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Abstract
Predictive systems based on high-dimensional behavioral and textual data have serious
comprehensibility and transparency issues: linear models require investigating thou-
sands of coefficients, while the opaqueness of nonlinear models makes things worse.
Counterfactual explanations are becoming increasingly popular for generating insight
into model predictions. This study aligns the recently proposed linear interpretable
model-agnostic explainer and Shapley additive explanations with the notion of coun-
terfactual explanations, and empirically compares the effectiveness and efficiency of
these novel algorithms against a model-agnostic heuristic search algorithm for find-
ing evidence counterfactuals using 13 behavioral and textual data sets. We show that
different search methods have different strengths, and importantly, that there is much
room for future research.

Keywords Comparative study · Counterfactual explanations · Instance-level
explanations · Explainable artificial intelligence · Explanation algorithms · Binary
classification · Behavioral data · Textual data

Mathematics Subject Classification 90C27 (Combinatorial optimization) · 90C59
(Approximation methods and heuristics in MP) · 68T01 (General topics in AI)

1 Introduction

The proliferation of big data architectures has resulted in many applications having an
increasingly large impact on business and society (Junqué de Fortuny et al. 2013). We
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focus on two sorts of big data. The first is behavioral data, defined as data that capture
human behavior through the actions and interactions of people (Shmueli 2017), which
can be used for various predictive purposes. For instance, what you “Like” on Face-
book is predictive of your openness and many other personality traits (Kosinski et al.
2013, 2017), while the accounts you pay to or webpages you visit are predictive fea-
tures for product interest (Martens et al. 2016) and creditworthiness (De Cnudde et al.
2019b). The second sort of big data is textual data. Text classification is ubiquitous in
business and government (Provost and Fawcett 2013). Example applications are auto-
matic identification of spam emails (Attenberg et al. 2009), objectionable web content
detection (Martens and Provost 2014) and legal document classification (Chhatwal
et al. 2018), just to name a few.

Mining behavior and text data can result in highly accurate classification mod-
els (Junqué de Fortuny et al. 2013; Provost et al. 2015), but also in very complexmodel
structures. The complexity arises from either the learning technique (e.g., deep learn-
ing) or the data, or both. Behavioral and textual data are typically high-dimensional
and sparse. Let us consider an example that we will refer back to. We want to predict
the gender of users based on the movies they have viewed. A user having watched a
movie is represented by a binary feature for each movie, which results in an enormous
feature space. However, each user only has watched a small number of movies, which
results in an extremely sparse data matrix (almost all elements are zero). A user having
watched a movie is represented by a corresponding non-zero value for that binary fea-
ture, and we refer to such features as “active”. In other words, because of the sparsity,
the number of active features m′ of a user (the movies someone watched) is much
smaller than the dimensionality m of the full feature space (all possible movies some-
one couldwatch). Because of these data characteristics, even intrinsically interpretable
linear models are difficult to interpret because there are many thousands of features,
each with their own linear coefficient; further, the features that will be brought to
bear for prediction are different for every individual. Applying nonlinear techniques
normally renders the reasons for a particular prediction completely opaque.

The importance of understanding individual classification decisions is well-argued
in the literature (Gregor and Benbasat 1999; Freitas 2014; Martens and Provost 2014;
Goodman and Flaxman 2016; Doshi-Velez and Kim 2017; Ras et al. 2018; Lipton
2018). Explanations for model predictions are often necessary for users to trust and
improve the model (Gregor and Benbasat 1999). In some domains, like medical diag-
nosis and credit scoring, it even is a legal requirement (Martens and Provost 2014;
Gregor and Benbasat 1999; Martens et al. 2007) (e.g., why was my loan application
rejected?). According to Doshi-Velez and Kim (2017), the demand for interpretable
models stems from a mismatch between “formal” objectives (e.g., minimal prediction
error) and “ethical” objectives (e.g., privacy), which can only be validated when a
certain level of interpretability is achieved.

