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Abstract
Dimensionality reduction algorithms are powerfulmathematical tools for data analysis
and visualization. In many pattern recognition applications, a feature extraction step
is often required to mitigate the curse of the dimensionality, a collection of negative
effects caused by an arbitrary increase in the number of features in classification tasks.
Principal Component Analysis (PCA) is a classical statistical method that creates new
features based on linear combinations of the original ones through the eigenvectors of
the covariancematrix. In this paper, we propose PCA-KL, a parametric dimensionality
reduction algorithm for unsupervised metric learning, based on the computation of the
entropic covariance matrix, a surrogate for the covariance matrix of the data obtained
in terms of the relative entropy between local Gaussian distributions instead of the
usual Euclidean distance between the data points. Numerical experiments with several
real datasets show that the proposed method is capable of producing better defined
clusters and also higher classification accuracy in comparison to regular PCA and
several manifold learning algorithms, making PCA-KL a promising alternative for
unsupervised metric learning.

Keywords Dimensionality reduction · PCA · KL-divergence · Unsupervised Metric
learning

Mathematics Subject Classification 62H30 · 94A16 · 94A17 · 68T10

1 Introduction

The presence of multivariate data in pattern recognition and machine learning appli-
cations has been increasing drastically over the years. Modern datasets are often
composed by a large number of examples, each of which having an even larger number
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of features. If the effects of a large sample size are positive to learning processes in
general, the effects of an arbitrary increase in the number of features are known to be
highly negative, especially in pattern classification tasks (Trunk 1979; Lee and Ver-
leysen 2007; Hughes 1968; Zimek et al. 2012; Marimont and Shapiro 1979; Chávez
et al. 2001).

One of the major drawbacks in high-dimensional data analysis is the curse of the
dimensionality. This term was first mentioned by Bellman (1961) and refers to the fact
that to estimate a function of several variables to a given degree of accuracy, the sample
size needs to grow with the number of variables. A related fact is that hyperspaces are
inherently sparse, causing the empty space phenomenon (Carreira-Perpinan 1997). In
contrast with the usual 3D Euclidean space, the geometric properties of hyperspaces
are highly non-intuitive, making the learning of supervised discriminative functions a
painful task (Jimenes and Landgrebe 1998). It has been shown that for linear classi-
fiers, such as the Nearest Mean Classifier, the number of training samples needed in
supervised classification problems is a linear function of the dimensionality and for
quadratic classifiers, such as the Bayesian classifier under Gaussian hypothesis, it is a
quadratic function of the dimensionality (Fukunaga 1990). In case of non parametric
classifiers, the situation is even worse, since experimental results have shown that
as dimensionality increases, the number of samples must grow exponentially (Scott
1992; Hwang et al. 1994). Thus, in order to extract relevant information from high-
dimensional data, it is required a large n, which is not always possible under certain
circumstances. Therefore, a natural way to mitigate this problem and indirectly reduce
the value of n is to significantly reduce the data dimensionality, that is, m.

Another issue with high-dimensional data is that the usual Euclidean distance as a
measure of dissimilarity tends to behave poorly. In this context, unsupervised metric
learningmethods try to overcome this limitation by finding suitable distance functions.
A class of algorithms extremely relevant to this problem ismanifold learning.Manifold
learning is deeply connected to unsupervised metric learning in the sense that besides
learning amore compact andmeaningful representation for the observed dataset, these
methods also learns a distance function that geometrically is better suited to represent
a similarity measure between a pair of objects in the collection (Li and Tian 2018;
Wang and Sun 2015; Yang and Jin 2006; Bellet et al. 2013; Suárez 2018).

The key idea of dimension reduction is to find the most compact low dimensional
structure that is embedded in a higher dimensional space. Historically, Occam’s razor
has been used to justify dimension reduction (Domingos 1999). The basic concept
in Occam’s razor is to choose the simplest model from a set of equivalent models to
explain a given phenomenon (Huo et al. 2008). There are many approaches to dimen-
sionality reduction based on several assumptions and used in a variety of contexts. In
this paper, we propose a parametric PCA algorithm based on a information-theoretic
measure: the relative entropy. The main goal is to find a surrogate for the covariance
matrix replacing the Euclidean distance in the feature space by the KL-divergence
between Gaussian distributions estimated in each local neighborhood. One possible
limitation of PCA is that thismethodmaximizes the variance of the retaineddata,which
often produces clusters with large scattering. This can be a negative side-effect tomany
classification problems. In summary, the main contribution of the proposed method
is that unlike traditional dimensionality reduction methods, PCA-KL is a patch-based
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method, which means it is less sensitive to the presence of noise and outliers in data,
making the clusters more compact, in the sense that their intra-class scatter is reduced.
As a consequence, in several different datasets, the features extracted by PCA-KL
show more discriminant power in comparison to the features obtained by some man-
ifold learning algorithms, making the proposed method a promising alternative for
unsupervised metric learning.

The remainder of the paper is organized as follows: Sect. 2 describes the classic
dimensionality reductionmethods PCA,NMF,Kernel PCA, ISOMAP,LLE,Laplacian
Eigenmaps and t-SNE. In Sect. 3, we briefly discuss the KL-divergence and its com-
putation in the Gaussian case. In Sect. 4, we describe the proposed PCA-KL method
in details. Section 5 shows the experiments and results. Finally, in Sect. 6 we present
the conclusions, final remarks and future directions for research in dimensionality
reduction for unsupervised metric learning.

2 Dimensionality reduction for unsupervisedmetric learning

2.1 Principal component analysis

Principal Component Analysis, or simply PCA, is a computational method that imple-
ments the Karhunen–Loève transform, also known as Hotteling transform (Hotelling
1933), a classical multivariate statistical technique that expands a given random vector
x ∈ Rm in the eigenvectors of its covariance matrix (Jolliffe 2002; Shlens 2005). PCA
is the most widely known method for data compression and feature extraction. PCA
does not make assumptions on probability density functions, since all information
needed by the method can be estimated directly from data (Hastie et al. 2009). Since
it depends solely on the covariance matrix, PCA is a second order statistical method.
PCA is optimal in two different ways: (1) by maximizing the variance of the new com-
pact representation Y ; (2) by minimizing the mean square error between the original
data X and the new compact representation Y . From a statistical point of view, the
goal of PCA is to reduce the redundancy between the random variables that compose
the random vector x ∈ Rm , which is measured by the correlations between them. In
this sense, PCA first decorrelates the features and then reduce the dimensionality by
finding new features that are linear combinations of the original ones.

2.1.1 PCA by the maximization of the variance

Let Z = [T T , ST ] be an orthonormal basis for Rm in which T T = [w1,w2, . . . ,wd ]
denotes the d < m components that we wish to retain during the dimensionality
reduction process and ST = [wd+1,wd+2, . . . ,wm] are the remaining components
that should be discarded. In other words, T defines the linear PCA subspace and S
defines the linear subspace eliminated by the reduction process (Young and Calvert
1974).

The problem in question can be summarized as: given an input feature space, we
want to find d directions w j , for j = 1, 2, . . . , d that, when projecting the data, the
variance is maximized. In other words, we want the directions that maximizes data
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scattering. The question is: how to obtain the directionsw j?Without loss of generality,
we assume that the sample X = [x1, x2, . . . , xn] has zero mean, that is, the data points
are centred around the origin.

Note that we can write x ∈ Rm as an expansion in the orthonormal basis Z as:

x =
m∑

j=1

(xTw j )w j =
m∑

j=1

c jw j (1)

where c j are the coefficients of the expansion.
Thus, the new vector y ∈ Rd can be obtained by the transformation y = T x, that

is:

yT = xT T T =
m∑

j=1

c jwT
j [w1,w2, . . . ,wd ] (2)

As we have an orthonormal basis, wT
i w j = 1 for i = j and wT

i w j = 0 for i �= j ,
leading to:

yT = [c1, c2, . . . , cd ] (3)

In this way, a linear transformation T is sought that maximizes the variance retained
in the data, that is, we want to maximize the following functional (Hyvarinen et al.
2001):

J PCA
1 (T ) = E[‖y‖2] = E[yT y] =

d∑

j=1

E[c2j ] (4)

Since c j is the projection of x in w j , that is, c j = xTw j , we have:

J PCA
1 (T ) =

d∑

j=1

E
[
wT

j xx
Tw j

]
=

d∑

j=1

wT
j E
[
xxT

]
w j =

d∑

j=1

wT
j Σxw j (5)

where Σx denotes the covariance matrix of the data points X .
Hence, we have the following constrained optimization problem:

argmax
w j

d∑

j=1

wT
j Σxw j subject to

∥∥w j
∥∥ = 1 for j = 1, 2, . . . , d (6)

which is solved by Lagrange multipliers. The Lagrangian function is given by:

J PCA
1 (T , λ1, λ2, . . . , λd) =

d∑

j=1

wT
j Σxw j −

d∑

j=1

λ j

(
wT

j w j − 1
)

(7)
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Differentiatingwith respect tow j and setting the result to zero gives us the necessary
condition for the optimum:

∂

∂w j
J PC A
1 (T , λ1, λ2, . . . , λd) = Σxw j − λ jw j = 0 (8)

which leads to the eigenvector equation:

Σxw j = λ jw j (9)

Going back to the optimization problem, we can rewrite it as:

argmax
w j

d∑

j=1

wT
j Σxw j = argmax

w j

d∑

j=1

wT
j λ jw j = argmax

w j

d∑

j=1

λ j (10)

which means that we should select to compose the basis of the linear PCA subspace
the k eigenvectors associated to the k largest eigenvalues of the data covariance matrix.
Algorithm 1 describes dimensionality reduction by PCA.

Algorithm 1 Principal Component Analysis
1: function PCA(X )
2: Compute the sample mean and the sample covariance matrix by:

μx = 1
n
∑n

i=1 xi
Σx = 1

n−1
∑n

i=1(xi − μx )(xi − μx )
T

3: Compute the eigenvalues and eigenvectors of Σx
4: Define the transformation matrix T = [w1,w2, . . . ,wd ] with the d eigenvectors associated to the d

largest eigenvalues.
5: Project the data X into the PCA subspace:

yi = T xi for i = 1, 2, . . . , n
6: return Y
7: end function

The great advantage of PCA is that it is a very fast method. It has been verified
that the time complexity of PCA is O(max(n2m, nm2)), where n is the number of
samples and m is the number of input features (Nguyen and Holmes 2019).

