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Abstract
We propose a robust procedure to estimate a linear regression model with compo-
sitional and real-valued explanatory variables. The proposed procedure is designed
to be robust against individual outlying cells in the data matrix (cellwise outliers),
as well as entire outlying observations (rowwise outliers). Cellwise outliers are first
filtered and then imputed by robust estimates. Afterwards, rowwise robust composi-
tional regression is performed to obtain model coefficient estimates. Simulations show
that the procedure generally outperforms a traditional rowwise-only robust regression
method (MM-estimator). Moreover, our procedure yields better or comparable results
to recently proposed cellwise robust regression methods (shooting S-estimator, 3-step
regression) while it is preferable for interpretation through the use of appropriate
coordinate systems for compositional data. An application to bio-environmental data
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reveals that the proposed procedure—compared to other regression methods—leads
to conclusions that are best aligned with established scientific knowledge.

Keywords Cellwise outliers · Compositional data · Logratio coordinates ·
Regression analysis · Robust statistics

Mathematics Subject Classification 62J05 · 62H99

1 Introduction

Regression analysis is one of the most widely used techniques in practical data anal-
ysis and statistical modelling. It allows to study how a real-valued response variable
is associated with explanatory variables of various types, including variables of a
compositional nature (i.e., variables that carry relative information). Compositional
variables are commonly generated through some form of signal processing in mod-
ern areas of chemistry, biology and environmental sciences. They are expressed in
units such as percentages, parts per million, mg/l, mmol/mol or similar; typically
representing portions of a total sample weight or volume. Some examples include
multivariate measurements of pollutant concentrations, water chemistry, air volatile
compounds, foodstuff nutritional compositions, or species relative abundances. They
can be entered in an explanatory role in a regression problem, for instance to assess
their relationship with a water, air or food quality index. Compositional variables are
also common in social sciences like economics. For example, shares of enterprise
size classes in a region, investment portfolios, and household or time budgets; which
may be put in relation to a productivity or profitability indicator. Such variables car-
rying relative information are regarded as intrinsically interrelated parts of a so-called
composition, and their observations are generally referred to as compositional data
(Aitchison 1986). Proper statistical processing of compositional data (i.e., accounting
for their specific nature) is a key requirement for obtaining interpretable results, but
also contributes to the overall validity of the statistical analysis (Pawlowsky-Glahn
et al. 2015; Filzmoser et al. 2018). This also holds if the compositional parts act as
covariates in regression analysis (Hron et al. 2012).

In practice, a common issue is that the observed data set contains outliers, i.e. obser-
vations that deviate from the majority of the observations. This can occur for different
reasons, including measurement error or some form of contamination. Unfortunately,
outliers can greatly influence estimates of the model parameters and may lead to
unreliable results. Methods have been developed in the literature to downplay the
effects of outliers in order to make statistical analysis more robust (see, e.g., Hampel
et al. 1986; Rousseeuw and Leroy 1987; Maronna et al. 2002; Huber and Ronchetti
2009). Traditionally, robust estimators for multivariate data have been designed to
deal with entire observations being contaminated, assuming that there is a majority
of non-contaminated observations in the data set. Such outliers are in the following
referred to as rowwise outliers, in reference to the fact that observations are commonly
arranged by rows in a data matrix, whereas the variables of interest are arranged by
columns. However, atypical observations often exhibit outlying values only in a single
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Robust regression with compositional covariates 871

Fig. 1 Illustration of rowwise outliers (left) and cellwise outliers (right)

variable or a small subset of variables (Rousseeuw and Van den Bossche 2018). When
contamination occurs at the cell level of a data matrix, it is actually possible that the
majority of rows contain some outlying cells. Thus, treating entire observations as
outliers might lead to an unacceptable loss of useful information, particularly in high-
dimensional data sets. In the literature on rowwise outliers, equivariance properties are
considered essential for estimators, and robustness properties such as the breakdown
point are linked to equivariance properties (e.g., Lopuhaä and Rousseeuw 1991). For
robustness against outlying cells, on the other hand, it is necessary to give up proper-
ties such as affine equivariance, as affine transformations can spread an outlying cell
over all components of the observation (Alqallaf et al. 2009). Recent literature has
focused on this latter type of outliers, referred to as cellwise outliers, although this
literature is still scarce. Some examples include works addressing outlier detection
(Rousseeuw and Van den Bossche 2018), scatter matrix estimation (e.g., Van Aelst
et al. 2011; Agostinelli et al. 2015; Leung et al. 2017), linear regression (e.g., Öllerer
et al. 2016; Leung et al. 2016; Filzmoser et al. 2020), principal component analysis
(e.g., Hubert et al. 2019), and clustering (e.g., Farcomeni 2014a, b). Figure 1 illustrates
the two types of outliers that can be found in a data matrix. In addition to issues with
outliers, when working with compositional data we have to take into account that all
the relevant information about a compositional part is contained in the ratios between
parts (Pawlowsky-Glahn et al. 2015).

In this paper, we introduce a robust estimation procedure for regression analysis
with compositional covariates that is designed to handle both cellwise and rowwise
outliers. The key idea is to first detect outlying cells and subsequently replace them
by sensible values using a (rowwise) robust imputation procedure. Our simulations
indicate that when only a few cells of a row are contaminated, treating outliers at the
cell level with the proposed procedure (rather than at the row level with rowwise-only
robust compositional regression) is advantageous even when the number of explana-
tory variables is relatively small (see Sect. 4). This is particularly relevant in the
presence of a complex (compositional) data structure, because the pernicious effects
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of cellwise outliers easily propagate through the ratios between compositional parts.
Nevertheless, as the two types of outliers may occur simultaneously in a data set
(Leung et al. 2016; Rousseeuw and Van den Bossche 2018), it is important to note
that our method is able to protect against both cellwise and rowwise outliers.

The proposed robust procedure is developed for a linear regression model with a
real-valued response and compositional explanatory variables, possibly accompanied
by additional real-valued covariates. It is similar in spirit to the 3-step regression
estimator of Leung et al. (2016). Both methods start by filtering cellwise outliers and
then apply rowwise robust methods. As Leung et al. (2016) only consider real-valued
variables, they canuse a rowwise robust estimator for incomplete data (see alsoDanilov
et al. 2012). However, the situation is more challenging with compositional data, as
they need to be represented in an appropriate coordinate system for proper statistical
analysis. This is not feasible with incomplete data (see “Appendix B”), which is why
our procedure makes use of an imputation step. The shooting S-estimator of Öllerer
et al. (2016), on the other hand, takes a very different approach. It does not contain a
filtering step, but instead combines a coordinate descent algorithm with simple robust
regressions to handle outlying cells.Most coordinate representations for compositional
data are therefore not suitable for the shooting S-estimator due to the propagation of
outliers.

In Sect. 2, we provide some statistical background about compositional data anal-
ysis and introduce the particular logratio coordinate system we use to represent
compositional variables in a regression context. We focus on so-called pivot coor-
dinates, which allow to link each compositional part to a logratio coordinate within
an orthonormal coordinate system. Specifically, such a logratio coordinate isolates all
the relative information about the corresponding compositional part with respect to
the other parts in a given composition. Pivot coordinates have been successfully used
in regression analysis with compositional covariates (Hron et al. 2012), as well as
in regression-based imputation of missing values in compositional data (Hron et al.
2010). UnlikeHron et al. (2012), we perform regressionwith theMM-estimator (Yohai
1987) to achieve high robustness with tunable efficiency, but any other rowwise robust
regression method could be used in our procedure instead. Section 3 gives a detailed
description of the proposedmethod,which is designed for the regular case of regression
analysis withmore observations than explanatory variables. Its relative performance in
comparison to other regression methods is assessed by simulation in Sect. 4, whereas
Sect. 5 illustrates its use in a bio-environmental science application. The results indi-
cate that our procedure, which maximizes the use of the information contained in the
data set, can cope with moderate levels of cellwise and rowwise contamination, and
yields better or comparable estimates than its competitors: the aforementioned 3-step
regression estimator and shooting S-estimator, as well as the rowwise robust MM-
estimator and the ordinary least squares estimator. Moreover, our procedure allows to
perform regression analysis in any isometric logratio coordinate system that provides
suitable interpretability of the results, whereas the predicted values do not depend
on the particular coordinate representation. Section 6 compares our procedure to its
competitors in terms of computation time, and the final Sect. 7 concludes.
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Robust regression with compositional covariates 873

2 Methodological background

A D-part composition is defined as a random vector X = (X1, . . . , XD)′ with strictly
positive components (compositional parts), carrying relative information. Accord-
ingly, compositional data are multivariate observations where the relevant information
is contained in the ratios between parts (Pawlowsky-Glahn et al. 2015). Compositions
are commonly represented as proportions or percentages (where the sum of the parts
is equal to 1 or 100, respectively). However, the above definition implies that the sam-
ple space is actually formed by equivalence classes of proportional vectors and the
particular value of the sum of the compositional parts is irrelevant. Instead of ratios, it
is advantageous to work with logratios when dealing with compositions, as logratios
map the range of a ratio from the positive real space onto the entire real space and
symmetrize their values around zero. Moreover, inverse logratios provide the same
information up to the sign, i.e., ln(X j/Xk) = − ln(Xk/X j ). This relationship implies
that for the purpose of cellwise outlier detection, only D(D − 1)/2 instead of D2

logratios have to be considered.
Let x = (x1, . . . , xD)′ be an observation of a random composition X =

(X1, . . . , XD)′. Clearly, if a form of contamination generates an outlying value in
a compositional part x j , this will affect all pairwise logratios where x j is contained.
On the other hand, data contamination that generates just one aberrant pairwise logratio
ln(x j/xk) might have been originated from two outlying compositional parts, namely
x j and xk . These considerations need to be taken into account when developing a
cellwise outlier detection method in the context of compositional data analysis.

