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Abstract
Symbolic data is aggregated from bigger traditional datasets in order to hide entry
specific details and to enable analysing large amounts of data, like big data, which
would otherwise not be possible. Symbolic data may appear in many different but
complex forms like intervals and histograms. Identifying patterns and finding simi-
larities between objects is one of the most fundamental tasks of data mining. In order
to accurately cluster these sophisticated data types, usual methods are not enough.
Throughout the years different approaches have been proposed but they mainly con-
centrate on the “macroscopic” similarities between objects. Distributional data, for
example symbolic data, has been aggregated from sets of large data and thus even
the smallest microscopic differences and similarities become extremely important.
In this paper a method is proposed for clustering distributional data based on these
microscopic similarities by using quantile values. Having multiple points for compar-
ison enables to identify similarities in small sections of distribution while producing
more adequate hierarchical concepts. Proposed algorithm, called microscopic hierar-
chical conceptual clustering, has a monotone property and has been found to produce
more adequate conceptual clusters during experimentation. Furthermore, thanks to the
usage of quantiles, this algorithm allows us to compare different types of symbolic
data easily without any additional complexity.
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1 Introduction

Symbolic data approach enables to represent huge amounts of data in compact but
complex form. Symbolic data can be considered as an aggregated distribution of a
much larger amount of classical data. It summarises a given set of data by concentrating
on the main common aspects of original data and hides entry specific details. Despite
its aggregated property, the distributional information contains huge amounts of fine
details which can be beneficial during data analysis but are mostly overlooked in
current methods for analysing symbolic data. These small microscopic details are
especially beneficial during clustering when the goal is to find groups with similar
objects within and have clear segregation between groups.

In this paper, we offer an approach for hierarchical conceptual clustering which
takes into account small details in symbolic data by describing symbolic objects using
quantiles. The groups are formed during clustering based on similarities in multiple
quantile points between objects. Therefore, the comparison between objects is much
more detailed than by just comparing the area objects cover or the start and end points.
This proposed method allows to find clusters where objects are similar to each other in
microscopic level. Furthermore, the approach ensures that monotone nesting structure
is guaranteed during clustering.

In Sect. 2, we cover the previous works in the field of conceptual clustering for
symbolic data.

In Sect. 3, we present quantile representation of symbolic data. The quantilemethod
transforms each of n complex symbolic objects to d m-dimensional numeric vectors,
called quantile vectors. Quantiles are obtained from underlying distributional informa-
tion from symbolic object. m presents preselected integer number—larger the m, the
more microscopic properties will be considered. If m equals to two, only the start and
end point of the symbolic data are used, reducing quantile representation on interval.
Therefore, the selection of integral valuem controls the granularity of the sub-concepts
by constructing the given object in the representation space.

In Sect. 4, we propose an algorithm for hierarchical conceptual clustering based on
quantile representation of symbolic data for finding microscopic similarities between
compared objects. Then wewill use somewell known datasets in symbolic data analy-
sis to show the benefits of proposedmethod and compare results betweenmacroscopic
and microscopic approaches.

2 Background

2.1 Symbolic data

The symbolic data analysis (SDA) (Billard and Diday 2006; Diday and Esposito 2003)
is an approach to data analysis which permits describing and analysing complex data.
If classical data is described by giving a single value to each variable, then the symbolic
data appears in many different and complex forms. For example: symbolic data can
be an interval, histogram, categorical value or modal valued data. All these different
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types can be considered as distributions. This kind of data expands classical data by
considering more complete and complex information.

Symbolic data can be extracted from many different sources and in many ways.
The most common feature is that bigger traditional data sets are aggregated into more
compact forms of data which hides entry specific information and provides a more
general and summative overview of the source data. Thanks to these properties, SDA
methods enable to analyse large data sets (big data) which are too large to be analysed
by usual methods. Furthermore, the fact that aggregated data hides entry specific
information makes the symbolic data also suitable for fields where privacy concerns
are vital.

2.2 Hierarchical conceptual clustering

The aim of clustering is to form groups (clusters) with objects within a single cluster
being similar and those between clusters being dissimilar according to some suitably
defined dissimilarity or similarity criteria (Billard and Diday 2006).Many hierarchical
clustering methods have been extensively developed.

Conceptual clustering is a paradigm that differs from ordinary data clustering by
generating a concept description for each cluster of objects (Michalski and Stepp
1983). Therefore, not only objects with common properties are grouped, but charac-
teristics of each cluster over set of data objects are extracted, describing the regularities
in achieved clusters (Hu 1992). This classification scheme can consist of a set of dis-
jointed clusters, or a set of clusters organized into a hierarchy. Each cluster is associated
with a generalized conceptual description of the objectswithin the cluster. Hierarchical
clusterings are often described as classification trees (Jonyer et al. 2001).

Conceptual clustering can be used for a variety of tasks, starting from data explo-
ration to model fitting. The aim of applying clustering to a dataset is to gain a better
understanding of the data, in many cases by highlighting hierarchical topologies
(Jonyer et al. 2001). Clustering aims to achieve clusters that are optimally "connected"
or "compact" (Johnson 1967). In Hubert (1972) extensions are offered for Johnson’s
algorithms. Fisher proposed an incremental hierarchical conceptual clustering method
designed to maximize inference ability (Fisher 1987). A comprehensive review of
data clustering methods is offered in Jain et al. (1999). Goswami and Chakrabarti
(2012) proposed conceptual clustering algorithm based on comparing values of clas-
sical dataset against medians and/or quartile values. Their algorithm is applied to
classical data with single point values not distributions. Single point is compared with
features median/quartiles and labeled according to its position inside the feature. They
use combination of labels directly as cluster descriptionwith 4d possible combinations
if using median/quartiles and d is number of features. Therefore, algorithm produces a
large number of groups and may require additional merging to avoid cluttering during
decision making.

Because symbolic data has a complex structure, it also requires a more complicated
approach to conceptual clustering than classical data. A thorough survey of symbolic
data clustering methods has been compiled in de Carvalho and de Souza (2010). Gen-
eralized Minkowski metrics for mixed feature types based on the Cartesian system
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model has been defined in Ichino and Yaguchi (1994). Dendrograms obtained from
the application of standard linkage methods are also presented by Ichino and Yaguchi.
Different dissimilaritymeasures for symbolic data clustering are covered inBillard and
Diday (2006). SODAS software project produced much research into different aspects
of symbolic data clustering like Bertrand and Mufti (2008), Brito and De Carvalho
(2008) and De Carvalho et al. (2008). Irpino and Verde (2006) proposed cluster-
ing approach based on Wasserstein-Kantorovich metric also using quantile functions.
Their difference with current proposed approach to quantiles comes from the aspect
that they still use underlying histogram bin values and probabilities. Furthermore, like
in Umbleja (2017), the merger of histograms is complex process. Both cases suffer
from rising number of quantiles/bins when histograms are merged. The merger has
O(n3) complexity respect to histograms being merged, features and quantiles/bins.

All of those symbolic data conceptual clustering methods are considered to com-
pare "macroscopic" properties of symbolic objects. By "macroscopic" properties, we
mean that objects are compared according to general information embedded into their
symbolic representation. For example, in Ichino and Umbleja (2018), concept size is
used to determine the formation of clusters. Concept size is the area two joined objects
span in the Cartesian space. Therefore, basically the start and end value of the feature
for an object have impact during clustering. In reality, due to its complex structure and
the way larger datasets are aggregated into symbolic form, the symbolic data object
contains huge amounts of fine details that are not compared nor considered during this
kind of clustering process. Those small fine details are called "microscopic" properties
in this paper, reflecting inner structure of symbolic objects.

There has been previous research into conceptual clustering of symbolic data
described as quantiles like Brito and Ichino (2010) and Brito and Ichino (2011). The
differences between these methods and proposed method is how dissimilarity is mea-
sured and how concepts are merged and handled. The similarities are that all methods
are comparing distributions on multiple points(quantiles). The main novelty proposed
in this paper compared with previous works is the usage of "quantile rectangles" that
naturally produce conceptual descriptions for objects and merged concepts.

