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Abstract
In many real classification problems a monotone relation between some predictors
and the classes may be assumed when higher (or lower) values of those predictors
are related to higher levels of the response. In this paper, we propose new boosting
algorithms, based onLogitBoost, that incorporate this isotonicity information, yielding
more accurate and easily interpretable rules. These algorithms are based on theoretical
developments that consider isotonic regression. We show the good performance of
these procedures not only on simulations, but also on real data sets coming from two
very different contexts, namely cancer diagnostic and failure of induction motors.

Keywords Classification · Boosting · LogitBoost · Additive models · Isotonic
regression · TMP

Mathematics Subject Classification 62H30

1 Introduction

The classical problem of classifying observations in one of K groups using a rule
defined from a sample of observations for which the true group is known (train-
ing sample) is known as supervised classification. This problem has been receiving
a lot of attention in the last decades due to its applicability in a very wide range
of problems in different scientific fields such as economy, engineering, medicine or
molecular biology. In fact, it could be said that the problem can appear in any scientific
field. As a consequence, many methods and techniques to build classification rules
have been developed, from the classic linear or quadratic rules to the more recent K
Nearest Neighbors (KNN), Support Vector Machines (SVM) or decision trees. Even
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more recently, methods based on so-called weak classifiers (Schapire 1990) have been
developed and a family of procedures called boosting procedures has been defined.

In practice, it is quite frequent to have some a priori knowledge on monotone
relations among the predictors and the response groups. For example, in a cancer trial,
it may be known that higher values of a predictor are associated with more advanced
stages of the illness (Conde et al. 2012). One way of representing this information is
to include order restrictions among the means of the predictors in the groups. This
scheme allows to define rules (Fernández et al. 2006; Conde et al. 2012) that improve
the performance of linear discriminant rules. Bootstrap estimators of the performance
of these rules have been provided in Conde et al. (2013) and the rules have been
implemented in the R package dawai presented in Conde et al. (2015).

There are some other procedures where isotonicity has been considered to define
classification procedures, or regression models that can be adapted for classification.
In Auh and Sampson (2006) a logistic rule is defined isotonizing the boundaries of
the original rule. Ghosh (2007) proposes a semiparametric regression model, first
smoothing and then isotonizing the components, to evaluate biomarkers, while Meyer
(2013) considers amore general semiparametric additive constrained regressionmodel
with more efficient estimation and inferential procedures. Another approach is that of
Hofner et al. (2016), where a unified framework to incorporate restrictions for univari-
ate and bivariate effects estimates using P-splines is proposed. Finally, Pya and Wood
(2014) considers a penalized spline method for generalized shape-restricted (under
monotonicity and concavity) additive models and Chen and Samworth (2016) pro-
poses a non-parametric estimator of the additive components under the same setting.
The problem of building isotonic classification rules has also attracted the attention
of the machine learning community where it is known as monotonic ordinal classifi-
cation. Many of the procedures developed from that area of research require that the
training data set satisfies the monotonicity relationships and others consider prepro-
cessing algorithms to “monotonize” the data set. SeeCano andGarcía (2017) andCano
et al. (2019) and references therein for a complete overview of these procedures and
how they work. Here, we will define procedures that neither need any preprocessing
of the training data nor are obtained modifying a previous rule to obtain monotonicity.
Their performance properties will come from the direct incorporation of monotonicity
in their design.

The purpose of this paper is to develop isotonic boosting algorithms yielding clas-
sification rules that satisfy the monotone relations between the predictors and the
response. Boosting algorithms arewidely used nowadays. They are a family of iterative
procedures that combine simple rules that may perform slightly better than random,
to build an ensemble where the performance of the simple members is improved
(“boosted”). Among these algorithms, we have decided to select LogitBoost (Fried-
man et al. 2000) as starting procedure in the development of our algorithms for the
following reasons. In that paper, the authors explain the performance of AdaBoost, the
first boosting algorithm of practical use (Freund and Schapire 1996, 1997), consider-
ing the algorithm as a stage-wise descent procedure in an exponential loss function. In
the same paper, they also design LogitBoost replacing the loss function by a logistic
loss function, so that the binomial log-likelihood is directly optimized. This leads to
changes in the weights assigned to misclassified observations in such a way that the
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misclassified observations that are further from the boundaries are given in LogitBoost
a smaller weight. Consequently, the procedure is less sensitive to outliers and noise
than AdaBoost (Dietterich 2000; McDonald et al. 2003) and we expect it to perform
better in monotonic classification problems.

In this paper we develop two isotonic boosting procedures for binary classification
based on LogitBoost, yielding rules that follow the known monotone relations in the
problem at hand and are therefore more easily interpretable and efficient. The first
procedure, that we call Simple Isotonic LogitBoost (SILB), selects in each step the
variable that best fits the appropriate weighted regression problem taking isotonicity
into account where needed. In the second, Multiple Isotonic LogitBoost (MILB), the
whole problem is refitted in each step, so that all predictors change their role in the
rule in each step, also considering isotonicity where needed.

Moreover, multiclass rules are also developed in this paper. Instead of decomposing
this problem in multiple binary problems, which makes more difficult the consider-
ation of isotonicity, we develop theoretical results that allow us to define procedures
for the multinomial log-likelihood, based on two ordinal logistic models, namely
the adjacent categories model and the cumulative probabilities model (see Agresti
2010). For these two models again we develop simple and multiple isotonic Logit-
Boost algorithms that, following the previous notation, we call Adjacent-categories
Simple Isotonic LogitBoost (ASILB), Adjacent-categories Multiple Isotonic Logit-
Boost (AMILB), Cumulative probabilities Simple Isotonic LogitBoost (CSILB) and
Cumulative probabilities Multiple Isotonic LogitBoost (CMILB).

The layout of the paper is as follows. In Sect. 2 we recall the LogitBoost algorithm
and present the new boosting algorithms developed from it, both for the binary and
multiclass problems. We devote Sect. 3 to simulation studies showing that the new
rules perform better than other up-to-date procedures in different scenarios. In Sect. 4
the results for two real data problems are presented. Finally, the discussion and future
developments are exposed in Sect. 5.

2 Isotonic boosting classification rules

Let us consider K ≥ 2 classes and a training sample {(xi , yi ), i = 1, . . . , n}, where xi
is a d-dimensional vector of predictors and yi ∈ {1, . . . , K } the variable identifying
the class. The aim is to classify a new observation x into one of the K classes.

Moreover we assume that it is known that higher values of some of the predictors
are associated to higher values of the class variable y (monotone increasing) and
that higher values of other predictor variables are associated with lower values of y
(monotone decreasing).We denote as I the set of indexes of the former set of predictors
and as D the set of indexes of the latter one. Obviously, I ∪ D ⊆ {1, . . . , d}.

