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Abstract
In this article, we propose two classes of semiparametric mixture regression
models with single-index for model based clustering. Unlike many semiparamet-
ric/nonparametric mixture regression models that can only be applied to low
dimensional predictors, the new semiparametric models can easily incorporate high
dimensional predictors into the nonparametric components. The proposed models
are very general, and many of the recently proposed semiparametric/nonparametric
mixture regression models are indeed special cases of the new models. Backfitting
estimates and the corresponding modified EM algorithms are proposed to achieve
optimal convergence rates for both parametric and nonparametric parts. We establish
the identifiability results of the proposed two models and investigate the asymptotic
properties of the proposed estimation procedures. Simulation studies are conducted
to demonstrate the finite sample performance of the proposed models. Two real data
applications using the new models reveal some interesting findings.

Keywords EM algorithm · Kernel regression · Mixture regression model · Model
based clustering · Single-index model

Mathematics Subject Classification 62G08 · 62E20

1 Introduction

Mixtures of regression models are commonly used as “model based clustering” meth-
ods to reveal the relationship among variables of interest if the population consists

B Sijia Xiang
sjxiang@zufe.edu.cn

Weixin Yao
weixin.yao@ucr.edu

1 School of Data Sciences, Zhejiang University of Finance & Economics, Hangzhou,
Zhejiang 310018, People’s Republic of China

2 Department of Statistics, University of California, Riverside, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-020-00392-w&domain=pdf
http://orcid.org/0000-0002-3609-4059


262 S. Xiang, W. Yao

of several homogeneous subgroups. This type of application is commonly seen in
econometrics, where it is also known as switching regression models, and in various
other fields, see, for example, in econometrics (Wedel and DeSarbo 1993; Frühwirth-
Schnatter 2001), and in epidemiology (Green and Richardson 2002). Another wide
application of finite mixture of regressions is in outlier detection or robust regression
estimation (Young and Hunter 2010). Traditional mixture of linear regression models
require strong parametric assumptions: linear component regression functions, con-
stant component variances, and constant component proportions. The fully parametric
hierarchical mixtures of experts model (Jordan and Jacobs 1994) has been proposed
to allow the component proportions to depend on the covariates in machine learning.
Recently, many semiparametric and nonparametric mixture regression models have
been proposed to relax the parametric assumptions of mixture of regression models.
See, for example, Young and Hunter (2010), Huang and Yao (2012), Cao and Yao
(2012),Huang et al. (2013, 2014), Hu et al. (2017), Xiang and Yao (2018), among
others. Xiang et al. (2019) provided a good review of many semiparametric regression
models. However, most of those existing semiparametric or nonparametric mixture
regressions can only be applied to low dimensional predictors due to the “curse of
dimensionality”. It will be desirable to be able to relax parametric assumptions of
traditional mixtures of regression models when the dimension of predictors is high.

In this article, we propose a mixture of single-index models (MSIM) and a mixture
of regression models with varying single-index proportions (MRSIP) to reduce the
dimension of high dimensional predictors before modeling them nonparametrically.
Many existing popular models can be considered as special cases of the proposed two
models. Huang et al. (2013) proposed the nonparametric mixture of regressionmodels

f (y|x, π,m, σ 2) =
k∑

j=1

π j (x)φ(y|m j (x), σ
2
j (x)),

where π j (x),m j (x), and σ 2
j (x) are unknown smoothing functions, and φ(y|μ, σ 2) is

the normal density withmeanμ and variance σ 2. Their proposedmodel can drastically
reduce themodeling biaswhen the strong parametric assumption of traditionalmixture
of linear regression models does not hold. However, the above model is not applicable
to high dimensional predictors due to the kernel estimation used for nonparametric
parts. To solve the above problem, we propose a mixture of single-index models

f (y|x,α, π,m, σ 2) =
k∑

j=1

π j (α
�x)φ(y|m j (α

�x), σ 2
j (α

�x)), (1)

in which the single index α�x transfers the high dimensional nonparametric problem
to a univariate nonparametric problem. When k = 1, model (1) reduces to a single
indexmodel (Ichimura 1993; Härdle et al. 1993). If x is a scalar, thenmodel (1) reduces
to the nonparametric mixture of regression models proposed by Huang et al. (2013).
Zeng (2012) also applied the single index idea to the component means and variances
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and assumed that component proportions do not depend on the predictor x. However,
Zeng (2012) did not give any theoretical properties of their proposed estimates.

Young and Hunter (2010) and Huang and Yao (2012) proposed a semiparametric
mixture of regression models

f (y|x, π,β, σ 2) =
k∑

j=1

π j (x)φ(y|x�β j , σ
2
j ),

where π j (x)’s are unknown smoothing functions, to combine nice properties of
both nonparametric mixture regression models and traditional parametric mixture
regression models. Their semiparametric mixture models assume that component pro-
portions depend on covariates nonparametrically to reduce the modeling bias while
component regression functions are still assumed to be linear to have better model
interpretation. However, their estimation procedures cannot be applied if the dimen-
sion of predictors x is high due to the kernel estimation used for π j (x). We propose a
mixture of regression models with varying single-index proportions

f (y|x,α, π,β, σ 2) =
k∑

j=1

π j (α
�x)φ(y|x�β j , σ

2
j ), (2)

which uses the idea of single index to model the nonparametric effect of predictors
on component proportions, while allowing easy interpretation of linear component
regression functions. When k = 1, model (2) reduces to the traditional linear regres-
sion model. If x is a scalar, then model (2) reduces to the semiparametric mixture
models considered by Young and Hunter (2010) and Huang and Yao (2012). Model-
ing component proportions nonparametrically can reduce the modeling bias and better
cluster the data when the traditional parametric assumptions of component proportions
do not hold (Young and Hunter 2010; Huang and Yao 2012).

We prove the identifiability results of the two models under some mild conditions.
We propose a modified EM algorithm, which combines the ideas of backfitting algo-
rithm, kernel estimation, and local likelihood, to estimate both the global parameters
and the nonparametric functions. In addition, the asymptotic properties of the pro-
posed estimation procedures are also investigated. Simulation studies are conducted
to demonstrate the finite sample performance of the proposed models. Two real data
applications reveal some new interesting findings.

The rest of the paper is organized as follows. In Sect. 2, we introduce the MSIM
and study its identifiability result. A one-step and a fully-iterated backfitting estimate
are proposed, and their asymptotic properties are also studied. In Sect. 3, the MRSIP
is proposed. The identifiability result and the asymptotic properties of the proposed
estimates are given. In Sects. 4 and 5, Monte Carlo studies and two real data examples
are illustrated to demonstrate the finite sample performance of the two models. A
discussion section is given in Sect. 6 and we defer the technical conditions and proofs
to the “Appendix”.

123



264 S. Xiang, W. Yao

2 Mixture of single-indexmodels

2.1 Model definition and identifiability

Assume that {(xi ,Yi ), i = 1, . . . , n} is a random sample from the population (x,Y ),
where x is p-dimensional and Y is univariate. Let C be a latent variable, and has a
discrete distribution P(C = j |x) = π j (α

�x) for j = 1, . . . , k. Conditional onC = j
and x, Y follows a normal distribution with mean m j (α

�x) and variance σ 2
j (α

�x).
Without observing C , the conditional distribution of Y given x can be written as:

f (y|x,α, π,m, σ 2) =
k∑

j=1

π j (α
�x)φ(y|m j (α

�x), σ 2
j (α

�x)).