Compositional data formally obey the so-called Aitchison geometry of the simplex
sample space (Pawlowsky-Glahn et al. 2015). Therefore, it is necessary to map com-
positions onto the real space in order to apply ordinary statistical methods that rely on
the real Euclidean geometry. From a geometrical perspective, a new coordinate sys-
tem with respect to the Aitchison geometry is constructed. For our purpose, so-called
isometric logratio (ilr) coordinates are preferable as they allow to express composi-
tions in an orthonormal coordinate system (Egozcue et al. 2003). Accordingly, the
ilr mapping is such that distances between points in the original Aitchison geometry
of the simplex are preserved in the real Euclidean geometry of RD−1. Specifically,
we choose so-called pivot coordinates where the role of a single compositional part
against the others is highlighted (Fišerová and Hron 2011; Hron et al. 2017). This way,
for a D-part composition X = (X1, . . . , XD)′, we obtain a real-valued random vector
Z = (Z1, . . . , ZD−1)

′ with

Z j =
√

D − j

D − j + 1
ln

X j

D− j
√∏D

k= j+1 Xk

, j = 1, . . . , D − 1. (1)

Thus, all relative information about X1—with respect to the (geometric) average of
the remaining parts—is contained in the first coordinate Z1. Equivalently, Z1 can be
expressed as
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Z1 = 1√
D(D − 1)

[ln(X1/X2) + · · · + ln(X1/XD)] , (2)

i.e., as a (scaled) sum of all the pairwise logratios with X1 in the numerator. By
permuting the compositional parts in X , such that a different part is put at the first
position each time, we can obtain D different orthonormal coordinate systems, which
are orthogonal rotations of each other. Each of them emphasizes the role of the
respective compositional part placed at the first position (Fišerová and Hron 2011).

We then generalize the expression in (1) by denoting X(l) =
(
X (l)
1 , . . . , X (l)

D

)′ =
(Xl , X2, . . . , Xl−1, Xl+1, . . . , XD)′ and Z(l) =

(
Z (l)
1 , . . . , Z (l)

D−1

)′
, with

Z (l)
j =

√
D − j

D − j + 1
ln

X (l)
j

D− j
√∏D

k= j+1 X
(l)
k

, j = 1, . . . , D−1, l = 1, . . . , D. (3)

Thus, all the relative information about an arbitrary compositional part Xl , l =
1, . . . , D, is contained in the corresponding first pivot coordinate Z (l)

1 . Note that an

inverse mapping can be applied to transform back to X (l) =
(
X (l)
1 , . . . , X (l)

D

)′
, with

X (l)
1 = exp

(√
D − 1

D
Z (l)
1

)
,

X (l)
j = exp

⎛
⎝−

j−1∑
k=1

1√
(D − k + 1)(D − k)

Z (l)
k +

√
D − j

D − j + 1
Z (l)
j

⎞
⎠ ,

j = 2, . . . , D − 1,

X (l)
D = exp

(
−

D−1∑
k=1

1√
(D − k + 1)(D − k)

Z (l)
k

)
.

(4)

This conveniently allows to transfer outputs from statistical processing in real space
back to the original simplex sample space of compositional data, using any possible
proportional representation within the equivalence class according to any prescribed
sum of parts (Filzmoser et al. 2018).

3 Robust compositional regression with cellwise outliers

Here we address three challenges for regression analysis: (i) the inclusion of com-
positional explanatory variables, possibly complemented by real-valued explanatory
variables; (ii) the presence of cellwise outliers; and (iii) the presence of rowwise out-
liers. Each one creates its own set of particular issues for statistical modelling, and
regardless of their occurrence in isolation or in combination, ignoring these issues can
lead to unreliable and biased results (e.g., Hron et al. 2012; Filzmoser et al. 2018;
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Öllerer et al. 2016; Leung et al. 2016; Yohai 1987). Therefore, the proposed method
consists of four stages:

1. Detect outlying cells in the data set (that are not part of entire outlying observations).
2. Replace them by sensible values via rowwise robust imputation (possibly in both

response and covariates).
3. Conduct rowwise robust regressionusing the imputeddata, including compositional

predictors conveniently expressed in terms of logratio pivot coordinates.
4. Use a multiple imputation scheme so that the standard errors of the regression coef-

ficient estimates account for the additional uncertainty caused by missing values.

These stages are discussed in more detail in the following subsections, while pseu-
docode for the entire procedure is given in “Appendix A”. Note that the separate
imputation step is necessary to keep the properties of the pivot coordinates defined in
(3). If the filtered outliers were not imputed, the resulting missing logratios of com-
positional parts would make it unmanageable to work with pivot coordinates. As an
alternative, we investigated a modification of pivot coordinates so that this propaga-
tion of missing values is avoided (see “Appendix B”). However, these modified pivot
coordinates do not lead to coordinate systems that are exact orthogonal rotations of
each other, and therefore their practical interpretability is compromised. It should also
be noted that we include the response variable in the cellwise outlier filter and multiple
imputation steps, which is in line with the literature onmultiple imputation (e.g., Little
1992; Allison 2002, p. 53). Omitting the possibly correlated response variable from
the imputation models would in general imply misspecification of the conditional dis-
tributions from which the imputed values are drawn, yielding biased estimates of the
regression coefficients (see “Appendix C”). If a prediction of the response variable is
needed for a new observation that contains missing values in the explanatory variables,
a separate imputation procedure that considers only the explanatory variables could
be applied before predicting the response.

For the sake of easing the description of the data set involved in each of the four
stages and the corresponding roles of the variables, we use the followingmathematical
notation:

• R1, . . . , Rp, Rp+1 to indistinctly refer to any potential real-valued covariates
V1, . . . , Vp along with the response variable Y , whenever their distinction is not
relevant.

• X = (x1, . . . , xD, r1, . . . , r p+1) to represent an n × (D + p + 1) dimen-
sional data matrix in which the rows contain realizations of the compositional
parts X1, . . . , XD and the real-valued variables R1, . . . , Rp+1, with x j =
(x1 j , . . . , xnj )′ and r j = (r1 j , . . . , rnj )′ representing column vectors of obser-
vations of each of them. The corresponding imputed data set is denoted by X̃ ,
and its compositional and real-valued elements are denoted by x̃i1, . . . , x̃i D and
r̃i1, . . . , r̃i,p+1, respectively, i = 1, . . . , n.

• L = (ln(x1/x2), . . . , ln(xD−1/xD), r1, . . . , r p+1) to refer to an n × [D(D −
1)/2 + p + 1] dimensional data matrix in which the compositional parts are rep-
resented by all the corresponding D(D − 1)/2 pairwise logratios.
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• O for the set of indices (i, j) of the cells inX that are marked as cellwise outliers.
It is important to recall that outlying cells are only marked if they are not part of
a rowwise outlier.

3.1 Detection of cellwise outliers

The detection of deviating cells is based on the bivariate filter of Rousseeuw and
Van den Bossche (2018). The foremost assumption of this method is that the data
matrix is generated from a multivariate normal population, but some cell values are
contaminated at random and become outliers. The procedure is briefly sketched in the
following (see Rousseeuw and Van den Bossche 2018, for full details):

1. First, all variables (columns) are robustly standardized, e.g., by subtracting the
median and dividing by the median absolute deviation (MAD).

2. Then deviating cells in single variables are marked, i.e., those containing absolute

values higher than the cut-off value
√

χ2
1,τ , where χ2

1,τ is the τ -quantile of the χ2

distribution with one degree of freedom.
3. For each variable, the correlated variables are determined, i.e., those with absolute

robust correlation higher than 0.5. Predictions for every cell are made based on
each correlated variable that has a nonmarked cell in the same observation (row).
If multiple nonmarked cells are available, the weighted mean of the corresponding
predictions can be taken as the predicted value (see Equation (9) of Rousseeuw and
Van den Bossche 2018). A deshrinkage step is subsequently applied to obtain the
final prediction. If all other cells of the rowaremarked aswell, the prediction is set to
0 (which is the location estimate of the variable since all variables are standardized).
A cell for which the observed value differs too much from its prediction is marked.

4. The cells marked in step 2 or 3 are considered to be cellwise outliers.
5. Finally, rowwise outliers are identified. The i-th row of the data matrix is marked as

an outlier if the absolute value of a robustly standardized statistic Ti exceeds the cut-

off value
√

χ2
1,τ . The statistic Ti is defined as the average (over j) of F(d2i j ), where

F stands for the cumulative distribution function of the χ2 distribution with one
degree of freedom, and di j denotes the robustly standardized difference between
the value in the cell with indices (i, j) and its prediction (from step 3).

We apply the bivariate filter to the data matrix L, which contains the relevant
pairwise logratios of the compositions along with potential real-valued covariates
and the response variable, i.e., L = (ln(x1/x2), . . . , ln(xD−1/xD), r1, . . . , r p+1).
The next task is to transfer the information about the cellwise outliers in L to X =
(x1, . . . , xD, r1, . . . , r p+1). While this is identical for the real-valued variables, we
propose to mark a compositional part xi j inX as a cellwise outlier (and subsequently
set its value to missing to be imputed) if at least half of the logratios containing xi j are
identified as outliers by the bivariate filter. After extensive simulation experiments, we
found this condition strict enough to detect outlying compositional parts but not overly
strict. As a matter of fact, many outlying cells would not be detected if we required
that all logratios including a particular part had to be marked as outliers. Rousseeuw
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Robust regression with compositional covariates 877

and Van den Bossche (2018) recommend to use τ = 0.99 in the cut-off value
√

χ2
1,τ

of the outlier filter, which gave favorable results in our simulations. Nevertheless, we
recommend to consider lower values of τ as well to investigate sensitivity relative to
this parameter (as illustrated in the case study in Sect. 5).

