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Abstract
Shapelets are discriminative subsequences extracted from time-series data. Classifiers
using shapelets have proven to achieve performances competitive to state-of-the-art
methods, while enhancing the model’s interpretability. While a lot of research has
been done for univariate time-series shapelets, extensions for the multivariate setting
have not yet received much attention. To extend shapelets-based classification to a
multidimensional setting, we developed a novel architecture for shapelets learning,
by embedding them as trainable weights in a multi-layer Neural Network. We also
investigated the introduction of a novel learning strategy for the shapelets, comprising
of two additional terms in the optimization goal, to retrieve a reduced set of uncorre-
lated shapelets. This paper describes the proposed architecture and presents results on
ten publicly available benchmark datasets, as well as a comparison with existing state-
of-the-art methods. Moreover, the proposed optimization objective leads the model
to automatically select smaller sets of uncorrelated shapelets, thus requiring no addi-
tional manual optimization on typically important hyper-parameters such as number
and length of shapelets. The results show how the proposed approach achieves com-
petitive performance across the datasets, and always leads to a significant reduction
in the number of shapelets used. This can make it faster for a domain expert to match
shapelets to real patterns, thus enhancing the interpretability of the model. Finally,
since the shapelets learnt during training can be extracted from the model they can
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serve as meaningful insights on the classifier’s decisions and the interactions between
different dimensions.

Keywords Shapelets · Time-series classification · Machine learning · Neural
networks

Mathematics Subject Classification 68T07 Artificial neural networks and deep
learning · 62H30 Classification and discrimination · 62M10 Time series

1 Introduction

Multivariate time-series classification is receiving an increasing interest given the
ubiquity and availability of such data in several domains, including e.g. industrial man-
ufacturing (in the form of machinery’s’ sensor readings), medical measurements or
Internet-of-Things applications. Sensor data is mostly multivariate and often the inter-
actions between different sensors are of interest for the analysis.Awell-established and
prolific research exists for univariate time-series classification (Bagnall et al. 2017),
and recently efforts have also been made to adapt these existing methodologies, or
come up with novel approaches, for the multivariate case (Karim et al. 2019; Wang
et al. 2016). When dealing with time-series, often the interest is not only to have a sat-
isfactory classification performance but also to obtain insights on the data. In machine
learning, this is often a challenge, given that most powerful classifiers are black-box.
However, it is still possible to obtain interpretable results by making use of white-box
features, which a classifier can then base its predictions on. One recently proposed
approach for univariate time-series classification that relies on interpretable features
is based on shapelets, i.e. maximally discriminative subsequences of time-series data.
Shapeletswere originally proposed inYe andKeogh (2009) as an innovative supervised
motif discovery algorithm,where univariate shapelets are searchedwithin a time-series
exhaustively among all possible candidates (subsequences) using a decision-tree-like
approach. Each candidate subsequence is evaluated according to the information gain
obtained at each node, using the distance between the shapelet and each time-series
and an optimally chosen threshold for the split. The length of the shapelets is a hyper-
parameter of the algorithm. Given the brute force nature of the approach, this strategy
does not scale well with the size of the data, making it inapplicable for larger datasets.
An extension of the original idea was introduced in Rakthanmanon and Keogh (2013)
with the FastShapelets algorithm, where the authors proposed to convert each time-
series into its SAX (Symbolic Aggregate approXimation) representation (Lin et al.
2007), and perform the random search for shapelets in this new lower dimensional
space. In Hills et al. (2014) the authors proposed to separate the discovery process
from the classification task (Shapelet Transform): first, shapelets are extracted using
the FastShapelets algorithm, and afterwards the training data is projected onto a new
feature space, by computing the minimum distance of each time-series with each
shapelet. This is done by sliding a shapelet over each time-series, computing the dis-
tances with all its subsequences and finally finding the minimum distance. Using this
new feature space as input for traditional classifiers such as SVMorRandomForest has
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shown to improve classification accuracy compared to the original tree-based approach
(Lines et al. 2012). All above methods were proposed for univariate time-series, but
some research also investigated possible extensions to the multi-dimensional case. In
Cetin et al. (2015), the authors propose an ensemblemethod of shapelet-based decision
trees built independently on each univariate dimension. In Karlsson et al. (2016), a
tree-based ensemble (Random Shapelet Forest) is built using many trees, constructed
by random sampling both the dimension and the shapelets in each tree. The predic-
tions of individual trees are then ensembled by majority voting to obtain the final
classifications. Another approach is to convert a multivariate dataset into a univariate
representation by e.g. concatenating the dimensions, and then applying existing dis-
covery algorithms to the new representation. In Patri et al. (2015), this representation
is obtained by interleaving time-series subsequences extracted from multiple chan-
nels. In Bostrom and Bagnall (2017), the authors propose an extension of Shapelet
Transform to the multivariate case by extracting multi-dimensional shapelets: (i) inde-
pendently from each dimension, (ii) dependently across dimensions, maintaining the
phase and (iii) independently across dimensions, looking for the optimal location in
each dimension during matching. All the approaches mentioned so far are based on
the enumeration (or random search) of potential candidates (subsequences), and can
be categorized as discovery algorithms, in the sense that shapelets are looked for
among subsequences of the training data, and their quality is evaluated according to
a defined criterion (e.g. information gain in tree-based approaches). Within this cate-
gory, each shapelet is constrained to be a subsequence of existing data. An approach
alternative to discovery that does not require computationally heavy candidate search
is shapelets learning, where shapelets are learnt from scratch directly from the data
using a machine learning model. Since shapelets are learnt and updated by the model,
they are not constrained to be subsequences of the training data. Shapelets learning
was originally proposed in Grabocka et al. (2014) for univariate time-series data,
where a logistic regression classifier is trained to jointly learn shapelets and weights.
Shapelets are initialized with a rough guess (the authors propose random or KMeans-
based initialization) and iteratively refined during the learning process. The learning
model proposed (with ŷ as the approximated binary target labels,M as the minimum
distances between each shapelets and the training data,W,W0 as the linearweights) is:

ŷi = W0 +
K∑

k=1

Mi,kWk, ∀i ∈ 1, . . . , N (1)

where K is the number of shapelets and N the number of time-series in the training
data. The features used are the minimum distances M, as proposed in Lines et al.
(2012). A regularized logistic loss between approximated ŷ and real y targets is then
optimized via stochastic gradient descent. An extension of this technique to the mul-
tivariate case was recently also proposed in Wang and Wu (2017), where the authors
use multivariate distances between subsequences and shapelets as predictors M for a
linear logistic classifier. The work presented in our paper contributes to this research
direction, and extends the existing approaches to non-linear decision boundaries, by
embedding the shapelets learning in the architecture of a Neural Network model, thus
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leveraging the recent advances in computational power granted by GPUs and allowing
the learning on a bigger scale by deepening the architecture. Specifically, the main
contributions presented in this paper are the following:

1. A novel architecture for learning multivariate shapelets, based on embedding the
shapelets as trainable weights of a multi-layer Neural Network model to allow for
non-linear decision boundaries, as discussed in Sect. 2.2;

2. The introduction of a novel optimization objective comprising additional terms to
control the number and correlation of the learnt shapelets, as described in Sect. 3.1;

3. An evaluation benchmark of the proposed model on ten publicly available multi-
variate time-series datasets, presented in Sect. 4.

2 Multi-layer neural network

The following definitions will introduce symbols and notations used throughout the
paper. We use the words channel and dimension interchangeably, referring to the
number of different measurements which each time-series in the data consists of.

2.1 Definitions

Definition 1 (Multivariate Time-Series Dataset, MVD) A multivariate time-series
dataset is a collection of N multivariate time-series instances. Each time-series con-
sists of Q sequential measurements of C different channels. Such dataset is defined
as TN×Q×C .

Definition 2 (Multivariate Shapelets Matrix, MSM) A multivariate shapelet matrix is
a matrix consisting of K multivariate shapelets of the same length. If the length is
defined as L , the shapelets matrix can be defined as SK×L×C .

Definition 3 (Minimum Distance Matrix, MDM) The minimum distance matrix
MN×K between an MVD TN×Q×C and an MSM SK×L×C is defined as:

Mi, j = min
k

dist(T i
k,k+L , S j ) ∀i ∈ {1, . . . , N }, j ∈ {1, . . . , K } (2)

i.e. Mi, j is the minimum distance between all subsequences of length L of the
i-th time-series from the j-th shapelet. The distance function dist is the Euclidean
distance in a C-dimensional space.