2.1 Binary classification rules

Here, we develop two new boosting algorithms based on LogitBoost that incorporate
the known monotonicity information between the predictors and the response. Let us
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define y∗
i = yi − 1 ∈ {0, 1}, i = 1, . . . , n and p(x) = p(y∗ = 1|x). For the two-class

problem LogitBoost is based on the logistic model:

log
p(x)

1 − p(x)
= F(x). (1)

The general version of a LogitBoost procedure considers F(x) = ∑M
m=1 fm(x)

where M is the number of iterations of the procedure and fm(x) are the functions
obtained in each iteration. In the most common versions of LogitBoost, each fm(x)
function depends on a single predictor. These univariate functions make it easier
to incorporate the isotonicity restrictions. For our first isotonic procedure, SILB, in
model (1) we consider F(x) = ∑M

m=1 fm(x jm ), while for MILB in (1) we consider
F(x) = ∑d

j=1 f j (x j ) where d is the number of predictors. In both cases, we impose
that fm(xs) or f j (xs) is monotone increasing if s ∈ I or decreasing if s ∈ D. These
constraints imply that higher values of variables in I are associated with higher values
of p(x), i.e. of y, and that higher values of variables in D are associated with lower
values of p(x), i.e. of y.

Let us begin recalling the LogitBoost algorithm:

LogitBoost

1. Start with weights wi = 1/n, i = 1, . . . , n, F(x) = 0 and probability estimates
p(xi ) = 1

2 for i = 1, . . . , n.

2. Repeat for m = 1, . . . , M :

(a) Compute wi = p(xi )(1 − p(xi )), zi = y∗
i −p(xi )

wi
, i = 1, . . . , n.

(b) Fit fm(x) by a weighted least-squares regression of zi to xi using weights wi .
(c) Update F(x) = F(x) + fm(x) and p(x) = 1

1+e−F(x) .

3. Classify in class 0 if p(x) < 0.5, in class 1 if p(x) ≥ 0.5.

Although fm(x) in 2(b) can be obtained using anyweighted least-squares regression
method, Friedman et al. (2000) uses 2 and 8 terminal node regression trees when
comparing the performances of LogitBoost and other algorithms. For simplicity, we
will use 2 terminal node trees (stumps) when comparing the performances. If stumps
are used, only one predictor variable is incorporated in each fm(x). In this way we
can reformulate the algorithm to incorporate the additional ordering information.

Next, two isotonic algorithms are proposed. We first present SILB, an algorithm
based on LogitBoost, with 2(b) modified to incorporate the additional information
as follows. For those variables j for which an monotonicity restriction holds (i.e.
j ∈ I ∪ D) a weighted isotonic regression, using the well known PAVA algorithm
(Barlow et al. 1972; Robertson et al. 1988), is fitted instead of the usual weighted
regression stump. Then, as usual, we choose for fm(x) the variable yielding the best
weighted least squares fit among all.
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Simple Isotonic LogitBoost (SILB)

1. Start with weights wi = 1/n, i = 1, . . . , n, F(x) = 0 and probability estimates
p(xi ) = 1

2 for i = 1, . . . , n.

2. Repeat M times:

(a) Compute wi = p(xi )(1 − p(xi )), zi = y∗
i −p(xi )

wi
, i = 1, . . . , n.

(b) Repeat for j = 1, . . . , d:
– If j ∈ I ∪ D, fit a weighted isotonic regression f j (x) of zi to xi j using
weights wi .

– If j /∈ I ∪ D, fit a 2 terminal node regression stump f j (x) by weighted
least-squares of zi to xi j using weights wi .

(c) Consider h = arg min j∈{1,...,d}
∑n

i=1 wi (zi − f j (xi j ))2, and update
F(x) = F(x) + fh(xh) and p(x) = 1

1+e−F(x) .

3. Classify in class 0 if p(x) < 0.5, in class 1 if p(x) ≥ 0.5.

As in LogitBoost, the performance of the algorithm is expected to improve with the
number of iterations M , although (Mease and Wyner 2008) suggests that LogitBoost
can also be prone to overfitting if M is large enough, which could as well happen with
SILB.

Now we present MILB. This algorithm is also based on LogitBoost but in this case
in each step we fit the whole model using a backfitting algorithm (Härdle and Hall
1993) and considering weighted isotonic regression where needed. In LogitBoost (and
subsequently in SILB), each new value of F(x) was the sum of the old value of F(x)
plus the weighted expectation of the Newton step (see Friedman et al. 2000). For this
algorithm, as in Hastie and Tibshirani (2014), each new value of F(x) is the weighted
expectation of the sum of the old value of F(x) plus the Newton step.

Multiple Isotonic LogitBoost (MILB)

1. Start with weights wi = 1/n, i = 1, . . . , n, F(x) = 0 and probability estimates
p(xi ) = 1

2 for i = 1, . . . , n.

2. Repeat until convergence:

(a) Compute wi = p(xi )(1 − p(xi )), zi = F(xi ) + y∗
i −p(xi )

wi
, i = 1, . . . , n.

(b) Using the backfitting algorithm, fit an additive weighted regression F(x) =∑d
j=1 f j (x j ) of zi to xi with weights wi with f j (x) being the isotonic regres-

sion if j ∈ I ∪ D, or the linear regression if j /∈ I ∪ D, j = 1, . . . , d.
(c) Update p(x) = 1

1+e−F(x) .

3. Classify in class 0 if p(x) < 0.5, in class 1 if p(x) ≥ 0.5.

Notice that, as F(x) is now the addition of a fixed number of d terms, overfitting is
not expected to appear.
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2.2 Multiclass classification

Let us denote pk(x) = P(y = k|x), y∗
k = I[y=k], k = 1, . . . , K , and I and D as

in Sect. 2.1. The most common way of tackling multiclass classification problems is
to split the problem in multiple binary problems. Among the several ways of doing
this, the most common (Allwein et al. 2000; Holmes et al. 2002) are: One-against-
rest, where K binary classifications for each class against all others are considered,
and One-against-one, which considers every pair of classes and performs

(K
2

)
binary

classifications. However, direct multiclass procedures that fit a single model can also
be used. They exhibit a performance comparable to (if not better than) those of these
multiple binary problems strategies, and are more appropriate for the incorporation
of the information about monotone relationships since they allow considering the full
monotonicity existing among all the classes and not only the pairwise order. For these
reasons, in this paper we will consider multiclass procedures instead of combinations
of binary ones.

Moreover, models such as the baseline category model (see Agresti 2002) where
each category is comparedwith a baseline are not appropriate to incorporate monotone
relationships among the categories. In our setting, the response variable is ordinal
and models where this characteristic is taken into account should be considered. The
two most widely used models for ordinal responses are the cumulative logit and the
adjacent-categories logit models (Agresti 2010).