The above model is the proposed mixture of single-index models. Throughout the
paper, we assume that k is fixed, and refer to model (1) as a finite semiparametric
mixture of regression models, since π j (·), m j (·) and σ 2

j (·) are all nonparametric.
In the model (1), we use the same index α for all components. But our proposed
estimation procedure and asymptotic results can be easily extended to the cases where
components have different index α.

Compared to Huang et al. (2013), the appeal of the proposed MSIM is that by
using an index α�x, the so-called “curse of dimensionality” in fitting multivariate
nonparametric regression functions is avoided. It is of dimension-reduction structure
in the sense that, given the estimate of α, denoted by α̂, we can use the univariate α̂

�x
as the covariate and simplifymodel (1) by the nonparametricmixture regressionmodel
proposed by Huang et al. (2013). Therefore, model (1) is a reasonable compromise
between fully parametric and fully nonparametric modeling.

Identifiability is a major concern for most mixture models. Some well known iden-
tifiability results of finite mixture models include: mixture of univariate normals is
identifiable up to relabeling (Titterington et al. 1985) and finite mixture of regression
models is identifiable up to relabeling provided that covariates have a certain level of
variability (Henning 2000).Wang et al. (2014) established some general identifiability
results for many existing nonparametric or semiparametric mixture regressionmodels.
The following theorem establishes the identifiability result of the model (1) and its
proof is given in the “Appendix”.

Theorem 1 Assume that

1. π j (z), m j (z), and σ 2
j (z) are differentiable and not constant on the support of α

�x,
j = 1, . . . , k;

2. The x is continuously distributed random variable that has a joint probability
density function;

3. The support of x is not contained in any proper linear subspace of Rp;
4. ‖α‖ = 1 and the first nonzero element of α is positive;
5. For any 1 ≤ i �= j ≤ k,
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1∑

l=0

‖m(l)
i (z) − m(l)

j (z)‖2 +
1∑

l=0

‖σ (l)
i (z) − σ

(l)
j (z)‖2 �= 0,

for any z where g(l) is the lth derivative of g and equal to g if l = 0.

Then, model (1) is identifiable.

2.2 Estimation procedure

In this subsection, we propose a one-step estimation procedure and a backfitting algo-
rithm to estimate the nonparametric functions and the single index of the model (1).

Let �∗(1)(π ,m, σ 2,α) be the log-likelihood of the collected data {(xi ,Yi ), i =
1, . . . , n} from the model (1). That is:

�∗(1)(π ,m, σ 2,α) =
n∑

i=1

log

⎧
⎨

⎩

k∑

j=1

π j (α
�xi )φ(Yi |m j (α

�xi ), σ 2
j (α

�xi ))

⎫
⎬

⎭ , (3)

where φ(y|μ, σ 2) is the normal density with mean μ and variance σ 2, π(·) =
{π1(·), . . . , πk−1(·)}�,m(·)={m1(·), . . . ,mk(·)}�, and σ 2(·) = {σ 2

1 (·), . . . , σ 2
k (·)}�.

Sinceπ(·),m(·) and σ 2(·) consist of nonparametric functions, (3) is not ready formax-
imization.

Note that for the model (1), the space spanned by the single index α is in fact
the central mean subspace of Y |x (Cook and Li 2002) in the literature of sufficient
dimension reduction. Therefore, we can employ existing sufficient dimension reduc-
tionmethods to find an initial estimate of α. Please see, for example, Li (1991), Li et al.
(2005), Wang and Xia (2008), Luo et al. (2009), Wang and Yao (2012), Ma and Zhu
(2012, 2013), Yao et al. (2019). In this article, we will simply employ sliced inverse
regression (Li 1991) to obtain an initial estimate of α, denoted by α̃.

Given the estimated single index α̃, the nonparametric functions π(z), m(z) and
σ 2(z) can then be estimated by maximizing the following local log-likelihood func-
tion:

�
(1)
1 (π ,m, σ 2)

=
n∑

i=1

log

⎧
⎨

⎩

k∑

j=1

π j (α̃
�xi )φ(Yi |m j (α̃

�xi ), σ 2
j (α̃

�xi ))

⎫
⎬

⎭ Kh(α̃
�xi − z), (4)

where Kh(z) = 1
h K ( zh ), K (·) is a kernel density function, and h is a tuning parameter.

Let π̂(·), m̂(·) and σ̂
2
(·) be the estimates that maximize (4). The above estimates are

the proposed one-step estimate.
We propose amodified EM-type algorithm tomaximize �

(1)
1 . In practice, we usually

want to evaluate unknown functions at a set of grid points,which in this case, requires us
to maximize local log-likelihood functions at a set of grid points. If we simply employ
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the EM algorithm separately for each grid point, the labels in the EM algorithm may
change at different grid points, and we may not be able to get smoothed estimated
curves (Huang and Yao 2012). Therefore, we propose the following modified EM-
type algorithm, which estimates the nonparametric functions simultaneously at a set
of grid points, say {ut , t = 1, . . . , N }, and provides a unified label for each observation
across all grid points.

Algorithm 1 Modified EM-type algorithm to maximize (4) given the single index esti-
mate α̃.

E-step: Calculate the expectations of component labels based on estimates from lth
iteration:

p(l+1)
i j = π

(l)
j (α̃�xi )φ(Yi |m(l)

j (α̃�xi ), σ 2(l)
j (α̃�xi ))

∑k
j=1 π

(l)
j (α̃�xi )φ(Yi |m(l)

j (α̃�xi ), σ 2(l)
j (α̃�xi ))

, (5)

where i = 1, . . . , n, j = 1, . . . , k.
M-step: Update the estimates

π
(l+1)
j (z) =

∑n
i=1 p

(l+1)
i j Kh(α̃

�xi − z)
∑n

i=1 Kh(α̃
�xi − z)

, (6)

m(l+1)
j (z) =

∑n
i=1 p

(l+1)
i j Yi Kh(α̃

�xi − z)
∑n

i=1 p
(l+1)
i j Kh(α̃

�xi − z)
, (7)

σ
2(l+1)
j (z) =

∑n
i=1 p

(l+1)
i j (Yi − m(l+1)

j (z))2Kh(α̃
�xi − z)

∑n
i=1 p

(l+1)
i j Kh(α̃

�xi − z)
, (8)

for z ∈ {ut , t = 1, . . . , N } and j = 1, . . . , k. We then update π
(l+1)
j (α̃�xi ),

m(l+1)
j (α̃�xi ) and σ

2(l+1)
j (α̃�xi ), i = 1, . . . , n, by linear interpolating

π
(l+1)
j (ut ), m

(l+1)
j (ut ) and σ

2(l+1)
j (ut ), t = 1, . . . , N, respectively.