Various approaches have been proposed for explaining model predictions (Craven
1996; Martens and Provost 2014; Ribeiro et al. 2016; Lundberg and Lee 2017; Lip-
ton 2018; Wachter et al. 2018), varying in scope and flexibility. The scope indicates
whether the method generates global explanations (for the entire feature/instance
space) or instance-level explanations (for a single prediction) (Martens and Provost
2014), whereas the flexibility indicates whether the approach is model-specific or
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model-agnostic. Much research focuses on model-specific explanation techniques tai-
lored to a specific type of predictionmodels such as deep learningmodels (Samek et al.
2015; Arras et al. 2017) or random forests (Breiman 2001). In contrast, model-agnostic
methods explain model predictions of any prediction model. This increases flexibil-
ity; however, often it results in substantially more computational effort (Martens and
Provost 2014; Arras et al. 2017).

For this paper, we focus on the increasingly popular notion of “counterfactual”
explanations (Martens and Provost 2014; Provost 2014; Chen et al. 2017;Wachter et al.
2018; Nguyen 2018; Sokol and Flach 2019). A counterfactual explanation of a model-
based system’s decision for a particular instance is defined as a set of “evidence” of the
instance without which the system would not have made that decision. In our setting
of behavioral and textual data, this evidence corresponds to a set of active features of
the instance where changing these feature values to zero would lead the system not
to have made that decision. Ideally, this set is minimal, meaning that the predicted
class only changes when all features that are part of the counterfactual explanation are
removed (feature values set to zero). Note that minimality is not always guaranteed
and depends on the algorithm that is used to compute counterfactuals.

Counterfactuals have been argued to be crucial for explaining predictions on the
instance-level as they pinpoint the features that led to the decision (Sokol and Flach
2019) and make the decision actionable (Chen et al. 2017; Wachter et al. 2018; Fer-
nandez et al. 2019). In our running movie example, if we want an explanation of why a
user called, say, Samwas predicted to be “male”, we want to knowwhich movies were
critical for the model’s decision. A counterfactual explanation shows a set of movies
such that removing them from Sam’s movie list would lead the predicted class to no
longer be “male” (see Fig. 1a). In the context of textual and behavioral data, removing
the feature from the instance is equivalent to setting the original feature value to zero or
“removing the evidence”. In the remaining of this study, we will consider counterfac-
tuals based on the removal of evidence that is present in the data—for example, words
that appear in a document or items that an individual has “Liked” on Facebook. These
correspond to “active” features—those that are present in a sparse representation, or
those that are non-zero in a traditional feature-vector representation.

In this study, we are interested in finding minimum-sized counterfactual explana-
tions. A possible approach to find the counterfactual is to conduct a complete search
through the entire space of feature combinations, starting with one feature and incre-
mentally increasing the number of features until an explanation is found. However,
this strategy scales up exponentially with the number of features, making it impracti-
cable for high-dimensional feature spaces (Martens and Provost 2014). Consequently,
there is a need for an algorithm that computes counterfactuals with a good trade-off
between effectiveness (selecting the most important features for the explanation) and
efficiency (computation time).

Martens and Provost (2014) proposed a heuristic best-first search for Evidence
Counterfactuals (SEDC),1 which is able to counterfactually explain predictions of any

1 The original paper presented the framework for counterfactual explanations, subsequently referred to as
Evidence Counterfactuals (Provost 2014; Moeyersoms et al. 2016; Chen et al. 2017). The paper discussed
several methods for finding such explanations. We evaluate the heuristic best-first search SEDC algorithm
here.
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Fig. 1 Example outputs of two different types of instance-level explanations that show why Sam was
classified as “male” based on his movie viewing data: a counterfactual explanation (a) and an additive
feature attribution explanation (b)

classification model with sparse features. To the best of our knowledge, SEDC is the
only existing model-agnostic explanation algorithm for counterfactuals which is able
to deal with behavioral and textual data. For this reason, we use this algorithm as a
benchmark in this study. The proposed algorithm byWachter et al. (2018) cannot deal
withmany binary variables—a common representation for explanations for behavioral
and textual data—which eliminates their algorithm from this study.

In the literature, other instance-level explanation types have been proposed for high-
dimensional data sources, such as additive feature attribution explanations (Ribeiro
et al. 2016; Lundberg and Lee 2017). In our movie running example, additive fea-
ture attribution explanations would show an ordered list of important movies and their
corresponding importance weights—specifically, importance for this particular model
decision (see Fig. 1b). Such algorithms generate an importance-ranked list of features,
i.e., coefficients of a linear model, for a single instance. The idea of developing hybrid
methods which connect counterfactuals with additive feature attribution explanations
stems from the following reasoning: if these importance-rankings of features are suf-
ficiently accurate, it may be possible to compute counterfactuals from them: starting
from the highest-ranked feature, we remove features until the predicted class changes.2

One novelty of this study resides in the idea that these importance rankings may be an
“intelligent” starting point for searching for counterfactuals. The resulting algorithm
for computing counterfactuals may be better than the existing SEDC algorithm. For
this reason, we empirically compare the counterfactual explanation algorithms to help
researchers and practitioners better understand which method is most suitable when
facing behavioral or textual data.