The adjacent-categories logit model is

log
pk(x)
pk−1(x)

= Fk(x), for k = 2, . . . , K , (2)

while the cumulative logit model is

log

∑K
i=k pi (x)

∑k−1
i=1 pi (x)

= Fk(x), for k = 2, . . . , K . (3)

It is known (see Agresti 2010, p. 70) that the cumulative logit model (3) has struc-
tural problems as the cumulative probabilities may be out of order at some setting
of the predictors. To avoid this problem we will adopt, as in the above reference, the
parallelism restriction for this model and assume that, in this case, Fk(x) = αk +F(x),
k = 2, . . . , K .

The choice between thesemodels is an interesting question that has been considered
not only in Agresti (2010) but also in more recent books as Fullerton and Xu (2016).
There are some technical reasons for preferring eachmodel. For example, in the cumu-
lative probabilitiesmodel the sample size used for fitting each equation does not change
among equations, while the adjacent categories model belongs to the exponential fam-
ily. However, according to the above-mentioned authors and from a practical point of
view, the main reason for choosing among the models is the probability of interest in
the problem. If the individual response categories are of substantive interest (as, for
example, with Likert scales) the adjacent categories model is recommended, while the
cumulative probabilities model is preferred when these cumulative probabilities are
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of interest. For these reasons, both models have been used in health research (Mar-
shall 1999; Fullerton and Anderson 2013), cumulative probabilities models in, among
many other, studies about worker attachment (Halaby 1986) or attitudes towards sci-
ence (Gauchat 2011), and adjacent categories models in, for example, occupational
mobility (Sobel et al. 1998) or credit scoring (Masters 1982).

Now, we develop our isotonic multiclass boosting procedures. We start with the
adjacent-categories model (2). For this model the constraints imply that the higher
the values of variables in I the greater the pk(x) with respect to pk−1(x), and the
higher the values of variables in D the lower the pk(x)with respect to pk−1(x), so that
high values of variables in I are associated with high values of y and high values of
variables in D are associated with low values of y. As in the binary case, we propose
two procedures for this model. These proposals require the development of theoretical
results that can be found in “Appendix A.1”.

Our first proposal for this model is the ASILB procedure, where we assume that
Fk(x) = ∑M

m=1 fkm(x jkm ), imposing fkm(x) to be isotonic if jkm ∈ I ∪D and we add
terms fitting the new quasi-Newton steps according to the results in “Appendix A.1”.
The reason to use quasi-Newton steps instead of full Newton steps in this case is the
use of stumps when the predictor j /∈ I ∪ D.

Adjacent-categories Simple Isotonic LogitBoost (ASILB)

1. Start with Fk(x) = 0, k = 1, . . . , K , and pk(x) = 1
K , k = 1, . . . , K .

2. Repeat M times:

(a) LetWi be a diagonal (K −1)×(K −1)matrix, where each diagonal element is
Wikk = (

∑K
j=k p j (xi ))(1 − ∑K

j=k p j (xi )), 2 ≤ k ≤ K . Define also vector Si
with Sik = ∑K

j=k(y
∗
i j − p j (xi )) for 2 ≤ k ≤ K and compute zi = W−1

i Si , i =
1, . . . , n.

(b) For k = 2, . . . , K :
Repeat for j = 1, . . . , d:
– If j ∈ I ∪ D, fit a weighted isotonic regression f j (x) of zik to xi j using
weights Wikk .

– If j /∈ I ∪ D, fit a 2 terminal node regression stump f j (x) by weighted
least-squares of zik to xi j using weights Wikk .

Consider h = arg min j∈{1,...,d}
n∑

i=1
Wikk (zik − f j (xi j ))2, and update Fk(x) =

Fk(x) + fh(xh).

(c) Update pk(x) = exp(
∑k

j=1 Fj (x))
∑K

k=1 exp(
∑k

j=1 Fj (x))
, k = 1, . . . , K .

3. Classify in class h = arg maxk∈{1,...,K } pk(x).

For our second proposal for model (2), AMILB, we assume that Fk(x) =∑d
j=1 fk j (x j ), imposing fk j (x) to be isotonic if jkm ∈ I ∪ D. As in MILB, we

fit the whole model in each iteration using a backfitting algorithm and the results
obtained in “Appendix A.1”. In this case, instead of using a quasi-Newton step, as
in ASILB, we use the full Newton step, since in this algorithm we consider linear or
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isotonic regression for which non-diagonal weights can be easily included. For this
reason in this algorithm the weight matrix is not diagonal.

Adjacent-categories Multiple Isotonic LogitBoost (AMILB)

1. Start with Fk(x) = 0, k = 1, . . . , K , and pk(x) = 1
K , k = 1, . . . , K . Let F(x) =

[F2(x), . . . , FK (x)]′.
2. Repeat until convergence:

(a) Let Wi be a (K − 1) × (K − 1) matrix, where each element is:

Wikm =
{

(
∑K

j=m p j (xi ))(1 − (
∑K

j=k p j (xi )), if m ≥ k

(
∑K

j=k p j (xi ))(1 − (
∑K

j=m p j (xi )), if m < k

for 2 ≤ k,m ≤ K , and for i = 1, . . . , n compute zi = F(xi ) + W−1
i Si with

Si the vector defined in step 2(a) of the ASILB algorithm .
(b) Using the backfitting algorithm, fit an additive weighted regression F(x) =∑d

j=1 f j (x j ) of zi to xi with weights matricesWi , where f j (x) is the isotonic
regression if j ∈ I ∪ D or the linear regression if j /∈ I ∪ D, j = 1, . . . , d.

(c) Update pk(x) = exp(
∑k

j=1 Fj (x))
∑K

k=1 exp(
∑k

j=1 Fj (x))
, k = 1, . . . , K .

3. Classify in class h = arg maxk∈{1,...,K } pk(x).

Now, we consider the cumulative model (3) and describe the corresponding CSILB
and CMILB algorithms. In this case, due to the parallelism assumption, we have a
single function F(x) but we additionally have to estimate the αk , k = 2, . . . , K param-
eters. For this reason the algorithms are more involved. Their theoretical justification
can be found at “Appendix A.2”.

Cumulative probabilities Simple Isotonic LogistBoost (CSILB)

1. Start with F(x) = 0 and pk(x) = 1
K , k = 1, . . . , K , so that αk =

− log k−1
K−k+1 , k = 2, . . . , K . Denote as α = (α2, . . . , αK )′ and let γk(x) =

∑K
j=k p j (x), k = 1, . . . , K with γK+1(x) = 0.