Note that in the M-step, the nonparametric functions are estimated simultaneously
at a set of grid points, and therefore, the classification probabilities in the the E-
step can be estimated globally to avoid the label switching problem (Stephens 2000;
Yao and Lindsay 2009). If the sample size n is not too large, one can also take all
{α̃�xi , i = 1, . . . , n} as grid points for z in the M-step.

The initial estimate α̃ by SIR does not make use of themixture information and thus
is not efficient. Given one step estimate π̂(·), m̂(·) and σ̂

2
(·), we can further improve

the estimate of α by maximizing

�
(1)
2 (α) =

n∑

i=1

log

⎧
⎨

⎩

k∑

j=1

π̂ j (α
�xi )φ(Yi |m̂ j (α

�xi ), σ̂ 2
j (α

�xi ))

⎫
⎬

⎭ , (9)
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with respect to α. The proposed fully iterative backfitting estimator of α, denoted by
α̂, iterates the above two steps until convergence.

Algorithm 2 Fully iterative backfitting estimator (FIB)

Step 1: Apply sliced inverse regression (SIR) to obtain an initial estimate of the single
index parameter α, denoted by α̃.

Step 2: Given α̃, apply the modified EM-algorithm (5)–(8) to maximize �
(1)
1 in (4) to

obtain the estimates π̂(·), m̂(·), and σ̂
2
(·).

Step 3: Given π̂(·), m̂(·), and σ̂
2
(·) from Step 2, update the estimate of α by maxi-

mizing �
(1)
2 in (9).

Step 4: Iterate Steps 2–3 until convergence.

2.3 Asymptotic properties

The asymptotic properties of the proposed estimates are investigated below. Let θ (z) =
(π�(z),m�(z), (σ 2)�(z))�. Define

�(θ(z), y) = log
k∑

j=1

π j (z)φ{y|m j (z), σ
2
j (z)},

q1(z) = ∂�(θ(z), y)

∂θ
,

q2(z) = ∂2�(θ(z), y)

∂θ∂θ� ,

I (1)
θ (z) = −E[q2(Z)|Z = z],

Λ1(u|z) = E[q1(z)|Z = u].

Under further conditions defined in the “Appendix”, the asymptotic properties of
the one-step estimates π̂(·), m̂(·), and σ̂

2
(·) are given in the following theorem.

Theorem 2 Assume that conditions (C1)–(C7) in the “Appendix” hold. Then, as n →
∞, h → 0 and nh → ∞, we have

√
nh{θ̂(z) − θ(z) − B1 + op(h

2)} D→ N {0, ν0 f −1(z)I (1)
θ (z)}, (10)

where

B1(z) = I (1)−1
θ

{
f ′(z)Λ′

1(z|z)
f (z)

+ 1

2
Λ

′′
1(z|z)

}
κ2h

2,

with f (·) themarginal density functionofα�x,κl = ∫
t l K (t)dt andνl = ∫

t l K 2(t)dt.

Note that the asymptotic variance of θ̂(z) is the same as those given in Huang et al.
(2013). Thus, the nonparametric functions can be estimated with the same accuracy
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as it would have if the single index α�x were known. This is expected since the index
α can be estimated at a root n convergence rate which is faster than θ̂(z). In addition,
note that the one-step estimates of θ(z) have the same asymptotic variance (up to the
first order) as the fully iterative backfitting algorithm but withmuch less computations.
Our simulation results in Sect. 4 further confirm this result.

The next theorem gives the asymptotic results of the α̂ given by the fully iterative
backfitting algorithm.

Theorem 3 Assume that conditions (C1)–(C8) in the “Appendix” hold. Then, as n →
∞, nh4 → 0, and nh2/ log(1/h) → ∞,

√
n(α̂ − α)

D→ N (0,Q−1
1 ), (11)

where

Q1=E
[
{xθ ′(Z)}q2(Z){xθ ′(Z)}�−xθ ′(Z)q2(Z)I (1)−1

θ (Z)E{q2(Z)[xθ ′(Z)]�|Z}
]
.

3 Mixtures of regressionmodels with varying single-index
proportions

3.1 Model definition and identifiability

The MRSIP assumes that P(C = j |x) = π j (α
�x) for j = 1, . . . , k, and conditional

on C = j and x, Y follows a normal distribution with mean x�β j and variance σ 2
j .

That is,

f (y|x,α, π,β, σ 2) =
k∑

j=1

π j (α
�x)φ(y|x�β j , σ

2
j ).

Since π j (·)’s are nonparametric, model (2) is also a finite semiparametric mixture
of regression models. The linear component regression functions x�β j enjoy simple
interpretation, while nonparametric functions π j (α

�x) can incorporate the effects of
predictors on component proportions more flexibly to reduce the modeling bias. See
Young and Hunter (2010), Huang et al. (2013) for more information. We first prove
the identifiability result of model (2) in the following theorem and defer its proof to
the “Appendix”.

Theorem 4 Assume that

1. π j (z) > 0 are differentiable and not constant on the support ofα�x, j = 1, . . . , k;
2. The components of x are continuously distributed random variables that have a

joint probability density function;
3. The support of x contains an open set in R

p and is not contained in any proper
linear subspace of Rp;

4. ‖α‖ = 1 and the first nonzero element of α is positive;
5. (β j , σ

2
j ), j = 1, . . . , k, are distinct pairs.

Then, model (2) is identifiable.
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3.2 Estimation procedure

The log-likelihood of the collected data for model (2) is:

�∗(2)(π , σ 2,α,β) =
n∑

i=1

log

⎧
⎨

⎩

k∑

j=1

π j (α
�xi )φ(Yi |x�

i β j , σ
2
j )

⎫
⎬

⎭ , (12)

where π(·) = {π1(·), . . . , πk−1(·)}�, σ 2 = {σ 2
1 , . . . , σ 2

k }�, and β = {β1, . . . ,βk}�.
Sinceπ(·) consists of nonparametric functions, (12) is not ready formaximization.We
propose a backfitting algorithm to iterate between estimating the parameters (α,β, σ 2)

and the nonparametric functions π(·).
Given the estimates of (α,β, σ 2), say (α̂, β̂, σ̂

2
), thenπ(·) can be estimated locally

by maximizing the following local log-likelihood function:

�
(2)
1 (π) =

n∑

i=1

log

⎧
⎨

⎩

k∑

j=1

π j (α̂
�xi )φ(Yi |x�

i β̂ j , σ̂
2
j )

⎫
⎬

⎭ Kh(α̂
�xi − z). (13)

Let π̂(·) be the estimate that maximizes (13). We can then further update the estimate
of (α,β, σ 2) by maximizing

�
(2)
2 (α,β, σ 2) =

n∑

i=1

log

⎧
⎨

⎩

k∑

j=1

π̂ j (α
�xi )φ(Yi |x�

i β j , σ
2
j )

⎫
⎬

⎭ . (14)

The backfitting algorithm by iterating the above two steps can be summarized as
follows.

Algorithm 3 Backfitting algorithm to estimate the model (2).