Note that the purpose of the initial filter is to avoid that the subsequent regression
modelling is influenced by cellwise outliers. However, while cellwise outlier filters
performwell in detecting individual outlying cells, they are not as effective in detecting
rowwise outliers (Leung et al. 2016; Rousseeuw and Van den Bossche 2018). Hence
it is still crucial to protect against rowwise outliers in the subsequent stages of the
procedure. Moreover, observations that have a large number of outlying cells are
likely to be rowwise outliers. In our view, it is thus better not to impute those data
cells and instead have the entire observation downweighted by a robust regression
estimator in the following stages. Hence, at this point we treat an observation as a
rowwise outlier if step 5 of the bivariate filter identifies the corresponding row in L as
a rowwise outlier, or if at least 75% cells of the corresponding row in X are marked
as cellwise outliers. The final index set O contains the indices (i, j) of all cellwise
outliers that are not part of rowwise outliers. Cells ofX indicated byO are treated as
missing values to be imputed in the next stage.

3.2 Imputation of cellwise outliers

Since compositional data are projected ontoRD−1 through logratios involving several
parts, missing parts as derived from the cellwise outlier filter can easily result in an
unmanageable amount of missing logratios. We therefore impute the affected cells
beforehand, so that subsequent compositional regression based on logratios can be
conducted as usual on the imputed data matrix. For this purpose, we modify the
iterative model-based imputation procedure of Hron et al. (2010) for compositional
data to allow for a mixture of compositional and real-valued variables. This method
uses a representation of the compositional data in pivot coordinates, and imputes the
missing cells by estimates of expected values conditional on the observed part of the
data. Such conditional expected values are modeled by linear regression models (with
the assumption that the error terms have expected value equal to zero), which are fitted
using the rowwise robust MM-estimator (Yohai 1987). As MM-regression allows to
reduce the influence of rowwise outliers on the estimation of the imputation model,
the imputed values may reflect the structure of the majority of the available data.

The imputation of outlying cells starts by separately sorting compositional parts and
real-valued variables in decreasing order according to the amount of missing values.
To simplify notation, we assume that this sorting does not change the original position
of any compositional part or real-valued variable.

Following Hron et al. (2010), the imputation algorithm is initialized with the simul-
taneous k-nearest-neighbor (knn) method, which is based on the Aitchison distance
(Pawlowsky-Glahn et al. 2015) between neighbors for the compositional parts and on
the Euclidean distance between neighbors for the real-valued variables.

Each iteration of the imputation algorithm consists of at most D + p + 1 steps.
The first steps involve the imputation of the compositional parts (up to D), whereas
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the remaining steps involve the imputation of the real-valued variables (up to p + 1).
The procedure is summarized as follows:

1. For each compositional part xl that contains outlying cells, l = 1, . . . , D, pivot
coordinates are obtained to sequentially fit regressionmodels of Z (l)

1 on the remain-
ing D − 2 coordinates plus the p + 1 non-compositional variables as covariates:

Z (l)
1 = a + b(l)

2 Z (l)
2 + · · · + b(l)

D−1Z
(l)
D−1 + c1R1 + · · · + cp+1Rp+1 + ε(l), (5)

where ε(l) is a random error term. Observations with no outlying cell in xl are
used for model fitting. The estimated regression coefficients â, b̂(l)

2 , . . . , b̂(l)
D−1,

ĉ1, . . . , ĉp+1 are obtained using MM estimation such that they are robust against
rowwise outliers. Furthermore, MM-regression also protects against poorly initial-
ized missing value imputation (Hron et al. 2010). The coefficient estimates are then
used to compute predicted values ẑ(l)i1 , (i, l) ∈ O.
For (i, l) ∈ O, imputed compositional parts x̂i1, . . . , x̂i D are obtained from the
pivot coordinates ẑ(l)i1 , z(l)i2 , . . . , z(l)i,D−1 via the inverse mapping in (4). Note that the
ratios between the non-outlying parts are not affected by this procedure.

2. Next, each real-valued variable that contains outlying cells is imputed in an analo-
gous way by sequentially serving as response in MM-regression on the remaining
variables as predictors, including the compositional parts through pivot coordi-
nates. Note that it does not matter which particular pivot coordinate system is used
here. They all yield the same predictions due to the fact that they are orthogonal
rotations of each other.

This is repeated iteratively until the sum of the squared relative changes in the
imputed values are smaller than a threshold η. Following Hron et al. (2010), η was
set at 0.5, and only a few iterations were typically needed to reach convergence in
our simulations. This results in an imputed data set X̃ which serves as input for the
subsequent stage.

The performance of the imputations in the steps 1 and 3 above can often be improved
by applying some form of variable selection to fit the corresponding regression mod-
els. To keep the computational burden low, we use a simple initial variable screening
technique: before starting the iterative imputation procedure, we identify the most
correlated variables for each variable to be imputed. We thereby compute robust cor-
relations via bivariate winsorization (Khan et al. 2007) based on pairwise complete
observations. However, initial simulations suggest that variable screening may not be
necessary if the number of variables and the amount of filtered cells are both rela-
tively small (e.g., D + p + 1 ≤ 10 and less than 10% filtered cells). Moreover, when
the number of variables is small, a smaller correlation threshold should be used to
ensure that enough variables survive the screening process. Our procedure therefore
implements the following default behavior as a compromise: if D+ p+ 1 ≤ 10, only
variables with absolute correlations higher than 0.2 are used, otherwise the threshold
is set to 0.5.
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3.3 Robust compositional regression

After imputing cellwise outliers, and possibly other missing values in the data set,
the actual regression modelling is conducted. Hron et al. (2012) proposed a suit-
able approach for regression with compositional explanatory variables that yields
a meaningful interpretation of the regression coefficients through the use of logra-
tio pivot coordinates. Here we extend this to include the possibility of having p
non-compositional covariates V1, . . . , Vp along with the D-part composition X =
(X1, . . . , XD)′ as predictors of a real-valued response variable Y . By expressing the
composition inRD−1 via pivot coordinates defined in (3), we obtain D different linear
regression models

Y = α +β
(l)
1 Z (l)

1 +· · ·+β
(l)
D−1Z

(l)
D−1 +γ1V1 +· · ·+γpVp + ε, l = 1, . . . , D, (6)

with regression parameters (α, β
(l)
1 , . . . , β

(l)
D−1, γ1, . . . , γp)

′, l = 1, . . . , D, and a
random error term ε. Parameter estimation is conducted by ordinary least squares in
Hron et al. (2012). But since we still need to protect against rowwise outliers after
dealing with cellwise outliers, we instead apply the robust and highly efficient MM-
estimator (Yohai 1987). Note that this estimator is designed to handle rowwise outliers
only, and it could easily fail if applied directly to data containing cellwise outliers
by skipping the previous cellwise outlier detection and imputation stages. The same
problemwould occur with other rowwise robust estimators for regression models with
compositional data (e.g., Hron and Filzmoser 2010; Hrůzová et al. 2016).

As Z (l)
1 , . . . , Z (l)

D−1 for different choices of l result from orthogonal rotations of the
corresponding pivot coordinate systems, the associated regression fits yield identical
estimates of the intercept and the regression coefficients of the non-compositional
covariates, which are denoted by α̂ and γ̂1, . . . , γ̂p, respectively. Moreover, the (nor-

malized) aggregation of all pairwise logratios involving Xl into the coordinate Z (l)
1

results in a logratio that stands for the dominance of the l-th part with respect to the
average of the other components (in terms of the geometric mean, see (3)). Accord-
ingly, the value of the coefficient β

(l)
1 relates to the influence of the dominance of

the part Xl (with respect to the mean behavior of the other parts in the composition)
on the response variable. Because of the mutual orthogonality of the pivot coordinate
systems, we can sequentially extract the estimate β̂

(l)
1 from each of the Dmodels fitted

above (l = 1, . . . , D). Hence, the final vector of estimated regression coefficients is
(α̂, β̂

(1)
1 , . . . , β̂

(D)
1 , γ̂1, . . . , γ̂p)

′.
FollowingMüller et al. (2018), the interpretation of the coefficients of the composi-

tional parts can be enhanced by ignoring the normalization constant of the respective
pivot coordinate in (3) and using binary logarithms rather than natural logarithms.
This way, doubling the dominance of Xl implies a unitary increase of the binary log-
arithm. Accordingly, under the usual assumption that the error terms of the model
have expected value equal to zero, the value of the coefficient β(l)

1 corresponds to the
change in the mean response when the dominance of Xl is doubled, while keeping
all other regressors fixed. Nevertheless, we apply the normalization constant and use
natural logarithms (as commonly done) for the purpose of this paper.
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3.4 Multiple imputation estimates

As described above, the input data to fit the final regression model is an imputed
data set X̃ . It is well-known that measures of variability like standard errors can
be underestimated when the usual formulas are applied to imputed data (Little and
Rubin 2002). Consequently, statistical significance tests in relation to the regression
coefficients tend to be anticonservative. The reason is that the uncertainty derived
from imputing the filtered cells is not taken into account. A well-established solution
to this problem is using multiple imputation (MI) (Rubin and Schenker 1986). The
basic idea is that instead of a single imputed data set, M different imputed data sets are
actually analysed. It has been shown that by aggregating estimates from all these data
sets, better estimates of the standard errors are obtained, as they reflect the additional
uncertainty from the imputation process (Little and Rubin 2002; Van Buuren 2012;
Cevallos Valdiviezo and Van Aelst 2015). We adopt this approach and, following
Bodner (2009) and White et al. (2011), we consider the number of imputed data sets
M to be the rounded percentage of rows in the datamatrix affected by cellwise outliers.