2.2 Architecture

Themodel proposed in this paper embeds the shapelets learning process in the architec-
ture of a Neural Network by introducing custom layers (Distance Layers), responsible
of computing the MDM as in Eq. (2), between input data and shapelets (Fig. 1). Each
Distance Layer DLk outputs the values of the MDM between K shapelets of length
Lk and the input data. The description of the model (and algorithm) is generic for a
classification task with P classes, with P ≥ 2.
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Fig. 1 Architecture of the proposed multi-layer Neural Network, with 1 hidden layer. The parameters
associated with each layer are shown on the right. DLk indicates the kth Distance Layer, S is the shapelet
matrix, W and Wout are fully-connected weights, and G are additional gating parameters as introduced in
Sect. 2.2.2

2.2.1 Layers

The network consists of three kind of layers:

1. Distance layer: this layer receives a batch of size B ofmultivariate time-series from
the training data TB×Q×C , and outputs the Minimum Distance Matrix MB×K

computed as in (2). This layer consists therefore of K neurons, one for each
shapelet. The trainable weights of this layer correspond to the shapelets being
learnt, S. It follows from (2) that:

Mi, j ≥ 0 ∀ i, j,

therefore no activation is applied to the output.
2. Hidden Layer(s): one or multiple fully-connected layers with inputM, weightsW

and output f (Y), where f (·) is the ReLU activation (Glorot et al. 2011):

f (Y) = max(0,Y)

and Y is the pre-activation

Y = M · W + b.

3. Output layer: the final layer consists of P neurons, where P is the number of
classes, and has associatedweightsWout . The pre-activationY is fed into a softmax
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Fig. 2 Example of the proposed
model, using 2 shapelets (red
and orange) of the same length
on a 2D time-series input, and 1
hidden dense layer. A 2D input
time-series is fed to the model,
which updates the shapelets and
computes the minimum
distances. Finally, the distances
are used as features for the
classification (color figure
online)

activation for binary or multiclass classification:

σ(Y) j = eY j

∑P
i=1 e

Yi
∀ j = 1, . . . , P

The pth class that satisfies

σ(Y)p > σ(Y)k ∀k ∈ {1, . . . , P}\{p}

is chosen as the predicted class. In case of a tie, the predicted class is chosen
randomly among the tying candidates.

As shown in Fig. 1, in practice the model learns shapelets of different sizes by using
multiple Distance Layers. The outputs of each of these layers (i.e. the distances) are
concatenated before being fed to the hidden layer(s).
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2.2.2 Learning objective

The proposed learning objective comprises of three components: classification loss
H , redundancy C and correlation E
Classification term, H : Similar to Grabocka et al. (2014), the classification task is
solved by minimizing the (binary or categorical) cross-entropy between the predicted
output ŷ and the labels y defined as:

Hy(ŷ) = −
∑

i

yi log(ŷi )

Redundancy term, C : In this work, we propose to modify the learning objective by
adding two terms to the loss, aimed at limiting the number of shapelets found, and
reducing their correlation. To achieve this, we introduce in each Distance Layer addi-
tional parametersG ∈ R

K . Based on these, we introduce a term C in the loss, defined
as:

C =
K∑

k=1

hθ (Gk)/K , C ∈ [0, 1]

where hθ (·) is the sigmoid function and θ a parameter to control its saturation:

hθ (Gk) = 1

1 + e−θGk

In other words, the values hθ (G) = [hθ (G1), . . . , hθ (GK )] - referred to as gating
parameters throughout the reminder of this text - act as gates and dynamically select
the shapelets among the pool of available candidates. The G parameters are thus
directly responsible of pushing the output of the sigmoid function towards higher
(lower) values as to select (discard) specific shapelets.

Additional trainable parameters are often used in Neural Network-based architec-
tures (not limited to TSC tasks) to achieve ad-hoc tasks, such as dynamic gating,
pruning etc. Some examples using trainable custom weights include channel gating
networks (Hua et al. 2019), dynamic channel pruning (Gao et al. 2018). In the domain
of TSC, in Raychaudhuri et al. (2017) e.g. the Authors introduce additional param-
eters to ”mask” specific dimensions in multivariate time-series data while learning
shapelets.

The C term forces the number of selected shapelets to be as low as possible. Since
the gating parameters should be as close to binary values as possible, i.e. hθ (Gk) ∈
{0, 1}, ∀k, the value of θ is on purpose set to be� 1. Note that, unlike when used as an
activation for a fully-connected layer, in this case the tendency of the sigmoid function
to saturate is actually a property that we can exploit. Indeed, given that the training
is joint and small changes are applied to the G parameters during training, we would
like to amplify these in the actual output of the sigmoid function, to eventually force
the parameters to be close to binary values. Throughout our experiments, we found
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the setting θ = 100 is appropriate for this goal, offering an activation with enough
steepness to capture these small changes.
To be able to learn the gating parameters, these need to be part of the (differentiable)
computational graph of our model, so that gradient updates can be back-propagated
through the network during training. To achieve this, we modify the Distance Layer
as to compute the following output on a mini-batch of size B:

M′ ∈ R
B×K = M · diag(hθ (G1), . . . , hθ (GK ))

=
⎡

⎢⎣
M1,1 . . . M1,K

...
. . .