2. Repeat M times:

(a) Computewi = ∑K
k=1 y

∗
k,i [γk(xi )(1−γk(xi ))+γk+1(xi )(1−γk+1(xi ))], si =

∑K
k=1 y

∗
k,i [1 − γk(xi ) − γk+1(xi )], i = 1, . . . , n and zi = w−1

i si .
(b) Repeat for j = 1, . . . , d:

– If j ∈ I ∪ D, fit a weighted isotonic regression f j (x) of zi to xi j using
weights wi .

– If j /∈ I ∪ D, fit a 2 terminal node regression stump f j (x) by weighted
least-squares of zi to xi j using weights wi .

Consider h = arg min j∈{1,...,d}
∑n

i=1 wi (zi − f j (xi j ))2, and update F(x) =
F(x) + fh(xh).
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(c) Consider the K − 1 dimensional score vector S = (sk) defined in (4) and the
(K − 1) × (K − 1) Hessian matrix H defined in (5) to (7) in “Appendix A.2”.
Compute α = α − H−1S.

(d) Update γk(x) = exp(αk+F(x))
1+exp(αk+F(x)) for k = 2, . . . , K , and pk(x) = γk(x) −

γk+1(x) for k = 1, . . . , K .

3. Classify in class h = arg maxk∈{1,...,K } pk(x).

Finally, we present the corresponding CMILB algorithm also based on the results
developed at “Appendix A.2”. In this case the algorithm is more similar to CSILB
than what happened for model (2).

Cumulative probabilities Multiple Isotonic LogistBoost (CMILB)

1. As in CSILB, start with F(x) = 0 and pk(x) = 1
K , k = 1, . . . , K , so that

αk = − log k−1
K−k+1 , k = 2, . . . , K . Let γk(x) = ∑K

j=k p j (x), k = 1, . . . , K , and
γK+1(x) = 0.

2. Repeat until convergence:

(a) Compute wi and si as in CSILB step 2(a) and let zi = F(xi ) + w−1
i si .

(b) Using the backfitting algorithm, fit an additive weighted regression F(x) =∑d
j=1 f j (x j ) of zi to xi with weights wi with f j (x) being the isotonic regres-

sion if j ∈ I ∪ D, or the linear regression if j /∈ I ∪ D, j = 1, . . . , d.
(c) Perform same computations as in CSILB step 2(c).
(d) Update γk(x) and pk(x) as in CSILB step 2(d).

3. Classify in class h = arg maxk∈{1,...,K } pk(x).

It can be checked that the multiclass simple LogitBoost rules (ASILB and CSILB)
and the multiclass multiple LogitBoost rules (AMILB and CMILB) defined in this
subsection coincide, respectively, in the case K = 2 with the corresponding SILB and
MILB two class rules defined in the Sect. 2.1.

2.3 Rules implementation in R

We have developed an R (R Core Team 2019) package, called isoboost (Conde et al.
2020) and available from the Comprehensive R Archive Network (CRAN), which
provides the functions asilb, csilb, amilb and cmilb implementing the correspoding
procedures developed in this paper.

These functions depend on the R packages rpart (Therneau and Atkinson 2019)
for performing weighted regression trees with functions rpart and predict.rpart, Iso
(Turner 2019) for performing isotonic regression with function pava, and isotone (De
Leeuw et al. 2009) for performing weighted isotonic regression with function gpava.
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Table 1 Methods used in the simulations and their acronyms

Method Acronym

Linear discriminant analysis LDA

Logistic regression LOGIT

Random forest RF

Support vector machines SVM

Logitboost LGB

Restricted linear discriminant analysis RLDA

Monotone extreme gradient boosting MONOXGB

Adjacent-categories Simple Isotonic LogitBoost ASILB

Adjacent-categories Multiple Isotonic LogitBoost AMILB

Cumulative probabilities Simple Isotonic LogistBoost CSILB

Cumulative probabilities Multiple Isotonic LogistBoost CMILB

3 Simulation study

In this section we present the results of the simulation studies we have performed to
evaluate the behavior of the new proposed methods. The full set of methods used in
the simulation study can be found in Table 1 and the R code used to perform them is
contained in the Supplementary material section of the paper.

Thesemethods include not only standard up-to-date procedures such as LDA, logis-
tic regression random forest, SVM or Logitboost, but also methods that account for
monotonicity such as restricted LDA (Conde et al. 2012) or the monotone version of
XGBoost (Chen and Guestrin 2016), which is one of the procedures more widely used
nowadays. The R packages considered for these procedures are as follows. MASS
(Venables and Ripley 2002) has been used for performing LDA, nnet (Venables and
Ripley 2002) for performing LOGIT, randomForest (Liaw and Wiener 2002) for per-
forming RF, e1071 (Meyer et al. 2019) for performing SVM, caTools (Jarek Tuszynski
2019) for performing LGB, dawai (Conde et al. 2015) for performing RLDA, and
xgboost (Chen et al. 2019) for performing MONOXGB.

To compare the results from the procedures considered we have used several perfor-
mance criteria. First, we have considered the total misclassification probability (TMP),
i.e. the percentage of misclassified observations, which is equivalent to using a 0–1
loss and is the most commonly used performance measure. We have also considered
the mean absolute error (MAE). MAE is a performance measure frequently used (see
Cano et al. 2019) when evaluating monotone procedures as it also takes into account
the “distance” between the observed and predicted values of the response. It is com-
puted as MAE = 1

n

∑n
i=1

∣
∣yi − ŷi

∣
∣, where ŷi is the predicted class for observation

i . Obviously, MAE equals TMP in the binary case. The third performance measure
we have considered is the well-known area under the ROC curve (AUC). The mul-
ticlass version of this measure is defined in Hand and Till (2001). Notice that, while
lower values of TMP and MAE indicate a better performance of the rule, the opposite
happens for AUC.
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Table 2 Conditions of the simulations. The Fj functions are given in Table 3

Scheme 1 Scheme 2

# classes K 2, 3, 5 2, 3, 5

# predictors d 5, 10 5, 10

# training samples 100 100

Training sample size n 20K 10K , 20K

Test sample size 50K 50K

Distribution of predictors Xi ∼ U (−1, 1) Xi ∼ U (−1, 1) + 0.2h

Response Y ∼ Mult(1, (p1(x), . . . , pK (x))) Y = h

with pk (x) = exp(
∑k

j=1 Fj (x))
∑K

k=1 exp(
∑k

j=1 Fj (x))

Two different schemes of simulations designed following the lines considered in
other related papers are considered. The first one is based on the adjacent categories
model (2), while, for the second, a model where the means of the predictors in the
groups follow a known order is considered. Table 2 shows the characteristics of each
of these two schemes. Notice that, in each scheme, we generate a total of 100 datasets
for each combination of number of classes K and predictors d.