2.2 Non-negativematrix factorization

Non-Negative Matrix Factorization (NMF) is applied to dimensionality reduction of
multivariate data by considering as input a set of of multivariate m-dimensional data
vectors, Vm×n where n is the number of examples in the data set. This matrix is then
approximately factorized into an m × r matrix W and an r × n matrix H , that is,
X ≈ WH . Usually r is chosen to be smaller than n orm, so thatW and H are smaller
than the original matrix X . This results in a compressed version of the original data
matrix (Lee and Seung 1999). The significance of this representation is that v ≈ Wh,
that is each vector is approximated by a linear combination of the columns of W . In
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this context, H plays the role of the extracted features, that is, each column h j of H
represents a vector in the transformed space.

To measure how close V is from WH , a cost function is usually adopted. Two
common choices of distance measures are the Euclidean distance and the Kullback–
Leibler divergence, given by:

DE (A, B) = ‖A − B‖2 =
∑

i, j

(Ai, j − Bi, j )
2 (11)

DKL(A, B) =
∑

i, j

[
Ai, j log

(
Ai, j

Bi, j

)
− Ai, j + Bi, j

]
(12)

Theorem 1 The Euclidean distance DE (V ,WH) = ‖V − WH‖2 is non-increasing
for a finite number of steps of the multiplicative rules:

Hk+1
i, j = Hk

i, j
((Wk)T V )i, j

((Wk)T WkHk)i, j
(13)

Wk+1
i, j = Wk

i, j
(V (Hk+1)T )i, j

(WkHk+1(Hk+1)T )i, j
(14)

where k is iteration counter and W 0 and H0 are initialized with positive random
numbers, typically sampled from a [0, 1] uniform distribution.

Theorem 2 The KL-divergence DK L(V ,WH) is non-increasing for a finite number
of steps of the multiplicative rules:

Wk+1
i, j = Wk

i, j

∑

r

Hk
jr

Vir
(WkHk)ir

∑

r

Hk
jr

(15)

Hk+1
i, j = Hk

i, j

∑

r

Wk+1
ri

Vr j
(Wk+1Hk)r j

∑

r

Wk+1
ri

(16)

where k is iteration counter and W 0 and H0 are initialized with positive random
numbers, typically sampled from a [0, 1] uniform distribution.

The complete proofs for Theorems 1 and 2 are described in details in Lee and
Seung’s seminal paper (Lee and Seung 1999). The computational complexity of NMF
has been shown to be O(nmd) times the number of iterations for convergence, where
n is the sample size, m is the number of features and d is the output dimensionality
(Lin 2007).
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2.2.1 The clustering property

It has been shown that NMFhas an intrinsic clustering property, that is, it automatically
clusters the columns of the data matrix X = {x1, x2, . . . , xn}, where xi ∈ Rm (Ding
et al. 2005).More precisely, the approximation of V asWH is achieved byminimizing
the error function:

min
W ,H

||V − WH ||2 (17)

subject to W ≥ 0 and V ≥ 0. By imposing the orthogonality constraint HHT = I ,
the NMF minimization problem is mathematically equivalent to the minimization of
K-means clustering (Ding et al. 2005). When the error function to be minimized is the
KL-divergence, NMF is identical to the PLSA (Probabilistic latent semantic analysis),
another popular clustering method (Ding et al. 2008).

2.3 Kernel PCA

Principal Component Analysis only allows linear dimensionality reduction. However,
if the data has more complicated structures which are non-linear functions of the origi-
nal features, standard PCA will fail in capturing meaningful information. Fortunately,
kernel PCA allows us to generalize standard PCA to non-linear dimensionality reduc-
tion (Schölkopf et al. 1999). The first assumption is that the mean of the data after the
mapping to the high-dimensional space is zero, that is:

1

n

n∑

i=1

φ(xi ) = 0 (18)

Thus, the M × M sample covariance matrix of the projected data is given by:

C = 1

n

n∑

i=1

φ(xi )φ(xi )T (19)

and the eigenvectors of C are:

Cvk = λkvk for k = 1, 2, . . . , M (20)

The following result show thatwe canwrite the eigenvalues of the covariancematrix
in terms of φ(xi ).

Theorem 3 The eigenvectors of C can be expressed as a linear combination of the
features, that is:

vk =
n∑

i=1

αkiφ(xi ) (21)

Note that from equations (19) and (20), we have:
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Cvk = 1

n

n∑

i=1

φ(xi )φ(xi )T vk = λvk (22)

which implies in:

vk = 1

nλk

n∑

i=1

(φ(xi )T vk)φ(xi ) =
n∑

i=1

αkiφ(xi ) (23)

where αki = 1
nλk

φ(xi )T vk . So, finding the eigenvectors is equivalent to finding the
coefficients αki . By substituting back Eq. (23) into Eq. (22), we have:

1

n

n∑

i=1

φ(xi )φ(xi )T

⎛

⎝
n∑

j=1

αk jφ(x j )

⎞

⎠ = λk

n∑

j=1

αk jφ(x j ) (24)

Rewritting equation (24), we can express it as:

1

n

n∑

i=1

φ(xi )

⎛

⎝
n∑

j=1

αk jφ(xi )Tφ(x j )

⎞

⎠ = λk

n∑

j=1

αk jφ(x j ) (25)

And using the kernel trick, that is, K (xi , x j ) = φ(xi )Tφ(x j ), we have:

1

n

n∑

i=1

φ(xi )

⎛

⎝
n∑

j=1

αk j K (xi , x j )

⎞

⎠ = λk

n∑

j=1

αk jφ(x j ) (26)

Multiplying both sides by φ(xl)T leads to:

1

n

n∑

i=1

φ(xl)Tφ(xi )

⎛

⎝
n∑

j=1

αk j K (xi , x j )

⎞

⎠ = λk

n∑

j=1

αk jφ(xl)Tφ(x j ) (27)

Using the kernel trick once again, we have:

1

n

n∑

i=1

K (xl , xi )

⎛

⎝
n∑

j=1

αk j K (xi , x j )

⎞

⎠ = λk

n∑

j=1

αk j K (xl , x j ) (28)

Using the matrix vector notation we can express the equation as (Schölkopf et al.
1999):

K 2αk = (λkn)Kαk (29)

where Ki, j = K (xi , x j ) and αk is the n-dimensional column vector of αki , that is,
αk = [αk1, αk2, . . . , αkn]T . Simplifying Eq. (29), we finally reach:

Kαk = (λkn)αk (30)
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showing that the αk are the eigenvectors of the kernel matrix. For a new point x, its
projection onto the k-th principal component is given by:

yk(x) = φ(x)T vk =
n∑

i=1

αkiφ(x)Tφ(xi ) =
n∑

i=1

αki K (x, xi ) (31)

The advantage of employing the kernel trick is that we do not have to compute
φ(xi ) explicitly for i = 1, 2, . . . , n. We can directly construct the kernel matrix from
the training data. Two widely used non-linear kernels are the polynomial kernel:

K (x, y) = (xT y + c)d (32)

where c >= 0 is a constant, and the Gaussian kernel:

K (x, y) = exp

(
−‖x − y‖2

2σ 2

)
(33)

with parameter σ 2. In case the projected data does not have zero mean, we need to
centralize the data making:

φ̃(xi ) = φ(xi ) − 1

n

n∑

k=1

φ(xk) (34)

Hence, the corresponding kernel matrix is given by:

K̃ (xi , x j ) = φ̃(xi )T φ̃(xi ) =
(

φ(xi ) − 1

n

n∑

k=1

φ(xk)

)T (
φ(x j ) − 1

n

n∑

k=1

φ(xk)

)

= φ(xi )Tφ(x j ) − 1

n

n∑

k=1

φ(xi )Tφ(xk) − 1

n

n∑

k=1

φ(xk)Tφ(x j )

+ 1

n2

n∑

k=1

n∑

l=1

φ(xk)Tφ(xl)

= K (xi , x j ) − 1

n

n∑

k=1

K (xi , xk) − 1

n

n∑

k=1

K (xk, x j )

+ 1

n2

n∑

k=1

n∑

l=1

K (xk, xl) (35)

In matrix form, we have to replace the kernel matrix K by the Gram matrix K̃ :

K̃ = K − 1nK − K1n + 1nK1n (36)

where 1n is the n×n matrix with all elements equal to 1
n . In the following, we present

an algorithm for dimensionality reduction through kernel PCA.
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Algorithm 2 Kernel Principal Component Analysis
1: function KPCA(X )
2: Construct the kernel matrix K from the training dataset X : Ki, j = K (xi , x j )
3: Compute the Gram matrix K̃ using equation (36)
4: Use equation (30) to solve for the vectors αk (using K̃ instead of K )
5: Compute the kernel principal components yk (x) using equation (31) for k = 1, 2, . . . , d
6: return Y
7: end function

It has been shown that the computational complexity of the original Kernel PCA
is O(n3), where n denotes the number of samples. However, faster algorithms can
perform KPCA in O(dn2), such as Fast Iterative Kernel PCA (Günter et al. 2007).

2.4 ISOMAP

ISOMAP was one of the pioneering algorithms in manifold learning for dimensional-
ity reduction. The authors propose an approach that combines the major algorithmic
features of PCA andMultidimensional Scaling (Cox and Cox 2001; Borg andGroenen
2005) (MSD)—computational efficiency, global optimality, and asymptotic conver-
gence guarantees - with the flexibility to learn a broad class of non-linear manifolds
(Tenenbaum et al. 2000). The basic idea of the ISOMAP algorithm is first to build a
graph by joining the k-nearest neighbors (KNN) in the input space, then compute the
shortest paths between each pair of vertices in the graph and, knowing the approximate
geodesic distances between the points, find a mapping to the an Euclidean subspace
of Rd that preserves those distances. The hypothesis of the ISOMAP algorithm is that
the shortest paths in the KNN graph are good approximations for the true geodesic
distances in the manifold.