Step 1: Obtain an initial estimate of (α,β, σ 2).
Step 2: Given (α̂, β̂, σ̂

2
), use the following modified EM-type algorithm to maximize

�
(2)
1 in (13).
E-step: Calculate the expectations of component labels based on estimates
from lth iteration:

p(l+1)
i j = π

(l)
j (α̂

�xi )φ(Yi |x�
i β̂ j , σ̂

2
j )

∑k
j=1 π

(l)
j (α̂

�xi )φ(Yi |x�
i β̂ j , σ̂

2
j )

, (15)

where i = 1, . . . , n, j = 1, . . . , k.
M-step: Update the estimate

π
(l+1)
j (z) =

∑n
i=1 p

(l+1)
i j Kh(α̂

�xi − z)
∑n

i=1 Kh(α̂
�xi − z)

(16)

123
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for z ∈ {ut , t = 1, . . . , N }. We then update π
(l+1)
j (α̂

�xi ), i = 1, . . . , n by

linear interpolating π
(l+1)
j (ut ), t = 1, . . . , N.

Step 3: Given π̂(·) from Step 2, update (α̂, β̂, σ̂
2
) by maximizing (14). We propose

to iterate between updating α and (β, σ ).

Step 3.1: Given α̂, update (β, σ 2).
E-step: Calculate the classification probabilities:

p(l+1)
i j = π̂ j (α̂

�xi )φ(Yi |x�
i β

(l)
j , σ

2(l)
j )

∑k
j=1 π̂ j (α̂

�xi )φ(Yi |x�
i β

(l)
j , σ

2(l)
j )

, j = 1, . . . , k. (17)

M-step: Update β and σ 2:

β
(l+1)
j = (S�R(l+1)

j S)−1S�R(l+1)
j y, (18)

σ
2(l+1)
j =

∑n
i=1 p

(l+1)
i j (Yi − x�

i β
(l+1)
j )2

∑n
i=1 p

(l+1)
i j

, (19)

where j = 1, . . . , k, R(l+1)
j = diag{p(l+1)

i j , . . . , p(l+1)
nj }, and S =

(x1, . . . , xn)�.

Step 3.2: Given (β̂, σ̂
2
), update α by maximizing the following log-likelihood

�
(2)
3 (α) =

n∑

i=1

log

⎧
⎨

⎩

k∑

j=1

π̂ j (α
�xi )φ(Yi |x�

i β̂ j , σ̂
2
j )

⎫
⎬

⎭ .

Step 3.3: Iterate Steps 3.1–3.2 until convergence.
Step 4: Iterate Steps 2–3 until convergence.

There are many ways to obtain an initial estimate of (α,β, σ 2). In our numerical
studies, we get an initial estimate of (β, σ 2) by fitting traditional mixtures of linear
regressionmodels.Using the resultinghard-clustering results as new response variable,
we then apply the SIR to get an initial estimate for α.

3.3 Asymptotic properties

Let (π̂(z), α̂, β̂, σ̂
2
) be the resulting estimate of Algorithm 3. In this section, we

investigate their asymptotic properties. Let η = (β�, (σ 2)�)� and λ = (α�, η�)�.
Define
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�(π(z),λ, x, y) = log
k∑

j=1

π j (z)φ{y|x�β j , σ
2
j },

qπ (z) = ∂�(π(z), λ, x, y)

∂π
,

qππ (z) = ∂2�(π(z), λ, x, y)

∂π∂π� .

Similarly, define qλ, qλλ, and qπη. Denote I (2)
π (z) = −E[qππ (Z)|Z = z] and

Λ2(u|z) = E[qπ (z)|Z = u].
Under some regularity conditions, the asymptotic properties of π̂(z) are given in

the following theorem and its proof is given in the “Appendix”.

Theorem 5 Assume that conditions (C1)–(C4) and (C9)–(C11) in the “Appendix”
hold. Then, as n → ∞, h → 0 and nh → ∞, we have

√
nh{π̂(z) − π(z) − B2(z) + op(h

2)} D→ N {0, ν0 f −1(z)I (2)
π (z)}, (20)

where

B2(z) = I (2)−1
π

{
f ′(z)Λ′

2(z|z)
f (z)

+ 1

2
Λ′′

2(z|z)
}

κ2h
2.

The asymptotic property of the parametric estimate λ̂ is given in the following
theorem.

Theorem 6 Assume that conditions (C1)–(C4) and (C9)–(C12) in the “Appendix”
hold. Then, as n → ∞, nh4 → 0, and nh2/ log(1/h) → ∞,

√
n(λ̂ − λ)

D→ N (0,Q−1
2 ),

where,

Q2=E

⎡

⎣qππ (Z)

(
xπ ′(Z)

I

){(
xπ ′(Z)

I

)
−
(
I

(2)−1
π (Z)E{qππ (Z)(xπ ′(Z))�|Z}

I
(2)−1
π (Z)E{qπη(Z)|Z}

)}�⎤
⎦ .

4 Simulation studies

In this section, we conduct simulation studies to test the performance of the proposed
models and estimation procedures.

The performance of the estimates are measured via the absolute bias (AB), standard
deviation (SD), and root mean squared error (RMSE), which is (AB2 + SD2)1/2.
Specifically, the AB and SD of the mean functions m j (·)’s in the model (1) is defined
as:
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AB =
⎡

⎣ 1

N

k∑

j=1

N∑

t=1

{
Em̂ j (ut ) − m j (ut )

}2
⎤

⎦
1/2

,

and

SD =
⎡

⎣ 1

N

k∑

j=1

N∑

t=1

E
{
m̂ j (ut ) − Em̂ j (ut )

}2
⎤

⎦
1/2

,

where m̂ j (·) is an estimator of m j (·), and Em̂ j (ut ) are estimated by their replicates
of studies. Similarly, we can define the AB and SD for variance functions σ 2

j (·)’s and
proportion functions π j (·)’s. In the following numerical studies, we set N = 100.

In addition, a conditional bootstrap procedure is applied to estimate the standard
error of estimates and construct confidence intervals for the parameters.

Example 1 Generate data from the following two-component MSIM:

π1(z) = 0.5 + 0.3 sin(π z) and π2(z) = 1 − π1(z),

m1(z) = 6 − sin(2π z/
√
3) and m2(z) = cos(

√
3π z) − 1,

σ1(z) = 0.4 + sin(3π z)/15 and σ2(z) = 0.3 + cos(1.3π z)/10,

where zi = α�xi , xi is an eight-dimensional random vector with independent uniform
(0,1) components, and the direction parameter is α = (1, 1, 1, 0, 0, 0, 0, 0)�/

√
3. The

sample sizes n = 200 and n = 400 are conducted over 500 repetitions. To estimate
α, we use sliced inverse regression (SIR) and the fully iterative backfitting estimate
(MSIM). To estimate the nonparametric functions, we apply the one-step estimate
(OS) and MSIM. For MSIM, we use both true value (T) and SIR (S) as the initial
values.