3 Quantile representation of symbolic data

3.1 Types of symbolic data

Symbolic data can be represented inmany different forms. Themost common types are
interval valued data, histogram valued data, categorical data and modal multi-variable
data.

Let set of n objectsU be represented byU = {ω1, ω2, . . . , ωn}. Let F1, F2, . . . , Fd
be d features describing each object ωi , i = 1, 2, . . . , n of different with symbolic
object Ei j .

Definition 1 Let feature Fj be an interval valued feature and let each object ωi ∈ U
be represented by an interval:
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Ei j = {[ai j , bi j ]1} (1)

Definition 2 Let feature Fj be a histogram valued feature and let each object ωi ∈ U
be represented by a histogram:

Ei j = {[ai jk, bi jk]pi jk; k = 1, 2, . . . , ni j } (2)

where
∑ni j

k=1 pi jk = 1, bi jk = ai j(k+1) and ni j is number of bins for histogram Ei j .
As can be seen, (1) is a special case of (2) where ni j=1.

Definition 3 LetY j be the domain of possible outcomes formodalmulti-valued feature
Fj containing category values Y j = {c j1, c j2, ..., c j |Y j |}. |Y j | notates the size of Y j—
the number of category values in Y j . Each object ωi ∈ U takes categorical values
from Y j with probability pi jk and is represented as:

Ei j = {c jk, pi jk; k = 1, 2, . . . , |Y j |} (3)

where {c j1, c j2, ..., c j |Y j |} ⊆ Y j and category c jk appears with probability pi jk .

Modal multi-valued data in (3) can be represented as histogram where every cate-
gory c jk corresponds to bin [a jk, a jk + l] with equal width l and a j(k+1) = a jk + l.
Therefore, (3) is transformed to histogram as:

Ei j = {[a jk, a jk + l]pi jk; k = 1, 2, . . . , |Y j |, l = 1/|Y j |} (4)

The order of categorical values has an impact on the distribution, therefore it should
be carefully considered. One possibility is to use sum of frequency and rank values
for the ordering (Ichino 2011).

Definition 4 Let Y j be the domain of possible outcomes for categorical feature Fj

containing category values Y j = {c j1, c j2, ..., c j |Y j |}. Each object ωi ∈ U takes
categorical values for feature Fj from Y j and is represented with list of included
categories Yi j ⊆ Y j :

Ei j = {c jk; c jk ∈ Yi j } (5)

Categorical data represented as (5) can be represented as modal multi-valued data
(3) in following way:

Ei j = {c jk, pi jk; k = 1, 2, . . . , |Y j |} (6)

where pi jk = 1 if category is included in Yi j and pi jk = 0 if category is not included in
Yi j . Therefore, categorical data (5) can also be represented as histogram data according
to (4) as:

Ei j = {[a jk, a jk + l]p′
i jk; k = 1, 2, . . . , |Y j |} (7)

123



412 K. Umbleja et al.

where p′
i jk = pi jk/|Yi j | is normalized probability according to the number of cate-

gories taken by object ωi for feature Fj .

It can be seen that different types of symbolic data can be all represented as his-
tograms and therefore considered to be distributions describable with distribution
function.

Definition 5 Let an object ωi ∈ U for feature Fj be histogram valued symbolic object
as in (2). Therefore object ωi ∈ U for feature Fj can be described with distribution
function:

F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ ai j1
pi j1 × (x − ai j1)/(bi j1 − ai j1) if ai j1 ≤ x ≤ bi j1 = ai j2
F(ai j2) + pi j2 × (x − ai j2)/(bi j2 − ai j2) if ai j2 ≤ x ≤ bi j2
. . .

F(ai jl) + pi jn × (x − ai jl)/(bi jl − ai jl) if ai jl ≤ x ≤ bi jl
1 if bi jl ≤ x

(8)

3.2 Quantile representation

Based on the knowledge of distribution functions, a quantile method (Ichino 2008)
offers a common way to represent symbolic data with features of different type. The
basic idea is to express the observed feature values by some predefined quantiles of
the underlying distribution (Ichino 2011). In case of interval valued data, we assume
the uniform distribution inside the interval. In case of histogram valued data, we also
assume uniform distribution inside histogram bin.

By using distribution function (8), we can easily obtainm numeric values (quantile
values) Q1, Q2, . . . , Qm matching probabilities p1, p2, . . . , pm (where p1 < p2 <

· · · < pm) in distribution:

F(Q1) = p1
F(Q2) = p2
. . .

F(Qm) = pm

It should be noted that for quantile values we use term "quantile values" together
with minimum and maximum value. If p1 = 0 (minimum value) then Q1 = ai j1 and
if pm = 1 (maximum value) then Qm = bi jl . The chosen probabilities may include 0
and 1 but do not have to—in some cases it is beneficial to truncate distributional data.

Definition 6 Let U = {ω1, ω2, . . . , ωn} be set of n-objects . Let F1, F2, . . . , Fd be
d features describing each object ωi of different feature types. Let m be preselected
integer number to determine the common number of quantiles for each feature. Then,
object’s ωi feature Fj can be represented with m-tuple quantile vector as:

Ei j = (Qi j1, Qi j2, . . . , Qi jm) (9)
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Fig. 1 Histogram for Example 1

where quantiles valuesQi j1, Qi j2, . . . , Qi jm arematchingm quantiles p1, p2, . . . , pm
(where 0 ≤ p1 < p2 < · · · < pm ≤ 1).

By default, we can consider quantile value Qi jk to be single points as Qi jk = {qi jk}.
In some cases, as will be shown later, it is beneficial to think of quantile values Qi jk

as intervals Qi jk = [qi jkmin, qi jkmax ] where qi jkmin = qi jk and qi jkmax = qi jk .
Therefore, object ωi becomes m-series of d-dimensional quantile rectangle and (9)
can also be written as:

Ei j = ([Qi j1, Qi j1], [Qi j2, Qi j2], . . . , [Qi jm, Qi jm]) (10)

The advantage of quantile representation of distributional data is that even if under-
lying symbolic data may be represented by different number of bins (for example in
case of histogram—the number of bins ni j may vary from object to object), we can
obtain the same number of quantiles for all distributions.

Using m-tuple quantile vectors to describe symbolic objects gives us a simple
way how to describe underlying small microscopic details in distribution that would
otherwise be overlooked or remain hidden in complex representation of distributional
information.

Example 1 Let Ei j be histogram described as:

Ei j = {[1, 4]0; [4, 5]0.2; [5, 6]0.4; [6, 7]0; [7, 8]0.1; [8, 9]0.3} (11)

The histogram can be seen in Fig. 1. The corresponding distribution function is:
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F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ 4

0.2 × (x − 4) if 4 ≤ x ≤ 5

0.2 + 0.4 × (x − 5) if 5 ≤ x ≤ 6

0.6 if 6 ≤ x ≤ 7

0.6 + 0.1 × (x − 7) if 7 ≤ x ≤ 8

0.7 + 0.3 × (x − 8) if 8 ≤ x ≤ 9

1 if 9 ≤ x

(12)

We are looking for quantile values Q1, Q2,Q3,Q4 and Q5 matching probabilities 0,
0.25, 0.5, 0.75 and 1.We canfind these values by simply solving equations F(Q1) = 0,
F(Q2) = 0.25, F(Q3) = 0.5, F(Q4) = 0.75 and F(Q5) = 1. We obtain quantiles
values Q1=4, Q2=5.125, Q3=5.75, Q4=8.17 and Q5=9. Finally, we can produce 5-
tuple quantile vector to describe Ei j :

Ei j = (4, 5.125, 5.75, 8.17, 9) (13)

We can extend (13) to 5-tuple interval-format quantile vector as (10):

Ei j = ([4, 4], [5.125, 5.125], [5.75, 5.75], [8.17, 8.17], [9, 9]) (14)

4 Microscopic hierarchical conceptual clustering

In the following section, we present the algorithm for Hierarchical Conceptual Clus-
tering (HCC) based of quantile vectors.