The ISOMAP algorithm can be divided in three main steps:

1. From the input data x1, x2, . . . , xn ∈ Rm build an undirected proximity graph using
the KNN rule or the ε-neighborhood rule (von Luxburg 2007);

2. Compute the pairwise distance matrix D using n executions of the Dijkstra’s algo-
rithm or one execution of the Floyd–Warshall algorithm (Cormen et al. 2009);

3. Estimate the new coordinates of the points in an Euclidean subspace of Rd by
preserving the distances through the Multidimensional Scaling (MDS) method.

2.4.1 Multidimensional scaling

Basically, the main goal of MDS is, given an n × n matrix of pairwise distances,
recover the coordinates of the n points xr ∈ Rd for r = 1, 2, . . . , n in an Euclidean
subspace, where d, the target dimensionality, is a parameter of the algorithm (Cox and
Cox 2001; Borg and Groenen 2005).

We begin by noting that the pairwise distance matrix is given by D = {d2rs}, for
r , s = 1, 2, . . . , n where the distance between two arbitrary points xr and xs is:

d2rs = ‖xr − xs‖2 = (xr − xs)T (xr − xs) (37)
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Let B denote the inner products matrix, that is B = {brs}, where brs = xTr xs .
To find the embedding, MDS needs the matrix B, not D. First, we need to assume
a hypothesis that the data has zero mean, otherwise there would be infinitely many
different solutions, since the application of any arbitrary translation in the set of points,
would preserve the pairwise distances. From Eq. (37), applying the distributive law
we have:

d2rs = xTr xr + xTs xs − 2xTr xs (38)

From the matrix D, we can calculate the mean of an arbitrary column s by:

1

n

n∑

r=1

d2rs = 1

n

n∑

r=1

xTr xr + xTs xs (39)

Similarly, we can compute the mean of an arbitrary row r as:

1

n

n∑

s=1

d2rs = xTr xr + 1

n

n∑

s=1

xTs xs (40)

Finally, we can compute the mean of all elements of D as:

1

n2

n∑

r=1

n∑

s=1

d2rs = 2

n

n∑

r=1

xTr xr (41)

Note that from Eq. (38), it is possible to define brs as:

brs = xTr xs = −1

2
(d2rs − xTr xr − xTs xs) (42)

Combining Eqs. (39), (40) and (41) we have:

brs = −1

2

(
d2rs − 1

n

n∑

r=1

d2rs − 1

n

n∑

s=1

d2rs + 1

n2

n∑

r=1

n∑

s=1

d2rs

)
(43)

Making ars = − 1
2drs we can write:

ar . = 1

n

n∑

s=1

ars a.s = 1

n

n∑

r=1

ars a.. = 1

n

n∑

r=1

n∑

s=1

ars (44)

leading to:

brs = ars − ar . − a.s + a.. (45)
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which in matrix notation becomes B = H AH , where:

H = I − 1

n
11T (46)

is the centring matrix. To find the embedding, that is, the coordinates of the points in
Rd , we have to perform an eigendecomposition of the matrix B, that is:

B = VΛV T (47)

whereΛ = diag(λ1, λ2, . . . , λn) is the diagonal matrix with the eigenvalues of B and
V is the matrix whose columns are the eigenvectors of B. Algorithm 3 summarizes
the whole process in a sequence of logical and objective steps.

Algorithm 3 Isometric Feature Mapping
1: function ISOMAP(X )
2: From the input data Xm×n build a KNN graph.
3: Compute the pairwise distances matrix Dn×n .
4: Compute A = − 1

2 D.

5: Compute H = I − 1
n U , where U is a n × n matrix of 1’s.

6: Compute B = H AH .
7: Find the eigenvalues and eigenvectors of the matrix B.
8: Select the top d < m eigenvalues and eigenvalues of B and define:

Ṽ =

⎡

⎢⎢⎢⎣

| | ... ... |
| | ... ... |
v1 v2 ... ... vd
| | ... ... |
| | ... ... |

⎤

⎥⎥⎥⎦

n×d

(48)

Λ̃ = diag(λ1, λ2, ..., λd ) (49)

9: Compute X̃ = Λ̃1/2 Ṽ T

10: return X̃
11: end function

It has been shown that the overall complexity of the ISOMAP algorithm is given
by O(n2(m + log n)) (Nguyen and Holmes 2019), where n and m denote the number
of samples and number of features, respectively.

2.5 Locally linear embedding

The ISOMAP algorithm is a global method in the sense that to find the coordinates of
a given input vector xi ∈ Rm in the manifold, it uses information from all the samples
through the matrix B. On the other hand, Locally Linear Embedding (LLE), as the
name emphasizes, is a local method, that is, the new coordinates of any xi ∈ Rm

depends only on the neighborhood of that point. The main hypothesis behind LLE
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is that for a sufficiently high density of samples, it is expected that a vector xi and
its neighbors define a linear patch, that is, they all belong to an Euclidean subspace
(Roweis and Saul 2000).

Basically, the LLE algorithm require as inputs an n × m data matrix X , with rows
xi , a desired number of dimensions d < m and an integer k > d + 1 for finding local
neighborhoods. The output is a n × d matrix Y , wtih rows yi . The LLE algorithm can
be divided in three main steps (Roweis and Saul 2000; Saul and Roweis 2003):

1. From each xi ∈ Rm find its k nearest neighbors;
2. Find the weight matrix W which minimizes the reconstruction error for each data

point xi ∈ Rm ;
3. Find the coordinates Y which minimize the reconstruction error using the optimum

weights;

2.5.1 Least-squares estimation of the weights

The second step of LLE is to reconstruct each data point from its nearest neighbors.
The optimal reconstruction weights can be computed in closed form. Without loss of
generality, we can express the local reconstruction error at point xi as:

E(w) =
∥∥∥∥∥∥

∑

j

w j (xi − x j )

∥∥∥∥∥∥

2

=
∑

j

∑

k

w jwk(xi − x j )(xi − xk)T (50)

Defining the matrix C as:

C jk = (xi − x j )
T (xi − xk) (51)

we have the following expression for the local reconstruction error:

E(w) =
∑

j

∑

k

w jC jkwk = wTCw (52)

Actually, the estimation of the matrixW reduces to n eigenvalue problems: as there
are no constraints across the rows of W , we can find the optimal weights for each
sample xi separately, which drastically simplifies the computations. Thus, we have n
independent constrained optimization problems given by:

argmin
wi

wT
i Ciwi subject to 1Twi = 1 for i = 1, 2, . . . , n (53)

Using Lagrange multipliers, we write the Lagrangian function as:

L(wi , λ) = wT
i Ciwi − λ(1Twi − 1) (54)

Taking the derivatives with relation to wi :

∂

∂wi
L(wi , λ) = 2Ciwi − λ1 = 0 (55)

123



842 A. L. M. Levada

which leads to

Ciwi = λ

2
1 (56)

In order to speed up the algorithm, instead of computing the inverse of the matrix
C , it is usual to solve the linear system:

Ciwi = 1 (57)

and then normalize the solution to guarantee that
∑

j wi ( j) = 1.

2.5.2 Finding the coordinates

The key idea behind the third step of the LLE algorithm is to use the optimal recon-
struction weights estimated by least-squares as the proper weights on the manifold
and solve for the local manifold coordinates. Thus, fixing the weight matrix W , the
goal is to solve another quadratic minimization problem to minimize:

Φ(Y ) =
n∑

i=1

∥∥∥∥∥∥
yi −

∑

j

wi jy j

∥∥∥∥∥∥

2

(58)

In order to avoid degeneracy, we have to impose two constraints:

1. The mean of the data in the transformed space is zero, otherwise we would have
an infinite number of solutions;

2. The covariance matrix of the transformed data is the identity matrix, that is, there
is not correlation between the components of y ∈ Rd ;

Denoting by Y the d × n matrix in which each column yi for i = 1, 2, . . . , n stores
the coordinates of of the i-th point in the manifold and knowing thatwi ( j) = 0 unless
y j is one of the neighbors of yi , we can write Φ(Y ) as:

Φ(Y ) = Tr(Y T (I − W )T (I − W )Y ) (59)

Defining the n × n matrix M as:

M = (I − W )T (I − W ) (60)

we get the following optimization problem:

argmin
Y

Tr(Y T MY ) subject to
1

n
Y T Y = I (61)

Thus, the Lagrangian function is given by:

L(Y , λ) = Tr(Y T MY ) − λ

(
1

n
Y T Y − I

)
(62)
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Differentiating the function and setting the result to zero gives:

2MY − 2
λ

n
Y = 0 (63)

MY = βY (64)

where β = λ
n , showing that the Y must be composed by the eigenvectors of the matrix

M . Since we have a minimization problem, we want to select to compose Y the d
eigenvectors associated to the d smallest eigenvalues. Note that M being a n × n
matrix, it has n eigenvalues and n orthogonal eigenvectors. Although the eigenvalues
are real and non-negative, the smallest of them is always zero, with the constant
eigenvector 1. This bottom eigenvector corresponds to the mean of Y and should be
discarded to enforce the constraint that

∑n
i=1 yi = 0 (de Ridder and Duin 2002).

Algorithm 4 shows a summary of the LLE method.

Algorithm 4 Locally Linear Embedding
1: function LLE(X , K , d)
2: From the input data Xm×n build a KNN graph.
3: for xi ∈ XT do
4: Compute the K × K matrix Ci as:

Ci ( j, k) = (xi − x j )(xi − xk )
T (65)

5: Solve the linear system Ciwi = 1 to estimate the weights wi ∈ RK .
6: Normalize the weights in wi so that

∑
j wi ( j) = 1.