The first scheme of simulations is based on model (2) instead of on the cumula-
tive logit model (3) since the former is more flexible, not requiring the parallelism
between the Fj (x) functions. The functions considered are given in Table 3. Different
monotone increasing additive functions in x (polynomial, logarithmic, exponential)
have been included. Simulations schemes similar to this one can be found, for exam-
ple, in Bühlmann (2012), Chen and Samworth (2016), Dettling and Bühlmann (2003)
and Friedman et al. (2000). For the predictors in this scheme we have generated d-
dimensional vectors x from a U (−1, 1)d distribution. For the response we consider
the Fj (x) functions and compute pk(x) for k = 1, . . . , K (see Table 2). Then, we
generate a single observation from a multinomial distribution with probability vector
(p1(xi ), . . . , pK (xi )) and take Y as the index where the observation appears.

The mean results obtained with the three performance measures considered (TMP,
MAE and AUC) are qualitatively similar and, for this reason, in the main text we only
detail the TMP results while the full numerical values of the three measures are given
in “Appendix A.3” to improve the readability of the paper. The TMP results for the
first simulations scheme are shown in Fig. 1. Figure 1 shows, especially for K = 2 and
K = 5, that the rules that incorporate additional information (ASILB,AMILB,CSILB,
CMILB and RLDA) outperform not only the rules that do not account for this infor-
mation (RF, SVM, LogitBoost, logistic regression and LDA) but also MONOXGB.
We can also see that rules CSILB and CMILB perform as well as ASILB and AMILB
although the cumulative logit model (3) under which the former algorithms were
developed is not the one used for the simulations.

For the second set of simulations, uniformdistributions for the predictors, as in Fang
and Meinshausen (2012) or Bühlmann (2012), have been considered. Independent
U (−1, 1) + 0.2h distributions are used to generate the predictors X j , j = 1, . . . , d
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Table 3 Values of the two sets (s = 1, 2) of Fj functions considered in the first scheme of simulations
under model (2), for different values of K and d = 5

K j FK ,1
j FK ,2

j

2 2
∑3

i=1 x
3
i + ∑5

i=4

(

ex
3
i − 1

)
∑3

i=1 x
5
i + ∑5

i=4

(

1

1+e
−x3i

− 0.5

)

3 2 F2,1
2 + 0.15 F2,2

2 + 0.15

3
∑3

i=1 log(xi + 1) + ∑5
i=4 x

5
i + 0.25

∑3
i=1 log(xi + 1) + ∑5

i=4 x
3
i + 0.3

5 2 F2,1
2 + 0.55 F2,2

2 + 0.35

3 F3,1
3 + 0.85 F2,2

2 + 0.8

4
∑5

i=1 x
2
i − 0.2 F5,1

4

5 ex
3
1 −1+ 1

1+e−x32
−0.5+ log(x3+1)

+ x34 + x55 − 0.5

F5,1
5

For d = 10, FK ,s
j (x1, . . . , x10) = FK ,s

j (x1, . . . , x5) + FK ,s
j (x6, . . . , x10)
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F F

Fig. 1 TMP for the first simulation scheme for different classification rules, number of groups K , predictors
d and functions F

for observations in class Y = h, representing a simple order among the means all d
predictors with respect to the K classes. Full details are given in Table 2.

As in the first scheme, the results with the three performance measures are qualita-
tively similar and we only detail here the mean TMP results while we include the full
numerical mean results for all measures in “Appendix A.3”. The mean TMP results
obtained in this second set of simulations are shown in Fig. 2.
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Fig. 2 TMP for different classification rules, number of groups k, predictors d and training sample sizes n,
for the second simulation scheme

We can see that the rules defined in this paper outperform clearly again the ones
that do not take into account the additional information present in the data, and that
they also improve over RLDA andMONOXGB, which are rules that take into account
the monotonicity information available on the order of the means. In fact, under this
scheme the new defined rules improve over RLDA more than they did for the first
scheme where the difference with the new rules was smaller.

4 Real data examples

In this section we evaluate the performance of the new rules in two problems we have
encountered in our statistical practice. The first appears in a medical context where we
were trying to find a non-invasive diagnostic kit for bladder cancer. In the second, we
were considering an interesting industrial engineering problem, namely the diagnostic
of electrical induction motors.

4.1 Bladder cancer diagnostic

The correct diagnostic and classification of cancer patients in the appropriate class is
essential to provide them with the correct treatment. It is also very relevant that this
diagnostic can be done with a procedure as non-invasive as possible. These were the
mainmotivations of thework thatwedevelopedwithProteomikaS.L. andLaboratorios
SALVAT S.A. as industrial and pharmaceutical partners. In that work we tried to build
diagnostic kit for several types of cancer. The bladder cancer data, already considered
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Table 4 Performance for the different procedures for the bladder cancer test dataset

Measure LDA RLDA RF SVM LOGIT LGB MONOXGB ASILB AMILB CSILB CMILB

TMP .617 .409 .738 .805 .785 .758 .785 .403 .356 .362 .362

MAE .732 .510 .846 .799 .913 1.044 .980 .490 .443 .463 .436

AUC .527 .718 .478 .582 .510 .446 .510 .706 .721 .717 .717

in Conde et al. (2012), is analyzed here. Neither the values nor the names of the
predictors considered are given for confidential issues.

The patients were initially classified in 5 classes. The first level is the control level
(patients that did not have the illness) and the other four levels are Ta, T1G1, T1G3
and T2, corresponding to increasingly advanced levels of illness. As a first step, a pilot
study with a moderate number of patients was developed previous to a possible larger
scale multicenter study. First, we received a 141 patient dataset that we consider as
training set and later on a second sample of 149 different patients that we will use as
test set was provided. As the sample sizes in some groups were small compared with
those of the others, and according to our partners, we decided to merge the initial 5
levels in 3 groups, namely the control group, the Ta+T1G1 group and the T1G3+T2
group. Also according to information given by our partners we decided to consider
5 proteins as predictors. The mean values of each of these proteins were expected to
increase with the illness level. The performance results for the test set obtained with
the different methods considered throughout the paper appear in Table 4 with the best
results marked in bold.

The results for RLDA, ASILB, AMILB, CSILB and CMILB, that take into account
the order restrictions are much better than the rest. The main reason is that some of
the predictors did not verify the restrictions in the training set. Therefore, we can
see that these new methods are able to cope with a ‘bad’ training sample and obtain
reasonable results without dropping any observations ormanipulating the original data
in that sample. This does not happen with MONOXGB. We can also see that the new
methods also outperform RLDA.

4.2 Diagnostic of electrical inductionmotors

Electrical induction motors are widely used in industry. In fact, as Garcia-Escudero
et al. (2017) points out, it is estimated that these motors account for 80% of energy
converted in trade and industry. For this reason, and for the losses that a possible
unexpected shutdown might yield, it is important to be able to detect possible failures
in these machines as early as possible.