We use term "microscopic" for clusteringmethod that takes into account underlying
properties from the distribution—for example, to which part of the feature space most
of the probabilities are concentrated to? Are the probabilities in compact region or are
they spread widely? In the proposed algorithm, the dissimilarity between two objects
is measured at multiple points (quantiles) to consider different aspects of distributions.
In "macroscopic" approach, only limited characteristics of data are considered—start
and end points, join and meet of two objects, for example. In case of intervals where
uniform distribution is assumed to be inside a bin, this kind of approach may be
adequate, but with more complicated distributions like histograms, many details are
overlooked.

4.1 Dissimilarity between two quantile vectors

To compare two quantile vectors Eωx j and Eωy j described asm-tuple quantile vectors,
the following metric to measure their dissimilarity is proposed.

Definition 7 The dissimilarity between two quantile values Qx jk and Qyjk is:

|Qx jk − Qyjk | = max(qx jkmax , qyjkmax ) − min(qx jkmin, qyjkmin) (15)
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where Qx jk is given with interval [qx jkmin, qx jkmax ] and Qyjk is given with interval
[qyjkmin, qyjkmax ].
Definition 8 The dissimilarity between m-tuples quantile vectors Eωx j and Eωy j for
objects ωx , ωy ∈ U for feature Fj is:

dq(Eωx j , Eωy j ) =
m∑

k=1

|Qωx jk − Qωy jk |
|Djk | /m (16)

where |Djk | is the length of domain Djk = [Qmin jk , Qmax jk ] for k-th (k = 1 . . .m)
quantile over all objects ωi ∈ U for feature Fj .

Normalization among all the quantiles assures that every quantile has an equal
impact for the distance between two objects.

Definition 9 The dissimilarity between two objects ωx and ωy from set U described
with (m)-tuple quantile vectors in d-dimensional feature space is:

d(ωx , ωy) =
d∑

j=1

dq(Eωx j , Eωy j )

d
(17)

Proposition 1 The dissimilarity between two quantile vectors Eωx j and Eωy j is 0 ≤
dq(Eωx j , Eωy j ) ≤ 1 as can be seen from (15) to (16).

Proposition 2 The dissimilarity between two objectsωx andωy is 0 ≤ d(ωx , ωy) ≤ 1.
It is due Proposition 1 and normalization with number of features in (17).

The measure is basically a join operation between two quantile values in m data
points along the distribution function. Therefore, the proposed distance reflects not
only the general differences between two comparable quantile vectors but also reflects
their inner dissimilaritiesmaking it superior over current availablemethods. The choice
of value m and the choice of m probabilities has an impact on result.

Definition 10 Cartesian join of two m-tuple quantile vectors Eωx j = (Qx j1, Qx j2,

. . . , Qx jm) and Eωy j = (Qyj1, Qyj2, . . . , Qyjm) with respect to the j-th feature is
defined as:

Eωx j � Eωy j = ([min(Qx j1min, Qyj1min),max(Qx j1max , Qyj1max )],
[min(Qx j2min, Qyj2min),max(Qx j2max , Qyj2max )],
. . . ,

[min(Qx jmmin, Qyjmmin),max(Qx jmmax , Qyjmmax )]) (18)

It can be seen that the result of theCartesian join of the given twoquantile vectors is a
vector of intervals. Cartesian join of two objects, described bym-tuple quantile vectors
in d-dimensional feature space, is described m-series of d-dimensional rectangles.
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The Cartesian join operation is used during HCCwhen concepts are merged. Lower
and upper bounds are taken from both merged concepts at every quantile value point.
We can consider the area covered by d-dimensional rectangles as concept size of that
specific quantile point.

Example 2 Let Epj be histogram described as quantile vector in (13). Let Eq j be
described as quantile vector:

Eq j = (4, 5, 7, 8, 9) (19)

We can see that both distributions have the same start and end points. The difference
between objects comes from the internal variation in the distribution.

The dissimilarity between Epj and Eq j for quantiles k = 1, . . . , 5 is, according to
(15) :

|Qpj1 − Qqj1| = max(4, 4) − min(4, 4) = 0

|Qpj2 − Qqj2| = max(5, 5.125) − min(5, 5.125) = 0.125

|Qpj3 − Qqj3| = max(7, 5.75) − min(7, 5.75) = 1.25

|Qpj4 − Qqj4| = max(8, 8.17) − min(8, 8.17) = 0.17

|Qpj5 − Qqj5| = max(9, 9) − min(9, 9) = 0

Assume the domains for 5 quantiles for feature j are: Dj1 = [2, 6], Dj2 = [3, 6],
Dj3 = [4, 8], Dj4 = [8, 9] and Dj5 = [8, 12]. Then, the dissimilarity between
quantile vectors Epj and Eq j according to (16) is:

dq(Epj , Eq j ) =
5∑

k=1

|Qpjk − Qpjk |
|Djk | /5

=
(
0

4
+ 0.125

3
+ 1.25

4
+ 0.17

1
+ 0

4

)

/5

= 0.524

5
= 0.105 (20)

The Cartesian join of quantile vectors Epj and Eq j according to (18) is:

E(p�q) j = ([4, 4], [5, 5.125], [5.75, 7], [8, 8.17], [9, 9]) (21)

4.2 Algorithm for hierarchical conceptual clustering

1. For each pair of objects ωi and ω′
i calculate dissimilarity d(ωi , ω

′
i ) as (17). Find a

pair of objects ωp and ωq that minimize the dissimilarity d.
2. Generate a merged concept ωpq of ωp and ωq in U . Delete ωp and ωq from U .

The new object ωpq (a concept) is described by Cartesian join Epq = Ep � Eq .
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3. Repeat step 2 until U contains only one object (the whole concept).

Merged concept in step 2 is Cartesian join of two objects ωp and ωq as described
in (18).

A notable property of step 2 and step 3 is intentional dual monotone property such
that:

The monotone property of the extension:

{ωp} ⊆ {ωp, ωq} ⊆ {ωp, ωq , ωr } ⊆ . . . (22)

And the monotone property of dissimilarity:

d(ωp, ωp) ≤ d(ωp, ωq) ≤ d({ωp, ωq}, ωr ) ≤ ... (23)

From (15), it is clear that dissimilarity (17) is 0 only if the objects are exactly
matching. From Proposition 2 it is known that dissimilarity cannot be less than 0.
Therefore, first part of (23) holds. For the second part, we use the term "concept size".
We define concept size P(Qx jk) as:

P(Qx jk) = |Qx jk |/|Djk | (24)

Concept size of m-dimensional quantile vector is average of quantile values’ con-
cept sizes as:

P(Ex j ) =
m∑

k=1

P(Qx jk)

m
(25)

and concept size of object is average concept size over all features:

P(ωx ) =
d∑

j=1

P(Ex j )

d
(26)

.
Concept size correlates with the area which the object occupies in the Cartesian

space and with definitions (15)-(17) . From (18), we can see that when objects are
merged, their span in Cartesian space is also merged. If merged concept is further
merged, as in {{ωp, ωq}, ωr }, there are two options. In first case, the k-th quantile
value for f -th feature of ωr is inside corresponding quantile value for {ωp, ωq}. In
this case, both concept size (24) (and also corresponding dissimilarity) remains the
same. In second case, the value is outside quantile value for {ωp, ωq}. In that case,
the merged quantile value will have larger concept size (and larger dissimilarity) than
{ωp, ωq}. This property will be carried over from quantile value to quantile vector to
object level. Therefore, also second part holds. Concept size can also be used to prove
extension property (22) the same way.

Nested structure, for example, and tree structure, should be used during bottom up
method to memorize the structure of nested objects and corresponding descriptions
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by the Cartesian join regions. It should be noted that in each step of the agglomeration
process, we not only know the distance between objects, but also know which features
create the differences between concepts.