Each of theM data sets is obtained from X̃ by adding random noise to the estimated
values resulting from the imputation procedure (Sect. 3.2). That is, rather than imputing
the filtered cells with the conditional expected value, we impute them by a random
draw from the estimated conditional distribution. For compositional data, the noise is
not added directly to the compositional part x̃il , (i, l) ∈ O, as this would be incoherent
with the geometry of the simplex, but to the first pivot coordinate z̃(l)i1 , obtained from

the composition
(
x̃ (l)
i1 , . . . , x̃ (l)

i D

)′ = (x̃il , x̃i1, . . . , x̃i,l−1, x̃i,l+1, . . . , x̃i D)′ via (3).

The corresponding values of the compositional parts are then obtained by the inverse
mapping in (4). More specifically, consider the j-th step of the last iteration of the
imputation procedure (Sect. 3.2), with j = 1, . . . , D + p + 1. Missing values in
the j-th variable are imputed by robust regression using all the other variables as
predictors. Following Templ et al. (2011b), random noise is added to the imputed
value by drawing M random values from N (0, σ̂ 2

j (1 + o j/n)), where σ̂ j is a robust
residual scale estimate from the corresponding regressionfit and o j denotes the number
of values to be imputed in the j-th variable.

Afterwards, robust MM-regression estimation (Sect. 3.3) is performed for each
of the M imputed data sets. Following Rubin (1987) and Barnard and Rubin
(1999), we use θ̂ {m} to denote generically a parameter point estimate (i.e., any of
α̂, β̂

(1)
1 , . . . , β̂

(D)
1 , γ̂1, . . . , γ̂p) and Û {m} refers to the corresponding estimated vari-

ance from the m-th imputed data set, m = 1, . . . , M . A final point estimate and
variance for each regression coefficient is then obtained as

θ̂ = 1

M

M∑
m=1

θ̂ {m} and V̂ = Ŵ + M + 1

M
B̂,

respectively, where Ŵ = 1
M

∑M
m=1 Û

{m} is the average within-imputation variance

and B̂ = 1
M−1

∑M
m=1

(
θ̂ {m} − θ̂

)2
is the between-imputation variance.
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4 Simulation study

In order to assess the performance of our procedure in comparison to other (robust)
methods for compositional regression, we perform a simulation study.

4.1 Simulation design

The parameters for the simulation design are partly inspired by the data set about live-
stock methane emission from ruminal volatile fatty acids (VFA) introduced in Sect. 5.
As themain novelty of our procedure is the inclusion of compositional covariates in the
context of robust regressionwith cellwise and rowwise outliers, we assume for simplic-
ity that there are only compositional covariates involved. We set n ∈ {50, 100, 200}
as the number of observations and D ∈ {5, 10, 20} as the number of compositional
parts. The simulated compositions are generated through pivot coordinates. In order
to obtain a realistic covariance structure in the pivot coordinate system, we chose an
initial covariance matrix �0 = (

0.5|i− j |/10
)
1≤i, j≤D−1, with entries being similar

in magnitude to the ones observed in the VFA case study. To investigate the effects
of adding more variability to the data matrix, we consider the covariance matrix in
pivot coordinates � as a multiple of the initial covariance matrix, i.e., � = k�0 with
k ∈ {1, 2, 3}.

We examine a scenario with both rowwise and cellwise outliers. Specifically, we
consider the case where outlying rows (entire observations) and outlying cells (in
the compositional parts and the response variable) both occur with probability ζ ∈
{0, 0.02, 0.05, 0.1, 0.2}. We first generate entire outlying observations (rows) and,
subsequently, outlying cells only in non-outlying rows. We perform 1000 simulation
runs for each configuration. In each simulation run, the data are generated as follows:

1. Pivot coordinates are sampled as zi = (zi1, . . . , zi,D−1)
′ ∼ ND−1(0,�), i =

1, . . . , n.
2. The values of the response variable are obtained in the pivot coordinate system as

yi = β0+β1zi1+· · ·+βD−1zi,D−1+εi , εi ∼ N (0, 0.252), i = 1, . . . , n,

with regression parameters β0 = 0 and (β1, . . . , βD−1)
′ = (1, 0, 1, 0, . . .)′. The

variance of the error terms εi is chosen to roughly mimic the signal-to-noise ratio
observed in the VFA data.

3. The pivot coordinates zi = (zi1, . . . , zi,D−1)
′ are transformed according to (4) to

obtain the corresponding compositions xi = (xi1, . . . , xiD)′, i = 1, . . . , n.
4. Observations are randomly selected with probability ζ to be turned into rowwise

outliers. We first generate outliers in the pivot coordinates along the smallest prin-
cipal component. Let U ⊆ {1, . . . , n} denote the set of indices of the rowwise
outliers, and let qi = (qi1, . . . , qi,D−1)

′ denote the principal component scores
corresponding to zi . For i ∈ U , we change the value of the last component
q∗
i,D−1 = qi,D−1 + 5

√
k. Note that the factor

√
k ensures that the outlier shift is of

the same magnitude for the different scalings of the covariance matrix � = k�0.
After transforming the scores q∗

i = (qi1, . . . , qi,D−2, q∗
i,D−1)

′ back to pivot coor-
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dinates to obtain outlying z∗
i = (z∗i1, . . . , z∗i,D−1)

′, we change the respective values
of the response variable to

y∗
i = β∗

0 + β∗
1 z

∗
i1 + · · · + β∗

D−1z
∗
i,D−1 + εi , i ∈ U ,

with regression parameters β∗
0 = 0 and β∗

j = −1, j = 1, . . . , D − 1. Using
regression coefficients that are very different to those from clean observations
ensures that the rowwise outliers are bad leverage points. Finally, the outlying pivot
coordinates z∗

i = (z∗i1, . . . , z∗i,D−1)
′ are transformed according to (4) to obtain the

corresponding outlying compositions x∗
i = (x∗

i1, . . . , x
∗
i D)′, i ∈ U .

5. Cells corresponding to non-outlying observations (xi1, . . . , xiD, yi )′, i /∈ U , are
randomly selected with probability ζ to be turned into cellwise outliers. Let O
denote the set of indices (i, j) of the outlying cells. For any pair (i, j) ∈ O, we
change the cell value to x∗∗

i j = 10 · xi j if j ∈ {1, . . . , D} or to y∗∗
i = 10 · yi

if j = D + 1. The multiplicative factor was chosen to minimize the chance that
outlying cells overlap with noise that occurs naturally in the composition or the
real-valued response.

The resulting observations with rowwise and cellwise outliers are denoted by x�
i =

(x�
i1, . . . , x

�
i D)′ and y�

i , where

x�
i j =

⎧⎨
⎩
x∗
i j , if i ∈ U ,

x∗∗
i j , if (i, j) ∈ O,

xi j , otherwise,
i = 1, . . . , n, j = 1, . . . , D,

and

y�
i =

⎧⎨
⎩

y∗
i , if i ∈ U ,

y∗∗
i , if (i, D + 1) ∈ O,

yi , otherwise,
i = 1, . . . , n.

4.2 Methods, performancemeasures, and software

Below we give a brief description of the methods that participate in the evaluation,
together with the abbreviations we use to refer to them:

LS: ordinary compositional least squares regression (with no treatment for outliers).
MM: robust compositional MM-regression (with no treatment for cellwise outliers).
ShS: shooting S-estimator (Öllerer et al. 2016) obtained from the D(D−1)/2 unique

pairwise logratios. The shooting S-estimator is designed to cope with cellwise
contamination by weighing the components of an observation differently. Note
that the results can only be compared in terms of prediction and not in terms
of parameter estimation. We used both Tukey’s biweight loss function and the
skipped Huber loss function: the former yields continuous weights in [0, 1] while
the latter leads to binary weights in {0, 1} (see Öllerer et al. 2016). We only report
the results for Tukey’s biweight loss function, as it generally gave better and more
stable results than the skipped Huber loss function.
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3S: 3-step regression (Leung et al. 2016) fitted to additive logratio (alr) coordinates,
i.e., the composition (X1, . . . , XD)′ is represented by the real-valued vector of log-
ratios

(
ln(X1/X j ), . . . , ln(X j−1/X j ), ln(X j+1/X j ), . . . , ln(XD/X j )

)′, using a
part X j as reference in the denominator (Aitchison 1986). Note that the use of
D(D − 1)/2 pairwise logratios as covariates is not possible here since the algo-
rithm requires full-ranked data. 3-step regression first uses a consistent univariate
filter to eliminate outlying cells; second, it applies a robust estimator of multi-
variate location and scatter to the filtered data to downplay outlying rows; and
third, it computes robust regression coefficients from the previous step. In each
simulation run, the reference part X j is selected randomly. As with the shooting
S-estimator, the results are compared only in terms of prediction. It is important
to note that the predicted values depend on the choice of X j in the denominator
of the logratios. For example, an outlying value in a cell xi1 results in a rowwise
outlier in the observation (ln(xi2/xi1), . . . , ln(xiD/xi1))′, but only in a cellwise
outlier in (ln(xi1/xiD), . . . , ln(xi,D−1/xiD))′. These cases will be handled differ-
ently by 3-step regression, yielding different predictions of the response variable.
Although this leads to somewhat limited practical applicability, it is still informa-
tive to include this approach here in order to compare its general performance.

BF-MI: this is our proposed method which applies the bivariate filter (BF) followed
by multiple imputation (MI). Based on preliminary simulations, we set τ = 0.99
(to determine the cut-off value for marking outliers in the bivariate filter). In the
imputations, we use the default behavior for variable screening (see Sect. 3.2).
For the MM-estimator, we use Tukey’s biweight loss function, with the initial
estimator tuned for maximum breakdown point and the final estimator tuned for
95% efficiency.

IF-MI: this represents a hypothetical situation where an ideal filter (IF) is able to
perfectly identify all outlying cells (and only those). The remaining steps of our
method are afterwards applied using multiple imputation (MI). We use the same
settings for variable screening and MM estimation as used for BF-MI. This case is
included for benchmarking purposes only, as it is generally unattainable in practice.

