regression model, whereas in model 2 the dependence between
Y and X1 cannot be described by logistic model. Thus the first model favours the
proposed method which is based on logistic model, whereas model 2 allows to analyse
the robustness of the proposed method.

Figures 3 and 4 show estimation errors |α− α̂| (averaged over 100 simulations) wrt
c for simulation models (for better presentation we do not show the curves for KM1
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Fig. 4 Estimation error |α − α̂| (averaged over 100 simulations) wrt c for simulation model 2. Parameters:
b = 1, 2, α = 0.1, 0.25, 0.5 and n = 5000

as it worked systematically much worse than KM2). Observe that CD+MM achieves
small averaged errors for both models and almost all parameter settings. The JOINT
method and MLR usually work worse than CD+MM, whereas TIcE, EN and KM2
work poorly in most cases. The averaged estimation error for CD+MM decreases with
c. We observed the largest estimation errors for small α and small c, which is due to the
fact that for this setting we observe very few labelled observations. Indeed, for sample
size n = 5000, α = 0.1 and c = 0.1 we have on average only 50 labelled examples.
For simulation model 1, the estimation error of CD+MM increases when b decreases.
This suggests that, when the dependence between Y and X1 is weak,s then estimation
of α is more challenging. In extreme case b = 0, Y and X1 are independent and in
such case α is not identifiable, see the discussion in Sect. 3. Advantage of CD+MM
and JOINT methods over competitors is larger for Model 1 than for Model 2. This
is understandable since, in the first case the logistic model for which these methods
are designed, is well specified. Good performance of CD+MM and JOINT in the case
of Model 2 indicates that the methods are robust against departures from the logistic
model.
Figures 5 and 6 show empirical distributions of α̂ in form of boxplots against the
true parameter c for simulation models 1 and 2. First, it is clearly seen that EN, TIcE,
KM1 and KM2 overestimate α, which is a result of their underestimation of c and
agrees with theoretical analysis of Sect. 4. Secondly, we observe large variance for
JOINT method, especially for small α and small b. This suggests that simple gradient
optimization used in JOINTmethodmay be insufficient; the algorithm probably is get-
ting stuck in local minima. The variance of CD+MM is much lower, when compared
to JOINT method, which indicates that the proposed optimization procedure based
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Fig. 5 Distribution of α̂ wrt the true parameter c, for simulation model 1. The horizontal line corresponds
to the true α

on MM-algorithm allows to find optimal solutions more frequently which results in
more stable estimation. We also stress that KMmethods are the most computationally
expensive among studied methods, especially for larger samples sizes. For example,
when dimension of feature vector X is 10 and sample size is n = 2000, KM works
about 2 times slower than CD+MM, whereas for sample size n = 5000, KM works
about 30 times slower than CD+MM (assuming that for CD+MM, the maximal num-
bers of iterations are 300 and 50, for CD and MM algorithms, respectively; for KM
we used default settings).

Finally, we performed convergence analysis of the three methods based on para-
metric modelling: JOINT method, MLR and the proposed CD+MM. Recall, that in
CD+MM, in each step of cyclic coordinate descent algorithm 2 we perform iterative
MM algorithm 1. To make a comparison between CD+MM and two remaining meth-
ods fair, for CD+MM algorithm, we analyze the total number of iterations, i.e. the
number of iterations in cyclic coordinate descent Algorithm 2 multiplied by the num-
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Fig. 6 Distribution of α̂ wrt the true parameter c, for simulation model 2. The horizontal line corresponds
to the true α

ber of iterations of theMM algorithm. In this experiment, we take only 10 iterations of
MM algorithm for each step. Figure 7 shows how the value of log-likelihood changes
with the number of iterations for simulation models 1 and 2 for c = 0.3, 0.5, 0.7. In all
considered cases, CD+MMachieves larger value of the loglikelihood than two remain-
ing methods, within 100 first iterations. Interestingly, the curves for JOINT method
and MLR are similar. The plateau of the curves corresponding to JOINT method and
MLR may indicate the problem of non-convergence to the global optimum discussed
above.