5 Application

To show the benefits of the proposed approach to HCC, it will be applied to well
known symbolic datasets and results of proposedmicroscopic HCC are comparedwith
macroscopic approaches. For macroscopic HCC in case of interval valued datasets,
the dissimilarity between objects is found using (Ichino and Brito 2013; Ichino and
Umbleja 2018). For histogram valued data, its’ extension fromUmbleja (2017) is used.

5.1 Oils data

Oils dataset is an interval valued symbolic dataset introduced by Ichino and Yaguchi
(1994). It has been excessively used to verify clustering methods for symbolic interval
data [for example in Billard and Diday (2006), El-Sonbaty and Ismail (1998), Hardy
and Lallemand (2002) and Guru and Nagendraswamy (2006)].

The dataset contains 8 oils. The first six oils are vegetable oils and last two are
animal based oils. Pairs of oils (1,2), (3,4) and so on are expected to have similar
properties. Vegetable oils 3 to 6 are very similar to each other. The data is given
in interval format with fifth feature being categorical variable. Data is normalized
according to feature length. Acids are treated as modal multi-valued data with 9 bins
correlating to 9 possible acids. Probability 0 or 1 indicates if the category is present
or not.

The following five features describe the Oils data:

– F1: Specific gravity
– F2: Freezing point
– F3: Iodine value
– F4: Saponification value
– F5: Major fatty acids

First step in microscopic HCC is to decide on proper set of m quantiles to be
used. For the current example, following 7 quantiles are used: 0%, 10%, 25%, 50%,
75%, 90% and 100%. As mentioned earlier, the choice of quantiles has an impact on
the result. In this case, 7 quantiles have been chosen so that there are many points for
comparison. Included are the end and start points which are self-explanatory. 10% and
90% quantiles are useful for ignoring outliers as they truncate the data. Sometimes it
may be beneficial to ignore start and end points and use truncation instead. Other three
chosen quantiles assure that there are enough points for comparison inside the data.

The second step is finding domains Djk for every feature j and for every quantile
k. In current example j = 1 . . . 5 and k = 1 . . . 7. The minimum and maximum values
for F1 for all 7 quantiles can be seen in Table 1.

As domain values are known, dissimilarity between all 8 oils can be found. Results
can be seen in Table 2. The smallest dissimilarity is between Cotton andOlive—0.106.

123



Hierarchical conceptual clustering based on quantile… 419

Table 1 Domain values for F1 in Oils dataset for 7 quantiles

Quantiles: 0% 10% 25% 50% 75% 90% 100%

F1 min 0.000 0.008 0.019 0.038 0.057 0.068 0.076

F1 max 0.911 0.920 0.934 0.956 0.978 0.991 1.000

Table 2 Dissimilarity between oils using 7 quantiles after first iteration of microscopic HCC

Linsead Perilla Cotton Sesame Camellia Olive Beef Hog

Linsead 0.000 0.297 0.451 0.481 0.449 0.520 0.774 0.854

Perilla 0.000 0.195 0.265 0.358 0.281 0.599 0.597

Cotton 0.000 0.140 0.189 0.106 0.436 0.404

Sesame 0.000 0.182 0.139 0.576 0.462

Camellia 0.000 0.147 0.550 0.503

Olive 0.000 0.436 0.373

Beef 0.000 0.213

Hog 0.000

Table 3 Dissimilarity calculation for Cotton and Olive for F1

Quantiles 0% 10% 25% 50% 75% 90% 100%

Cotton 0.709 0.715 0.725 0.741 0.756 0.766 0.772

Olive 0.734 0.737 0.741 0.747 0.753 0.757 0.759

Max 0.734 0.737 0.741 0.747 0.756 0.766 0.772

Min 0.709 0.715 0.725 0.741 0.753 0.757 0.759

Max–Min 0.025 0.022 0.016 0.006 0.003 0.009 0.013

|Djk | 0.911 0.913 0.915 0.918 0.921 0.923 0.924

(Max–Min)/|Djk | 0.028 0.024 0.017 0.007 0.003 0.010 0.014

Dissimilarity calculation for Cotton and Olive for feature 1 over 7 quantiles can be
seen in Table 3. The resulting merged concept description can be seen in Table 4.

For macroscopic HCC, a merged concept with smallest average concept size (span)
is found. At first iteration, the most similar pair is Olive and Camilla, different from
the first pair in microscopic HCC. The merged concept can be seen in Table 5.

Figure 2a represents the result of microscopic HCC and (b) shows results of macro-
scopic approach to clustering. As can be seen, clear pairs of oils are forming in both
dendrograms but the pairs are slightly different. In both graphs the vegetable oils con-
cept (Cotton, Sesame, Camellia and Olive) is very similar. In case of macroscopic (b),
the pairs are formed as it was expected from dataset description. In case ofmicroscopic
(a), the pairs are formed in different order, reflecting the small differences on how two
algorithms compare objects. Based on the properties of microscopic HCC, it can be
said that the results in (a) reflect similarity between objects onmore than 2 points (start
and end) and can therefore be considered more precise. It should be noted that after
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Table 4 Concept description for merged concept Cotton–Olive

% Specific gravity Freezing point Iodine Saponification Major acids

0 [0.709,0.734] [0.323,0.415] [0.232,0.351] [0.821,0.845] [0.222,0.222]

10 [0.715,0.737] [0.331,0.425] [0.239,0.36] [0.832,0.856] [0.267,0.278]

25 [0.725,0.741] [0.342,0.438] [0.249,0.372] [0.848,0.872] [0.333,0.361]

50 [0.741,0.747] [0.362,0.462] [0.265,0.393] [0.875,0.899] [0.444,0.5]

75 [0.753,0.756] [0.381,0.485] [0.281,0.414] [0.902,0.926] [0.556,0.639]

90 [0.757,0.766] [0.392,0.498] [0.291,0.426] [0.918,0.942] [0.622,0.722]

100 [0.759,0.772] [0.4,0.508] [0.298,0.435] [0.929,0.952] [0.667,0.778]

Table 5 Concept description for merged concept Olive-Camilla from macroscopic HCC

Specific gravity Freezing point Iodine Saponification Major acids

[0.709,0.772] [0.092,0.508] [0.232,0.298] [0.821,0.929] O, P, M, S

(a) (b)

Fig. 2 Dendrograms of microscopic (a) and macroscopic (b) HCC for Oils dataset

three concepts are left, clusters are matching. The formed seven quantile rectangles
at three clusters, that are used in concept description, can be visually followed for
features Iodine Value and Specific gravity in Fig. 3.

If dendograms are to be cut at two clusters, clear differences can be followed. In
(a) two clusters clearly separate vegetable and animal based oils. In (b), vegetable
oils Linsead and Perilla are forming their own cluster while animal fats are clustered
together with four similar vegetable oils. It could be argued that result in (a) is more
in accordance with real life as the dataset contains two very different kinds of oils. In
Fig. 3, it can also be followed that two clusters of vegetable oils look visually closer to
each other than to fats. It should also be remembered that Oils data is interval-valued—
the proposed microscopic approach does have benefits over macroscopic method but
the real advantages become visible with more complex types of symbolic data.

In addition, we can follow cluster quality from dendrogram in Fig. 2. In (a), micro-
scopic case, we can draw the cut dendrogram at 0.28 after 3 clusters are left. In (b),
macroscopic case, the dendrogram can be cut after 0.455. Therefore, in (a) the concept
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Fig. 3 Quantile values of objects and quantile rectangles at 3 clusters formed duringMHCC for Oils dataset
features iodine value and specific gravity

size (that correlates to dissimilarity between objects) is smaller and therefore clusters
are more compact and more clearly separatable.

5.2 Hardwood data

In this section, a small example using hardwood data by U.S. Geological survey (U.S.
Geological Survey 2013) is represented. Ten groups of trees (5 species with west
and east coast groups) were chosen with eight features. The features are given with
cumulative percentages.
The following eight features describe the Hardwood data:

– F1: Annual temperature (ANNT) (◦C)
– F2: January temperature (JANT) (◦C)
– F3: July temperature (JULT) (◦C)
– F4: Annual precipitation (ANNP) (mm)
– F5: January precipitation (JANP) (mm)
– F6: July precipitation (JULP) (mm)
– F7: Growing degree days on 5◦C base*1000 (GDC5)
– F8: Moisture index (MITM)

The hardwood data is in a histogram format—therefore span and concept size of the
object are not detailed enough for adequate comparison. All objects tend to cover most
of the feature space and therefore have a similar span. Dissimilarities between objects
are hidden in their distributions. The quantile values for F1 can be seen in Table 6.