Note that all methods except the shooting S-estimator and 3-step regression consider
pivot coordinates to represent the compositional covariates. By construction, the shoot-
ing S-estimator and the 3-step regression method require the use of pairwise logratios
and alr coordinates, respectively.

The performance of the methods is assessed in terms of the mean squared error
(MSE) of the coefficient estimates, computed as

MSE = 1

D

D−1∑
j=0

(β̂ j − β j )
2.

Note that in order to reduce the computational burden, a single set of pivot coordinates
is used without loss of generality to calculate the MSE of the regression coefficients.
Further evaluation is made in terms of prediction error. For this purpose, n additional
clean test observations xtesti and ytesti , i = 1, . . . , n, are generated in each simulation
run according to steps 1–3 of our data generating process. Note that the number of
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observations in the test data is the same as in the training data to which the methods are
applied. On the test data, the mean squared error of prediction (MSEP) is calculated
as

MSEP = 1

n

n∑
i=1

(ŷtesti − ytesti )2,

where ŷtesti denote the predicted values of ytesti .
All computations were performed using the R environment for statistical computing

(R Core Team 2020), including the packages cellWise (Raymaekers et al. 2019),
robCompositions (Templ et al. 2011a), robreg3S (Leung et al. 2015) and the
function shootingS() obtained from https://github.com/aalfons/shootingS. The
code for our method is available at https://github.com/aalfons/lmcrCoda.

4.3 Simulation results

For different numbers of compositional parts D, Figs. 5, 6 and 7 in “Appendix D”
contain plots of the average MSE against the contamination level ζ for various sample
sizes n and scaling factors k of the covariance matrix in pivot coordinates. Similarly,
the average MSEP is displayed in Figs. 8, 9 and 10 in “Appendix D”.

Regarding coefficient estimates, all methods are accurate when there is no con-
tamination (ζ = 0). As contamination increases, OLS is quickly influenced by the
outliers, yielding the highest MSE of all methods. The MSE of MM also increases
continuously for increasing contamination level, which is expected since MM is only
robust to rowwise outliers but not to cellwise outliers. Our proposed method BF-MI
is however very accurate for up to 5% contamination and close to the hypothetical
IF-MI case using an ideal outlier filter. While the MSE of BF-MI increases for larger
contamination levels, it is generally still lower than that of MM, although the differ-
ence between the two becomes small as variability in the data increases (increasing
k). TheMSE of IF-MI remains fairly low for 10% contamination, which indicates that
the outlier filtering step is crucial for the performance of our proposed method, but
under 20% contamination the MSE of IF-MI increases as well. All in all, the assess-
ment based on MSE suggests that BF-MI offers improved performance over existing
techniques for regression analysis with compositional covariates.

As to prediction performance, the results are comparable to the above. OLS in
general has the highest MSEP, and BF-MI outperforms MM. In many settings, the
MSEP of ShS is comparable to that of BF-MI or somewhat higher, but ShS is unstable
if the ratio of n/D is small. Furthermore, ShS cannot be applied for D = 20 and
n = 50 or n = 100, since the number of pairwise logratios is larger than the number
of observations in those cases. 3S is also similar to BF-MI in terms of MSEP while the
contamination level is 5% or lower, but each method is performing slightly better than
the other in some settings with higher amounts of contamination. While 3S predicts
better for lower values of D when the data are more scattered (higher values of k),
BF-MI has lower MSEP for D = 20.

Note that we also considered counterparts to IF-MI andBF-MI that use single impu-
tation instead of multiple imputation. The results were very similar. This is actually
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expected, as the main purpose of multiple imputation is to improve standard errors
(Little and Rubin 2002; Van Buuren 2012; Cevallos Valdiviezo and Van Aelst 2015),
but there should not be large differences in the point estimates of the coefficients (com-
pared to single imputation). Consequently, the bias component of the MSEP should
be similar, and the MSEP can only be improved by reducing the variance in the pre-
dictions. In multiple imputation, such a reduction in variance would in turn require
to decrease the correlation between predictions based on different imputed data sets.
However, when the number of imputed cells is rather small, the predictions based
on different imputed data sets are still highly correlated. An improvement in predic-
tion performance via multiple imputation can only be expected for larger fractions of
imputed cells (cf. results and recommendations of Cevallos Valdiviezo and Van Aelst
2015), where the correlation between imputed data sets is sufficiently reduced.

5 Illustrative case study

We apply the proposed compositional MM-regression with a bivariate cellwise outlier
filter andmultiple imputation (BF-MI algorithm) to investigate the association between
livestock methane emissions from individual animals and their ruminal volatile fatty
acid (VFA) composition, while accounting for the potential effects of other animal
and diet-related covariates. The concentrations of VFA were determined by high-
performance liquid chromatography from rumen fluid samples taken using a stomach
tube. The quality of the chromatography determines the precision of themeasurements,
and outlying measurements may be related to unstable baselines, noisy detectors, poor
resolution of the components, or errors on the part of the operator in preparing the
solution or performing themeasurement. The data set consists of n = 239 observations
originating from the study carried out in Palarea-Albaladejo et al. (2017). It includes
the following variables:

• CH4: animalmethane yieldmeasured in g/kgDMI using indirect respiration cham-
bers.

• VFA: 6-part composition measured in mmol/mol of acetate, propionate, butyrate,
isobutyrate, isovalerate and valerate.

• ME: diet metabolizable energy measured in MJ/kg DM as estimated from feed
composition.

• DMI: animal dry matter intake in kg/day.
• Weight: animal bodyweight in kg.
• Diet: type of diet fed to the animal, either: (a) concentrate diet, based on barley
and grains with low forage (< 100 g/kg DM); or (b) mixed diet, including forage
(400-600 g/kg DM) along with barley and grains.

All four positive-valued variables in the data set (CH4, ME, DMI and Weight)
are log-transformed and thus mapped into real space to better accommodate model
assumptions.Moreover, the data set is split by diet type before the bivariate outlier filter
(Sect. 3.1) is applied separately to each resulting subset of data. Overall, 1.26%of rows
are marked as rowwise outliers, while 1.96% of cells in the remaining observations
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Fig. 2 Cellwise and rowwise outliers detected by the bivariate filter in the VFA data set. Outlying cells/rows
are colored in red. The grey color scheme reflects the values of compositional parts and real-valued variables
(the higher the value, the darker the color)

are marked as cellwise outliers. Figure 2 highlights these in each numerical variable,
as well as the marked rows, in red color.

Note that both the imputation step (Sect. 3.2) and the regression step (Sect. 3.3) of
our procedure work with categorical variables in the usual way by including dummy
variables. Here we add to the list of covariates a dummy variable DietMixed, which
takes the value 1 for mixed diet and 0 for a concentrate diet. The regression model is
thus specified as

ln(CH4) = α + β
(l)
1 Z (l)

1 + · · · + β
(l)
5 Z (l)

5

+ γ1ln(ME) + γ2ln(DMI) + γ3ln(Weight) + δDietMixed + ε,
(7)

where l = 1, . . . , 6 indicates the successive pivot coordinate systems and correspond-
ing regression coefficients used to isolate the relative role (dominance) of each of the
six parts forming the VFA composition through the first pivot coordinate Z (l)

1 in each
system (Sect. 2).

We fit the regression model defined in (7) using ordinary compositional LS esti-
mation, compositional MM estimation and the proposed BF-MI method. For BF-MI,
we use τ = 0.99 and skip the variable screening in the imputation step, as the num-
ber of variables is rather small and fewer than 2% of cells are filtered. Note that in
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this application we are interested in an interpretation of the results in terms of pivot
coordinates, therefore it is not meaningful to apply other methods such as the shooting
S-estimator (Öllerer et al. 2016) or 3-step regression (Leung et al. 2016).

Table 1 displays the results using the three estimation procedures considered. Focus-
ing on the VFA composition, LS estimation does not result in a statistically significant
association between the dominance of ruminal acetate andmethane yield (p = 0.127).
The MM-estimator (without the cellwise outlier filter) provides only a weakly signifi-
cant positive association between animalmethane emission and the relative production
of ruminal acetate (p = 0.053). Moreover, a statistically significant negative asso-
ciation was concluded in both cases between methane yield and the dominance of
propionate (p < 0.001). The results from using our proposed BF-MI method are
comparable in terms of overall directions of the associations, but the statistical sig-
nificance of the acetate related term was notably higher (p < 0.001), which further
stresses the role of the contrast between acetate and propionate as a driver of the
association between the ruminal VFA composition and methane emission, which is in
agreement with biological knowledge (Wolin 1960; Palarea-Albaladejo et al. 2017).

As our procedure depends on the parameter τ of the bivariate outlier filter (lower
values of τ leading to more cells being marked as cellwise outliers), and on whether
variable screening is performed in the imputation step, we perform a sensitive analysis
on those parameters. Table 2 in “Appendix E” shows the results obtained for various
sensible choices of τ with and without variable screening. Even though there are
some differences in the values of the coefficient estimates, the results are qualitatively
similar. The p-values lead to the same conclusions in terms of statistical significance,
making the findings robust across all choices.

6 Computation time

We evaluate the computation time of the proposed procedure on simulated data sets.
As in Sect. 4, we vary the number of observations n ∈ {50, 100, 200} and the number
of compositional parts D ∈ {5, 10, 20}. We follow the same procedure as described
in Sect. 4.1 to generate the data, but only consider k = 1 for the multiplicative factor
of the covariance matrix, contamination level ζ = 0.02, and 100 simulated data sets
for each parameter configuration. For the sake of comparison, we include the same
methods as described in Sect. 4.2. We thereby use the same parameter choices, and the
same software packages and functions for their computation. All computation times
are measured with the R package microbenchmark (Mersmann 2019) on a laptop
with a 2.3 GHz Intel Core i5 processor and 16GB main memory.