This paper’s main contributions are fourfold: (1) we propose two novel model-
agnostic explanation algorithms, creating them via the combination of counterfactual
explanations and additive feature attribution methods (LIME-C and SHAP-C); (2) we

2 Fernandez et al. (2019) show that having a high importance weight (from SHAP) is neither necessary
nor sufficient for a feature to be part of a counterfactual explanation. Therefore, we should be clear that this
is an alternative heuristic approach.
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define quantitative evaluation criteria that proxy the effectiveness and efficiency of
these algorithms; (3) we perform an in-depth evaluation of the explanation quality
of LIME-C and SHAP-C when applied to high-dimensional behavioral and textual
data and benchmark their performance against the SEDC algorithm, and lastly, (4) we
propose changes to the model-agnostic methods for generating counterfactuals, and
discuss research directions stemming out of our findings.

2 Counterfactual explanation algorithms

To our knowledge, counterfactual explanations were first used to explain document
classifications (Martens and Provost 2014), and since that time have been appliedmore
broadly (Provost 2014; Chen et al. 2017; Wachter et al. 2018; Nguyen 2018; Sokol
and Flach 2019). Martens and Provost (2014) define an explanation in counterfactual
terms as a minimal set of active features such that, when removing these features from
the instance, the predicted class changes.3 For instance, in Fig. 1a, the movies “Die
Hard”, “Taxi Driver” and “Mission Impossible” explain why Sam was classified as
“male”.

Consider instance x = (x1, . . . , xm) and the feature indices Ix = {1, . . . , m} for
m ∈ N. Let IA ⊆ Ix represent the indices of the active features of x such that ∀ j ∈ IA:
x j �=0, ∀ j /∈ IA: x j = 0. Let I ⊆ IA be a subset of the indices of active features, then
a perturbed instance zI of instance x (hereafter referred to as z) is defined as ∀l ∈ I :
zl = xl , ∀l /∈ I : zl = 0. Let C be a trained classifier that is a function from instances
to k classes. Instance x is classified by classifier C : x → {0, . . . , k} as class c. In this
study, we define a counterfactual explanation as follows:

Definition 1 A counterfactual explanation for instance x’s classification is a set of
active features with indices E ⊆ IA such that removing all features with indices E
from the instance x leads C to produce another classification. The perturbed instance
zI with I = IA\E denotes the result of removing the features with indices E from
instance x. Further, a counterfactual explanation is minimal in the sense that removing
any subset of E does not yield a change in class. Specifically:

A set of features with indices E is a counterfactual explanation for C(x) ⇔
1. E ⊆ IA (the features are active for instance x),
2. C(zIA\E ) �= c (the class changes), and
3. ¬∃ E ′ ⊂ E : C(zIA\E ′ ) �= c (E is minimal).

Note that, for behavioral and textual data, removing features corresponds to setting
the (original) feature values to zero.

We implemented the model-agnostic SEDC heuristic search algorithm, presented
byMartens andProvost (2014),which conducts a best-first search strategy. For explain-
ing individual predictions of linear classificationmodels, SEDC is optimal in the sense

3 Such explanations have been called Evidence Counterfactuals, referring to the feature evidence that leads
the classifier to make its classification (Provost 2014; Chen et al. 2017); we will adopt this terminology to
differentiate such explanations from the additive feature attribution explanations described next.
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that it always finds a minimum-sized feature set that changes the predicted class (for-
mal proof can be found in Martens and Provost (2014)). For explaining nonlinear
model predictions, optimality is not guaranteed because the algorithm cuts off its
search after a limit has been reached (Martens and Provost 2014). Also, because of the
search cut-off, the explanations may not be minimal, i.e., a subset of the explanation
set may also be a counterfactual. We further limit SEDC’s search by stopping after
the first explanation has been found. As the empirical results below show, this means
that the method is very fast; we leave assessing the full effectiveness vs. time tradeoff
to future work.