...

MB,1 . . . MB,K

⎤

⎥⎦

⎡

⎢⎣
hθ (G1) . . . 0

. . .

0 . . . hθ (GK )

⎤

⎥⎦

In other words, the kth shapelet is ignored during training as hθ (Gk) → 0, since
the corresponding distances are set to 0 regardless of the input.
Correlation term, E : A second additional term E controls how correlated the selected
shapelets are, again with the goal of limiting their number and helping the model
discard redundant patterns:

E = max
i, j ∈ U

|Corr(M′)i j |, E ∈ [0, 1]

where Corr(M′) ∈ R
K×K is the correlation matrix of M′, and U = {i, j : i >

j ∀ i, j ∈ [1, K ]}, i.e. U is the upper triangular matrix of Corr , excluding the
diagonal values.

In simpler words, the two additional termsC and E try to lead the model to learn (i)
a smaller subset of shapelets and (ii) uncorrelated patterns. The rationale behind the
introduction of these terms is that, without additional constraints, the model typically
converges to sub-optimal solutions using irrelevant (randomnoise), redundant (motifs)
or many similar (correlated) shapelets. Indeed, while a shapelets-based model can
achieve good accuracy when using a larger set of shapelets, it loses its interpretability
as many irrelevant patterns are also learnt. Additionally, this allows one to avoid the
optimization of number and length of shapelets, which are crucial hyper-parameters
in shapelets-based models (Ye and Keogh 2009; Grabocka et al. 2014).

Combined objective As both terms C and E are to be minimized, the complete
learning objective problem can be formulated as:

min
S,G,W

(1 − α)Hy(ŷ) + α(C + E)

where α ∈
[
0,

1

2

] (3)

Note that shapeletsS, networkweightsW andG parameters all appear in Eq. (3) and
are therefore jointly updated during training gradient descent and back-propagation.
The parameter α plays a very important role in the loss, as it sets the trade-off between
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Fig. 3 Cyclic scheduling of α,
the trade-off parameter for the
classification/compactness
balance

classification performance and number of shapelets to retain. A too high value of α

might lead the model to learn a very small set of shapelets, degrading the classification
performance (at the limit, the model can disregard the H term). Vice versa, setting
α too low will lead the model to discard few shapelets (or none at all). While its
optimal value could be cross-validated, in practice it is advised to fully explore both
objectives. To do this, we propose a dynamic cyclic scheduling of the value of α,
similar to what has been proposed for the learning rate in Smith (2017): at each epoch
the value of α is changed following the sinusoidal cycles shown in Fig. 3, with range in
[0, 0.5]. This allows the model to start by favoring the classification task initially, and
gradually increasing α to discard irrelevant shapelets, and again decreasing it to refine
the selected shapelets for classification. This cycle is repeated to keep the balance
between the two objectives of maximizing classification accuracy and minimizing the
number of shapelets used.

3 Algorithm

The following sections describe the algorithm, with a discussion on the parameters
initialization (most importantly, shapelets initialization) and a description of the com-
plete training and evaluation framework.All the codewritten for thiswork is in Python,
the Neural Network architecture was defined in Keras1 using a Tensorflow2 backend
for gradient-based computations.

3.1 Parameters initialization

The algorithm requires the initialization of the network parameters: W, G and S.
Weights W are initialized using Xavier uniform initialization (Glorot and Bengio
2010); the gating parameters G are initialized to small random values sampled from
N (10−1, 10−3). Note that this implies that hθ (G) ≈ 1 since θ = 100. The choice for
the initialization of the shapelets S clearly has a big impact on the model performance
and the final learnt representation for the shapelets. To allow a fair comparison and
mitigate this effect, we chose to initialize the shapelets as in Grabocka et al. (2014),
using KMeans centroids on each channel.

1 https://keras.io.
2 https://tensorflow.com.
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3.2 Training

The training phase of our approach is illustrated in Algorithm 1.