The results are shown inFig. 3: the average computation time in seconds is displayed
in the top row, and the relative speed gain of each method with respect to our method
is displayed in the bottom row. Note that when D = 20, the shooting S-estimator
(ShS) cannot be applied for n = 50 and n = 100, as the number of pairwise logratios
is larger than the number of observations. Below we give a summary of the relative
performance of the other methods with respect to our proposal.
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Fig. 3 Computation time of different methods for varying numbers of observations n and compositional
parts D (averaged over 100 simulated data sets). The top row shows the computation time in seconds, while
the bottom row shows the relative speed gain of each method with respect to our proposed method

LS: this is about 40–45 times faster than our method with a 5-part composition
(depending on the number of observations), and the relative speed difference
increases with increasing number of compositional parts.

MM: this is about 25–30 times faster than our method with a 5-part composition
(depending on the number of observations), and the relative speed difference
increases with increasing number of compositional parts.

ShS: this is about 3–4 times faster than our method, with the relative speed difference
being fairly stable in the number of observations and the number of compositional
parts.

3S: this is about 5–10 times faster than our method with a 5-part composition
(depending on the number of observations). The relative speed difference increases
at firstwith the number of compositional parts, but decreases againwhen it becomes
large enough for our method to perform variable screening in the imputation stage.

There is clearly a price to pay in terms of computation time for the robustness
and interpretability of our procedure. However, we find the computation time to be
reasonable for many practical applications, in particular given that we do not consider
the case of high-dimensional compositions. In our example with the VFA data (n =
239, D = 6, p = 3 real-valued covariates, 1 dummy variable), the computation time
was 4.003 seconds; whereas compositional MM-regression required 0.113 seconds.
It should also be noted that our current implementation is using R. It is likely that
a considerable gain in speed can be achieved by implementing certain parts in, for
example, the C++ language.
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7 Conclusions and discussion

In compositional data analysis, the parts of a composition are considered intrinsically
related to each other and the ratios between them constitute the key source of relevant
information. However, cellwise outliers may be present in individual compositional
parts. Keeping this problem in mind, we introduce a procedure to deal with cellwise
outliers with the purpose of conducting robust regression analysis while taking the
nature of compositional data into account. For the detection of cellwise outliers, we
apply a bivariate filter (Rousseeuw and Van den Bossche 2018) at the level of pairwise
logratios where the elemental information is contained. For the imputation of cellwise
outliers, we adapt an existing imputationmethod formissing compositional data (Hron
et al. 2010), which treats the problem indirectly via pivot coordinates. Alternative
missing data imputation methods could be developed in future research, e.g., robust
versions of the non-parametric andBayesian approaches implemented in the R package
zCompositions (Palarea-Albaladejo and Martín-Fernández 2015). Importantly,
using rowwise robust imputation and regression after filtering cellwise outliers yields
a procedure that protects against both cellwise and rowwise outliers.

In our simulation study, the proposedBF-MI algorithmoutperforms thewell-known
rowwise robust MM-estimator (Yohai 1987) and the more recently introduced cell-
wise robust shooting S-estimator (Öllerer et al. 2016). In most simulation scenarios,
the prediction performance of our method is similar to that of 3-step regression (Leung
et al. 2016), which is another recent cellwise and rowwise robust regression proposal.
Nevertheless, 3-step regression can only be applied to additive logratio (alr) coordi-
nates, since pivot coordinates would turn cellwise outliers in the original data into
entire outlying rows, which could easily render the majority of rows to be outliers.
Even with alr coordinates, this outlier propagation occurs for observations with an
outlying cell in the reference part in the denominator of the alr coordinates, but not
for outlying cells in other parts. Moreover, applying 3-step regression to different alr-
coordinate representations yields different predictions. The imputation stage in our
method, going back to the original compositional parts, allows for predicted values
that do not depend on a specific coordinate representation. In addition, the regression
analysis can be done on any coordinate system that gives the desired interpretation.
These advantages make our method preferable for practical purposes. Here we used
pivot coordinates, which are particularly popular in the context of exploratory data
analysis (Filzmoser et al. 2018), but other choices are possible, e.g., other orthonor-
mal coordinates such as balances (Egozcue and Pawlowsky-Glahn 2005) or weighted
pivot coordinates (Hron et al. 2017), or even oblique coordinate systems (Greenacre
2018).

Finally, some limitations of our proposed method are discussed. The simulation
results for a (hypothetical) variation of the procedure with an ideal outlier filter are
an indication that further refinement of the outlier filter could yield an improvement
in performance. Hence this could be a fruitful venue for future research. Moreover,
the procedure tends to become unstable when the number of variables approaches the
number of observations, and it cannot be used when the number of variables is larger
than the number of observations. For the latter case, estimators that are affine equivari-
ant and rowwise robust are not available. This poses a challenge for high-dimensional
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compositional data and their coordinate representations, which are mutually related
through affine transformations (rotations in case of orthonormal coordinates). Hence,
the properties of the regression coefficient estimates after rotations of pivot coor-
dinate systems (as shown in Sect. 3.3) are in general not satisfied, and alternative
approaches would be needed. Thus, an extension of the proposed procedure to the
high-dimensional case is a challenge for future research.
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A Pseudocode of the BF-MI algorithm

The pseudocode uses the same notation as defined in Sect. 3. Elements of a matrix
or vector are indicated by subscripts, e.g., xi j denotes the i-th element of vector x j .
Furthermore, let IA(.) be the indicator function for a set A. Algorithm 1 describes row-
wise robust compositional MM-regression, where it is important to keep in mind that
MM-estimator can be seen as a weighted least squares estimator with data-dependent
weights (Yohai 1987). Algorithm 2 outlines cellwise outlier detection for composi-
tional data, whereas Algorithms 3 and 4 describe the initial k-nearest-neighbor (knn)
imputation and the robust model-based imputation procedure, respectively. Finally,
Algorithm 5 puts all the building blocks together for our proposed BF-MI procedure.

For simplicity, Algorithm 4 does not include the variable screening step for the
imputation models (see Sect. 3.2). In addition, the output of Algorithm 5 is limited
to the estimates of the interpretable regression coefficients (cf. Sect. 3.3) and the
corresponding variance estimates. Significance tests for those coefficients can then be
performed in the usual way for multiple imputation (see Barnard and Rubin 1999). If
one is interested in prediction, the algorithm can easily be adjusted in the following
way. As all pivot coordinate systems yield the same predictions, it suffices to pick
one set of pivot coordinates. One can then perform MM-regression with those pivot
coordinates for each imputed data set, and average the coefficient estimates. For a new
observation, the same pivot coordinates can be computed to obtain the prediction of
the response with the averaged coefficients.
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Algorithm 1 Compositional MM-regression
Input: Compositional data X = (x1, . . . , xD), real-valued covariates V = (v1, . . . , v p), real-valued
response y
Output: Regression coefficient estimates and corresponding variance estimates

1: 	 On the first pivot coordinate system, fully iterate the MM-regression algorithm

2: Compute pivot coordinates z(1)1 , . . . , z(1)D−1 from x1, . . . , xD

3: Perform MM-regression of y on z(1)1 , . . . , z(1)D−1, v1, . . . , v p

4: Store intercept α̂ and coefficient estimates β̂
(1)
1 , γ̂1, . . . , γ̂p of variables z(1)1 , v1, . . . , v p , respectively

5: Compute variance estimates v̂ar(α̂), v̂ar
(
β̂

(1)
1

)
, v̂ar(γ̂1), . . . , v̂ar(γ̂p)

6: 	 The other pivot coordinate systems can use a weighted least squares fit
7: Obtain weights w = (w1, . . . , wn)′ of observations from MM-regression fit
8: for j ∈ {2, . . . , D} do
9: Compute pivot coordinates z( j)1 , . . . , z( j)D−1 from x1, . . . , xD

10: Perform weighted least squares regression of y on z( j)1 , . . . , z( j)D−1, v1, . . . , v p with weights w

11: Store coefficient estimate β̂
( j)
1 of coordinate z( j)1

12: Compute variance estimates v̂ar
(
β̂

( j)
1

)
13: end for
14: 	 Return coefficient estimates and corresponding variance estimates

15: return (α̂, β̂
(1)
1 , . . . , β̂

(D)
1 , γ̂1, . . . , γ̂p)

′ and
(
v̂ar(α̂), v̂ar

(
β̂

(1)
1

)
, . . . , v̂ar

(
β̂

(D)
1

)
, v̂ar(γ̂1), . . . , v̂ar(γ̂p)

)′

B On using a separate imputation step

As an alternative to the use of a separate imputation step, we looked into modifying
the definition of pivot coordinates in (1) so that they account for missing values in
the compositional data set. The main idea behind these missing value preserving pivot
coordinates is that the geometricmean in the denominator of the logratio in (1) discards
missing values.

Letui = (ui1, . . . , uiD)′ be an indicator vector for observed values in a composition
xi = (xi1, . . . , xiD)′, i.e.:

uik =
{
1 if xik is observed,
0 if xik is missing,

k = 1, . . . , D.