7: end for
8: Construct the n × n matrix W , whose lines are the estimated wi .
9: Compute M = (I − W )T (I − W ).
10: Find the eigenvalues and eigenvectors of the matrix M .
11: Select the bottom d non-zero eigenvectors of M and define:

Y =

⎡

⎢⎢⎢⎣

| | ... ... |
| | ... ... |
v1 v2 ... ... vd
| | ... ... |
| | ... ... |

⎤

⎥⎥⎥⎦

n×d

(66)

12: return Y
13: end function

It has been shown that the overall complexity of the LLE algorithm is given by
O((m log k)(n log n))+ O(mnk3)+ O(dn2) (Roweis and Saul 2000), where n,m, k
and d denote the number of samples, number of features, number of neighbors in the
KNN graph and the output dimensionality, respectively.
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2.6 Laplacian Eigenmaps

Basically, the Laplacian Eigenmaps algorithm require as inputs an n ×m data matrix
X , with each row xi defining a data point, a desired number of dimensions d < m
and an integer k for finding local neighborhoods. The output is a n× d matrix Y , with
rows yi . The algorithm can be divided in three main steps (Belkin and Niyogi 2003):

1. Construct the neighborhood graph G = (V , E) by linking nodes vi and v j if xi
and x j are close. The two variants are:

– ε-neighborhood: connect vi and v j by an edge if
∥∥xi − x j

∥∥2 ≤ ε.
– k-nearest neighbors: connect vi and v j by an edge if vi is among the k-nearest
neighbors of v j or v j is among the k-nearest neighbors of vi .

2. Choose theweights to define the adjacencymatrixW . There are also two variations:

– Heat kernel (with parameter t ∈ R): if nodes vi and v j are connected, make

Wi j = exp

{
−
∥∥xi − x j

∥∥2

t

}
(67)

otherwise make Wi j = 0. The justification for this choice is given by the heat
equation.

– Binary weights: make Wi j = 1 if nodes vi and v j are connected by an edge
and Wi j = 0 if vi and v j are not connected by an edge. There is no need to
choose t .

3. Embedding: find the coordinates Y by choosing the d eigenvectors associated to
the d smallest non-zero eigenvalues of the graph Laplacian L .

2.6.1 Laplacian embedding on Rd

Consider the generalized problem of embedding the graph G = (V , E) into a d-
dimensional Euclidean space. Now each node vi ∈ V has to be mapped to a point
in Rd , that is, we need to estimate d coordinates for each node. We denote the final
embedding by a n × d matrix Y = [y1, y2, . . . , yd ], where the i-th row, y(i), provides
the coordinates of vi in the manifold. The objective function is generalized to:

J (Y ) = 1

2

n∑

i=1

n∑

j=1

Wi j

∥∥∥y(i) − y( j)
∥∥∥
2

(68)

where y(i) = [y1(i), y2(i), . . . , yd(i)] is the d-dimensional representation of vi . Note
that, considering Y as a n × d matrix in which each row represents a y(i), for i =
1, 2, . . . , n we rewrite the objective function as:

J (Y ) = 1

2

n∑

i=1

n∑

j=1

Wi j (y(i) − y( j))(y(i) − y( j))T (69)
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Expanding the expression for J (Y ), we can simplify it to:

J (Y ) = 1

2

n∑

i=1

n∑

j=1

[
Wi jy(i)y(i)T − Wi jy(i)y( j)T − Wi jy( j)y(i)T + Wi jy( j)y( j)T

]

= 1

2

⎡

⎣
n∑

i=1

diy(i)y(i)T − 2
n∑

i=1

n∑

j=1

Wi jy(i)y( j)T +
n∑

j=1

d jy( j)y( j)T

⎤

⎦

= 1

2

⎡

⎣2
n∑

i=1

diy(i)y(i)T − 2
n∑

i=1

n∑

j=1

Wi jy(i)y( j)T

⎤

⎦

=
n∑

i=1

diy(i)y(i)T −
n∑

i=1

n∑

j=1

Wi jy(i)y( j)T (70)

Considering Yn×d the matrix of the coordinates for the n points, Dn×n the diagonal
matrix of the degrees di and Wn×n the adjacency matrix, we can rewrite the equation
using a matrix-vector notation as:

J (Y ) = Tr(DYY T ) − Tr(WYYT ) (71)

As the trace is an operator that is invariant under cyclic permutations, we have:

J (Y ) = Tr(Y T DY ) − Tr(Y TWY ) = Tr(Y T (DY − WY ))

= Tr(Y T (D − W )Y ) = Tr(Y T LY ) (72)

Thus, we have the following constrained optimization problem:

argmin
Y

Tr(Y T LY ) subject to Y T DY = I (73)

whose Lagrangian function is given by:

L(Y , λ) = Tr(Y T LY ) − λ(Y T DY − I ) (74)

Taking the derivative and setting the result to zero leads to:

∂

∂Y
L(Y , λ) = 2LY − 2λDY = 0 (75)

leading to the following eigenvector problem:

LY = λDY (76)

This result shows that we should select to compose the columns of the matrix Y the
d eigenvectors associated to the d smallest non-zero eigenvalues of the normalized
Laplacian D−1L . Algorithm 5 shows a summary of the Laplacian Eigenmaps method.
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Algorithm 5 Laplacian Eigenmaps
1: function LaplaceEigen(X , K , d)
2: From the input data Xm×n build a KNN graph.
3: Choose the weights to define the adjacency matrix W .

Wi j = exp

{
−
∥∥xi − x j

∥∥2

t

}
if v j ∈ N (vi ) (77)

4: Compute the diagonal matrix D with the degrees di for i = 1, 2, ..., n.

di =
n∑

j=1

Wi j (78)

5: Compute the Laplacian matrix L = D − W
6: Select the bottom d eigenvectors with non-zero eigenvalues of D−1L:

Y =

⎡

⎢⎢⎢⎣

| | ... ... |
| | ... ... |
v1 v2 ... ... vd
| | ... ... |
| | ... ... |

⎤

⎥⎥⎥⎦

n×d

(79)

7: return Y
8: end function

It has been shown that the overall complexity of the Laplacian Eigenmaps algorithm
is given by O((m log k)(n log n)) + O(mnk3) + O(dn2) (Belkin and Niyogi 2003),
where n, m, k and d denote the number of samples, number of features, number of
neighbors in the KNN graph and the output dimensionality, respectively.

2.7 t-Distributed stochastic neighbor embedding

The algorithm t-SNE is based on its predecessor Stochastic Neighbor Embedding, or
simply SNE (Hinton and Roweis 2003). Basically, SNE converts Euclidean distances
between samples xi ∈ Rm for i = 1, 2, . . . , n into conditional probabilities. The
similarity between two points xi and x j is the conditional probability p j |i that xi would
choose x j as a neighbor if neighbor selection is done in proportion to a probability
density under a Gaussian centered at xi (van der Maaten and Hinton 2008):

p j |i =
exp

(
− ∥∥xi − x j

∥∥2 /2σ 2
i

)

∑
k �=i exp

(−‖xi − xk‖2 /2σ 2
i

) (80)

where σ 2
i is the variance of the Gaussian centered on xi . For xi and x j close enough,

p j |i has a high value, but if they are far apart p j |i tends to zero. It is possible to compute
a similar conditional probability for the low dimensional representation vectors yi and
y j in Rd , denoted by q j |i . Setting the variance of the Gaussian to 1/

√
2, the similarity
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measure is given by:

q j |i =
exp

(
− ∥∥yi − y j

∥∥2
)

∑
k �=i

exp
(
−‖yi − yk‖2

) (81)

Note that, pi |i = qi |i = 0. The goal of SNE is to find a low dimensional representa-
tion that minimizes the distance between the two probabilities, making them as close
as possible. A statistical measure of how close two probability distributions are is the
Kullback–Leibler divergence, also known as relative entropy. SNEminimizes the sum
of Kullback–Leibler divergences over all samples using gradient descent. Thus, we
have to minimize (Hinton and Roweis 2003):

C =
n∑

i=1

K L(Pi ||Qi ) =
n∑

i=1

n∑

j=1

p j |i log
p j |i
q j |i

(82)

where Pi represents the conditional probability distribution over all samples given xi
and Qi represents the conditional probability distribution over all other map points
given map point yi . The SNE cost function is proposed so that we retain the local
structure of the data in the map.

2.7.1 Defining the variance of the Gaussians

It is not suitable to assume that there is a single value of σ 2
i that is optimal for samples.

In dense regions, a smaller value is more appropriate than in sparse regions. The
perplexity measure is then defined as (van der Maaten and Hinton 2008):

Perp(Pi ) = 2H(Pi ) (83)

where H(Pi ) is the Shannon entropy in bits:

H(Pi ) = −
n∑

j=1

p j |i log2 p j |i (84)

SNE searches for a value of σ 2
i that produces a Pi with a fixed perplexity, defined by

the user. The perplexity can be interpreted as a smoothmeasure of the effective number
of neighbors, and typical values are between 5 and 50 (van der Maaten and Hinton
2008). The minimization of the objective function (KL divergence) is performed by a
gradient descent approach with momentum to speed up convergence:

Y (t) = Y (t−1) − η
∂C

∂Y
+ α(t)

(
Y (t−1) − Y (t−2)

)
(85)

where Y (t) denotes the solution at iteration t , η denotes the learning rate and α(t)
represents the momentum at iteration t .
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2.7.2 Computing the gradient in t-SNE

At each stage of the optimization process, we have a set of points y1.y2, . . . , yn and
the computation of the gradient is required. In the SNE algorithms, the whole process
is summarized by Melville (2015):

– Create a matrix where the element di j represents the Euclidean distance between
yi and y j ;

– Transform the distances to create fi j (squaring the distances);
– Apply a weighting function to define a weight wi j , in a way that the larger the
weight, the smaller the distance;

– Convert the weights into probabilities qi j = q j |i , by normalizing over their sum;

With the probabilities at hand, we can compute the gradient. Basically, the cost
function employed by t-SNE has two different aspects:

1. it uses a symmetrized version of the SNE cost function (Cook et al. 2007).
2. it uses a Student t distribution to compute the similarity between two points in the

low-dimensional space.