First, a proper bandwidth for estimating π(·), m(·) and σ 2(·) is selected. Based
on Theorem 2, one can calculate the theoretical optimal bandwidth by minimizing
asymptotic mean squared errors. However, the theoretical optimal bandwidth depends
on many unknown quantities, which are not easy to estimate in practice. In our exam-
ples, we propose to use the following cross-validation (CV) method to choose the
bandwidth. LetD be the full data set, and divideD into a training setRl and a test set
Tl . That is, Rl ∪ Tl = D for l = 1, . . . , L . We use the training set Rl to obtain the
estimates {π̂(·), m̂(·), σ̂ 2

(·), α̂}, then evaluate π(·),m(·) and σ 2(·) for the test data set
Tl . For each (xt , yt ) ∈ Tl , calculate the classification probability as

p̂t j = π̂ j (α̂
�xt )φ(yt |m̂ j (α̂

�xt ), σ̂ 2
j (α̂

�xt ))
∑k

j=1 π̂ j (α̂
�xt )φ(yt |m̂ j (α̂

�xt ), σ̂ 2
j (α̂

�xt ))
, (21)
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Table 1 Simulation results for Example 1, n = 200. Absolute bias (AB), standard deviation (SD), and root
mean squared error (RMSE) of global and local parameter estimates using the proposed methods

OS MSIM(S) MSIM(T)

AB SD RMSE AB SD RMSE AB SD RMSE

α1 0.1377 1.2297 1.2374 0.0429 0.0883 0.0982 0.0383 0.0769 0.0859

α2 0.0186 1.1108 1.1110 0.0517 0.0905 0.1043 0.0443 0.0781 0.0898

α3 0.0757 1.1200 1.1225 0.0568 0.0983 0.1135 0.0454 0.0913 0.1020

α4 0.1601 1.4358 1.4447 0.1383 0.1108 0.1772 0.1201 0.1064 0.1605

α5 0.0445 0.9646 0.9656 0.1222 0.1159 0.1684 0.1161 0.1086 0.1590

α6 0.0579 0.8136 0.8157 0.1276 0.1164 0.1727 0.1013 0.1082 0.1482

α7 0.0416 0.8206 0.8216 0.1133 0.1086 0.1569 0.1109 0.1007 0.1498

α8 0.0872 0.8396 0.8442 0.1241 0.1092 0.1653 0.1272 0.1020 0.1631

π 0.1922 0.6384 0.6667 0.2030 0.1394 0.2463 0.1858 0.1266 0.2248

μ 1.1762 1.8898 2.2259 1.0708 0.5394 1.1989 1.0222 0.5199 1.1468

σ 2 0.2568 1.2091 1.2361 0.2952 0.3706 0.4738 0.2870 0.2881 0.4066

for j = 1, . . . , k. The regular CV is considered, which is defined by

CV (h) =
L∑

l=1

∑

t∈Tl

(yt − ŷt )
2,

where ŷt = ∑k
j=1 p̂t j m̂ j (α̂

�xt ). We also implemented the likelihood based cross
validation to choose the bandwidth and the results are similar but with more compu-
tations.

Throughout the simulation, L = 10 and the data are randomly partitioned. The
procedure is repeated 30 times, and the average of the selected bandwidth is taken as
the optimal bandwidth, denoted by ĥ.

Tables 1 and 2 present the AB, SD, and RMSE for the estimates. We summarize
our findings as follows. The AB, SD, and RMSE of the index parameter estimates
from MSIM are consistently smaller than the OS estimates, which indicates that the
MSIM is superior to the OS. This is reasonable, since the MSIMmakes use of mixture
information while SIR does not. Furthermore, the performance ofMSIM(T) is slightly
better than MSIM(S), but the improvement is negligible, indicating that the sliced
inverse regression provides good initial values for ourmethod. In addition, the analysis
results about nonparametric function estimates demonstrate that MSIMworks slightly
better than OS. This verifies the theoretical results stated in Sect. 2.3.

In addition, to see how the selected bandwidth works, we also did simulation for
two other bandwidths, ĥ×n−2/15 and 1.5ĥ, which correspond to the under-smoothing
and over-smoothing conditions, respectively. The results are summarized in Table 3
and 4. We can see that the proposed bandwidth selection procedure works reasonably
well since the corresponding AB, SD, and RMSE are often the smallest.
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Table 2 Simulation results for Example 1, n = 400. Absolute bias (AB), standard deviation (SD), and root
mean squared error (RMSE) of global and local parameter estimates using the proposed methods

OS MSIM(S) MSIM(T)

AB SD RMSE AB SD RMSE AB SD RMSE

α1 0.0908 0.9818 0.9860 0.0069 0.0347 0.0353 0.0115 0.0410 0.0426

α2 0.1316 0.9763 0.9852 0.0182 0.0426 0.0463 0.0175 0.0405 0.0441

α3 0.0708 0.9963 0.9988 0.0152 0.0383 0.0412 0.0142 0.0404 0.0428

α4 0.0610 0.6902 0.6929 0.0668 0.0649 0.0931 0.0679 0.0672 0.0955

α5 0.0251 0.5203 0.5209 0.0722 0.0569 0.0920 0.0702 0.0586 0.0914

α6 0.0121 0.4714 0.4716 0.0706 0.0589 0.0920 0.0728 0.0663 0.0984

α7 0.0082 0.5459 0.5460 0.0618 0.0636 0.0887 0.0633 0.0626 0.0890

α8 0.0459 0.5097 0.5117 0.0690 0.0568 0.0894 0.0731 0.0622 0.0960

π 0.1867 0.4134 0.4536 0.1094 0.0907 0.1421 0.1119 0.0939 0.1461

μ 1.1864 1.3448 1.7933 0.6825 0.4297 0.8065 0.6931 0.4467 0.8246

σ 2 0.3219 0.8432 0.9026 0.1905 0.1698 0.2552 0.1905 0.1761 0.2594

Next, we test the accuracy of the standard error estimation and the confidence
interval constructed for α via a conditional bootstrap procedure. Given the covariate
x , the response Y can be generated from the estimated distribution

k∑

j=1

π̂ j (α̂
�x)φ(y|m̂ j (α̂

�x), σ̂ 2
j (α̂

�x)).

For the simplicity of presentation, only the results from MSIM(S) are reported. We
apply the proposed estimation procedure to each of the 200 bootstrap samples, and
further obtain the confidence intervals. Table 5 summarizes the performance of the
bootstrap procedure. The average and standard deviation of the 500 estimated standard
errors are reported, and are denoted by SE and STD, respectively. The actual coverage
probabilities based on the constructed confidence intervals are also reported. From
Table 5, we can see that the actual coverage probabilities are usually very close to the
nominal coverage probabilities, although are conservative for some parameters.