The structure of Hardwood data can be seen in Fig. 4. The distributional data is rep-
resented by using accumulated quantile values to show the fine details of distribution
(Ichino and Britto 2014). 7monotone lines containing 8 points are used to visualize the
accumulation of values for quantiles k, k = 1, . . . , 7 over features j , j = 1, . . . , 8.
Different grey tones are used for different features. The shapes of those monotone
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Table 6 Quantile values for annual temperature

Quantiles 0% 10% 25% 50% 75% 90% 100%

Acer East − 2.3 0.6 3.8 9.2 14.4 17.9 23.8

Acer West − 3.9 0.2 1.9 4.2 7.5 10.3 20.6

Alnus East − 10.2 − 4.4 − 2.3 0.6 6.1 15.0 20.9

Alnus West − 12.2 − 4.6 − 3.0 0.3 3.2 7.6 18.7

Fraxinus East − 2.3 1.4 4.3 8.6 14.1 17.9 23.2

Fraxinus West 2.6 9.4 11.5 17.2 21.2 22.7 24.4

Juglans East 1.3 6.9 9.1 12.4 15.5 17.6 21.4

Juglans West 7.3 12.6 14.1 16.3 19.4 22.7 26.6

Quercus East − 1.5 3.4 6.3 11.2 16.4 19.1 24.2

Quercus West − 1.5 6.0 9.5 14.6 17.9 19.9 27.2

(a) (b)

Fig. 4 Accumulation of quantiles over features for Hardwood data

lines allows to identify the patterns in data. For example, for all tree species the dif-
ference between east and west lays between the last two quantile values in quantile
vector as bottom parts of the figure have similar shapes for the respective species. It
can also be seen in Fig. 4 that all east hardwood, except Alnus East, are very similar.
All that information should be taken account during HCC. The dendrograms achieved
by microscopic and macroscopic HCC can be seen in Fig. 5. Same 7 quantiles as in
case of Oils data were used. As noted previously, for histogram-valued data, extension
of Ichino and Umbleja (2018) method is used. The original method is not suitable
for histogram-valued data as it calculates join and meet by the span the data covers
in feature space. Histograms tend to span over large parts of feature space but the
regions with high probabilities are important. The extension of concept size method
does consider the shape of histogram. Therefore the concept size and dissimilarity will
not equal to 1 as would be expected in a dendrogram. It only occurs when histogram
has one bin (interval). Despite that drawback, the propositions of dendrogram and
concepts merged can be normalized and are are comparable.

There are some fundamental differences between (a) and (b) in Fig. 5 due to under-
lying distributions as in Fig. 4. In both cases 3 clear clusters emerge but they are
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Fig. 5 Dendrograms of microscopic (a) and macroscopic (b) HCC for Hardwood

not identical. In (b) clusters are formed following real-life expectations—east and
west coast trees are grouped independently. In (a) Alnus East gets mixed with Acer
and Alnus West. In (b) span has huge impact on compactness measure—dissimilarity
between Acer and Alnus West is rather large. In (a), dissimilarity is measured along
multiple points and inner distribution of histograms is analysed. Those three trees
actually have very similar patterns from Fig. 4. The concept descriptions at 3 clusters
for microscopic approach can be seen in Table 7.

It can be further verified with principal component analysis in Fig. 6. The main
difference between East and West coast comes from last quantile—in case of west
trees, the difference between last and penultimate quantile covers a very large
span—meaning that there is a low concentration of probabilities. In (a), due to the
normalization factor where differences among quantiles have equal width, the dissim-
ilarity along the last quantile does not overwrite similarities among other 6 quantiles
used. Therefore, (a) offers us benefits over (b) by presenting new information that was
not known with background knowledge about the dataset but this can be verified with
other methods. Furthermore, it makes sure that differences in minimum andmaximum
values, that may have only low probabilities due to the fact that natural data has normal
distribution, due not overwrite other similarities.

When comparing cluster quality, it can be visually followed that if we cut dendro-
grams in Fig. 5when 3 clusters remain (themost optimal point), the formed concepts in
(a) have better compactness than in (b). Formal comparison of cluster quality between
formedmicroscopic andmacroscopicHCCcan be followed inTable 8. Threemeasures
where chosen: Calinski–Harabasz (CH),Davies–Bouldin (DB) andRoot-mean-square
standard deviation (RMSSTD). CH index uses average between- and within-cluster
sum of squares. Larger the value, better the cluster. DB also uses within-group and
between-group distances to validate formed clusters. Smaller the value, better the
cluster. RMSSTD considers only homogeneity within the cluster (Liu et al. 2010;
Vendramin et al. 2010).
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First 2 Principal Vectors

Fig. 6 PCA results of Hardwood data using Centers method (Billard and Diday 2006)

Most of the indexes for cluster validation consider two aspects—compactness and
separation (Liu et al. 2010). As symbolic data is not point value but distribution that
covers large part of the feature space (that is especially the case with American States’
data), there exists lot of overlap between objects and formed clusters do not produce
clear separation over whole distribution/span. Based on distance calculation during
microscopic HCC, most similar objects over majority of quantiles are merged into
cluster. Concept description is achieved at quantile level (as could be followed from
Table 7). Separation over one quantile is adequate for achieving separation between
clusters. RMSSTD was chosen as quality measure as it only considers compactness
of the formed clusters that is important for distributions.

Cluster quality measures are calculated at quantile level and averaged over all
quantiles. Even better results can be achieved when instead of average best quantile
is used. Calinski–Harabasz index is calculated based on Vendramin et al. (2010) with
(27) where trace(Wq) and trace(Bq) are defined as in (28) and (29).

max
q∈[Q1...Qm ]

trace(Bq)

trace(Wq)
× N − k

k − 1
(27)

trace(Wq) =
k∑

l=1

d∑

j=1

∑

ωi∈||Cl ||
(xi jq − xl jq)

2 (28)

trace(Bq) =
n∑

i=1

d∑

j=1

(xi jq − x jq)
2 − trace(Wq) (29)
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Table 8 Cluster quality evaluations for Hardwood data

k Calinski–Harabasz Davies–Bouldin RMSSTD

MHCC MHCC MHCC

Max Avg HCC Max Avg HCC Max Avg HCC

5 20.656 11.474 5.572 0.201 0.407 0.440 0.043 0.061 0.096

4 16.954 10.522 6.833 0.258 0.451 0.523 0.053 0.073 0.105

3 21.569 13.054 10.872 0.288 0.454 0.708 0.055 0.077 0.115

2 9.027 6.484 3.511 0.350 0.701 0.985 0.093 0.109 0.163

Davies–Bouldin for specific quantile is calculated as generally with distances being
calculated as described previously (17). Then, best or average value over all quantiles
is used. Same applies with root-mean-square standard deviation.

As can be seen in Table 8, with Calinski–Harabasz measure, 3 clusters are clearly
the best result with all different approaches. With Davies–Bouldin, the results are not
so clear with index value dropping with larger number of clusters. It can be followed
fromdendrogram at Fig. 5 that withmore than 3 clusters, individual objects are starting
to form solo clusters that have good compactness (0 as only one object in cluster) and
separation. RMSSTD best value is defined as "elbow" (Liu et al. 2010) and in all cases,
it is clearly visible that there is large drop on values before 3 clusters but the index
does not change that much with larger number of clusters.