1 Inputs: Training data (T, yT), validation data (V,yv), maximum number of shapelets Kmax , lengths
of shapelets L , patience, maxEpochs

2 –
3 S = ini t Shapelets(Kmax , L)

4 i = 0, best Acc = 0, noImprovement = 0
5 minShapelets = length(S)

6 earlyStop = FALSE
7 –
8 while i ≤ maxEpochs ∧ ¬earlyStop do
9 alpha = get Alpha(i)

10 f orward_pass(alpha)

11 val Acc = computeAccuracy(V, yv)

12 numShapelets = computeNumber Shapelets()
13 –
14 if (val Acc > best Acc) OR (numShapelets < minShapelets AND val Acc == best Acc)

then
15 best Acc = val Acc
16 minShapelets = numShapelets
17 noImprovement = 0
18 else
19 noImprovement+ = 1
20 if noImprovement > patience then
21 earlyStop = T RUE
22 end
23 end
24 –
25 backpropagate_error()
26 S,G,W = update_parameters()
27 i = i + 1
28 end

Algorithm 1: Training algorithm of the proposed approach

The algorithm takes as input a training time-series dataset T with labels yT, a
validation set V with labels yV, as well as the following parameters:

1. maxEpochs: the maximum number of training epochs;
2. patience: the amount of successive epochs with no improvement of the validation

score that is tolerated before early stopping the training process;
3. Kmax , L: the initial number of shapelets, and their lengths.

During each training epoch, the input data is fed in small batches into the network;
the current value for α is computed according to the epoch number, as in Fig. 3, and
a forward pass is run on the data (cf. lines 10 – 11). Afterwards, the prediction error
is backpropagated through the network and weights, gating parameters and shapelets
are updated using the computed gradients (cf. lines 27 – 28). The training can stop for
two reasons:

– the maximum number maxEpochs of iterations is reached;
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Fig. 4 Synthetic dataset: the injected patterns p1 and p2

– there has been no improvement of the validation target metric for more than
patience epochs. Note that improvement is defined (cf. lines 15 – 25) as either (i)
an increase in validation accuracy or (ii) a decrease in number of shapelets used,
if the accuracy is kept the same. This is to ensure that a model that uses fewer
shapelets must be preferred, accuracy being equal.

4 Experiments

Weevaluated the proposed architecture as awhole, aswell as its individual components
(namely, introduction of non-linear boundary and automatic selection of shapelets).
First, a proof-of-concept on a synthetic dataset is introduced to illustrate and validate
the rationale and advantages of our proposed method. The subsequent subsections
describe the experimental methodology and real-world datasets, while results can
be found in Sect. 5. In all experiments, the input parameters for the training were
set as follows: maxEpochs = 5000, batch size B = 32, patience = 200, Kmax =
2 ∗ num_classes, L = {0.125, 0.25, 0.33, 0.4} expressed as fraction of the input
length Q. The model initializes Kmax shapelets for every length in L . Note that here
Kmax and L are not treated as hyper-parameters and cross-validated, but on purpose
initialized to broad values, as the goal of the proposed model is to automatically
select those during learning. The optimization task is solved using an Adam optimizer
(Kingma and Ba 2014), with learning rate 0.001.

4.1 Synthetic dataset: XOR classification

To better illustrate and explain the advantages introduced by our method over existing
techniques to learn shapelets, we applied it on a synthetic dataset. The dataset consists
of a random bi-variate time-series, where two patterns p1 and p2 (Fig. 4) are injected,
as in Fig. 5. Specifically, the dataset D consists of 2000 samples Di=1,...,2000, labelled
according to the following criteria:

(p1 ∈ Di ) ⊕ (p2 ∈ Di )

where ⊕ is the logical XOR, and pk ∈ Di is true iff the pattern pk was injected in the
ith time-series Di .
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Fig. 5 Synthetic dataset: two bi-variate time-series of different classes (top class 0, bottom class 1), where
two patterns p1 and p2 are injected

If the model is able to learn shapelets similar to those (and only those) two patterns
(Fig. 4), the classification problem using the distances to these would correspond to
a XOR classification problem (cf. Fig. 6), which is known to be unsolvable for linear
models (Minsky and Papert 2017). The goal is to investigate whether our approach
is able to reduce the initial set of shapelets to the two patterns, as well as correctly
classify each sample.