In the symmetric version, we minimize a single KL divergence:

C = K L(P||Q) =
n∑

i=1

n∑

j=1

pi j log
pi j
qi j

(86)

where pii = qii = 0, pi j = p ji and qi j = q ji , ∀i, j .
Moreover, the pairwise similarities in the high dimensional space are given by:

pi j =
exp

(
− ∥∥xi − x j

∥∥2 /2σ 2
)

∑
k �=l exp

(−‖xk − xl‖2 /2σ 2
) (87)

where the normalization constant involves all pairs of points.
By using the Student’s t distribution with one degree of freedom, the probabilities

qi j are defined by:

qi j =
(
1 + ∥∥yi − y j

∥∥2
)−1

∑
k �=l

(
1 + ‖yk − yl‖2

)−1 = w−1
i j∑

k �=l w
−1
kl

= w−1
i j

Z
(88)

and the objective function is:

C =
n∑

k=1

n∑

l=1

(pkl log pkl − pkl log qkl)

=
n∑

k=1

n∑

l=1

(
pkl log pkl − pkl log w−1

kl + pkl log Z
)

(89)
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Differentiating with respect to yi leads to:

∂C

∂yi
= −

n∑

k=1

n∑

l=1

pkl
∂

∂yi
log w−1

kl +
n∑

k=1

n∑

l=1

pkl
∂

∂yi
log Z (90)

For the first term of the gradient, the derivative is non zero if ∀ j , k = i or l = i .
Also, as pi j = p ji and wi j = w j i :

−
n∑

k=1

n∑

l=1

pkl
∂

∂yi
log w−1

kl = −
n∑

j=1

(
pi j

∂

∂yi
log w−1

i j + p ji
∂

∂yi
log w−1

j i

)

= −2
n∑

j=1

pi j
∂

∂yi
log w−1

i j (91)

The derivative of the inverse of the weight is:

∂w−1
i j

∂yi
= −2w−2

i j

(
yi − y j

)
(92)

so the first term of the gradient becomes:

4
n∑

j=1

pi jw
−1
i j

(
yi − y j

)
(93)

In the differentiation of the second term, note that Z does not depend on k or l and
the sum of the probabilities is equal to one:

n∑

k=1

n∑

l=1

pkl
∂

∂yi
log Z = ∂

∂yi
log Z

n∑

k=1

n∑

l=1

pkl = ∂

∂yi
log Z

= 1

Z

∂

∂yi
Z = 1

Z

n∑

k=1

n∑

l=1

∂

∂yi
w−1
kl (94)

Once again, the derivative is non zero if ∀ j , k = i or l = i , that is:

1

Z

n∑

k=1

n∑

l=1

∂

∂yi
w−1
kl = 1

Z

n∑

j=1

(
∂

∂yi
w−1
i j + ∂

∂yi
w−1

j i

)
(95)

Due to symmetry, wi j = w j i , leading to:

1

Z

n∑

j=1

(
∂

∂yi
w−1
i j + ∂

∂yi
w−1

j i

)
= 2

n∑

j=1

1

Z

∂

∂yi
w−1
i j (96)
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From Eq. (92), we can write:

2
n∑

j=1

1

Z

∂

∂yi
w−1
i j = −4

n∑

j=1

w−1
i j

Z
w−1
i j

(
yi − y j

) = −4
n∑

j=1

qi jw
−1
i j

(
yi − y j

)
(97)

Finally, by combining Eqs. (93) and (97), we have an expression for the gradient
in the t-SNE iteration:

∂C

∂yi
= 4

n∑

j=1

(
pi j − qi j

)
w−1
i j

(
yi − y j

)

= 4
n∑

j=1

(
pi j − qi j

) (
1 + ∥∥yi − y j

∥∥2
)−1 (

yi − y j
)

(98)

Algorithm 6 shows the main steps of t-SNE. The parameters of the algorithm are
the input data set X = {x1, x2, . . . , xn}, the number of iterations T , the perplexity
Perp (a measure of the effective number of neighbors), the learning rate η and the
momentum α(t), used in the gradient descent optimization method.

Algorithm 6 t-distributed Stochastic Neighbor Embedding
1: function t- SNE(X , Perp, T , η, α(t))
2: Compute pairwise probabilities p j |i and pi | j using equation (80).
3: Set the value of pi j as

pi j = p j |i + pi | j
2n

(99)

4: Sample initial solution Y (0) = {y1, y2, ..., yn} fromN (0, 10−4 I ).
5: for t = 1 to T do
6: Compute low dimensional affinities qi j using equation (88).
7: Compute the gradient using equation (98).
8: Update the coordinates with gradient descent with momentum:

Y (t) = Y (t−1) − η
∂C

∂Y
+ α(t)

(
Y (t−1) − Y (t−2)

)
(100)

9: end for
10: return Y (T )

11: end function

It has been shown that the complexity of the t-SNE algorithm is O(n2m + n2h)

(Nguyen and Holmes 2019), where n, m and h denote the number of samples, the
number of features and the number of iterations, respectively. The t-SNE algorithm
is considered as the state-of-the-art in dimensionality reduction for data visualization.
Despite its remarkable performance, t-SNE also has some limitations: (1) SNE and
t-SNE approaches do not preserve long-range interactions between data points and
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generate visualizations in which the arrangement of non-neighboring groups of obser-
vations is not informative (Nguyen and Holmes 2019); (2) the high computational
cost, especially due to the numerical optimization of its objective function makes it
prohibitive for larger datasets (it does not have a closed-form solution); (3) since the
algorithm is stochastic, several initializations using different seeds can produce distinct
embeddings.

3 Kullback–Leibler divergence

In pattern recognition and machine learning, the problem of quantifying the similarity
between different objects or clusters is a challenging task, especially in cases where
the standard Euclidean distance is not a reasonable choice. Many works on feature
selection adopt statistical divergences to choose the set of features that maximize some
measure of separation between classes. Part of their success comes from the fact that
most dissimilaritymeasures are related to distancemetrics. In this context, entropy and
related divergences provide a fruitful mathematical background for metric learning.

We begin by introducing the entropy of a random variable x as the expected value
of the self-information:

H(p) = −
∫

p(x)[log p(x)]dx = −E [log p(x)] (101)

where p(x) is the probability density function (pdf) of x . Assuming x is normally
distributed as N (μ, σ 2), its entropy is given by:

H(p) = 1

2
log (2πσ 2) + 1

2σ 2 E[(x − μ)2] = 1

2

(
1 + log (2πσ 2)

)
(102)

In a similar way, we can define the cross-entropy between two probability density
functions as:

H(p, q) = −
∫

p(x)[log q(x)]dx (103)

The Kullback–Leibler divergence, or simply relative entropy, is the difference
between the cross-entropy of p(x) and q(x) and the entropy of p(x), that is:

DKL(p, q) = H(p, q) − H(p) = −
∫

p(x)[log q(x)]dx +
∫

p(x)[log p(x)]dx

=
∫

p(x)log

(
p(x)

q(x)

)
dx

= Ep

[
log

(
p(x)

q(x)

)]
(104)

It should be mentioned that the relative entropy is always non-negative, that is,
DKL(p, q) ≥ 0, being equal to zero if, and only if, p(x) = q(x). Let p(x) and q(x)
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be univariate Gaussian densities, N (μ1, σ
2
1 ) and N (μ2, σ

2
2 ). Then, the KL-divergence

between then is given by:

DKL(p, q) = Ep

[
−log σ1 − 1

2σ 2
1

(x − μ1)
2 + log σ2 − 1

2σ 2
2

(x − μ2)
2

]

= log

(
σ2

σ1

)
+ 1

2σ 2
2

Ep[(x − μ2)
2] − 1

2σ 2
1

Ep[(x − μ1)
2]

(105)

It is straightforward to note that:

Ep[(x − μ1)
2] = σ 2

1 (106)

Ep[(x − μ2)
2] = E[x2] − 2E[x]μ2 + μ2

2 (107)

E[x2] = Var [x] + E2[x] = σ 2
1 + μ2

1 (108)

which finally leads to:

DKL(p, q) = log

(
σ2

σ1

)
+ 1

2σ 2
2

(σ 2
1 + μ2

1 − 2μ1μ2 + μ2
2) − 1

2

= log

(
σ2

σ1

)
+ σ 2

1 + (μ1 − μ2)
2

2σ 2
2

− 1

2
(109)

Note that DKL(p, q) �= DKL(q, p), that is, the relative entropy is not symmetric.
The symmetrized KL-divergence between p(x) and q(x) is:

Dsym
K L (p, q) = 1

2
[DKL(p, q) + DKL(q, p)]

= 1

4

[
σ 2
1 + (μ1 − μ2)

2

σ 2
2

+ σ 2
2 + (μ1 − μ2)

2

σ 2
1

− 2

]

= 1

4σ 2
1 σ 2

2

[(
σ 2
1 − σ 2

2

)2 + (μ1 − μ2)
2
(
σ 2
1 + σ 2

2

)]
(110)

4 PCA-KL: a parametric dimensionality reduction algorithm

One issue found in high-dimensional spaces is related to the weak discrimination
power of the Euclidean metric. As dimensionality grows, the contrast provided by the
Euclidean distance decreases, i.e., the distribution of norms in a given distribution of
points tends to concentrate. This is known as the concentration phenomenon (Lee and
Verleysen 2007). In other words, the L2-norm of random vectors grows proportionally
to the number of features,

√
m, as naturally expected, but the variance remains more

or less constant for a sufficiently large m. Therefore, high-dimensional random i.i.d.
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vectors seem to be distributed close to the surface of a hypersphere. Im summary,
when data is high dimensional, PCA can behave in unexpected ways: upward bias
in sample eigenvalues and inconsistency of sample eigenvectors are among the most
notable phenomena that appear (Johnstone and Paul 2018). These findings have been
exploited to develop new estimation and hypothesis testingmethods for the population
covariance matrix (Vaswani et al. 2018).

In the last decades, several PCA variationswere proposed tomitigate the limitations
of the original method. Kernel PCA is a non-linear generalization that corresponds
to PCA performed in a reproducing kernel Hilbert space associated with a positive
definite kernel (Schölkopf et al. 1999). While PCA is optimal in minimizing the mean
squared error, it is still sensitive to outliers in the data. It is a common practice to
remove outliers before PCA. However, outliers can be difficult to identify. Robust
PCA is a PCA generalization developed to deal with the presence of outliers and
random noise in data (Yang and Wang 1999). Another issue with PCA is that every
feature is a linear combination of all input variables. Sparse PCA mitigates this issue
by finding linear features that contain just a few input variables. It is an extension of
PCA for dimensionality reduction that adds sparsity constraints on the input variables
(Kunzhe andHuaitie 2018). Inmultilinear subspace learning, dimensionality reduction
is performed on a data tensor. Multilinear PCA extracts features directly from these
tensor representations by performing PCA in each mode of the tensor iteratively (Lee
and Park 2012).