In the following, we explore the performance of MSIM in even higher dimensional
spaces. To be more specific, α is now set to be a 50-dimensional vector, whose first
three elements are 1/

√
3 and the others are zeros. xi and the nonparametric functions

are generated in the similar manner as before. That is to say, we are now exploring the
cases when n = 200, p = 50 and n = 400, p = 50. The AD, SD, and RMSE for the
nonparametric functions are reported in Table 6. For the global vector α, we reported
the pooled AB, SD, and RMSE, which are defined by

ABα =
[
1

p

p∑

t=1

(
E α̂t − αt

)2
]1/2

, and SDα =
[
1

p

p∑

t=1

E
(
α̂t − E α̂t

)2
]1/2

.
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Table 3 Absolute bias (AB), standard deviation (SD), and root mean squared error (RMSE) of global and
local parameter estimates using the proposed methods with various bandwidths, n = 200

Under-smoothing Appropriate smoothing Over-smoothing

AB SD RMSE AB SD RMSE AB SD RMSE

α1 0.0295 0.0991 0.1034 0.0429 0.0883 0.0982 0.0616 0.1032 0.1202

α2 0.0457 0.1063 0.1157 0.0517 0.0905 0.1043 0.0781 0.1026 0.1289

α3 0.0496 0.1107 0.1213 0.0568 0.0983 0.1135 0.0772 0.1145 0.1381

α4 0.1180 0.1495 0.1905 0.1383 0.1108 0.1772 0.1589 0.1253 0.2024

α5 0.1065 0.1480 0.1823 0.1222 0.1159 0.1684 0.1583 0.1353 0.2083

α6 0.1011 0.1539 0.1841 0.1276 0.1164 0.1727 0.1533 0.1231 0.1966

α7 0.0936 0.1665 0.1910 0.1133 0.1086 0.1569 0.1462 0.1207 0.1896

α8 0.1139 0.1560 0.1932 0.1241 0.1092 0.1653 0.1649 0.1193 0.2035

π 0.2045 0.2382 0.3139 0.2030 0.1394 0.2463 0.2167 0.1130 0.2444

μ 1.1443 0.9375 1.4793 1.0708 0.5394 1.1989 1.1237 0.4176 1.1988

σ 2 0.2923 0.6448 0.7079 0.2952 0.3706 0.4738 0.4137 0.4523 0.6130

Table 4 Absolute bias (AB), standard deviation (SD), and root mean squared error (RMSE) of global and
local parameter estimates using the proposed methods with various bandwidths, n = 400

Under-smoothing Appropriate smoothing Over-smoothing

AB SD RMSE AB SD RMSE AB SD RMSE

α1 0.0068 0.0484 0.0489 0.0069 0.0347 0.0353 0.0161 0.0522 0.0546

α2 0.0140 0.0453 0.0475 0.0182 0.0426 0.0463 0.0236 0.0533 0.0583

α3 0.0143 0.0538 0.0556 0.0152 0.0383 0.0412 0.0250 0.0511 0.0569

α4 0.0572 0.0876 0.1046 0.0668 0.0649 0.0931 0.0860 0.0779 0.1161

α5 0.0578 0.0870 0.1044 0.0722 0.0569 0.0920 0.0878 0.0689 0.1116

α6 0.0533 0.0867 0.1018 0.0706 0.0589 0.0920 0.0863 0.0723 0.1126

α7 0.0371 0.0950 0.1020 0.0618 0.0636 0.0887 0.0835 0.0778 0.1142

α8 0.0536 0.0868 0.1020 0.0690 0.0568 0.0894 0.0898 0.0730 0.1157

π 0.0942 0.1370 0.1663 0.1094 0.0907 0.1421 0.1305 0.0906 0.1588

μ 0.6046 0.6502 0.8878 0.6825 0.4297 0.8065 0.8045 0.4161 0.9057

σ 2 0.1408 0.3370 0.3653 0.1905 0.1698 0.2552 0.3020 0.1811 0.3521

The results are based on MSIM(S). The results from the previous n = 200, p = 8
and n = 400, p = 8 cases are also reported for comparison. It can be seen that when
we increase p to 50, the MSIM still provides reasonable, although slightly worse,
estimates.
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Table 5 Standard errors and
coverage probabilities for the
global index parameter α in
Example 1

n = 200 n = 400

SE(STD) 95% SE(STD) 95%

α1 0.1394 (0.0294) 98.50 0.0594 (0.0089) 100.00

α2 0.1393 (0.0285) 98.00 0.0608 (0.0107) 98.50

α3 0.1400 (0.0297) 97.50 0.0604 (0.0095) 99.50

α4 0.1441 (0.0278) 94.00 0.0858 (0.0119) 95.00

α5 0.1419 (0.0290) 94.50 0.0850 (0.0106) 94.00

α6 0.1438 (0.0273) 94.00 0.0848 (0.0124) 94.00

α7 0.1428 (0.0287) 97.50 0.0831 (0.0117) 93.00

α8 0.1440 (0.0280) 95.00 0.0840 (0.0119) 95.50

Table 6 Example 1 in higher dimensional case

AB SD RMSE AB SD RMSE

n = 200, p = 8 n = 400, p = 8

α 0.1012 0.1053 0.1460 α 0.0546 0.0532 0.0763

π 0.2030 0.1394 0.2463 π 0.1094 0.0907 0.1421

μ 1.0708 0.5394 1.1989 μ 0.6825 0.4297 0.8065

σ 2 0.2952 0.3706 0.4738 σ 2 0.1905 0.1698 0.2552

n = 200, p = 50 n = 400, p = 50

α 0.0383 0.0951 0.1025 α 0.0164 0.0551 0.0575

π 0.2021 0.2613 0.3303 π 0.1935 0.1561 0.2486

μ 1.0437 0.7285 1.2729 μ 1.0468 0.6642 1.2398

σ 2 0.3031 0.3915 0.4951 σ 2 0.2418 0.2830 0.3723

Absolute bias (AB), standard deviation (SD), and root mean squared error (RMSE) of global and local
parameter estimates using MSIM(S)

Example 2 Next, we consider a two-component MRSIP:

π1(z) = 0.5 − 0.35 sin(π z) and π2(z) = 1 − π1(z),

m1(x) = 3 + 3x2 and m2(x) = −3 + 2x1 + 3x3,

σ 2
1 = 0.6 and σ 2

2 = 0.4,

where m1(x) and m2(x) are the regression functions for the first and second
components, respectively, and xi is an eight-component random vector with inde-
pendent uniform (0,1) components. Let β1 = (3, 0, 3, 0, 0, 0, 0, 0, 0)�, β2 =
(−3, 2, 0, 3, 0, 0, 0, 0, 0)�, and α = (1, 1, 1, 0, 0, 0, 0, 0)�/

√
3. MRSIP with true

value (T) and SIR (S) as initial values are used to fit the data, and the results are com-
pared to the traditional mixture of linear regression models (MLR). The bandwidth
for MRSIP is chosen based on the cross-validation, similar to Example 1.