6.2 Benchmark datasets

Weuse 8 popular benchmark datasets fromUCIMachine LearningRepository and one
that was used for the IJCNN 2001 neural network competition (Prokhorov 2001). A
short summary of each dataset can be found in Table 1. They were chosen to represent
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Fig. 7 Convergence analysis. Log-likelihood function with respect to the number of iterations for logistic
regression-based methods: JOINT METHOD, CD+MM and MLR

various characteristics of data (number of observations, number of features and the
fraction of positive examples). To adjust these data to our problem, we created PU
datasets from the labelled datasets, the positive examples were selected to be labelled
with label frequencies c = 0.1, 0.2, . . . , 0.9. For each label frequency c, we generated
100 PU datasets labelling randomly elements having Y = 1 with probability c and
then averaged the results over 100 repetitions. The true class prior for each dataset
was estimated as the number of positive examples divided by the number of examples.
All numerical features were scaled between 0 and 1 with the standard transformation
(x − min(x))/(max(x) − min(x)). Such transformation was recommended for TIcE
algorithm (Bekker and Davis 2018). Due to computational cost of KM1 and KM2,
for these methods, as in Ramaswamy et al. (2016) and Bekker and Davis (2018),
we subsampled two largest datasets (mushroom and ijcnn2001) choosing n = 2000
observations and averaged the results of 5 such trials for each experiment. Figure 8
shows averaged values of |α̂ − α| and Fig. 9 empirical distributions of α̂ against c.
In terms of an error |α − α̂| the method CD+MM achieves the most accurate results
for five datasets (credit-g, diabetes, heart-c, mushroom, spambase) for all or almost
all c values with the JOINT or MLR method being the second best (see Fig. 8). In
two cases the KM2 works best (vote and wdbc). The MLR method works well on
average except for small values of α and two data sets: credit-g and ijcnn2001 (in the
latter case it behaved very erratically and due to this it has been removed from the
respective plot). It can be seen from Fig. 9 that for both CD+MM and JOINT method
α̂ is usually less variable than EN and TIcE and the estimation error decreases with
c. For EN and TIcE underestimation of c results in overestimated α for BreastCancer,
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Table 1 Summary statistics of
benchmark datasets

Dataset n p α

Mushroom 8124 21 0.48

ijcnn2001 35000 22 0.10

wdbc 569 31 0.37

Vote 435 32 0.39

Spambase 4601 57 0.39

Heart-c 303 19 0.46

Diabetes 768 8 0.35

Credit-g 1000 48 0.30

BreastCancer 683 9 0.35

credit-g, diabetes, heart-c, spambase and mushroom datasets. On the other hand, the
CD+MM and MLR methods tend to underestimate α for small values of c.

6.3 Experiment on clinical dataset MIMIC

We performed an experiment on large clinical database MIMIC III (Johnson et al.
2016). The database contains information on 33166 patients treated in intensive care
units (ICU) who are diagnosed according to the coding scheme ICD-9. Patients are
diagnosed with various diseases, among which we consider 5 diseases: hypertension,
kidney and liver disease, diabetes and chronic pulmonary obstructive disease (copd).
The above families of diseases were already investigated in previous studies (Zufferey
et al. 2015; Teisseyre et al. 2019; Teisseyre 2020). Similarly as for benchmark datasets,
the true prevalence α is computed as a fraction of patients in the database with the
given disease. Table 2 shows the values of α for the considered diseases. Note that
these values do not match the prevalences of the diseases in the population, which is
due to the fact that the considered database is related to the ICU patients and thus it
cannot be treated as a representative sample from the population. The original dataset
consists of 308 features which correspond to certain blood and diagnostic tests (e.g.
Glucose, Sodium, etc.), administrative information (e.g. sex, age, marital status) and
medical scores used to track a person’s status during the stay in an intensive care unit
(e.g. Braden score used to assess a risk of developing a pressure ulcer). The list of
all features can be found at https://home.ipipan.waw.pl/p.teisseyre/PUBLICATIONS/
parcc/parcc_supplement.pdf. For each disease, we select 30 features using a simple fil-
ter based onmutual information, i.e. we first calculate the mutual information between
the given disease and the features and then select 30 features corresponding to largest
values of mutual information.