5.3 American States’weather

In this section, the results of proposed methodology are described on climate dataset
(National Climatic Data Center 2014). This dataset contains sequential monthly "time
bias corrected" average temperature data for 48 states of USA (Alaska and Hawaii
are not represented in the dataset). Time period of 1895–2009 is used for comparison
purposes. The data provided was first transformed into histograms describing average
temperature for every state and every month.
The following twelve features describe the American States data:

– F1: January
– F2: February
– F3: March
– F4: April
– F5: May
– F6: June
– F7: July
– F8: August
– F9: September
– F10: October
– F11: November
– F12: December
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(a) (b)

Fig. 7 Dendrograms of microscopic (a) and macroscopic (b) HCC for states data

(a) (b)

Fig. 8 Five clusters achieved in microscopic (a) and macroscopic (b) HCC for states data on a map

Table 9 Differences in clustering between Microscopic and Macroscopic HCC—extreme summers

State MicroHCC MacroHCC Avg summer Extr. summer Avg in group

Arizona Warm Warmest 30 38 30

The dendrograms achieved by microscopic and macroscopic HCC can be seen in
Fig. 7. Dendrograms were cut at 5 clusters and plotted to map as can be seen in Fig. 8.
Same 7 quantiles as before were used.

As can be seen from Fig. 7, dendograms have different structure. It can be said that
(a)would produce 5 compact clusters and (b)would produce 4 clusters. For comparison
purposes, 5 clusters are chosen for Fig. 8.We can think of these clusters as "verywarm",
"warm", "mild","colder" and "cold". Both (a) and (b) in Fig. 8 are reasonable clusters
as they follow expected real-life knowledge—clusters follow latitudes with coastal
states being clustered to warmer latitude clusters. Inland states are usually clustered
with colder groups than others in the same latitude.

It can be followed from Fig. 7 that in both cases the "cold" and "colder" clusters
are forming their own branch. Furthermore, it should be noted that Florida has a very
different weather pattern from the rest of very warm states by having extremely warm
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Table 10 Differences in clustering between Microscopic and Macroscopic HCC—extreme winters

State MicroHCC MacroHCC Avg winter Extr. winter Avg in group

California Warm Mild 6 −12 1

Colorado Cold Coldest − 6 −18 − 8

Michigan Cold Coldest − 9 −23 − 8

New York Cold Coldest − 9 −18 − 8

Nevada Mild Cold − 3 −18 − 5

Utah Mild Cold − 5 −23 − 5

winters. That property can be followed in dendrograms as Florida is an outlier which
is being grouped as an individual object.

If comparing (a) and (b) in Fig. 7, the clusters tend to be more compact in (a) than
in (b) meaning better cluster quality. The concept descriptions of five formed clusters
using microscopic approach can be seen in Table 11.

Microscopic approach follows the average weather patterns while occurrences of
extrememaximums andminimums have a huge impact onmacroscopic approach. The
differences in clusters can be ascribed to that characteristic. The states clustered to
different groups are listed in Tables 9 and 10. States average and extreme temperatures
are given. For comparison, cluster’s average temperature, according to microscopic
HCC, is also included. It can be followed that state’s average temperature is similar
to cluster’s average. The extreme temperature is very different from both state’s and
cluster’s average.

In all cases listed in Tables 9 and 10, the differences are caused by extreme recorded
temperatures that have a low probabilty of occurring. In case of macroscopic HCC,
those extremes (minimum and maximum temperatures) have a very strong impact on
clustering results. In case of microscopic clustering when 7 quantile values were used,
the extremes do not have such a huge impact—they are only 2 quantile values and all
quantiles’ distances are treated equally. Therefore, if 5 out of 7 quantile values are very
similar, they have a larger impact on overall similarity than 1 or 2 large differences
with minimum and maximum extremes would have. The average weather pattern has
more impact than the rare occurrence of few unusual temperatures.

Arizona’s concept description canbe seen inTable 12. InmicroscopicHCC,Arizona
is grouped with warmer states while in macroscopic approach it groups with the
warmest.When comparingTable 12withwarmcluster description inTable 11, it can be
followed that formostwintermonths andmost quantiles,Arizona affects themaximum
value. For example, for January for quantiles 10–100%, Arizona’s quantile value is
the maximum for cluster’s description. The same Arizona’s January quantile values
would be minimum values for "Very Warm" cluster showing clearly that Arizona is a
borderline case. The low probability high temperatures during summer (for example
100% quantiles for F6–F9) are actually higher than in "Very Warm" cluster. For June
(F6), 100% quantile has value 38. 90%, on the other hand, has value 31, meaning 10%
of Arizona’s distribution for June is covered by 7 degrees. The value at 75% quantile is
28 and therefore 15% of distribution is covered with only 3 degrees showing that high
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Table 11 Concept descriptions in Celsius for 5 clusters formed with microscopic HCC

0% 10% 25% 50% 75% 90% 100%

Very warm—containing Florida, Texas etc

F1 [−7 to 4] [2—11] [5–13] [7–16] [9–19] [13–21] [21–27]

F2 [−7 to 4] [5–11] [6–14] [8–17] [11–20] [14–22] [21–32]

F3 [−1 to 10] [8–15] [11–17] [13–19] [15–22] [18–25] [21–27]

F4 [10–16] [12–17] [16–19] [18–22] [19–24] [20–26] [27–32]

F5 [10–21] [17–22] [19–23] [22–24] [24–26] [26–27] [27–32]

F6 [16–21] [22–22] [23–24] [24–27] [26–30] [29–31] [32–32]

F7 [21–21] [22–27] [24–28] [27–29] [29–31] [31–32] [32–38]

F8 [21–21] [22–27] [23–28] [26–29] [29–31] [31–32] [32–38]

F9 [16–21] [20–22] [22–24] [24–28] [25–30] [26–31] [32–32]

F10 [10–16] [13–19] [16–22] [18–23] [20–25] [21–26] [27–32]

F11 [−1 to 10] [7–14] [10–17] [12–20] [14–23] [15–25] [21–32]

F12 [−7 to 4] [5–11] [6–14] [8–17] [10–20] [13–23] [21–27]

Warmer—containing Arkansas, South Carolina etc

F1 [−12 to −7] [−1 to 1] [0–5] [2–7] [5–10] [8–13] [10–21]

F2 [−7 to −1] [0–3] [2–6] [5–9] [7–12] [9–14] [16–21]

F3 [−7 to −1] [3–7] [7–10] [9–12] [12–15] [14–18] [21–27]

F4 [−1 to 10] [7–12] [10–14] [13–17] [15–19] [17–21] [21–27]

F5 [4–10] [10–17] [12–18] [15–21] [19–24] [21–26] [27–32]

F6 [10–16] [14–22] [17–23] [19–25] [21–28] [25–31] [32–38]

F7 [10–21] [17–23] [19–26] [22–28] [25–31] [28–35] [32–38]

F8 [10–21] [17–23] [18–25] [22–28] [25–30] [26–33] [32–38]

F9 [4–16] [14–19] [17–22] [19–24] [22–27] [25–30] [27–38]

F10 [4–10] [9–12] [12–16] [14–18] [17–21] [20–24] [21–32]

F11 [−7 to −1] [3–7] [6–10] [8–12] [10–14] [13–17] [16–21]

F12 [−7 to −7] [0–3] [1–5] [4–7] [7–10] [9–13] [10–16]

temperatures are not that likely. During clustering process, all quantiles and all months
are considered. In majority of cases, especially with lower quantiles and summer
months, Arizona is clearly colder than "Very Warm" cluster description and therefore
clustering result by microscopic approach is more accurate than result achieved with
macroscopic.