4.1 Proposedmethod

As a way to mitigate some limitations of PCA, we propose PCA-KL, a parametric
patch-based algorithm for unsupervised metric learning based on the computation of
the entropic covariance matrix, a surrogate for the covariance matrix of the data, using
the KL-divergence between Gaussian distributions instead of the usual Euclidean
distance between the data points.

We denote by X = {x1, x2, . . . , xn}, with xi ∈ Rm the input data matrix. We can
build a KNN graph G = (V , E), with |V | = n, by connecting each sample xi with
its k nearest neighbors. Since the neighborhood can be well approximated by a linear
patch, we use the Euclidean distance as similarity measure in this step. Let a patch Pi
be the set {xi } ∪ {x j ∈ N (i)}, where N (i) is the neighborhood set of xi . Then, we can
define the patch matrix Pi as:

Pi = [xi , xi1, xi2, . . . , xik] (111)

to denote the m × (k + 1) data matrix that compose the i-th patch. In this study, we
assume a parametric model p(x; θ) for each feature of the patch matrix, that is, for
each line of Pi , where θ ∈ RL is a vector of L parameters. For instance, if we consider
a Gaussian model, then L = 2, where θ1 = μ is the mean and θ2 = σ 2 is the variance.

Basically, the proposed patch-basedmethodmaps each patch Pi to am-dimensional
vector composed by L-dimensional tuples, where each tuple j contains the maximum
likelihood estimators of the model parameters. As we havem distinct features, we will
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Fig. 1 Mapping from a patch Pi on a graph to a parametric feature vector pi .

have exactlym tuples. Figure 1 illustrates the mapping from a patch Pi to a parametric
feature vector pi .

The parametric feature vector pi for the patch Pi can be expressed as:

pi =
[
θ

(i)
1 , θ

(i)
2 , . . . , θ (i)

m

]
(112)

where each component is a tuple of L parameters:

θ
(i)
j =

(
θ

(i)
j1 , θ

(i)
j2 , . . . , θ

(i)
j L

)
(113)

The set of all pi , for i = 1, 2, . . . , n defines our entropic feature space.We associate
to this feature space a centroid given by the sample average of all pi ’s:

p̃ = 1

n

n∑

i=1

pi (114)

We propose to define the entropic difference between two vectors pi and p j in the
parametric feature space as the symmetrized KL-divergence between each one of the
tuples, that is:

pi − p j =
[
dK L(θ

(i)
1 , θ

( j)
1 ), . . . , dK L(θ(i)

m , θ
( j)
m )
]

= dK L
(
pi ,p j

)
(115)

For univariate Gaussian models, a closed-form expression for the symmetrized
KL-divergence is given by Eq. (110). Given the above, we can define the entropic
covariance matrix C as:

C = E
[
dK L(pi , p̃) dK L(pi , p̃)T

]
(116)

Note that both the regular covariance matrix (used in PCA) and the kernel matrix
(used in KPCA) are defined in terms of each sample individually, whereas the entropic
covariance matrix is defined in terms of patches, making it less sensitive to outliers.
Besides, the proposed entropic PCA has the advantage of producing a projection
matrix, exactly like regular PCA. It means that new instances that do not belong
to the training set, can be mapped to their new representation in a very easy way.
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This is an advantage of PCA-KL in comparison to manifold learning algorithms,
such as ISOMAP (Tenenbaum et al. 2000), LLE (Roweis and Saul 2000), Laplacian
Eigenmaps (Belkin and Niyogi 2003) and t-SNE (van der Maaten and Hinton 2008).

In the following, we present the PCA-KL algorithm for unsupervised metric learn-
ing under Gaussian hypothesis. The input for PCA-KL is a data matrix Xm×n , in
which each column x j ∈ Rm is a sample. Basically, the main steps of PCA-KL can
be summarized as:

1. From the input data x1, x2, . . . , xn ∈ Rm build an undirected proximity graph using
the KNN rule;

2. For each patch, that is, xi ∪ ηi , where ηi denotes the local neighborhood around
xi , compute the mean and variance of each feature:

μk = 1

|ηi |
∑

j∈ηi

x j (k) (117)

σ 2
k = 1

|ηi | − 1

∑

j∈ηi

(x j (k) − μk)
2 (118)

for k = 1, 2, . . . ,m. For simplicity we are assuming a Gaussian model, but other
distributions could be adopted at this stage. At the end, this step generates for each
patch, the following parametric vector:

pi =
[
(μ1, σ

2
1 ), (μ2, σ

2
2 ), . . . (μm, σ 2

m)
]

(119)

3. Compute themeanparametric vector for all patches, p̃, which represents the average
distribution, given all the dataset:

p̃ =
[
(μ̃1, σ̃

2
1 ), (μ̃2, σ̃

2
2 ), . . . , (μ̃m, σ̃ 2

m)
]

(120)

4. Compute the entropic covariance matrix C , a surrogate for the usual covariance
matrix based on the KL-divergence between each parametric vector pi and the
average distribution p̃ as:

C = 1

n − 1

n∑

i=1

dK L(pi , p̃) dK L(pi , p̃)T (121)

where dK L(pi , p̃) is a column vector of KL-divergences:

dK L(pi , p̃) =
[
Dsym

K L

(
θ1, θ̃1

)
, . . . , Dsym

K L

(
θm, θ̃m

)]T
(122)

with θi = (μi , σ
2
i ) and θ̃i = (μ̃i , σ̃

2
i ).

5. Select the d < m eigenvectors associated to the d largest eigenvectors of the matrix
C to compose the projection matrix WPCAK L .
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6. Project the data into the subspace spanned by WPCAK L .

The entropic covariancematrixC is real, symmetric and positive semidefinite, so all
its eigenvalues are non-negative, which is a desirable property of the proposedmethod.
Moreover, the method is fully unsupervised since it does not make any assumptions
regarding the class labels.

5 Experiments and results

In order to test and evaluate the proposed method for unsupervised dimensionality
reduction in classification tasks, we compared its performance against the usual PCA,
NMF, Kernel PCA, ISOMAP, LLE, Laplacian Eigenmaps and t-SNE in several public
datasets available at www.openml.org. It is worthmentioning that the selected datasets
have significant variations in the number of samples and features, as well as different
number of classes.

In the first set of experiments, we used an internal index to assess the clusters quality
obtained after the unsupervised metric learning provided by the dimensionality reduc-
tion methods. We chose the Silhouette coefficient, which is a method of interpretation
and validation of consistency within clusters of data (Rousseeuw 1987). LetCi denote
the i-th cluster, then for each data point i ∈ Ci let a(i) be the mean distance between
i and all other data points in the same cluster Ci :

a(i) = 1

|Ci | − 1

∑

j∈Ci , j �=i

d(i, j) (123)

where d(i, j) is the distance between data points i and j in the cluster Ci . In other
words, we can interpret a(i) as a measure of how well the data point i is assigned to
its cluster (the smaller the value, the better). Then, we define the mean dissimilarity
of a data point i to a cluster C as the mean of the distances from i to all points in C .
For each data point i , let b(i) be the smallest mean distance of i to all points in any
other cluster which i is not a member:

b(i) = min
k �=i

1

|Ck |
∑

j∈Ck

d(i, j) (124)

The cluster with the smallest mean dissimilarity is the neighboring cluster of i
because it is the next best fit cluster for point i . Let:

s(i) = b(i) − a(i)

max{a(i), b(i)} , if |Ci | > 1 (125)

be the silhouette value of the data point i and

s(i) = 0, if |Ci | = 1 (126)
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Combining both definitions we have:

s(i) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − a(i)
b(i) if a(i) < b(i)

0 if a(i) = b(i)
b(i)
a(i) − 1 if a(i) > b(i)

(127)

Note that −1 ≤ s(i) ≤ 1. An s(i) close to one means that the data is appropriately
clustered. If s(i) tends to negative one, then i should be clustered in its neighboring
cluster. An s(i) near zero means that the data point i is on the border of two natural
clusters. The mean s(i) over all points of a cluster is a measure of how tightly grouped
all the points in the cluster are. Therefore, the mean s(i) over all data of the entire
dataset, known as the Silhouette coefficient is a measure of how appropriately the data
have been clustered.

A few datasets have a prevalence of negative features, so NMF is not an option.
Table 1 summarizes the results. The results suggest that PCA-KL is more efficient
in building a meaningful representation in terms of the consistency within clusters of
data than PCA. Note that in 22 of 44 datasets, PCA-KL obtained the highest Silhouette
coefficient, that is, in 50% of the cases the proposed method produced better defined
clusters than the other linear and non-linear methods. Another important aspect to be
highlighted is that PCA-KL, in average, outperformed not only PCA and NMF (linear
methods), but also all manifold learning algorithms, which indicates that the proposed
method can be a promising alternative to dimensionality reduction for unsupervised
metric learning. Moreover, according to a Wilcoxon signed-rank test, PCA-KL pro-
duced significantly better clusters (in terms of Silhouette coefficient) thanPCA (pvalue
= 1.12× 10−8), NMF (p value = 4.60× 10−5), Kernel PCA (p value = 1.81× 10−6),
ISOMAP (p value = 5.54×10−7), LLE (p value = 9.04×10−8), Laplacian Eigenmaps
(p value = 1.42 × 10−4) and t-SNE (p value = 9.02 × 10−5) for a significance level
α = 1%.

To illustrate how the proposed method is capable of producing better defined clus-
ters, we present some scatter plots for the two dimensional case, comparing PCA and
PCA-KL. Figures 2 and 3 show the clusters for the iris and cardiotocography datasets.
Note that the clusters produced by PCA-KL have a lower intra-class scattering, that is,
they tend to be more concentrated around the mean. Moreover, it is possible to notice
that the variance in the principal components is smaller on PCA-KL.