To create PU datasets from the completely labelled datasets, the positive examples
are selected to be labelled with label frequencies c = 0.1, 0.2, . . . , 0.9. For each
label frequency c we generated 100 PU datasets labelling randomly elements having
Y = 1 with probability c and then averaged the results over 100 repetitions. The above
scheme corresponds to the situation when actually occurring disease is diagnosed with
probability c.
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Fig. 8 Estimation error |α − α̂| (averaged over 100 simulations) wrt c for benchmark datasets

Figure 10 shows distributions of ĉ wrt the true parameter c. Observe that EN and
TIcE underestimate label frequency c, for all 5 considered datasets. The same is
true for KM1 and KM2, though they work better than EN and TIcE. The proposed
methods work much better for all datasets except liver, for which they show the same
tendency to underestimate c as EN and TIcE but to lesser degree. Figure 11 shows
distributions of α̂ wrt the true parameter c. Underestimation of c results in considerable
overestimation of α in the case of both EN and TIcE. The proposed method CD+MM
gives fully satisfactory results for diabetes and kidney. Although, CD+MM slightly
overestimates α for copd and liver, its error is still much lower than for EN and
TIcE. For hypertension, CD+MM underestimates α for small c and overestimates α

for large c. Finally, for CD+MM we observe smaller errors than for JOINT method,
which indicates that the proposed optimization procedure based on MM-algorithm
allows to improve the estimation accuracy. Figure 12 shows estimation error |α − α̂|
(averaged over 100 simulations) wrt c. We observe the smallest averaged estimation
errors for CD+MM for all cases but two with c = 0.1. CD+MM outperforms MLR,
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Fig. 9 Distribution of α̂ wrt the true parameter c, for benchmark datasets. The horizontal line corresponds
to the true α. The plot for MLR on ijcnn2001 data is omitted to its erratic behaviour
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Table 2 Summary statistics of
MIMIC III database Number of observations (patients) 33166

Number of features 308

% of patients with hypertension disease α = 66.7%

% of patients with kidney disease α = 34.98%

% of patients with liver disease α = 6.71%

% of patients with diabetes disease α = 31.82%

% of patients with copd disease α = 23.24%

Fig. 10 Distribution of ĉ wrt the true parameter c, for MIMIC-III datasets

which usually works on par with JOINT method, but in some situations is unstable
(for example liver disease and small c).
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Fig. 11 Distribution of α̂ wrt the true parameter c, for MIMIC-III datasets. The horizontal line corresponds
to the true α

7 Conclusions and future work

In this paper we analysed different methods of class prior estimation in positive unla-
belled learning. We showed that class prior probability is not identifiable for a PU
single sample scenario given a full knowledge of distribution of (X , S) if no assump-
tions on distribution of (X ,Y ) are imposed. The class prior becomes identifiable when
we impose mild semi-parametric model assumptions on conditional distribution of Y
given X . We formally show that in some situations, some of the existing algorithms
tend to underestimate label frequency c and overestimate class prior probability. This
property is confirmed by the numerical experiments. The proposed approach, based on
logistic regression, involves simultaneous estimation of label frequency c and model
parameters. In order to account for the non-concavity of the likelihood function, a
novel optimization procedure, called CD+MM, is proposed in this paper, which is a
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Fig. 12 Estimation error |α − α̂| (averaged over 100 simulations) wrt c for MIMIC III datasets

combination of cyclic coordinate descent andMinorization-Maximization algorithms.
In the method, we iteratively optimize profile log-likelihood functions. The experi-
ments, performed on artificial and benchmark datasets as well as on large clinical
database MIMIC, indicate that the proposed method CD+MM achieves lower estima-
tion errors of the class prior than other considered methods, for most of the datasets
and parameter settings. Indirectly, this indicates that CD+MM is robust to departures
from parametric setting of a logistic model from which it has been derived. For the
benchmark datasets, KM2was very competitive, however it was computationally very
costly. Moreover, CD+MM is significantly less variable than related JOINT method
which uses simple gradient optimization of the likelihood function. It follows from
experiments, that class prior estimation becomes more challenging when label fre-
quency is small and the dependence between class variable Y and feature vector X is
weak.

Since the performance of the methods based on logistic regression (JOINT method
and CD+MM) seems promising, we believe that this approach is worth pursuing. It
would be of interest to develop modifications of the method for number of predic-
tors p larger than sample size n using e.g. regularised version of logistic regression.
Such version would be particularly useful to deal with high-dimensional data. More-
over, finding concave lower bound of L(c, b) both in c and b would lead to another
potentially interesting modification of the proposed method.
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