Additive feature attribution methods use an explanation model g as an inter-
pretable approximation of the trained classification model C (with corresponding
scoring function fc: x → R) in the neighborhood of an instance x. Two recently pro-
posed model-agnostic methods are the linear interpretable model-agnostic explainer
(LIME) (Ribeiro et al. 2016) and Shapley additive explanations (SHAP) (Lundberg
and Lee 2017). In the context of text and behavior, the explanation model g is a lin-
ear function of binary variables that indicate whether the feature is “active” (original
value) or “removed” (zero). Consider again the instance x = (x1, . . . , xm) that has
m′ active features (note that the full feature dimension m can be much larger). The
additive feature attribution explanation of instance x can be represented as a linear
model:

g(x′) = φ0 +
m∑

j=1

φ j x ′
j (1)

where x ′
j ∈ {0, 1} is the binary representation of x j (where x ′

j is 1 if x j is non-zero,
else it equals 0), m is the number of features of instance x, and φ0, φ j ∈ R. For SHAP,
the weights retrieved from the model also represent the (approximate) Shapley values,
which have theoretically attractive properties (see Lundberg and Lee (2017) for more
details). The main differences between LIME and SHAP are (1) how they generate
the sample of perturbed instances, (2) the distance function π and (3) the complexity
control of the explanation.

Suppose we want to explain the instance x. Both LIME and SHAP first map the
instance to a binary representation x′ = (x ′

1, . . . , x ′
m) using amapping function h(x) =

x′. Next, perturbed instances are generated from x′, and each perturbed instance z′ is
assigned a distance weight πx′(z′). LIME generates perturbed instances by sampling ñ
instances and randomly removing active features from x′. Each perturbed instance z′
is then mapped onto the original feature space to obtain the predicted score using the
scoring function fc(z), which is then used as a label for training the explanation model
g. Each perturbed sample is assigned a corresponding weight. For textual data, LIME
uses the cosine distance as the distance function to measure the similarity between
x′ and z′, which seems a suitable choice for behavioral data as well.4 SHAP starts

4 The cosine distance is defined as cosine(x′, z′) = x′·z′
||x′||·||z′|| andmeasures how similar two data instances

are irrespective of their size i.e., the number of active features. This seems a suitable choice for behavioral
and textual data instances, which can vary a lot in size (e.g., documents with varying lengths, users with
different number of movies watched or Facebook pages “Liked”, etc.).
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by estimating distance weights for different subset sizes. A subset size is the number
of non-zero elements of a perturbed instance z′. For each subset size s, a distance
weight is estimated.5 Then, the method samples ñ perturbed instances from the subset
spaces, starting from the smallest (and largest) subsets. LIME trains the explanation
model by using �2-regularized linear regression and controls the complexity even
more by allowing exactly K features in the explanation. SHAP trains the model using
�1-regularized linear regression.

Note that neither LIME nor SHAP produce non-trivial counterfactual explana-
tions natively. However, it is straighforward to produce variants of the algorithm that
do. Specifically, we can apply the efficient search algorithm for counterfactuals for
linear models (Martens and Provost 2014), which we refer to as lin-SEDC,6 to the
importance-ranked lists generated by LIME and SHAP. We refer to these novel algo-
rithms as LIME-C and SHAP-C where C stands for “Counterfactual”. The (general)
pseudo-code of a hybrid algorithm of additive feature attribution explanations and
counterfactuals is shown in Algorithm 1. In a first step, an additive feature attribution
explanation is generated, without regularizing the linear explanation model g. For
LIME, this means that the complexity parameter K is set to the number of active fea-
tures m′, whereas for SHAP, no regularization is used. From this step, a linear model
with the binary representation of the features is obtained (original value versus zero),
or equivalently, we retrieve an importance-ranked list of features.

In a second step, the linear algorithm forfinding counterfactuals (lin-SEDC) (Martens
and Provost 2014) is applied to the ranked list to efficiently generate a counterfactual, if
possible. Inmore detail: the (active) features of the linear explanationmodel are ranked
by their estimated coefficients (from high to low coefficient). Then, in a first iteration,
the feature that is ranked at the top is removed from the instance, or equivalently,
its value is set to zero. If this results in a class change, a counterfactual explanation
is found. If not, the set of two top-ranked features is checked for being a counter-
factual explanation. If not, the set of three top-ranked features are removed from the
instance, and so on, until a counterfactual explanation has been found. Both LIME-
C and SHAP-C rely on random sampling to generate counterfactuals, and thus, are
stochastic explanation algorithms. This is in contrast to SEDC, which always results
in the same search tree path for finding explanations when re-running the algorithm.
Moreover, note that there is no guarantee that the counterfactuals from the hybrid
algorithms are always minimal.