Tables 7 and 8 report the AB, SD, and RMSE for the estimates. From both tables,
we can see that MRSIP works comparable to MLR when the sample size is small,
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Table 7 Simulation results for Example 2, n = 200

MRSIP(S) MRSIP(T) MLR

AB SD RMSE AB SE RMSE AB SD RMSE

β01 0.1420 0.5537 0.5716 0.1649 0.6426 0.6634 0.4617 1.4625 1.5337

β11 0.0608 0.3399 0.3453 0.0572 0.3364 0.3412 0.1939 0.7771 0.8009

β21 0.0448 0.3872 0.3898 0.0407 0.3838 0.3859 0.1011 0.9011 0.9068

β31 0.0405 0.3249 0.3274 0.0642 0.5240 0.5279 0.1874 0.9366 0.9552

β41 0.0189 0.3266 0.3271 0.0280 0.3818 0.3828 0.0624 1.0480 1.0498

β51 0.0299 0.3556 0.3569 0.0240 0.4383 0.4390 0.0859 0.7774 0.7821

β61 0.0330 0.3331 0.3348 0.0533 0.4862 0.4891 0.0316 0.8222 0.8228

β71 0.0133 0.3578 0.3580 0.0181 0.4503 0.4507 0.0516 0.9714 0.9728

β81 0.0357 0.3803 0.3819 0.0481 0.4027 0.4055 0.0301 0.7091 0.7098

β02 0.0011 0.3669 0.3669 0.0178 0.4112 0.4116 0.2119 0.7298 0.7599

β12 0.0038 0.2672 0.2672 0.0406 0.5078 0.5094 0.2117 0.7577 0.7867

β22 0.0156 0.3206 0.3210 0.0269 0.3795 0.3805 0.2717 0.9662 1.0037

β32 0.0251 0.2661 0.2673 0.0273 0.2820 0.2833 0.1896 0.5939 0.6234

β42 0.0177 0.2609 0.2615 0.0297 0.2920 0.2935 0.0305 0.4154 0.4166

β52 0.0147 0.2548 0.2553 0.0112 0.3210 0.3211 0.0362 0.3730 0.3747

β62 0.0061 0.2566 0.2567 0.0041 0.3140 0.3140 0.0033 0.4068 0.4068

β72 0.0050 0.2663 0.2663 0.0088 0.2750 0.2752 0.0345 0.4096 0.4111

β82 0.0101 0.2614 0.2616 0.0099 0.2875 0.2877 0.0142 0.3587 0.3590

σ 2
1 0.0053 0.1115 0.1116 0.0281 0.2920 0.2934 0.1131 0.6941 0.7033

σ 2
2 0.0825 0.1132 0.1401 0.1023 0.1919 0.2175 0.1811 0.8156 0.8355

α1 0.0035 0.1016 0.1017 0.0004 0.0048 0.0048 – – –

α2 0.0556 0.1491 0.1591 0.0003 0.0047 0.0047 – – –

α3 0.0452 0.1441 0.1510 0.0001 0.0044 0.0044 – – –

α4 0.0019 0.0983 0.0983 0.0004 0.0059 0.0059 – – –

α5 0.0130 0.1019 0.1027 0.0001 0.0057 0.0057 – – –

α6 0.0050 0.1056 0.1057 0.0007 0.0056 0.0057 – – –

α7 0.0054 0.0997 0.0999 0.0002 0.0057 0.0057 – – –

α8 0.0032 0.1116 0.1117 0.0006 0.0058 0.0058 – – –

π 0.0082 0.1872 0.1874 0.0071 0.1900 0.1901 0.0516 0.9714 0.9728

Absolute bias (AB), standard deviation (SD), and root mean squared error (RMSE) of global and local
parameter estimates using the proposed methods

and outperforms MLR when the sample size is large. It is clear that the MRSIP
provides better estimates of component proportions than MLR since the constant
assumption of component proportions by MLR is violated. By reducing the modeling
bias of component proportions, MRSIP is able to better classify observations into two
components and thus provide better component regression parameters. In addition,
we can see that MRSIP(S) provides similar results to MRSIP(T), which demonstrates
that SIR provides good initial values for MRSIP.
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Table 8 Simulation results for Example 2, n = 400

MRSIP(S) MRSIP(T) MLR

AB SD RMSE AB SD RMSE AB SD RMSE

β01 0.0405 0.3785 0.3806 0.0323 0.3794 0.3807 0.1018 0.8683 0.8742

β11 0.0094 0.2393 0.2395 0.0084 0.2359 0.2360 0.0649 0.4331 0.4379

β21 0.0157 0.2346 0.2351 0.0071 0.2327 0.2328 0.0180 0.7057 0.7060

β31 0.0021 0.2428 0.2428 0.0054 0.2361 0.2362 0.0670 0.3974 0.4030

β41 0.0038 0.2425 0.2425 0.0048 0.2422 0.2422 0.0188 0.4072 0.4076

β51 0.0171 0.2522 0.2527 0.0162 0.2539 0.2545 0.0365 0.6270 0.6281

β61 0.0093 0.2449 0.2451 0.0099 0.2448 0.2450 0.0055 0.3642 0.3643

β71 0.0065 0.2271 0.2272 0.0081 0.2309 0.2311 0.0132 0.4773 0.4775

β81 0.0168 0.2464 0.2470 0.0163 0.2484 0.2489 0.0262 0.3277 0.3287

β02 0.0120 0.2674 0.2677 0.0198 0.2712 0.2720 0.1211 0.5956 0.6078

β12 0.0082 0.1846 0.1848 0.0045 0.1872 0.1872 0.1124 0.4199 0.4347

β22 0.0267 0.1888 0.1907 0.0221 0.1876 0.1889 0.1253 0.6704 0.6821

β32 0.0184 0.1963 0.1972 0.0094 0.1985 0.1987 0.1097 0.3891 0.4043

β42 0.0116 0.1764 0.1768 0.0108 0.1792 0.1795 0.0060 0.2454 0.2454

β52 0.0163 0.1726 0.1734 0.0164 0.1777 0.1784 0.0257 0.2754 0.2766

β62 0.0058 0.1876 0.1877 0.0054 0.1915 0.1916 0.0023 0.2593 0.2593

β72 0.0119 0.1726 0.1730 0.0117 0.1786 0.1790 0.0090 0.2249 0.2251

β82 0.0067 0.1677 0.1678 0.0085 0.1725 0.1727 0.0109 0.1937 0.1940

σ 2
1 0.0621 0.0838 0.1043 0.0606 0.0815 0.1016 0.0706 0.6667 0.6705

σ 2
2 0.1075 0.0718 0.1293 0.1068 0.0703 0.1279 0.0529 0.4638 0.4668

α1 0.0231 0.0907 0.0936 0.0001 0.0045 0.0045 – – –

α2 0.0407 0.1289 0.1352 0.0007 0.0047 0.0048 – – –

α3 0.0444 0.1326 0.1398 0.0004 0.0047 0.0048 – – –

α4 0.0062 0.0707 0.0710 0.0005 0.0057 0.0058 – – –

α5 0.0039 0.0709 0.0710 0.0007 0.0054 0.0055 – – –

α6 0.0012 0.0717 0.0717 0.0002 0.0060 0.0060 – – –

α7 0.0029 0.0710 0.0711 0.0006 0.0059 0.0060 – – –

α8 0.0013 0.0687 0.0687 0.0003 0.0062 0.0062 – – –

π 0.0076 0.1943 0.1944 0.0064 0.1996 0.1997 0.0132 0.4773 0.4775

Absolute bias (AB), standard deviation (SD), and root mean squared error (RMSE) of global and local
parameter estimates using the proposed methods

Next, the standard error estimation and the confidence interval construction for
β1,β2, σ

2
1 , σ 2

2 and α are reported in Table 9 via the conditional bootstrap procedure
introduced in Example 1. The results are based on MRSIP(S). From Table 9, we can
see that the actual coverage probabilities are usually close to the nominal coverage
probabilities.