There are many techniques to diagnose a faulty motor, see Choudhary et al. (2019)
and references therein. The most widespread is based on the spectral analysis of the
stator current and is usually known as Motor Current Signature Analysis. The under-
lying principle is that motor faults cause an asymmetry that is reflected as additional
harmonics in the current spectrum. Therefore, side bands around the main frequency
are considered and amplitudes of these side bands around odd harmonics are mea-
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Fig. 3 Graphic representation of the predictors variables for the motor diagnostic example

Table 5 Number of observations
in each group for the motor
diagnostic example

Group Observations

State 1 (Undamaged) 83

State 2 (Incipient fault) 67

State 3 (Moderate damage) 70

State 4 (Severe damage) 60

sured as predictors of damage severity of the motor. Lower values of the amplitudes
are expected to be related to higher levels of damage severity (see Fig. 3 for a graphic
description of these variables). Four condition states were considered with state 1 cor-
responding to an undamaged motor, state 2 to a motor with an incipient fault, state 3
with a moderately damaged motor and state 4 with a severely damaged motor.

Here,we consider a sample of 280motor observations, forwhich the realmotor state
was known, that were recorded at the Electrical Engineering Department laboratory
of the Universidad de Valladolid. The distribution of these observations among the
different groups appears in Table 5. Three variables, namely the amplitudes of the first
lower and upper side bands around harmonic 1 and the first lower side band around
harmonic 5 are the predictors. Three different classifications problems are solved. The
first one considers the four different states, the second considers three states, joining
states 2 and 3, and in the third the problem is to classify in group 1 vs the rest of groups.
The second problem is interesting from the industrial point of view since in this case
we are distinguishing healthy and incipiently or moderately damaged motors from
those in a state that may cause operative problems. In the third undamaged motors
are distinguished from those with any kind of damage. As no test sample is available
here, the TMP estimators are obtained using tenfold crossvalidation. The code used
for performing this analysis is contained in the Supplementary material section of the
article while the data can be found in the isoboost (Conde et al. 2020) package.

The results for these three classification problems appear in Table 6. We can see
again that the methods proposed in this paper perform very well in this case and that
the best result is obtained with one of these new methods.

In this case the isotonic boostingmethods performmuch better thanRLDAwhich in
turn yields same results than LDA. This happens when the training sample fulfills the
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isotonicity restrictions imposed. Therefore, we can see that the new isotonic methods
proposed here improve even when the training sample verifies the restrictions. We
can also see that, in this example, the unrestricted methods perform well from the
AUC point of view and that some of them perform slightly better than the monotone
methods.

5 Discussion

In this paper, classification problems in scenarios where there are monotone rela-
tionships among predictors and classes are considered, and the idea of using isotonic
regression, instead of standard regression, in boosting classification rules, is exploited.

From a methodological point of view, the specific contribution of this paper is the
definition of novel rules developed for binary and multiclass classification problems.
Theoretical results that endorse the classification rules based on maximum likelihood
estimation are developed and simulations results, performed under different scenarios,
validate the rules.

From a practical point of view, two real problems in different contexts have been
efficiently solved using the new rules. In the first one, where cancer patients are
classified in different diagnostic groups, a deficient training sample that does not
verify the expected monotone relationships is available, so that standard procedures
yield very highmisclassification errors. In this case, the incorporation of the isotonicity
information is compulsory, not only to get more efficient results but also to obtain
meaningful ones. The new rules reduce the error rates between 33% and 66%. In the
second case, that deals with the diagnostic of induction motors, the training sample
fulfills the expected monotone relationships and the error rates are quite low. Also in
this case the new rules manage to reduce the error rates significantly.

The question of computational efficiency and scalability of statistical procedures is
also interesting nowadays. We have performed a study recording the time consumed
by the procedures considered in the paper in the simulations and we have found that
the new procedures have a behavior similar to the other ones considered when the
sample size of the dataset or the number of predictors is increased. When the number
of classes increases we have found that CSILB and CMILB are also competitive when
compared with previously existent procedures and more efficient than ASILB and
AMILB.

Future developments that involve the procedures exposed here will include new
ways of expressing the additional information, the incorporation of other type of
additional information, such as concavity, and the consideration of other methodology,
for example isotonic regression splines, in the design of the rules.

Acknowledgements The authors thank the Associate Editor and two anonymous reviewers for suggestions
that led to this improved version of the paper.
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Appendix

A.1 Theoretical justification for algorithms under the adjacent categories model

Let x ∈ R
d , y ∈ {1, . . . , K }, y∗

k = I[y=k], k = 1, . . . , K and assume the adjacent
probabilities model (2). Denote further F1(x) = 0, so the a posteriori probabilities
are:

pk(x) =
exp

(∑k
j=1 Fj (x)

)

∑K
k=1 exp

(∑k
j=1 Fj (x)

) , k = 1, . . . , K .

Now, the expected log-likelihood is:

El(F2, . . . , FK ) = E

⎡

⎣
K∑

k=2

y∗
k

⎛

⎝
k∑

j=2

Fj (x)

⎞

⎠ − log

⎛

⎝1 +
K∑

k=2

exp

⎛

⎝
k∑

j=2

Fj (x)

⎞

⎠

⎞

⎠

⎤

⎦ .

Conditioning on x, the score vector S(x) = (sk(x)) for the population Newton
algorithm is:

sk(x) = ∂El(F2(x), . . . , FK (x))
∂Fk(x)

= E

⎛

⎝
K∑

j=k

(y∗
j − p j (x))

∣
∣
∣
∣
∣
∣
x

⎞

⎠ , k = 2, . . . , K .

The Hessian is a (K − 1) × (K − 1) matrix, H(x) = (Hkm(x)), 2 ≤ k,m ≤ K ,
where each element Hkm(x) is:

Hkm(x)= ∂2El(F2(x), . . . , FK (x))
∂Fk(x)∂Fm(x)

=
{

−(
∑K

j=m p j (x))(1 − ∑K
j=k p j (x)), m ≥ k

−(
∑K

j=k p j (x))(1 − ∑K
j=m p j (x)), m < k

IfW(x) = −diag(H(x)), a quasi-Newton update for the ASILB algorithm is:

⎡

⎢
⎣

F2(x)
...

FK (x)

⎤

⎥
⎦ ←

⎡

⎢
⎣

F2(x)
...

FK (x)

⎤

⎥
⎦ + EW

(
W−1(x)s(x)

∣
∣
∣ x

)
.

The full Newton update, which is implemented in the AMILB algorithm, is:

⎡

⎢
⎣

F2(x)
...