5 The distance function of SHAP is defined as πx′ (z′) = (m′−1)
(m′ choose s)s(m′−s) where (m′ choose s) =

m′!
s!(m′−s)! . The number of active features of x′ is represented by m′ and the subset size s refers to the

number of non-zero elements in perturbed instance z′.
6 See https://github.com/yramon/edc/tree/master/LinearEDC for open-source code (see Martens and
Provost (2014) for more details on the algorithm).
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Algorithm 1 Additive Feature Attribution + Counterfactuals
Input:
x = (x1,…,xm ) % Instance to explain with m features
Ix = (1,…,m) % Indices of m features of x
IA ⊆ Ix % Indices of the m′ active features of x
C : x → {0,…,k} % Classifier C that maps instances to k classes, with scoring function fc
h(x) : x → x′ = (x ′

1,…,x ′
m ) % Function h maps instance to binary representation

max f %Maximum number of features in counterfactual explanation
maxtime %Maximum computation time in minutes

Output:
Feature indices of the counterfactual explanation, E % Set of feature indices E that counterfactually
explains the prediction of x

Step 1: AFA(x, h, fc) % Additive Feature Attribution without complexity control
Output:
� = (φ1,…,φm ) % Estimated coefficients of all features in explanation model g
�A = (φ j )∀ j∈IA % Estimated coefficients of active features in explanation model g
t % Time elapsed in minutes
Step 2: lin-SEDC(�A , max f , maxtime, t , C) % lin-SEDC algorithm

Sort coefficients φA, j in �A in descending order as 1. . . m′
Sort j in IA according to the sorted coefficients vector �A
c = C(x) % Class predicted by the binary classifier
E = {} % Initialize set of indices for counterfactual explanation
ttotal = t
j=1
while cnew = c & j ≤ max f & ttotal ≤ maxtime & φA, j ≥ 0 do

E = E ∪ {IA, j } % Add the j-th element of IA to E
cnew = C(zIA\E ) % Class predicted if features in E are removed from x
j = j + 1 % Add extra iteration
ttotal = ttotal + telapsed % Add extra time

end while
if cnew = c then

E = {} % No counterfactual explanation is found
end if

3 Experimental setup

3.1 Data sets andmodels

Our experimental data comprise 10 behavioral and 3 textual data sets. All data are
public, except the Facebook and Fraud data. The classification tasks are binary and
vary from gender prediction to sentiment analysis. Table 1 summarizes the character-
istics of the data. All data have high-dimensional feature spaces with up to hundreds of
thousands of features.Movielens_1m, Movielens_100k, KDD2015, Airline and Twitter
have lower-dimensional feature spaces compared to the other data sets. For all data
sets, the “class-of-interest” is the minority class. A large class imbalance is present
for the Fraud data. Also, 20news has a large imbalance compared to the other data
sets. Relatively balanced data are Facebook, TaFeng and LibimSeTi (imbalance values
b larger than 30%). The large sparsity values p for all data indicate that the num-
ber of active features is very small compared to the total number of possible active
features.
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Table 1 also shows the number of test instances per data set and the average number
of active features m′, which is very different between the data sets. Ecommerce and
Flickr have very small instances (only 2 to 3 active features), in contrast to other data
such as Movielens_1m with instances having over 150 active features.

For the behavioral data, we build �2-regularized Logistic Regression (�2-LR) mod-
els and multi-layer perceptrons (MLP). Logistic Regression has proven to be the
best-performing shallow model for big behavioral data (De Cnudde et al. 2019a),
while a follow-up study demonstrated a (modest) performance improvement by deep
learningmodels (De Cnudde et al. 2019c). For the textual data, we build bag-of-words
support vector machines (SVM) with linear and RBF kernel, because they are well-
established to be successful for text mining applications (Joachims 1998; Martens and
Provost 2014). For preprocessing text, we remove stopwords and lemmatize tokens
using the NLTK package in Python, and then, use TF-IDF7 vectorization (Joachims
1998; Martens and Provost 2014). We use 80% of the data for training the models and
20% as test set. For �2-LR and SVM, we fine-tune the regularization parameter using
a holdout set (25% of training data). ForMLP, we use the best parameter configuration
found by De Cnudde et al. (2019a). We build models using the Scikit-learn library.
To make classifications, we sort the test instances by decreasing predicted scores and
classify the k% top-ranked instances as positive, such that the fraction of test instances
classified as positive equals the fraction of positives in the training data.