Then D(ui ) = ∑D
l=1 uil is the observed dimension of observation xi .With an indicator

vector vi = (vi1, . . . , vi,D−1)
′ defined by

vik =
{
1 if uik = 1 and any uil = 1 for l > k,
0 otherwise,

k = 1, . . . , D − 1,

we can define missing value preserving pivot coordinates z̃i = (z̃i1, . . . , z̃i,D−1)
′ as

z̃ik =

⎧⎪⎨
⎪⎩

√
D(ui )− jk (vi )

D(ui )− jk (vi )+1 ln

(
xik

D(ui )− jk (vi )
√∏

l>k: uil=1 xil

)
if vik = 1,

missing if vik = 0,

k = 1, . . . , D − 1, (8)
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Algorithm 2 Detection of cellwise outliers
Input:Data matrixX = (x1, . . . , xD, r1, . . . , r p+1) of compositional parts and real-valued variables
Output: Index set O of outlying cells and index set U of outlying rows

1: 	 Cellwise outlier detection on pairwise logratios and real-valued variables
2: L ← (ln(x1/x2), . . . , ln(xD−1/xD), r1, . . . , r p+1)

3: Apply bivariate filter of Rousseeuw and Van den Bossche (2018) to L
4: Store index set OL ← {(i, k) : cell in row i and column k ofL is marked as cellwise outlier}
5: Store index set UL ← {i : row i ofL is marked as rowwise outlier}
6: 	 Mark outlying cells in compositional parts
7: Initialize empty set O 	 set of indices (i, j) of cells inX to be marked as cellwise outliers
8: Initialize empty set U 	 set of indices i of rows inX to be marked as rowwise outliers
9: for j ∈ {1, . . . , D} do
10: Obtain index set K j ← {k : column k ofL contains a logratio involving x j }
11: for i ∈ {1, . . . , n} do
12: if 1

(D−1)
∑

k∈K j
IOL ((i, k)) ≥ 0.5 then

13: O ← O ∪ {(i, j)}
14: end if
15: end for
16: end for
17: 	 Adopt outlying cells in real-valued variables from bivariate filter
18: for j ∈ {1, . . . , p + 1} do
19: for i ∈ {1, . . . , n} do
20: if (i, D(D − 1)/2 + j) ∈ OL then
21: O ← O ∪ {(i, D + j)}
22: end if
23: end for
24: end for
25: 	 Mark outlying rows and only mark outlying cells that are not part of outlying rows
26: for i ∈ {1, . . . , n} do
27: if i ∈ UL or 1

D+p+1
∑D+p+1

j=1 IO((i, j)) >= 0.75 then
28: 	 Marked as rowwise outlier in L or at least 75% of cells marked as cellwise outliers inX
29: U ← U ∪ {i}
30: O ← O \ {(i, j) : j = 1, . . . , D + p + 1}
31: end if
32: end for
33: return Index sets O and U

Algorithm 3 Initial knn imputation for compositional data and real-valued variables
Input:Data matrixX = (x1, . . . , xD, r1, . . . , r p+1) of compositional parts and real-valued variables
with missing values (outlying cells)
Output: Imputed data matrix X̃

1: Apply simultaneous knn imputation with Aitchison distance to X = (x1, . . . , xD)

2: Store imputed data matrix as X̃ = (x̃1, . . . , x̃D)

3: Compute pivot coordinates z̃(1)1 , . . . , z̃(1)D−1 from x̃1, . . . , x̃D

4: Apply simultaneous knn imputation with Euclidean distance to
(
r1, . . . , r p+1, z̃

(1)
1 , . . . , z̃(1)D−1

)
5: Store imputed real-valued variables as R̃ = (r̃1, . . . , r̃ p+1)

6: return Imputed data matrix X̃ = (X̃, R̃)

123



894 N. Štefelová et al.

Algorithm4Model-based imputation for compositional data and real-valued variables
Input:Data matrixX = (x1, . . . , xD, r1, . . . , r p+1) of compositional parts and real-valued variables
with missing values (outlying cells)
Output: Imputed data matrix X̃ , residual scale estimates σ̂1, . . . , σ̂D+p+1 from imputation models

1: 	 Initializations
2: Rearrange first D columns ofX by sorting compositional parts by decreasing amount of missing values
3: Rearrange last p + 1 columns of X by sorting real-valued variables by decreasing amount of missing

values
4: Obtain index sets φ j ← {i : cell in row i and column j ofX is missing}, j = 1, . . . , D + p + 1
5: Obtain index sets ψ j ← {i : cell in row i and column j ofX is observed}, j = 1, . . . , D + p + 1
6: Initialize counter i t ← 0 and convergence criterion η ← ∞
7: Initialize X [0] =

(
x[0]
1 , . . . , x[0]

D , r[0]1 , . . . , r[0]p+1

)
by applying knn imputation from Algorithm 3 to

X
8: 	 Iterative model-based imputations
9: while η ≥ 0.5 do
10: i t ← i t + 1
11: X [i t] =

(
x[i t]
1 , . . . , x[i t]

D , r[i t]1 , . . . , r[i t]p+1

)
← X [i t−1] =(

x[i t−1]
1 , . . . , x[i t−1]

D , r[i t−1]
1 , . . . , r[i t−1]

p+1

)
12: 	 Imputations in compositional data
13: for j ∈ {1, . . . , D} do
14: Compute pivot coordinates z( j)i1 , . . . , z( j)i,D−1 from x [i t]

i1 , . . . , x [i t]
i D , i = 1, . . . , n

15: Perform MM-regression of z( j)i1 on z( j)i2 , . . . , z( j)i,D−1, r
[i t]
i1 , . . . , r [i t]

i,p+1, i ∈ ψ j

16: Compute prediction ẑ( j)i1 from z( j)i2 , . . . , z( j)i,D−1, r
[i t]
i1 , . . . , r [i t]

i,p+1, i ∈ φ j

17: Replace x [i t]
i1 , . . . , x [i t]

i D with the inverse mapping of ẑ( j)i1 , z( j)i2 , . . . , z( j)i,D−1, i ∈ φ j

18: Compute robust residual scale estimate σ̂ j from MM-regression fit
19: end for
20: 	 Imputations in real-valued variables

21: Compute pivot coordinates z(1)i1 , . . . , z(1)i,D−1 from x [i t]
i1 , . . . , x [i t]

i D , i = 1, . . . , n
22: for j ∈ {1, . . . , p + 1} do
23: Perform MM-regression of r [i t]

i j on z(1)i1 , . . . , z(1)i,D−1, r
[i t]
i1 , . . . , r [i t]

i, j−1, r
[i t]
i, j+1, r

[i t]
i,p+1, i ∈ ψ j

24: Replace r [i t]
i j with prediction r̂ [i t]

i j from z(1)i1 , . . . , z(1)i,D−1, r
[i t]
i1 , . . . , r [i t]

i, j−1, r
[i t]
i, j+1, r

[i t]
i,p+1, i ∈

φ j
25: Compute robust residual scale estimate σ̂D+ j from MM-regression fit
26: end for
27: 	 Update convergence criterion

28: η ← ∑n
i=1

⎡
⎣∑D

j=1

(
x [i t−1]
i j −x [i t]

i j

x [i t]
i j

)2

+ ∑p+1
j=1

(
r [i t−1]
i j −r [i t]i j

r [i t]i j

)2
⎤
⎦

29: end while
30: Obtain X̃ by rearranging columns of X [i t] from last iteration according to original order of columns

inX
31: Rearrange residual scale estimates σ̂1, . . . , σ̂D+p+1 accordingly

32: return Imputed data matrix X̃ and residual scale estimates σ̂1, . . . , σ̂D+p+1
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Algorithm 5 Robust compositional regression with bivariate filter and multiple impu-
tation

Input: Compositional data X = (x1, . . . , xD), real-valued covariates V = (v1, . . . , v p), real-valued
response y
Output: Regression coefficient estimates and corresponding variance estimates

1: 	 Detect cellwise outliers
2: Obtain index setO of cellwise outliers by applying Algorithm 2 toX = (x1, . . . , xD, v1, . . . , v p, y)
3: 	 Special case of no cellwise outliers
4: if O = ∅ then
5: Apply Algorithm 1 for compositional MM-regression of y on x1, . . . , xD, v1, . . . , v p
6: return Coefficient estimates and corresponding variance estimates
7: end if
8: 	 Filter and impute cellwise outliers
9: Replace cells ofX with indices in O by missing values
10: Apply model-based imputation with Algorithm 4 to X = (x1, . . . , xD, v1, . . . , v p, y)
11: Store imputed data matrix as X̃ = (x̃1, . . . , x̃D, ṽ1, . . . , ṽ p, ỹ)
12: Store residual scale estimates from imputation models as σ̂1, . . . , σ̂D+p+1, respectively
13: 	 Robust compositional regression with multiple imputation

14: nout ← n − ∑n
i=1

∏D+p+1
j=1 (1 − IO((i, j))) 	 Number of observations with outlying cells

15: M ← max(2, round(100 · nout/n)) 	 Number of imputations
16: Obtain o j ← ∑n

i=1 IO((i, j)), j = 1, . . . , D + p + 1 	 Number of outlying cells per variable
17: for m ∈ {1, . . . , M} do
18: 	 Add random noise to imputations

19: Initialize X̃ {m} =
(
x̃{m}
1 , . . . , x̃{m}

D , ṽ
{m}
1 , . . . , ṽ

{m}
p , ỹ{m}) by X̃ = (x̃1, . . . , x̃D, ṽ1, . . . , ṽ p, ỹ)

20: for (i, j) ∈ O do
21: Draw random noise term e ∼ N (0, σ̂ 2

j (1 + o j /n))

22: if j ∈ {1, . . . , D} then 	 Compositional parts

23: Compute pivot coordinates z̃( j)i1 , . . . , z̃( j)i,D−1 from x̃i1, . . . , x̃i D

24: z̃( j)i1 ← z̃( j)i1 + e

25: Replace x̃{m}
i1 , . . . , x̃{m}

i D with the inverse mapping of z̃( j)i1 , . . . , z̃( j)i,D−1
26: else if j ∈ {D + 1, . . . , D + p} then 	 Real-valued variables

27: ṽ
{m}
i, j−D ← ṽi, j−D + e

28: else 	 Response variable

29: ỹ{m}
i ← ỹi + e

30: end if
31: end for
32: 	 Perform compositional MM-regression

33: Apply Algorithm 1 for compositional MM-regression of ỹ{m} on x̃{m}
1 , . . . , x̃{m}