In the second set of experiments, we compared the performance of PCA-KL against
PCA, NMF, Kernel PCA, ISOMAP, LLE, Laplacian Eigenmaps and t-SNE in super-
vised classification. For this purpose, eight different parametric and non-parametric
classifiers were selected: K-Nearest Neighbors (k = 7), Support Vector Machine (lin-
ear), Naive Bayes and Quadratic Discriminant Analysis under Gaussian hypothesis,
Decision Tree,Multilayer Perceptron, Gaussian Process Classifier and Random Forest
Classifier. In all experiments, we selected 60% of the samples for training and 40% of
the samples for testing. Tables 2, 3 and 4 show the classification accuracies for several
datasets after dimensionality reduction. The best result in a line is boldfaced and the
second best result is underlined.
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Fig. 2 Scatterplots of iris dataset for the 2D case: PCA versus PCA-KL

Fig. 3 Scatterplots of cardiotocography dataset for the 2D case: PCA versus PCA-KL

At first glance, it is difficult to evaluate the results, since there is no method that
is uniformly superior to all the others. However, looking at the average accuracy,
the results are more conclusive. Table 5 shows the average and standard deviation
of all accuracies for each feature extraction algorithm. The results indicate that for
these datasets, in average, PCA-KL outperformed all linear and non-linear dimen-
sionality reduction methods. We also performed a hypothesis test to check whether
the differences are statistically significant. According to a Wilcoxon signed-rank test,
PCA-KL produces significantly higher classification accuracies than PCA (p value =
2.40× 10−16), NMF (p value = 1.61× 10−12), Kernel PCA (p value = 6.32× 10−14),
ISOMAP (p value = 4.10 × 10−11), LLE (p value = 9.31 × 10−14) and Laplacian
Eigenmaps (p value = 2.73 × 10−13) for α = 0.01, that is, a significance level of
1%. For the same value of α, we cannot conclude that there are significant differences
between PCA-KL and t-SNE (p value = 0.371).

The obtained results emphasize that the proposed PCA-KL method is competitive
with the existing dimensionality reduction algorithms, since, overall, it is capable of
producing features that are more discriminant than those generated by PCA, NMF and
some manifold learning algorithms. In other words, PCA-KL is a viable option for
dimensionality reduction and unsupervised metric learning in classification problems.
One important aspect to be highlighted in the proposed method is related to the choice
of the number of neighbors (K ) in the KNN graph. In some datasets, PCA-KL can
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Table 2 Supervised classification accuracy obtained by different classifiers after PCA, PCA-KL, NMF,
Kernel PCA, ISOMAP, LLE, Laplacian Eigenmaps and t-SNE dimensionality reduction for datasets iris,
mfeat-fourier, cardiotocography, car(3) and haberman from OpenML.org (2D case)

PCA PCA-KL NMF KPCA ISOMAP LLE LAP t-SNE

Iris dataset

KNN 0.966 0.983 1.000 0.900 0.900 0.950 0.866 0.950

SVM 0.950 0.983 0.980 0.833 0.916 0.666 0.300 0.933

NB 0.916 0.983 0.983 0.850 0.850 0.966 0.833 0.850

DT 0.900 0.966 0.960 0.833 0.900 0.983 0.816 0.950

QDA 0.950 0.983 0.966 0.833 0.916 0.966 0.883 0.850

MPL 0.950 0.983 0.950 0.833 0.916 0.916 0.300 0.900

GPC 0.933 0.983 0.983 0.833 0.916 0.816 0.300 0.950

RFC 0.916 0.983 0.980 0.900 0.933 0.983 0.866 0.930

mfeat-fourier dataset

KNN 0.420 0.531 0.512 0.436 0.515 0.581 0.533 0.780

SVM 0.440 0.568 0.262 0.367 0.513 0.190 0.172 0.710

NB 0.428 0.527 0.550 0.446 0.515 0.495 0.465 0.662

DT 0.365 0.456 0.482 0.403 0.433 0.550 0.515 0.767

QDA 0.432 0.551 0.538 0.452 0.531 0.572 0.555 0.716

MPL 0.442 0.567 0.523 0.416 0.533 0.387 0.087 0.755

GPC 0.435 0.578 0.347 0.386 0.528 0.190 0.175 0.792

RFC 0.377 0.502 0.510 0.436 0.478 0.572 0.548 0.785

Cardiotocography dataset

KNN 0.619 0.995 0.283 0.668 0.929 0.606 0.925 0.995

SVM 0.652 0.640 0.309 0.599 0.909 0.265 0.265 0.967

NB 0.613 0.854 0.292 0.666 0.933 0.325 0.914 0.996

DT 0.552 0.998 0.233 0.634 0.920 0.325 0.916 0.990

QDA 0.632 0.982 0.298 0.662 0.972 0.643 0.985 0.996

MPL 0.640 0.946 0.313 0.609 0.914 0.325 0.265 0.996

GPC 0.650 0.607 0.316 0.573 0.911 0.265 0.265 0.996

RFC 0.599 0.998 0.240 0.662 0.928 0.325 0.903 0.995

car(3) dataset

KNN 0.705 0.862 0.726 0.794 0.807 0.894 0.739 0.907

SVM 0.693 0.780 0.721 0.693 0.817 0.693 0.693 0.855

NB 0.682 0.767 0.708 0.709 0.690 0.731 0.693 0.793

DT 0.680 0.874 0.774 0.791 0.789 0.891 0.702 0.893

QDA 0.676 0.776 0.702 0.697 0.693 0.731 0.703 0.793

MPL 0.682 0.768 0.713 0.705 0.640 0.738 0.693 0.822

GPC 0.693 0.789 0.719 0.709 0.800 0.693 0.693 0.921

RFC 0.686 0.877 0.777 0.794 0.807 0.900 0.728 0.901
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Table 2 continued

PCA PCA-KL NMF KPCA ISOMAP LLE LAP t-SNE

Haberman dataset

KNN 0.747 0.756 0.772 0.699 0.723 0.731 0.699 0.731

SVM 0.731 0.773 0.756 0.731 0.731 0.731 0.731 0.731

NB 0.764 0.756 0.747 0.731 0.739 0.739 0.731 0.731

DT 0.658 0.715 0.674 0.634 0.609 0.650 0.674 0.593

QDA 0.723 0.772 0.756 0.731 0.723 0.739 0.731 0.731

MPL 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731

GPC 0.723 0.764 0.772 0.731 0.715 0.731 0.731 0.682

RFC 0.691 0.707 0.691 0.715 0.723 0.674 0.674 0.715

Table 3 Supervised classification accuracy obtained by different classifiers after PCA, PCA-KL, NMF,
Kernel PCA, ISOMAP, LLE, Laplacian Eigenmaps and t-SNE dimensionality reduction for datasets sonar,
tae, hayes-roth, newton_hema and servo from OpenML.org (2D case)

PCA PCA-KL NMF KPCA ISOMAP LLE LAP t-SNE

Sonar dataset

KNN 0.642 0.678 0.595 0.607 0.619 0.619 0.607 0.642

SVM 0.678 0.654 0.595 0.654 0.630 0.535 0.535 0.773

NB 0.607 0.714 0.523 0.571 0.702 0.630 0.619 0.535

DT 0.642 0.666 0.547 0.607 0.595 0.559 0.750 0.690

QDA 0.630 0.738 0.571 0.619 0.678 0.607 0.607 0.476

MPL 0.619 0.738 0.535 0.535 0.714 0.535 0.535 0.690

GPC 0.666 0.666 0.607 0.630 0.619 0.535 0.535 0.809

RFC 0.607 0.666 0.607 0.571 0.571 0.583 0.654 0.773

tae dataset

KNN 0.393 0.557 0.311 0.524 0.495 0.459 0.491 0.639

SVM 0.409 0.557 0.344 0.508 0.540 0.295 0.393 0.557

NB 0.557 0.557 0.344 0.508 0.557 0.442 0.590 0.491

DT 0.540 0.557 0.573 0.622 0.524 0.524 0.540 0.622

QDA 0.491 0.557 0.327 0.508 0.557 0.442 0.590 0.557

MPL 0.426 0.573 0.327 0.327 0.409 0.295 0.372 0.344

GPC 0.459 0.557 0.311 0.524 0.508 0.344 0.393 0.590

RFC 0.557 0.524 0.590 0.557 0.557 0.540 0.491 0.573

hayes-roth dataset

KNN 0.509 0.811 0.849 0.603 0.603 0.547 0.528 0.433

SVM 0.566 0.811 0.566 0.566 0.584 0.566 0.566 0.773

NB 0.566 0.679 0.679 0.584 0.566 0.566 0.566 0.622

DT 0.641 0.773 0.698 0.792 0.660 0.773 0.716 0.792

QDA 0.566 0.603 0.716 0.584 0.566 0.566 0.566 0.622
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Table 3 continued

PCA PCA-KL NMF KPCA ISOMAP LLE LAP t-SNE

MPL 0.566 0.716 0.679 0.566 0.566 0.566 0.566 0.566

GPC 0.547 0.811 0.641 0.566 0.622 0.566 0.566 0.754

RFC 0.773 0.792 0.773 0.773 0.716 0.792 0.754 0.792

newton_hema dataset

KNN 0.678 0.732 0.589 0.732 0.696 0.714 0.660 0.732

SVM 0.750 0.714 0.660 0.660 0.750 0.464 0.464 0.803

NB 0.696 0.714 0.482 0.660 0.642 0.571 0.625 0.589

DT 0.660 0.767 0.553 0.750 0.696 0.714 0.732 0.714

QDA 0.660 0.660 0.517 0.696 0.642 0.571 0.607 0.607

MPL 0.607 0.678 0.607 0.660 0.607 0.464 0.464 0.607

GPC 0.732 0.767 0.625 0.642 0.785 0.517 0.464 0.803

RFC 0.732 0.767 0.625 0.750 0.767 0.714 0.732 0.767

Servo dataset

KNN 0.776 0.940 0.701 0.746 0.791 0.850 0.746 0.955

SVM 0.805 0.940 0.731 0.731 0.805 0.731 0.731 0.940

NB 0.940 0.940 0.746 0.716 0.820 0.940 0.776 0.850

DT 0.880 0.925 0.671 0.731 0.791 0.865 0.716 0.925

QDA 0.925 0.940 0.761 0.716 0.820 0.895 0.791 0.880

MPL 0.791 0.940 0.776 0.731 .791 0.731 0.731 0.731

GPC 0.791 0.925 0.761 0.731 0.820 0.731 0.731 0.955

RFC 0.880 0.940 0.641 0.776 0.880 0.895 0.716 0.940

produce significantly different results by changing this parameter, showing to be quite
sensitive. One should keep in mind the tradeoff between locality preservation and
precision in the parameter estimation in the definition of the best value of K . In our
experiments, we observed that in all datasets the values of K thatwere chosen belonged
to the interval [20, n/5], where n is the number of samples. In all experiments, the
fine-tuning of this parameter was performed by a line search in which the lower bound
was set to 20, the increment was set to 10 and the upper bound was n/2.