3.2 Explanations

For the experiments, we generate counterfactuals for the positively predicted test
instances and we set the maximum size of the counterfactual explanation to 30, in
line with questions as to the utility of explanations sets that are too large (Sokol and
Flach 2019; Martens and Provost 2014). As a second algorithmic choice, we set the
maximum time to compute an explanation to 5min. For SEDC, we set the maximum
number of iterations to 50 and we use our own Python implementation.8 For LIME-
C,9 we use LimeText explainer10 for generating the importance-ranked list. We set the
complexity parameter K equal to the number of active features (Ribeiro et al. 2016)
and we set the number of perturbed samples ñ equal to 5,000 (Ribeiro et al. 2016;
Nguyen 2018).Next,we compute counterfactuals from the ranked feature list using lin-
SEDC (Martens and Provost 2014). For SHAP-C,11 we first compute the linear model
using the model-agnostic implementation KernelExplainer12 with a single reference
value (zero), default �1-regularization and the identity link function. Similar to LIME-

7 TF-IDF is short for term frequency and inverse document frequency.
8 See https://github.com/yramon/edc for open-source code.
9 See https://github.com/yramon/LimeCounterfactual for open-source code.
10 See https://github.com/marcotcr/lime. Currently, no implementation exists for behavioral data, where a
single reference value of zero is used. For this reason, we artificially generated text data from the behavioral
features and use the CountVectorizer.
11 See https://github.com/yramon/ShapCounterfactual for open-source code.
12 See https://github.com/slundberg/shap. We used version 0.29.3 for the experiments.
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C, we set the size of the neighborhood ñ equal to 5000. Here as well, counterfactuals
are computed from the importance-ranked list using lin-SEDC.

3.3 Evaluation criteria

We define the following set of performance metrics for evaluating counterfactual
explanations generated by the three different algorithms:

1. Effectiveness

– Switching point: number of features that need to be removed before the clas-
sification changes. The switching point equals the size of the counterfactual
explanation.

– Percentage explained: fraction of positively predicted instances for which a
counterfactual explanation smaller than 30 features is found.

2. Efficiency

– Computation time: number of seconds it takes to generate an explanation.

To compare effectiveness of the different algorithms, we need a common defini-
tion for assessing (counterfactual) explanations. Feature-ranking explanations were
tied to the notion of the counterfactual implicitly by Nguyen (2018), who introduces
the notion of the switching point, which is the number of features that need to be
removed (or set zero)—when traversing the ranked list—before the prediction switches
to another class. (This is essentially the procedure of lin-SEDC.) The switching point
was originally introduced as a proxy for the method’s ability to rank features from
high to low relative importance (Arras et al. 2017; Nguyen 2018); it also gives us a
straightforward method for turning the feature-ranked explanations into counterfac-
tual explanations. (For explanations already represented as counterfactuals, such as
those produced by SEDC, the switching point simply equals the number of features in
the explanation.) Measuring the switching point is important, because in cases where
the prediction is not the default prediction, simply selecting all the features would pro-
duce a class change, but would be a trivial “explanation”. All else being equal, for a
better importance-ranked list one would not have to choose as many features to create
a counterfactual explanation, resulting in a lower switching point. We do not allow
counterfactuals to be larger than 30; therefore, the switching points also will be no
larger than 30. In the experiments, we also compute a random explainer for estimating
the switching point, against which we benchmark our counterfactual algorithms. It
randomly selects a feature and sets it to zero. If the class changes, then a switching
point is found. If not, it verifies whether the predicted score at least decreased. If not,
it selects another random feature. If yes, then it selects a new, random feature and
evaluates whether leaving out these two features together results in a class change.
This is repeated until the random algorithm finds a switching point.