FK (x)

⎤

⎥
⎦ ← EH

⎛

⎜
⎝

⎡

⎢
⎣

F2(x)
...

FK (x)

⎤

⎥
⎦ − H−1(x)s(x)

∣
∣
∣
∣
∣
∣
∣

x

⎞

⎟
⎠
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A.2 Theoretical justification for algorithms under the cumulative probabilities
model

In this case we have to update the function F(x) and the parameters αk, k = 2, . . . , K .
We will perform a “two step” update, first on F(x) and then on the α parameters.

Let us denote γk(x) = ∑K
j=k p j (x), k = 1, . . . , K , and assume the cumulative

probabilities model (3). For this model

γk(x) = exp(αk + F(x))
1 + exp(αk + F(x))

, k = 2, . . . , K ,

with γ1(x) = 1 and γK+1(x) = 0.
First, we perform the F(x) update. Here, as in the previous model, we consider a

single observation as this step is used for updating the weights and the values to be
adjusted. The expected log-likelihood is:

El(F) = E

(
K∑

k=1

y∗
k log(γk(x) − γk+1(x))

)

.

Conditioning on x, the first and second derivatives for the population Newton algo-
rithm are:

∂El(F(x))
∂F(x)

= E

(
K∑

k=1

y∗
k [1 − γk(x) − γk+1(x)]

∣
∣
∣
∣
∣
x

)

,

and

w(x)=−∂2El(F(x))
∂F(x)2

= E

(
K∑

k=1

y∗
k [γk(x)(1 − γk(x)) + γk+1(x)(1 − γk+1(x))]

∣
∣
∣
∣
∣
x

)

,

so that the Newton update for F(x) is

F(x) ← EH

(

F(x) + 1

w(x)
∂El(F(x))

∂F(x)

∣
∣
∣
∣ x

)

.

As for the parameters αk, k = 2, . . . , K , let us denote α = (α2, . . . , αK )′. Now,
we use all the xi observations as in this case we are going to perform a Newton step
for updating the α’s which do not depend on x. Then, the log-likelihood is:
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l(α) =
n∑

i=1

K∑

k=1

y∗
k,i log(γk(xi ) − γk+1(xi )).

The score for the Newton algorithm S = (s2, . . . , sK )′ is:

sk = ∂l(α)

∂αk
=

n∑

i=1

(
y∗
k,i

pk(xi )
− y∗

k−1,i

pk−1(xi )

)

γk(xi )(1 − γk(xi )), k = 2, . . . , K . (4)

And the Hessian is a tri-diagonal symmetric (K −1)× (K −1) matrixH = (Hkm)

with Hkm = ∂2l(α)
∂αk∂αm

, for 2 ≤ k,m ≤ K , such that

Hkk = −
n∑

i=1

γk(xi )(1 − γk(xi ))

[
y∗
k

p2k (xi )
(p2k (xi ) + γk+1(xi )(1 − γk+1(xi )))

+ y∗
k−1

p2k−1(xi )
(p2k−1(xi ) + γk−1(xi )(1 − γk−1(xi )))

]

(5)

Hk,k−1 = Hk−1,k =
n∑

i=1

y∗
k−1,i

p2k−1(xi ))
γk(xi )(1 − γk(xi ))γk−1(xi )(1 − γk−1(xi )) (6)

Hkm = Hmk = 0 otherwise. (7)

In these conditions the Newton update is α ← α − H−1S.

A.3 Full numerical results for the simulations performed

This subsection contains the Tables showing the full numerical mean results for TMP,
MAE and AUC for the two sets of simulations. In Tables 7, 8 and 9 appear the results
for the first set of simulations performed under model 2 for the different F functions
appearing in Table 3. Tables 10, 11 and 12 contain the mean results for the simulations
performed under the uniform order-restricted predictors scheme. In all cases the best
results appear in bold. Notice that there are no results for CSILB and CMILB when
K = 2 as in that case those algorithms coincide with ASILB andAMILB. For this case
theTMPandMAEvalues also coincide.They are given in both tables for completeness.
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Table 7 Mean TMP for the first simulation scheme for different classification rules, number of groups K ,
predictors d and functions F

F K d LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB

1 2 5 .4087 .3975 .4176 .4162 .4086 .4454 .4376 .3835 .3925

1 2 10 .4547 .4354 .4660 .4850 .4532 .4714 .4719 .4277 .4334

2 2 5 .3758 .3654 .4127 .4279 .3822 .4485 .4233 .3679 .3675

2 2 10 .4262 .4358 .4754 .4621 .4288 .4677 .4739 .4188 .3990

1 3 5 .4933 .4823 .5259 .5416 .4940 .5433 .5573 .4843 .4808 .4872 .4936

1 3 10 .5225 .5162 .5343 .5372 .5226 .5631 .5647 .5059 .5007 .5001 .5013

2 3 5 .4742 .4681 .5146 .4975 .4745 .5184 .5789 .4541 .4492 .4703 .4628

2 3 10 .5112 .5039 .5339 .5228 .5165 .5433 .6007 .4867 .4774 .4855 .4841

1 5 5 .6469 .6420 .6682 .6635 .6497 .6850 .6994 .6301 .6255 .6289 .6325

1 5 10 .6612 .6506 .6750 .6675 .6588 .6902 .7038 .6336 .6388 .6293 .6306

2 5 5 .6296 .6161 .6690 .6571 .6356 .6709 .7208 .6012 .5978 .5848 .6080

2 5 10 .6465 .6378 .6693 .6708 .6489 .6864 .7312 .6136 .6098 .6113 .6168

Table 8 Mean MAE for the first simulation scheme for different classification rules, number of groups K ,
predictors d and functions F

F K d LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB

1 2 5 .4087 .3975 .4176 .4162 .4086 .4454 .4376 .3835 .3925

1 2 10 .4547 .4354 .4660 .4850 .4532 .4714 .4719 .4277 .4334

2 2 5 .3758 .3654 .4127 .4279 .3822 .4485 .4233 .3679 .3675

2 2 10 .4262 .4358 .4754 .4621 .4288 .4677 .4739 .4188 .3990

1 3 5 .5931 .5732 .6467 .6713 .5949 .6465 .7025 .5627 .5727 .5808 .5868

1 3 10 .6437 .6342 .6706 .6564 .6421 .7063 .7279 .5928 .6041 .6096 .5977

2 3 5 .5540 .5423 .6193 .5889 .5547 .6221 .7393 .5191 .5371 .5337 .5384

2 3 10 .6065 .5916 .6457 .6251 .6133 .6670 .7646 .5596 .5761 .5620 .5768

1 5 5 .9853 .9505 1.0448 1.0318 .9872 1.0930 1.1610 .8821 .9166 .9012 .8956

1 5 10 1.0224 .9771 1.0614 1.0449 1.0169 1.1309 1.1710 .9075 .9451 .9162 .9154

2 5 5 .9422 .9103 1.0525 1.0250 .9523 1.0673 1.2901 .8318 .9041 .8119 .9046

2 5 10 .9758 .9482 1.0653 1.0460 .9778 1.0921 1.3094 .8573 .9268 .8559 .9084
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Table 9 Mean AUC for the first simulation scheme for different classification rules, number of groups K ,
predictors d and functions F