Similar phenomena can be followedwith California, as can be followed in Table 13,
but with winters. California has recorded some very cold winter temperatures but on
average, its weather all year round is quite even with small difference between 25 and
75% quantile values for all months (oceanic climate). That makes it different from the
average state’s weather in "warm" cluster where summers are usually much warmer
than in California. When considering other seasons, the average weather in California
is very similar to rest of "warm" weather states.
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Table 11 continued

0% 10% 25% 50% 75% 90% 100%

Mild—containing Kansas, New Mexico etc

F1 [−23 to −7] [−10 to −3] [−6 to 0] [−4 to 2] [0–4] [3–7] [10–16]

F2 [−18 to −7] [−6 to −1] [−5 to 0] [−2 to 3] [1–6] [3–10] [10–16]

F3 [−12 to −1] [−1 to 4] [1–6] [3–7] [7–10] [9–13] [16–21]

F4 [−1 to 4] [5–10] [6–11] [8–13] [11–15] [14–18] [16–21]

F5 [−1 to 10] [9–16] [11–17] [13–18] [16–20] [19–22] [21–32]

F6 [4–16] [13–20] [16–22] [19–24] [21–25] [24–27] [27–32]

F7 [10–21] [17–22] [20–23] [23–25] [25–28] [26–30] [27–38]

F8 [10–16] [17–22] [19–23] [22–24] [24–27] [26–30] [27–38]

F9 [4–16] [11–16] [14–18] [17–20] [20–23] [21–25] [27–32]

F10 [−1 to 10] [5–11] [7–12] [10–13] [13–15] [15–19] [21–27]

F11 [−7 to −1] [−1 to 5] [0–6] [3–8] [5–9] [9–12] [16–16]

F12 [−18 to −7] [−8 to −1] [−5 to 0] [-3 to 3] [1–5] [4–8] [10–16]

Cold—containing Michigan, Connecticut etc

F1 [−23 to −12] [−13 to -6] [−11 to −3] [−7 to 1] [−4 to 4] [−2 to 7] [4–10]

F2 [−23 to −12] [−11 to −3] [−9 to 0] [−6 to 3] [−3 to 6] [−2 to 8] [4–16]

F3 [−12 to −7] [−6 to 0] [−4 to 3] [−1 to 6] [2–8] [4–9] [10–16]

F4 [−7 to 4] [1–5] [5–7] [6–9] [8–12] [10–14] [16–16]

F5 [−1 to 4] [6–11] [9–13] [12–15] [14–18] [15–20] [21–27]

F6 [4–16] [11–17] [12–18] [15–21] [18–24] [20–25] [21–27]

F7 [10–16] [13–21] [16–22] [18–24] [20–26] [23–27] [27–32]

F8 [10–16] [14–19] [16–22] [18–23] [20–25] [21–26] [27–32]

F9 [4–10] [11–16] [12–17] [14–18] [16–20] [19–21] [21–27]

F10 [−1 to 4] [5–10] [6–11] [8–12] [10–14] [13–15] [16–21]

F11 [−12 to −1] [−4 to 4] [−1 to 5] [1–7] [3–8] [4–9] [10–16]

F12 [−18 to −7] [−10 to −4] [−7 to −1] [−5 to 1] [−2 to 4] [0–7] [4–10]

Coldest—containing New Hampshire, Montana etc

F1 [−29 to −18] [−21 to −12] [−17 to −10] [−14 to −7] [−10 to −4] [−7 to −2] [−1 to 4]

F2 [−29 to −18] [−17 to −11] [−15 to −8] [−11 to −5] [−8 to −2] [−4 to 1] [4–10]

F3 [−18 to −12] [−10 to −6] [−7 to −4] [−4 to 0] [−1 to 2] [2–4] [4–16]

F4 [−7 to −1] [0–3] [2–5] [5–7] [7–9] [9–10] [10–16]

F5 [−1 to 4] [5–10] [7–11] [10–13] [13–15] [14–17] [16–27]

F6 [4–10] [11–16] [12–17] [15–18] [18–20] [20–22] [21–27]

F7 [10–16] [14–18] [17–21] [19–23] [20–25] [21–26] [27–32]

F8 [10–16] [13–17] [16–19] [18–21] [20–24] [21–26] [27–27]

F9 [4–10] [8–11] [11–13] [13–16] [15–19] [15–20] [21–27]

F10 [−7 to −1] [2–5] [5–6] [7–8] [8–11] [10–14] [16–16]

F11 [−18 to −7] [−8 to −1] [−5 to 0] [−3 to 2] [0–3] [3–4] [10–10]

F12 [−23 to −18] [−16 to −11] [−14 to −8] [−10 to −5] [−8 to −3] [−4 to −1] [−1 to 4]
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Table 12 Concept descriptions
for Arizona using 7 quantiles

0% 10% 25% 50% 75% 90% 100%

F1 [−12] [0] [4] [7] [10] [13] [21]

F2 [−7] [2] [6] [9] [12] [14] [21]

F3 [−1] [6] [8] [12] [15] [18] [27]

F4 [4] [10] [12] [15] [19] [21] [27]

F5 [4] [14] [17] [20] [23] [26] [32]

F6 [16] [19] [22] [25] [28] [31] [38]

F7 [16] [22] [25] [28] [31] [35] [38]

F8 [16] [21] [23] [26] [30] [33] [38]

F9 [10] [18] [21] [24] [27] [30] [38]

F10 [4] [12] [16] [18] [21] [24] [32]

F11 [−1] [5] [8] [12] [14] [17] [21]

F12 [−7] [1] [5] [7] [10] [13] [16]

Table 13 Concept descriptions
for California using 7 quantiles

0% 10% 25% 50% 75% 90% 100%

F1 [−12] [−1] [5] [7] [9] [12] [16]

F2 [−7] [1] [6] [8] [12] [14] [16]

F3 [−7] [3] [7] [11] [13] [15] [21]

F4 [−1] [7] [10] [13] [15] [17] [27]

F5 [4] [10] [12] [15] [19] [21] [27]

F6 [10] [14] [17] [19] [21] [25] [32]

F7 [10] [17] [19] [22] [25] [29] [38]

F8 [10] [17] [18] [22] [25] [28] [32]

F9 [4] [14] [17] [19] [22] [25] [32]

F10 [4] [9] [12] [16] [19] [20] [27]

F11 [−7] [3] [7] [11] [13] [15] [21]

F12 [−7] [0] [5] [7] [10] [13] [16]

Similar comparisonswith between clusters’ descriptions and states individual quan-
tile values can be made with other borderline cases brought out in Table 10. In all
cases,there have been extremely cold winters, but the likelihood of them is low—the
gap in degrees between 0% quantile and 10% quantile is wide.

Similar results to Fig. 8b can be followed in Irpino and Verde (2006). Despite that
method considering the inner distribution of histograms, it produces similar results for
macroscopic method, differences in clusters appearing with California and Arizona
that are grouped similar to (a). The reason for achieving results similar to macroscopic
approach is due to the fact that the length of the histogram has a large impact on their
method.With proposedmicroscopicmethod, distance in every quantile value has equal
impact therefore the average weather, as explained previously, is not overshadowed
by extreme occurrences. The main differences between Fig. 8a and results in Irpino
and Verde (2006) are with inland states that record few extremely cold years.

123



432 K. Umbleja et al.

Table 14 Cluster quality evaluation for American States’ weather

k Calinski–Harabasz Davies–Bouldin RMSSTD

MHCC MHCC MHCC

Max Avg HCC Max Avg HCC Max Avg HCC

10 56.888 42.108 72.933 0.391 1.030 0.820 0.013 0.016 0.081

9 59.000 43.709 75.927 0.402 1.022 0.761 0.013 0.017 0.084

8 52.499 40.905 68.619 0.493 1.133 0.819 0.015 0.018 0.092

7 58.086 44.288 67.343 0.485 1.131 0.815 0.015 0.019 0.098

6 68.824 51.406 62.590 0.445 0.980 0.937 0.015 0.019 0.103

5 79.526 59.794 71.446 0.391 0.843 1.006 0.016 0.020 0.109

4 70.894 55.196 77.805 0.383 0.741 0.965 0.019 0.022 0.118

3 67.058 57.436 77.980 0.337 0.628 0.760 0.023 0.025 0.136

2 61.742 54.105 68.358 0.335 0.671 0.945 0.029 0.032 0.167

Cluster quality measures are calculated in Table 14. Three different indexes as
previously are used. Calinski–Harabasz and RMSSTD have similar results, as with
Hardwood data, indicating the best number of clusters at 5. In additionally, Calinski–
Harabasz index can be compared with (Irpino and Verde 2006). They also achieved
best result with 5 clusters and best maximum value of 77.65. The best value using
macroscopic approach is 77.98 but this is achieved with 3 clusters—cold, mild and
warm. Microscopic approach achieves best results at 5 clusters, similar to Irpino and
Verde (2006), with maximum value 79.53 that is higher than previously reported.