Information on effectiveness is captured by the percentage explained, which indi-
cates the fraction of instances for which a counterfactual explanation smaller than 30
features is found. More specifically, when the explanation method is not very good
at identifying the most relevant features, the method will most likely result in larger
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812 Y. Ramon et al.

switching points. This will result in fewer instances for which a counterfactual smaller
than 30 is found.

Lastly, we also compare the efficiency of available implementations of the expla-
nation algorithms, as finding counterfactual explanations can be a hard computational
problem. The computation time is important to a greater or lesser degree depending
on the timeliness needs of the application. For example, whether one will compute an
explanation on demand for a small number of instances at human-cognition speeds ver-
sus one will compute and cache explanations for all predictions in a high-throughput
application (e.g., why was I shown this?).

4 Results: effectiveness

Table 2 shows the percentage explained by each of the algorithms. For the linear
models, there are very small differences between the methods and SEDC is always
better than or as good as the other methods. For the LibimSeTi data, LIME-C and
SHAP-C find significantly fewer counterfactual explanations than SEDC.

For the nonlinear models, however, SEDC never produces more explanations than
LIME-C and SHAP-C. SEDC has a significantly lower percentage explained than
LIME-C and/or SHAP-C for 5 out of 13 data sets. Since in theory, without an iteration
limit, the best-first searchwill find (all) explanations for every case, this phenomenon is
due to the heuristic cut-off of the search at 50 iterations—it does not expand more than
50 feature sets (search nodes). Inmore detail: for somenonlinearmodels, removing one
feature does not result in a predicted score change for any of the features. Consequently,
the algorithm selects a random feature to continue with in the following iteration. The
same may happen in the second iteration. These “bad” feature choices are what makes
the algorithm need more than 50 iterations to find a counterfactual explanation.

Lastly, SHAP-C seems to have difficulties for the Fraud data. For Fraud/nonlin,
only 75% of the test instances are explained. For the non-explained instances, all
estimated coefficients (step 1 in Algorithm 1) are zero, so no linear explanation model
was generated. We conjecture this is due to the random sampling procedure, which
results in a higher number of required instances ñ. When setting the sample size ñ to
7,000 (instead of 5,000), the percentage explained increases to a maximum of 100,
indicating that this is the required number of perturbed samples needed to generate
explanations. We conjecture that the “critical number of perturbed samples” increases
for highly imbalanced data likeFraud and that this is related to the sampling procedure
of SHAP-C.

Table 3 indicates the median and interquantile range of the switching points.13

A first observation is that the data sets with large instances, such as Movielens_1m
and Facebook, have a wider range of switching points (large third quantile value)
compared to data sets with small instances such as Flickr and Ecommerce, where the
first quantile, the median and the third quantile are equal to 1. We also observe that,
for linear models, there are no differences in the median switching point between the

13 Median and interquantile range reported rather than the mean and standard deviation because the switch-
ing point only takes positive values and is right-skewed.
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algorithms. For linear models, in general, the low switching points of SEDC are not a
surprising result: it is optimal for linear models, i.e., it will always find the minimum-
sized subset of features (Martens and Provost 2014). Comparing the results of the
novel algorithms LIME-C and SHAP-C, which are approximation methods, against
SEDC, for linear models they usually find the smallest-sized explanations as well. For
the nonlinear models, however, no method dominates. LIME-C and SHAP-C perform
worse than SEDC on the YahooMovies and LibimSeTi data sets. SEDC performsworse
in terms of median switching points than LIME-C and SHAP-C on the Facebook
data. The Facebook data present an interesting case. The mean switching points of
SEDC,LIME-C and SHAP-C forFacebook/nonlin are respectively 8.34, 3.59 and 4.13,
indicating that there are more outlier values for SEDC. The reason here is similar to
the discussion of the iteration limit above, but there is an additional factor: we stop
the search after the first explanation is found. This may be penalizing SEDC in terms
of explanation length, but giving it an advantage in terms of computational efficiency.
Finally,when comparing themethodswith the randombenchmark,we conclude that all
approaches are significantly better at pinpointing the most important features, except
for the Ecommerce, Flickr and Fraud data, where random performs as well because
of the few active features per instance.