F K d LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB

1 2 5 .6374 .6596 .6263 .5675 .6371 .5700 .5683 .6754 .6628

1 2 10 .5650 .5963 .5432 .4800 .5654 .5370 .5273 .6034 .6020

2 2 5 .6939 .6861 .6254 .6041 .6660 .5925 .5705 .6961 .7063

2 2 10 .5809 .5824 .5442 .4767 .5800 .5420 .5244 .6168 .6290

1 3 5 .6969 .7049 .6602 .6504 .6969 .6433 .6189 .7016 .6993 .6876 .6802

1 3 10 .6721 .6866 .6439 .6419 .6714 .6139 .6095 .6877 .6824 .6753 .6691

2 3 5 .7152 .7240 .6758 .6717 .7113 .6533 .5982 .7320 .7344 .7206 .7234

2 3 10 .6875 .6968 .6603 .6706 .6855 .6285 .5744 .7060 .7044 .7055 .7025

1 5 5 .7089 .7175 .6731 .6893 .7091 .6244 .6263 .7226 .7198 .7028 .7014

1 5 10 .6981 .7072 .6681 .6754 .6967 .6205 .6127 .7127 .7078 .6929 .6939

2 5 5 .7137 .7270 .6719 .6782 .7091 .6350 .5805 .7383 .7305 .7378 .7115

2 5 10 .7070 .7159 .6681 .6883 .7053 .6306 .5812 .7334 .7197 .7180 .7047

Table 10 MeanTMP for different classification rules, number of groups K , predictors d and training sample
sizes n, for the second set of simulations

K n d LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB

2 10K 5 .4482 .4066 .4693 .4505 .4421 .4531 .4711 .3741 .3584

2 20K 5 .4139 .4029 .3936 .4091 .4335 .4411 .4571 .3552 .3271

2 10K 10 .4113 .3826 .4025 .4349 .4123 .4224 .4543 .3232 .3297

2 20K 10 .3596 .3573 .3594 .3796 .3636 .3893 .4519 .2998 .2883

3 10K 5 .5391 .5131 .5495 .5585 .5424 .5657 .5899 .4753 .4817 .4657 .4806

3 20K 5 .5030 .4923 .5090 .4988 .5362 .5426 .6177 .4597 .4138 .4279 .4171

3 10K 10 .5288 .5051 .5137 .5396 .5271 .5255 .5701 .4296 .4415 .4403 .4439

3 20K 10 .4717 .4576 .4731 .4807 .4738 .4894 .5580 .3975 .3985 .3675 .3984

5 10K 5 .6307 .6015 .6335 .6404 .6358 .6585 .6717 .5969 .5854 .5580 .5780

5 20K 5 .5705 .5626 .5922 .5753 .6084 .6350 .6879 .5357 .5228 .4879 .5157

5 10K 10 .6088 .5911 .5944 .6234 .6070 .6326 .6258 .5318 .5304 .5342 .5418

5 20K 10 .5516 .5406 .5598 .5552 .5565 .5947 .6425 .4770 .4782 .4462 .4659
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Table 11 Mean MAE for different classification rules, number of groups K , predictors d and training
sample sizes n, for the second set of simulations

K n d LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB

2 10K 5 .4482 .4066 .4693 .4505 .4421 .4531 .4711 .3741 .3584

2 20K 5 .4139 .4029 .3936 .4091 .4335 .4411 .4571 .3552 .3271

2 10K 10 .4113 .3826 .4025 .4349 .4123 .4224 .4543 .3232 .3297

2 20K 10 .3596 .3573 .3594 .3796 .3636 .3893 .4519 .2998 .2883

3 10K 5 .6573 .6171 .6673 .6862 .6657 .6868 .7385 .5505 .5792 .5483 .5741

3 20K 5 .5943 .5736 .5937 .5751 .6418 .6464 .7881 .5101 .4661 .4594 .4499

3 10K 10 .6438 .6131 .6118 .6507 .6393 .6317 .7119 .4821 .5094 .4963 .4894

3 20K 10 .5303 .5117 .5281 .5453 .5328 .5629 .6724 .4292 .4367 .3865 .4353

5 10K 5 .8658 .8015 .9020 .9138 .8852 .9895 1.0752 .7788 .8043 .7054 .7445

5 20K 5 .7264 .7045 .7699 .7290 .8247 .9008 1.0910 .6478 .6515 .5564 .6177

5 10K 10 .8542 .8156 .8293 .8743 .8561 .9296 .9331 .6843 .7000 .6613 .6838

5 20K 10 .6747 .6568 .6889 .6824 .6896 .8105 .9013 .5471 .5679 .4959 .5307

Table 12 MeanAUC for different classification rules, number of groups K , predictors d and training sample
sizes n, for the second set of simulations

K n d LDA RLDA RF SVM LOGIT LGB MONOXGB (A)SILB (A)MILB CSILB CMILB

2 10K 5 .5861 .6412 .5535 .4807 .5894 .5655 .5216 .6798 .6914

2 20K 5 .6195 .6378 .6446 .4593 .5732 .5888 .5352 .7175 .7492

2 10K 10 .6290 .6768 .6426 .5546 .6286 .6083 .5677 .7517 .7485

2 20K 10 .6977 .7043 .6910 .6220 .6925 .6500 .5650 .7761 .7855

3 10K 5 .6511 .6806 .6369 .5408 .6506 .6082 .5752 .7126 .7111 .7344 .7210

3 20K 5 .6819 .6951 .6812 .6204 .6434 .6344 .5497 .7370 .7740 .7651 .7768

3 10K 10 .6682 .6858 .6732 .6158 .6697 .6452 .6078 .7558 .7493 .7608 .7582

3 20K 10 .7273 .7372 .7212 .7025 .7201 .6783 .6170 .7907 .7948 .8213 .7953

5 10K 5 .7257 .7429 .7107 .7216 .7146 .6370 .6278 .7575 .7544 .7585 .7453

5 20K 5 .7717 .7834 .7452 .7616 .7041 .6603 .6035 .8054 .8128 .8293 .8088

5 10K 10 .7437 .7544 .7434 .7154 .7435 .6569 .6833 .8033 .8078 .7783 .7778

5 20K 10 .7991 .8053 .7814 .7846 .7913 .6854 .6721 .8452 .8419 .8495 .8377
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