According to the values of Kmax and L defined above, we ran our model with a
total of K = 16 � 2 shapelets, as well its linear variant (i.e. with no hidden layers).
This setting corresponds to most real-world scenarios, where the optimal number of
shapelets is not known a priori. While a model using all K shapelets should also find
the patterns and achieve perfect accuracy, the shapelets will contain many irrelevant
and redundant patterns, very similar to each other (cf. Fig. 7, bottom). Note that the
linear model is also able to separate the classes but using more than two shapelets, as
the problem could become linear in a higher-dimensional space. However, only the
introduction of a non-linear boundary will guarantee that the desired patterns are the
only ones retrieved. Figs. 7 and 8 show the gating parameters hθ (G) over time and
the shapelets found by running respectively the linear and non-linear variant of our
method. Patterns are marked in green (red) if they are kept (discarded) by the model.
We can observe how both variants manage to get rid of most of the redundant patterns,
but using a non-linear classification boundary improves the reduction even further,
while conserving the performance.

While this example is of course a simplification w.r.t real-world datasets, it illus-
trates the two key advantages of our proposed model, namely automatic selection of
shapelets and the non-linear boundary for the classification.

Finally, Fig. 9 illustrates the evolution during training of the individual loss terms
H , C and E , as well the accuracy on the validation set, using the linear (top) and
non-linear (bottom) model. The vertical dashed lines mark the epochs when the model
early stops due to the plateauing of the validation accuracy. It can be observed how
both models find quickly the patterns (accuracy rises to 1) and gradually drop the
irrelevant or correlated patterns, as illustrated by the decrease over time of C and E .
However, the non-linear boundary allows to drop the third (redundant) shapelet, as

123



Learning multivariate shapelets with multi-layer neural… 923

Fig. 6 Synthetic dataset: distances M1 and M2 from the shapelets learnt with the non-linear model. As
shown, separating the two classes corresponds to a XOR classification problem in 2D

shown by the steeper decrease of the correlation term E , and effectively retaining only
the two desired patterns.

4.2 Datasets

To evaluate the model on different multivariate datasets, we selected a subset based on
time-series length, number of channels and classes (cf. Table 1) from the multivari-
ate collection described in Bagnall et al. (2018) and publicly available3. The chosen
datasets are the following:

– Libras: this dataset contains 15 classes of 24 instances each, where each class
references to a hand movement type in the Brazilian sign language. The hand
movement is represented as a 2D curve performed by the hand in a period of time.

– Epilepsy: this datasets gather data from six participants conducting 4 different
activities (walking, running, sawing, seizure mimicking) while wearing a tri-axial
accelerometer on the wrist.

– NATOPS: this dataset contains 3D coordinates obtained from sensors on hands,
elbows, wrists and thumbs, recorded while performing six kinds of gestures.

– UWaveGestureLibrary: this dataset contains 3D coordinates of simple gestures
generated from accelerometers.

– FingerMovements: This dataset contains measurements of a normal subject sitting
and pressing with the index and little fingers specific keys in a self-chosen order
and timing.

– SelfRegulationSCP1/SCP2: This dataset contains measurements of the cortical
potentials taken from a healthy/artificially respirated ALS patient, asked to move
a cursor up and down on a computer screen.

– ArticularyWordRecognition: this datasets contains sensor data collected from
native speaker pronouncing 25 words.

3 https://timeseriesclassification.com.
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Fig. 7 Synthetic dataset: gating parameters (top) and shapelets (bottom) for our model using a linear
classification boundary. The curves in green/red (top) correspond to selected/discarded shapelets; below,
the shapelets are drawn with solid/dashed lines accordingly (color figure online)
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Fig. 8 Synthetic dataset: gating parameters (top) and shapelets (bottom) for our model using a non-linear
classification boundary. The curves in green/red (top) correspond to selected/discarded shapelets; below,
the shapelets are drawn with solid/dashed lines accordingly (color figure online)
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Fig. 9 Synthetic dataset: evolution during training of the different terms in the loss (E: Correlation, C:
Redundancy, H: Classification Loss), as well as the validation accuracy for the linear (top) and non-linear
(bottom) model

– RacketSports: this dataset contains measurements (3D coordinates for gyroscope
and accelerometer) from students wearing a smart watch and playing badminton
or squash; the problem is to identify the sport played and the type of stroke made.

– Handwriting: this dataset contains measurements from a smart watch worn by the
subjects while writing the 26 letters of the alphabet. 3D accelerometer readings
(x, y, z) are provided.

The last column of Table 1 indicates whether the distribution of the classes for all
datasets is balanced or not. For the imbalanced datasets, the classes distributions are
shown in Fig. 10. Further details on the datasets can be found in Bagnall et al. (2018).