5 Results: computational efficiency

Table 4 summarizes the computation times. We observe that the median computation
times of SEDC are very small, compared to LIME-C and SHAP-C: for all our data and
models, the median computation time for SEDC is less than 1 second. The interquan-
tile ranges and the mean computation times also inform us about the efficiency of
SEDC. More specifically, for all data, there are many outlier values for computation
times. This is because SEDC’s efficiency (mostly) depends on the number of features
in the explanation. We observe that, for the data with very low switching points (e.g.,
YahooMovies), SEDC is very efficient over the entire set of test instances: there are
not many extreme values. For instances that need more features to be removed before
a predicted class change is obtained,14 SEDC is slower (Movielens_1m, Facebook,
LibimSeTi). This becomes an issue for classification problems where instances are
“harder” to explain with counterfactuals, i.e., more features need to be removed to
change the predicted class. For data with small instances (e.g., Ecommerce) or clas-
sification problems where data instances are “easier” to explain by a counterfactual,
SEDC is always the most efficient method. Note that, despite the fact that LibimSeTi
has, on average, a smaller switching point than Facebook, it still takes much longer
to generate counterfactual explanations for the LibimSeTi data. This is because the
number of active features is, on average, very large for LibimSeTi, which also plays
an important role in determining the computation time.

Overall, LIME–C and SHAP–C have a stable efficiency and the computation time
does not depend on the switching point. (In contrast to SEDC, for which the compu-

14 These instances are “harder” to explain by counterfactuals as they, for example, havemany active features
that contribute to the model prediction (positive evidence).
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tation time is sensitive to the number of features in the explanation.) The efficiency of
LIME-C and SHAP-C depends mostly on the number of active features of an instance.
The results indicate that SHAP-C’s efficiency seems more prone to the number of
active features of the instance (median and interquantile range values are relatively
larger starting from YahooMovies).

Lastly, the algorithms are generally slower for textual data than for behavioral
data. We conjecture this is because of the time to evaluate the SVM scoring function
f , which may be higher compared to the �2-LR and MLP scoring functions. As
an illustration, take the Facebook data (behavioral) and 20news data (textual). Even
though the Facebook data has more active features per instance and more features in
themodel (1,22,924 compared to 41,356), themedian time to compute a counterfactual
for all three algorithms is higher for the 20news data than for the Facebook data.

6 Conclusion and future work

From this study applying model-agnostic, instance-level explanation methods to the
finding of counterfactual explanations for high-dimensional behavioral and textual
data, we can draw several conclusions. First, the (straightforward) extensions LIME-C
and SHAP-C as expected find reasonable, if not always optimal, counterfactual expla-
nations. Furthermore, extending these algorithms to find counterfactual explanations
addresses an open problem with the application of these methods to high-dimensional
data, namely, which features should be reported in the explanation. The answer for
LIME-C and SHAP-C is: those that allow the creation of an Evidence Counterfactual.
SHAP-C does have problems with highly unbalanced data sets. Despite this, SHAP-
C may still be preferable when the user is particularly interested in the theoretical
interpretation of the importance weights (Lundberg and Lee 2017). LIME-C showed
a stable effectiveness for all data and models, and even for very large data instances
that require many features to be removed for a predicted class change, LIME-C com-
putes counterfactuals relatively fast. Moreover, the results indicate that the efficiency
of LIME-C is less sensitive to the number of active features compared to SHAP-C.

SEDC, which was designed to find counterfactual explanations, is generally fast
and effective, but not always. In the main results, SEDC was clearly the fastest. It is
provably optimal for linearmodels, and also empirically found smaller counterfactuals
(on average) for the nonlinear models on two data sets. However, for certain instances
on certain data sets, SEDC’s run time was comparably quite large. Furthermore, the
search stopping criteria were met before SEDC found explanations in a non-negligible
number of cases. As a best-first search algorithm, there is an effectiveness vs. efficiency
tradeoff that we did not explore comprehensively in this paper.

This work indicates that there is a good deal of room for more research on this
topic. For example, instead of LIME-C and SHAP-C, other hybrid algorithms could
be created. For example, LIME (or SHAP) could be run first to fix a search order for a
search algorithm like SEDC. In those cases where LIME-C (SHAP-C) produces a great
explanation, this new hybrid would find it fast. But the algorithm could keep searching,
andwould be biased towards trying the best features found byLIME (SHAP) before the
others, which likelywould lead to finding even better explanations faster. Furthermore,
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we see optimized search algorithms performing quite well for computationally hard
problems (Schreiber et al. 2018); we conjecture that similar algorithms could be
applied in the context of classification frombig, sparse data tofindoptimal explanations
fast.
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