Finally, a comparison of computational times for each dimensionality reduction
method was performed to investigate how efficient the different algorithms are in
practice. Our hardware platform consists in a 64-bit Core i7-4510 2.0GHz with 8Gb
of RAM. The software platform is comprised by Linux Ubuntu with Anaconda Python
distribution. Table 6 shows the elapsed times in seconds for each dimensionality reduc-
tion algorithm considering several public datasets. Note that, as expected, PCA is the
fastest method by a large margin. The results also show that t-SNE is, in average,
about 175 times slower than PCA-KL and ISOMAP is about 4 times slower than the
proposed method.
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Table 4 Supervised classification accuracy obtained by different classifiers after PCA, PCA-KL, NMF,
Kernel PCA, ISOMAP, LLE, Laplacian Eigenmaps and t-SNE dimensionality reduction for datasets dis-
closure_z, plasma_retinol, diggle_table_a2 and rmftsa_ladata from OpenML.org (2D case)

PCA PCA-KL NMF KPCA ISOMAP LLE LAP t-SNE

disclosure_z dataset

KNN 0.464 0.486 0.520 0.520 0.467 0.456 0.490 0.501

SVM 0.490 0.543 0.543 0.600 0.490 0.532 0.532 0.464

NB 0.528 0.554 0.535 0.577 0.532 0.498 0.532 0.539

DT 0.505 0.494 0.483 0.498 0.550 0.475 0.550 0.490

QDA 0.524 0.554 0.535 0.581 0.528 0.494 0.547 0.520

MPL 0.501 0.562 0.509 0.532 0.486 0.532 0.532 0.501

GPC 0.483 0.528 0.535 0.584 0.475 0.532 0.532 0.456

RFC 0.483 0.487 0.456 0.486 0.509 0.501 0.494 0.490

plasma_retinol dataset

KNN 0.500 0.555 0.523 0.531 0.555 0.523 0.579 0.619

SVM 0.531 0.611 0.468 0.563 0.619 0.563 0.563 0.555

NB 0.555 0.619 0.571 0.587 0.579 0.539 0.619 0.626

DT 0.436 0.611 0.492 0.531 0.539 0.492 0.539 0.484

QDA 0.523 0.611 0.579 0.611 0.626 0.523 0.626 0.563

MPL 0.555 0.563 0.563 0.563 0.563 0.563 0.563 0.563

GPC 0.531 0.611 0.476 0.563 0.634 0.563 0.563 0.547

RFC 0.476 0.611 0.436 0.587 0.507 0.484 0.595 0.563

diggle_table_a2 dataset

KNN 0.911 0.951 0.975 0.967 0.919 0.879 0.927 0.975

SVM 0.887 0.967 0.967 0.919 0.919 0.524 0.516 0.911

NB 0.870 0.862 0.774 0.927 0.887 0.846 0.879 0.717

DT 0.951 0.992 0.951 0.983 0.959 0.903 0.959 0.967

QDA 0.854 0.951 0.879 0.927 0.862 0.927 0.887 0.774

MPL 0.854 0.870 0.967 0.879 0.862 0.516 0.516 0.991

GPC 0.903 0.984 0.984 0.887 0.903 0.887 0.516 0.975

RFC 0.943 0.984 0.984 0.951 0.951 0.935 0.975 0.975

rmftsa_ladata dataset

KNN 0.784 0.833 0.745 0.794 0.779 0.745 0.789 0.848

SVM 0.774 0.838 0.784 0.774 .784 0.578 0.568 0.735

NB 0.769 0.833 0.789 0.803 0.789 0.784 0.794 0.789

DT 0.725 0.725 0.671 0.715 0.759 0.676 .759 0.808

QDA 0.750 0.838 0.754 0.774 0.779 0.754 0.774 0.789

MPL 0.769 0.823 0.784 0.759 0.789 0.754 0.568 0.799

GPC 0.784 0.838 0.779 0.759 0.784 0.647 0.568 0.838

RFC 0.769 0.799 0.696 0.779 0.779 0.759 0.799 0.823
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Table 5 Average accuracies obtained by different classifiers after PCA, PCA-KL, NMF, Kernel PCA,
ISOMAP, LLE, Laplacian Eigenmaps and t-SNE dimensionality reduction for the OpenML.org datasets in
Tables 2, 3 and 4 (2D case)

PCA PCA-KL NMF KPCA ISO LLE LAP t-SNE

Average 0.664 0.750 0.634 0.667 0.704 0.629 0.624 0.749

Std. Dev. 0.159 0.159 0.198 0.140 0.151 0.187 0.179 0.164

Table 6 Computational time in seconds for each dimensionality reduction algorithm for several public
OpenML.org datasets

PCA PCA-KL NMF KPCA ISO LLE LAP t-SNE

Blood 0.0005 0.11 0.58 1.27 0.16 0.08 0.07 23.36

kc1 0.02 0.88 0.05 0.25 2.12 0.34 1.33 163.1

mfeat-fourier 0.003 5.18 0.27 0.29 3.58 1.17 0.84 128.68

Cardio 0.001 1.85 x 0.38 3.21 0.41 0.31 173.1

Texture 0.003 6.23 x 1.58 24.20 3.31 2.74 1174.1

Satimage 0.003 5.95 x 2.76 60.98 10.14 5.33 1619.5

Theorem 0.003 10.64 0.23 4.38 50.17 6.32 10.16 1405.53

Wall-robot 0.001 2.79 0.05 1.75 25.44 4.65 3.1 1086.29

car(3) 0.0007 0.21 0.01 0.23 2.21 0.99 0.48 113.68

Australian(4) 0.0007 0.22 0.04 0.02 0.37 0.15 0.06 22.48

Haberman 0.0004 0.02 0.002 0.005 0.06 0.04 0.02 6.05

Heart-statlog 0.0005 0.07 0.009 0.008 0.05 0.04 0.01 5.7

Sonar 0.001 0.38 0.01 0.003 0.03 0.03 0.01 1.92

census6 0.0005 0.04 0.005 0.01 0.11 0.06 0.03 7.9

disclosure_z 0.0005 0.03 0.01 0.02 0.29 0.11 0.03 17.91

page-blocks 0.0007 1.03 0.01 1.94 21.28 1.55 1.6 1115.56

male_lung 0.0005 0.04 0.002 0.2 0.21 0.08 0.03 13.39

Stock 0.0006 0.16 0.01 0.1 0.44 0.11 0.15 41.76

mw1 0.0008 0.36 0.004 0.007 0.1 0.05 0.03 8.15

Optdigits 0.004 11.07 0.08 1.9 30.67 7.62 5.37 1214.2

rmftsa_ladata 0.0004 0.14 0.01 0.02 0.19 0.11 0.05 17.6

Average 0.002 2.25 0.08 0.81 10.75 1.78 1.51 398.1

SD 0.004 3.49 0.15 1.18 17.98 2.93 2.60 576.08

6 Conclusions

Dimensionality reduction is a fundamental step in the analysis of multivariate data
in many pattern recognition and machine learning applications. From simple visual-
ization to feature extraction, these methods play an important role in classification
problems. Besides, it has been shown that learning from high dimensional data can be
a challenging task.
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Among all dimensionality reduction methods, PCA is still the de-facto standard
algorithm considered as the first choice by machine learning researchers. PCA is
based on finding the orthogonal directions that maximize the variance of the data.
This is optimal from a data compression point of view, since it has been shown to be
equivalent to the minimization of the mean square error between the original and the
reduced representation. For this reason, after the PCA transformation, data is organized
in clusters with large scattering, which is undesirable for classification problems. To
overcome this limitation, in this paper we presented PCA-KL, a parametric method
based on a information-theoretic measure to find a surrogate for the covariance matrix
replacing the standard Euclidean distance in the feature space by the relative entropy
between Gaussian distributions estimated in each local neighborhood (patch). Results
with real datasets showed that besides improving the quality of the produced clusters,
which is a desirable feature in unsupervised classification, PCA-KL can also improve
the classification accuracy for several supervised classifiers from the pattern recogni-
tion literature, indicating that it is a promising alternative to dimensionality reduction
and unsupervised metric learning.

Briefly speaking, the main advantages of PCA-KL are: (1) the evaluation of new
instances is very straightforward, since once the projection matrix is build, the map-
ping is direct, unlike most manifold learning algorithms (ISOMAP, LLE, Laplacian
Eigenmaps and t-SNE); (2) PCA-KL is a patch-basedmethod so it can be less sensitive
to the presence of noise and outliers in data; (3) the method can be easily extended to
different statistical models and divergences. However, PCA-KL has some limitations,
the major one being the sensitivity to the patch size K . Experiments have shown that
variations on this parameter can lead to significantly different classification results.
We still do not have a complete solution regarding the estimation of this parameter.

Future works may include the use of other information-theoretic measures such as
the Bhattacharyya and Hellinger distances. Furthermore, we also intend to employ
distances based on the Fisher information metric. A supervised version of PCA-KL,
considering only neighbors that belong to the same class of the central data point is
another possible improvement. Extensions to non-linear dimensionality reduction by
the incorporation of different kernels is another possible extension to the proposed
method. Different statistical models can be considered instead of the Gaussian distri-
bution. For instance, Gaussian–Markov random field models can be used to capture
the spatial dependence between the data points through the definition of an additional
coupling parameter, known as inverse temperature. Another relevant problem to be
tackled in the future is the adaptive definition of the appropriate patch size. Local
analysis of the Hessian matrix can provide insights about how the adjustment of this
parameter. Points exhibiting high curvature suggest that a smaller neighborhoods are
preferred whereas points with lower curvature indicate that larger neighborhoods can
be considered. A limitation with this approach would be an increase in the compu-
tational cost. Finally, we intend to study how information-theoretic measures can be
applied in manifold learning algorithms as a way to improve unsupervised metric
learning.
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