4.3 Preprocessing

Before being fed to the model, the datasets were preprocessed in the following way:

1. Each time-series (from each dimension) is normalized to N (0, 1);
2. The training data is randomly shuffled to guarantee diversity in the training batches.
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Table 1 Benchmark datasets: properties of the datasets used for evaluation, where N is the number of
time-series samples, Q their length and C the number of dimensions

dataset N Q C classes balanced

Libras 360 45 2 15 yes

Epilepsy 275 206 3 4 no

NATOPS 360 51 24 6 yes

UWaveGestureLibrary 440 315 3 8 yes

FingerMovements 416 50 28 2 yes

SelfRegulationSCP1 561 896 6 2 yes

SelfRegulationSCP2 380 1152 7 2 yes

ArticularyWordRecognition 575 144 9 25 yes

RacketSports 303 30 6 4 no

Handwriting 1000 152 3 26 no

Fig. 10 Benchmark datasets: class distribution for the imbalanced datasets

4.4 Validation approach

Each model/hyperparameters setting is validated on multiple resampling of the data;
specifically, each dataset in Table 1 is split in 10 train/test set pairs with the following
proportions:

1. Training: 85% of the total data (15% of this data is held-out and used for early
stopping during training);

2. Test: 15% of the total data;

All splits are stratified, i.e. the class distribution is kept the same for training and test
sets.
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5 Results

This section discusses the results of the proposed methodology, in terms of both
classification performance and shapelets interpretability. We carried out experiments
both for well-established time-series classification approaches as well as an ablation
study on the proposed approach. In details, the following approaches are compared:

1. 1-Nearest Neighbor under multi-variate Dynamic Time Warping (DTW ), as
implemented in Tavenard et al. (2017);

2. Time Series Forest (T SF), as proposed in Deng et al. (2013) and implemented in
Löning et al. (2019);

3. Learning Time-Series Shapelets (LT S f ull ), as proposed in Grabocka et al. (2014)
and adapted to the multivariate case;

4. Learning Time-Series Shapelets (LT Sred ), as above but using the proposed auto-
matic selection of shapelets;

5. Generalized Multivariate Shapelets Model (GMSM f ull ), the extension of LT S
using a non-linear classification boundary;

6. Generalized Multivariate Shapelets Model Reduced (GMSMred ), the proposed
approach, using a non-linear classification boundary and embedded selection of
shapelets.

Approaches 4, 5 and 6 are variants in the ablation study.

5.1 Performance

The results of all models compared across multiple datasets are shown in Table 2. The
last rows show the average rank across datasets for each model, as well as the p-value
resulting from a two-sided Wilcoxon signed rank-test (Wilcoxon 1992) between each
classifier and our approach (GMSMred ). The p-values reported are computed using
the obtained accuracy values for each fold, for each dataset (10 folds× 10 datasets). As
shown, our approach GMSMred and its full variant GMSM f ull consistently match or
improve the performance of the linear versions; moreover, our approach GMSMred

outperforms all models in terms of average rank across datasets. Finally, the signif-
icance tests show how GMSMred is significantly different (p-value < 0.1) from all
models except its full variantGMSM f ull , showing that the selection of shapelets does
not negatively impact the model.

These results show how our method is able to achieve competitive performance,
while automatically selecting the number of shapelets needed. Indeed, Table 3 shows
the effect of the selection process on the number of shapelets K , compared to the
full scenario. The proposed approach learns a subset that is on average significantly
smaller (around 60% across datasets) than K for both linear and non-linear variant,
while retaining if not improving (cf. Table 2) the performance.
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Table 3 Benchmark datasets: reduction in the number of shapelets used after dynamic selection, for both
linear (LTS) and non-linear (GMSM) variants

dataset K LT Sred GMSMred

Libras 120 0.66 0.53

Epilepsy 32 0.63 0.57

NATOPS 48 0.62 0.79

UWaveGestureLibrary 64 0.66 0.60

FingerMovements 16 0.59 0.82

SelfRegulationSCP1 16 0.42 0.65

SelfRegulationSCP2 16 0.76 0.81

ArticularyWordRecognition 200 0.57 0.37

RacketSports 32 0.61 0.51

Handwriting 208 0.86 0.73

Reduction is expressed as a fraction of the initial number of shapelets K
The model achieving the largest reduction are marked in bold

5.2 Interpretability

In addition to the competitive resultsw.r.t. classification performance shown inTable 2,
a significant additional advantage of a shapelet-based classifier is its interpretability:
since these discriminative patterns are learnt from the data, visualizing the shapelets
can aid experts in interpreting the classifier’s decisions as well as offer insights on
the underlying data. While interpretability is not directly measurable or quantitatively
comparable across different approaches, in this section we (i) show a few examples of
the shapelets learnt by the model, to illustrate how they actually correspond to patterns
in the data and (ii) show how the distances-from-shapelets are useful features for the
classification, by visualizing a 2D manifold using T-SNE (Maaten and Hinton 2008).