D , ṽ
{m}
1 , . . . , ṽ

{m}
p

34: Store coefficient estimates as θ̂
{m} =

(
θ̂
{m}
0 , . . . , θ̂

{m}
D+p

)′

35: Store variance estimates as Û
{m} =

(
Û {m}
0 , . . . , Û {m}

D+p

)′

36: end for
37: 	 Aggregate results from multiple imputation

38: Compute final coefficient estimates θ̂ j ← 1
M

∑M
m=1 θ̂

{m}
j , j = 0, . . . , D + p

39: Compute average within-imputation variances Ŵ j ← 1
M

∑M
m=1 Û

{m}
j , j = 0, . . . , D + p

40: Compute between-imputation variances B̂ j ← 1
M−1

∑M
m=1

(
θ̂
{m}
j − θ̂ j

)2
, j = 0, . . . , D + p

41: Compute variance estimates V̂ j ← Ŵ j + M+1
M B̂ j , j = 0, . . . , D + p

42: return Coefficient estimates (θ̂0, . . . , θ̂D+p)
′ and corresponding variance estimates (V̂0, . . . , V̂D+p)

′
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where jk(vi ) = ∑k
l=1 vil . Note that jk(vi ) accounts for the number of observed pivot

coordinates up to and including the current coordinate.
Now consider the regression model

Y = α + β1Z1 + · · · + βD−1ZD−1 + ε

with error term ε, and denote β = (β1, . . . , βD−1)
′. For simplicity we do not consider

additional real-valued covariates in this section. With the missing value preserving
pivot coordinates from (8), we obtain a data set

(
yi , z̃

′
i

)
1≤i≤n . We can first compute

the sample mean omittingmissing values by coordinate, denoted bym, and the sample
covariance matrix based on pairwise complete observations, denoted by S. With

m =
(
mY

mZ

)
and S =

(
SYY SY Z

SZY SZ Z

)
,

estimates of the regression coefficients can be computed as β̂ = S−1
Z Z SZY and α̂ =

mY − m′
Z β̂. If the missing values are missing completely at random (MCAR), m and

S are consistent estimators (Little and Rubin 2002, p. 42–43), and therefore we have
consistency of α̂ and β̂ under the usual assumptions of the linear regression model.
However, the pairwise complete sample covariance matrix S is not guaranteed to be
positive definite, so an eigenvalue correction may be necessary. For robust estimates
of m and S, one could use the generalized S-estimator of Danilov et al. (2012), which
is also consistent under MCAR.

For linear regression with compositional explanatory variables, we are interested
in all regression models based on the different pivot coordinate systems from (3), i.e.,

Y = α + β
(l)
1 Z (l)

1 + · · · + β
(l)
D−1Z

(l)
D−1 + ε, l = 1, . . . , D.

With x(l)
i =

(
x (l)
i1 , . . . , x (l)

i D

)′ = (xil , xi2, . . . , xi,l−1, xi,l+1, . . . , xiD)′, we obtain dif-

ferent sets of missing value preserving pivot coordinates z̃(l)i =
(
z̃(l)i1 , . . . , z̃(l)i,D−1

)′

l = 1, . . . , D, analogous to (8). Then the regression estimator based on the pair-
wise complete sample covariance matrix or the robust generalized S-estimator yields
consistent estimates α̂(l), β̂

(l)
1 , . . . , β̂

(l)
D−1 under MCAR.

However, consistency is not enough in the context of compositional data, we also
need to ensure that the properties of pivot coordinates hold on finite samples. The
most important property is that the different pivot coordinate systems from (3) are
orthogonal rotations of each other. This property is crucial for the interpretation of
regression coefficients, and it will ensure that the estimates of the intercept (and any
coefficients of additional real-valued explanatory variables) are identical. Furthermore,
it does not matter which coordinate system is used for prediction purposes, as the
predictions will be identical.

We therefore ran a small simulation study. We generated n = 250 observations
on D = 6 compositional parts. We first generate observations zi on D − 1 coor-
dinates from a multivariate normal distribution with mean 0 and covariance matrix
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� = (0.5|i− j |)1≤i, j≤D−1. Then we generated the response yi = z′
iβ + εi with

β = (1, 0, 1, 0, 1)′ and standard normal error terms εi . Afterwards, we applied the
inverse ilr mapping to the coordinates zi to obtain the D-part compositions xi . Finally,
we set cells in the data matrix X = (x′

1, . . . , x
′
n)

′ to missing values with a probability
of 10% (MCAR). We repeat this 500 times.

For each generated data set, we computed two different missing value preserving
coordinate systems: one where the first coordinate is based on the first compositional
part and one where the first coordinate is based on the second compositional part.
Then we estimated the regression coefficients based on the pairwise complete sample
covariance matrix. We generated n independent test observations in the same way as
described above, and computed predictions using the coefficient estimates based on
the two pivot coordinate systems.

As argued above, those predictions need to be identical, otherwise themissing value
preserving pivot coordinates are not useful in practice. However, we obtain an average
absolute difference of the predictions of 0.0172 (averaged over all simulation runs and
all observations in the test set).

While the difference is on average small, the predictions are definitely not identi-
cal. Therefore the coordinate systems are not exact orthogonal rotations of each other,
and we cannot use such missing value preserving coordinates in practice. For inter-
pretability purposes and to obtain identical predictions from different pivot coordinate
systems, we first need to impute the compositional data and then compute the pivot
coordinates based on the complete (imputed) data, as proposed in Sect. 3.

C On including the response variable in the bivariate filter and
multiple imputation

One point of discussion brought up by an anonymous reviewer is whether the response
variable should be included in the cellwise outlier filter and subsequent multiple impu-
tation, or whether outliers in the response should remain in the data to be treated by
the MM-regression estimator. As we use a bivariate filter to detect cellwise outliers,
including the response in the bivariate filter can help with detecting outlying cells in
the explanatory variables more accurately. For multiple imputation, Allison (2002, p.
53) argues that the response variable needs to be included in the imputation process.
The main argument is that if the response variable is omitted a priori from the impu-
tation models, the conditional distribution from which the imputed values are drawn
will be in general misspecified, resulting in bias in the regression coefficients.

To further investigate this issue, we perform simulations to assess the effect of the
imputations on the estimation of the model. We use the same simulation design as in
Sect. 4, but we only consider D = 5 compositional parts. We keep the probability
of rowwise outliers fixed at 0.05, but we vary the probability of cellwise outliers
from 0 to 0.2. As a baseline, we use the robust MM-regression estimator applied to
pivot coordinates on the simulated data without cellwise contamination. To isolate the
effect of multiple imputation on the coefficient estimates, we apply the hypothetical
version of the proposed procedure with an ideal outlier filter (IF-MI) to the same
simulated data but with added cellwise contamination. Moreover, we also apply a
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variant of the procedure (IF-MI-X) that includes only the explanatory variables in the
filtering and imputation steps, and leaves outliers in the response variable to be treated
by the MM-estimator. In addition to generating cellwise outliers in all variables, we
also consider a scenario with cellwise outliers only in the compositional explanatory
variables. This second scenario isolates the role of the response variable as a predictor
in the imputation models of IF-MI, since no values in the response are imputed.

Figure 4 shows the results for the D − 1 = 4 regression coefficients for sample
size n = 100 and the multiplication factor of the covariance matrix k = 1. Results
for other values of n and k lead to the same conclusions and are therefore omitted. By
leaving out the correlated response variable in the multiple imputation process, bias in
the regression coefficients is indeed amplified using IF-MI-X. As expected, this bias
increases as the cellwise contamination level increases. On the other hand, when the
response variable is included in the multiple imputations, the conditional distributions
are more accurately modeled, and the bias of IF-MI is much lower.

D Figures of simulation results

See Figs. 4, 5, 6, 7, 8, 9 and 10.

123



Robust regression with compositional covariates 899

Fig. 4 Results from 1000 simulation runs to investigate the effect of the imputations on the estimated
regression coefficients: the average coefficient estimates from regression methods in pivot coordinates are
plotted against the cellwise contamination level for different cellwise outlier settings
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Fig. 5 Results from 1000 simulation runs for the scenariowith D = 5 compositional parts: the averageMSE
of coefficient estimates from regression methods in pivot coordinates is plotted against the contamination
level ζ for various sample sizes n and scaling factors k of the covariance matrix

123



Robust regression with compositional covariates 901

Fig. 6 Results from 1000 simulation runs for the scenario with D = 10 compositional parts: the average
MSE of coefficient estimates from regression methods in pivot coordinates is plotted against the contami-
nation level ζ for various sample sizes n and scaling factors k of the covariance matrix
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Fig. 7 Results from 1000 simulation runs for the scenario with D = 20 compositional parts: the average
MSE of coefficient estimates from regression methods in pivot coordinates is plotted against the contami-
nation level ζ for various sample sizes n and scaling factors k of the covariance matrix
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Fig. 8 Results from 1000 simulation runs for the scenario with D = 5 compositional parts: the average
MSEP for different regression methods is plotted against the contamination level ζ for various sample sizes
n and scaling factors k of the covariance matrix in pivot coordinates
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Fig. 9 Results from 1000 simulation runs for the scenario with D = 10 compositional parts: the average
MSEP for different regression methods is plotted against the contamination level ζ for various sample sizes
n and scaling factors k of the covariance matrix in pivot coordinates
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Fig. 10 Results from 1000 simulation runs for the scenario with D = 20 compositional parts: the average
MSEP for different regression methods is plotted against the contamination level ζ for various sample sizes
n and scaling factors k of the covariance matrix in pivot coordinates. Note that the shooting S-estimator
(ShS) cannot be applied for n = 50 and n = 100, as the number of pairwise logratios is larger than the
number of observations. In addition, the 3-step regression estimator (3S) is unstable for n = 50, yielding
an average MSEP that is outside the depicted range on the y-axis

E Table of results from the sensitivity analysis using the VFA data set

See Table 2.
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