Davies–Bouldin, on the other hand, suggests achieving best result with HCC at 3
clusters. Averaged index over all quantiles usingMHCC has similar result while using
the best quantile suggest using only 2 groups. DB index seems to be very sensitive to
large overlap that weather dataset has.

Additionally, clusters’ compactness can visually be observed in Fig. 7. The den-
dogram of (a) has smaller average "distance" between most of the objects than in
(b). Concepts in (a) are therefore more compact. When cutting the dendrogram at 5
clusters, (a) is cut after 32% (at point 0.320) while (b) is cut at 47% (at point 0.1). The
dendogram at Irpino and Verde (2006) uses Ward criterion and therefore dendograms
are not comparable other than by general shape.

6 Discussion

As shown above, the main benefit of proposed algorithm is that distributional infor-
mation is considered in more details allowing additional data being taken into account
during conceptual clustering that is overlooked in macroscopic case. In addition, pro-
posed approach does not suffer from computationally expensive histogram merger.

The proposed approach does not re-invent general algorithm for hierarchical con-
ceptual clustering. The base of the algorithm is the same for both macroscopic and
microscopic approach. The difference comes from how objects are compared to each
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other. For macroscopic case, size of the area where probabilities can be found is
considered—being it span in the case of intervals or sizes of the histograms’ join and
meet.

In microscopic case, differences at specific distributional points (quantiles) are
measured. Individually, we could think of the distance in a single quantile point as
interval’s span (between minimum and maximum values of objects at that quantile)
and therefore we could think of it as “macroscopic” property. For overall difference
between objects, multiply quantiles in different parts of distribution are considered.
We could say that we apply similar approach as span many times in different parts of
distribution to get more precise result.

Due to using multiple points for comparison, mergers forming main clusters tend
to happen with smaller values of dissimilarity than with macroscopic methods. For
example, chaining effect as in Fig. 5b tends to occurmuch lesswith proposed algorithm
than with macroscopic methods. This is due to the fact that when objects are similar,
majority of the quantile values compared tend to be similar. Some differences may
appear in only few individual quantiles. The overall normalized result will lower the
impact of those few differences. When objects are dissimilar, all the points tend to
be different in all quantile values, therefore having equal impact to normalized final
dissimilarity measure. Thanks to this phenomena, it is easier to make a decision where
to cut the dendrogram and decide how many clusters to keep.

There exists few other clustering methods that do considering underlying distri-
butions. The proposed method has benefit of low required storage during algorithm
execution and simple distance calculation as single point values are used.

Storage complexity of macroscopic algorithm is more complex – the whole his-
togram has to be stored. In general case, the histogram hasmany bins and those require
storing three values (min, max and probability per bin). During the merger phase, new
histograms are produced. To keep the exact description of merged distribution, that
process produces more detailed histograms (with more bins). In worse case, if the his-
tograms have partial overlap, actually more bins than before could be produced during
merger (if original histograms had g and l bins, then merged histogram in worse case
can have g+l+1 bins). In addition, asmoremergers are done andmore bins generated,
the probabilities of the individual bins become very small—that is another undesired
side effect of the macroscopic merger for histograms. Similar undesired side effect
also occurs in Irpino and Verde (2006)’s approach using quantiles.

In case of microscopic approach, the underlying complexity of the data structure
does not matter—only fixed m quantile values of every histogram is stored, no matter
how many bins there are. In addition, merging does not generate new values—only
minimums and maximums of quantiles are stored (m × 2 values). Therefore, during
clustering no new storage is required with maximum storage still beingm×d×n×2.

As we are dealing with symbolic data, distance calculation between two objects is
not doable with O(n) complexity, as in classical data’s case, with respect to the num-
ber of features. Instead of linear time, it becomes quadratic time O(n2) with respect
of number of features and bins/quantiles. That remains true in both macroscopic and
microscopic case. In macroscopic case, the most expensive operation is merger of his-
tograms with complexity O(n3) as in Irpino and Verde (2006) and Umbleja (2017). In
proposed microscopic approach, the merger is reduced to O(n2) complexity - over all
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features and quantiles, simple list operation is performed to updateminimum andmax-
imum value for limited number of quantiles. In addition, now additional quantiles or
bins are generated duringmerger (like in two previouslymentionedmethods)—simply
current minimum and maximum value for specific quantile are stored. In addition, in
macroscopic case, distance is calculated with compactness measure that depends on
number of histograms already merged, ‖ωx‖, similar to average histogram calculation
in Irpino and Verde (2006) with complexity O(n3).

Usually, n >> m and therefore number of quantiles m does not have such an huge
impact of time complexity while number of objects alreadymerged, ‖ωx‖, and number
of bins/quantiles in currently available algorithms tend to risewith everymerger (larger
the n, moremergers required).With previous approaches, the procedures (likemerging
histograms or calculating its compactness) are complex as they consider histogram’s
characteristics (like assumption of uniform distribution inside the bin and dividing it
between bins when new bins/quantiles are generated). In microscopic approach, the
complex nature of the underlying data can be "ignored" due to using simple fixed
number quantile values. In addition, simple individual quantile values are easier to
follow by human analyser than complex histograms with large number of bins. In
macroscopic approach, the possibility to overcome extra bin/quantile generation can be
achieved by limiting the maximum number of bins/quantiles—but that would require
extra actions and modifications to current approaches.

Also, the proposed approach can be very neatly modified to match specific con-
ditions that interests the analyser by modifying the set of quantiles used to compare
objects. If only two quantiles 0% and 100% is used, the algorithm becomes similar to
macroscopic approach in its analysis capacity but instead of single size, it uses two
measured differences. If 0% and 100% quantiles are left out, truncated data is used.
That can be beneficial for clearer picture as low probability density areas at the either
side of the main data are not that important. Closer the first and last quantile values
are, more of the data is left out and less amount of original distribution information
is used. As normally symbolic data is aggregated from large classical data, as in case
of Hardwood data, by discarding those small probability areas at the start and end of
density curve removes outliers impact to aggregated data.

The number of quantiles used has an impact on the results. More quantiles used,
less impact dissimilarity among one specific quantile has. At one point, adding more
quantiles will not have any further influence for the results and will become counter-
productive as impact of single difference is reduced to non-existent. Less quantiles,
more effect every single quantile has but less details about the data are considered.
Optimal choice of quantiles can be made depending on the data and the goal of the
analysis but usually it would be between 4 and 10 quantiles. The amount should reflect
the goal of the analysis and the volume of original data. If unaggregated data was not
large, not many quantiles are needed for adequate analysis. It may be beneficial to
space quantiles equally or concentrate on probability values around median.

The proposed algorithm not only forms clusters but also generates the concepts and
their description.Another important benefit of proposed algoritm is that it ismonotone.
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7 Conclusion

In this paper, method for microscopic hierarchical conceptual clustering based on
quantile values is proposed. The main contribution of proposed method is that the
algorithm is simple and monotone, yet it allows considering small microscopic details
in underlying distribution in distributional data. It assures that more accurate con-
ceptual clusters are formed as a result of clustering as it was proven by applying
proposed method on three commonly used datasets in symbolic data analysis. The
proposed method is especially beneficial for symbolic data that is described by com-
plex distribution functions like histograms but also has advantages to more simple
distributions like intervals. Furthermore, it allows, due to usage of quantiles, compar-
ison between different types of symbolic objects without adding complexity to the
method. Algorithm can be modified, using the choice of quantiles, to match specific
needs or previous knowledge about the data.

Acknowledgements The authors want to thank reviewers for their helpful comments. Kadri Umbleja’s
work has been supported by Japan Society for the Promotion of Science’s International Research Fellow
program.

8 Appendix

Implementation of algorithm in Python can be found at: https://github.com/iardacil/
MHCC
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