A subset of shapelets learnt for the datasets UWaveGL, Epilepsy and Articulary-
WordRecognition are shown in Figs. 11, 12 and 13 respectively. It can be observed
how the shapelets closely match specific patterns in the data, and different lengths are
able to capture different shorter/longer trends. Moreover, since the learnt shapelets
are multivariate, it can be interesting to note how not all shapelets match closely each
channel. As an example, the shapelets shown in Fig. 12 have a better match on a some
channels (the first channel in the subset shown) than others, to show that the model can
pick up discriminative behaviors also when those happen on a subset of the channels
only.

Figure 14 shows a manifold learnt on the distances computed using the learnt
shapelets. To be able to visualize these, we used T-SNE to project the distances form
a high-dimensional space into a 2D plane. For a subset of the datasets, each plot
highlights the samples belonging to a specific class. It can be observed that across
datasets the embedding created by the distances groups sample from the same class
together, in a limited number of tight clusters. This allows a non-linear model to
separate the clusters in the higher dimensional space, thus obtaining good accuracy in
the classification task.
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Fig. 11 UWaveGestureLibrary dataset: 3D shapelets (subset) learnt on the dataset

Fig. 12 Epilepsy dataset: 3D shapelets (subset) learnt on the dataset
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Fig. 13 ArticularyWordRecognition dataset: 9D shapelets (subset) learnt on the dataset

123



Learning multivariate shapelets with multi-layer neural… 933

(a) Libras

(b) UWaveGestureLibrary

(c) NATOPS (d) Epilepsy

(e) SelfRegulationSCP1 (f) FingerMovements

(g) ArticularyWordRecognition

Fig. 14 Benchmark datasets: T-SNEmanifold on the distances obtained for some datasets. Samples belong-
ing to a class are plotted as blue crosses, while others as gray circles. Across datasets, the distances often
manage to isolate each class in a few (1 or 2) small clusters
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Based on the observations above, the shapelets learnt by our approach have the prop-
erties to (i) match closely the input data, thus effectively representing realistic patterns
and (ii) be effective features for time-series classification, using their distances to the
input data. It follows that, once trained, the model can be used not only as a clas-
sification tool but also to uncover discriminative patterns, by visualizing the learnt
shapelets; since these represent specific behaviors in the data, they are indeed imme-
diately interpretable by a domain expert, who canmatch themwith specific real events.
Additionally, since the proposed approach learns reduced sets of shapelets, this inves-
tigation process is expedited.

It is worth noting that, while theoretically the model can find shapelets on datasets
with any number of dimensions, the interpretability (and even basic visualization),
understood as the ability of a domain expert to link shapelets to real events, gets more
difficult as the dimensionality increases. Moreover, a hard limitation on the number
of dimensions that the approach can handle is related to the memory of the underlying
hardware used (e.g. the GPU): an increase of 1 dimension corresponds to a K ∗ L-fold
increase in the number of parameters to store in memory (as each shapelet has one
more channel of dimension L).

6 Conclusions

This paper presents a novel approach for learning multivariate shapelets for classifi-
cation tasks. It shows how a shapelets-based classifier can be generalized to learn any
non-linear decision boundary, by embedding shapelets learning into the architecture
of a Neural Network. In contrast to existing expensive discovery-based methods, this
approach is ready-to-use for (and can benefit from) larger scale datasets, given the pos-
sibility to add more hidden layers and make the architecture deeper. In this work, we
also proposed a modified learning objective, to allow the model to automatically iden-
tify a smaller number of uncorrelated shapelets. This also implies that no expensive
hyper-parameters optimization is required for parameters such as number and length of
shapelets, crucial for a shapelet-basedmodel’s performance. Results on ten benchmark
datasets showed: (i) how the proposed approach achieves competitive performance
against shapelet-based classifiers as well as state-of-the-art time-series classification
models and (ii) how the number of shapelets used is dynamically reduced by approx-
imately 40% (in average) using the proposed selection strategy, while preserving or
improving the performance with the full set of shapelets. Finally, the shapelets can be
visualized and used by a domain expert to uncover specific patterns in the data and
match them to actual events.
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