We now illustrate the performance of the MRSIP model for a high dimensional
setting when p is increased to 50. In this case, α = (1, 1, 1, 0, . . . , 0)�/

√
3 is a 50

dimensional vector, β1 = (3, 0, 3, 0, . . . , 0)� and β2 = (−3, 2, 0, 3, 0, . . . , 0)� are
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Table 9 Standard errors and
coverage probabilities for global
parameters in Example 2

n = 200 n = 400

SE(STD) 95% SE(STD) 95%

β01 0.7427 (0.1616) 99.00 0.4264 (0.0716) 94.00

β11 0.5339 (0.1428) 99.50 0.2825 (0.0533) 97.00

β21 0.5094 (0.1126) 99.00 0.3045 (0.0567) 97.50

β31 0.5296 (0.1458) 98.50 0.2863 (0.0576) 97.50

β41 0.4848 (0.1206) 99.50 0.2731 (0.0541) 96.50

β51 0.4898 (0.1279) 97.50 0.2745 (0.0528) 96.00

β61 0.4819 (0.1277) 97.50 0.2712 (0.0525) 98.50

β71 0.4883 (0.1298) 98.50 0.2846 (0.0753) 97.50

β81 0.5018 (0.1516) 97.50 0.2754 (0.0462) 96.50

β02 0.4832 (0.1044) 99.00 0.2805 (0.0305) 97.00

β12 0.4159 (0.1447) 98.50 0.2128 (0.0360) 98.00

β22 0.4350 (0.1295) 96.50 0.2108 (0.0451) 95.00

β32 0.3793 (0.1040) 99.00 0.2114 (0.0304) 95.00

β42 0.3550 (0.1112) 98.00 0.2016 (0.0483) 96.00

β52 0.3570 (0.1059) 98.00 0.1973 (0.0211) 96.50

β62 0.3487 (0.1070) 97.50 0.1966 (0.0221) 96.00

β72 0.3580 (0.1089) 98.00 0.2018 (0.0453) 95.50

β82 0.3599 (0.1138) 98.00 0.2037 (0.0604) 98.00

σ 2
1 0.2658 (0.1186) 99.50 0.1196 (0.0488) 97.50

σ 2
2 0.3278 (0.1359) 98.50 0.1141 (0.0764) 94.00

α1 0.1098 (0.0441) 91.00 0.0645 (0.0230) 92.50

α2 0.2358 (0.0922) 98.00 0.1616 (0.0529) 91.50

α3 0.1290 (0.0763) 81.00 0.0675 (0.0406) 86.00

α4 0.0940 (0.0117) 91.50 0.0638 (0.0059) 91.00

α5 0.0954 (0.0138) 92.00 0.0651 (0.0066) 93.00

α6 0.0953 (0.0136) 92.00 0.0647 (0.0067) 90.50

α7 0.0958 (0.0146) 94.00 0.0646(0.0067) 93.50

α8 0.0962 (0.0147) 91.00 0.0646 (0.0064) 92.50

51-dimensional vectors. π j (·) and σ 2
j , j = 1, 2 are still the same as before. The results

are summarized in Table 10, where the AB and SD of β are defined as

ABβ =
⎡

⎣ 1

p + 1

k∑

j=1

p+1∑

t=1

(
E β̂ j t − β j t

)2
⎤

⎦
1/2

, and

SDβ =
⎡

⎣ 1

p + 1

k∑

j=1

p+1∑

t=1

E
(
β̂ j t − E β̂ j t

)2
⎤

⎦
1/2

.

The results are based on MRSIP(S). From the table, we can see that, given the same
sample size, increasing the number of predictors would downgrade the performance
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Table 10 Example 2 in higher dimensional case

AB SD RMSE AB SD RMSE

n = 200, p = 8 n = 400, p = 8

β 0.0743 0.5309 0.5361 β 0.0226 0.3237 0.3245

σ 2 0.0926 0.2415 0.2587 σ 2 0.1242 0.1104 0.1661

α 0.1677 0.1279 0.2109 α 0.0230 0.0918 0.0946

π 0.0094 0.1701 0.1703 π 0.0076 0.1943 0.1944

n = 400, p = 50 n = 800, p = 50

β 0.2246 1.0463 1.0701 β 0.0254 0.2913 0.2924

σ 2 0.4320 1.0913 1.1737 σ 2 0.1115 0.3565 0.3735

α 0.0729 0.0598 0.0943 α 0.0747 0.0416 0.0855

π 0.0211 0.1725 0.1738 π 0.0098 0.1613 0.1616

Absolute bias (AB), standard deviation (SD), and root mean squared error (RMSE) of global and local
parameter estimates using MRSIP(S)

of MRSIP. However, if we increase the sample size to 800, even with 50 predictors,
the MRSIP still works very well.

5 Real data examples

Example 1 (NBA data) We illustrate the proposed methodology by an analysis of
“The effectiveness of National Basketball Association guards”. There are many ways
to measure the (statistical) performance of guards in the NBA. Of interest is how the
height of the player (Height), minutes per game (MPG) and free throw percentage
(FTP) affect points per game (PPM) (Chatterjee et al. 1995).

The data set contains some descriptive statistics for all 105 guards for the 1992–
1993 season. Since players playing very few minutes are quite different from those
who play a sizable part of the season, we only look at those players playing 10 or
more minutes per game and appearing in 10 or more games. In addition, Michael
Jordan is an outlier, so we also omit him from our data analysis. These exclude 10
players (Chatterjee et al. 1995). We divide each variable by its corresponding standard
deviation, so that they have comparable numerical scales.

To evaluate the prediction performance of the proposed models and compared them
to the linear regressionmodel (Linear), themixture of linear regressionmodels (MLR),
the nonparametric mixture of regression models (MNP, Huang et al. 2013), the mix-
ture of regression models with varying mixing proportions (VaryPr1, Huang and Yao
2012), and the mixtures of regressions with predictor-dependent mixing proportions
(VaryPr2, Young and Hunter 2010), we used d-fold cross-validation with d = 5,
10, and the Monte-Carlo cross-validation (MCCV) with d = 10, 20 (Shao 1993). In
MCCV, the data were partitioned 500 times into disjoint training subsets (with size
n − d) and test subsets (with size d). The mean squared prediction error evaluated
at the test data sets are reported as boxplots in Fig. 1b. Apparently, the MSIM has
superior prediction power than the rest of the models, followed by MNP. The aver-
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(b)

Fig. 1 NBA data: a estimated mean functions and a hard-clustering result; bmean squared prediction error:
five-fold CV; ten-fold CV; MCCV d = 10; MCCV d = 20

age improving rates of MSIM over MNP, for the four cross-validation methods, are
46.64%, 15.16%, 22.87%, and 25.22%, respectively.

Next, we give detailed analysis of this dataset through the MSIM. An optimal
bandwidth is selected at 0.344 by CV procedure. Figure 1a contains the estimated
mean functions and hard-clustering results, denoted by dots and squares, respectively.
The 95% confidence interval for α̂ are (0.134,0.541), (0.715,0.949) and (0.202,0.679).
Therefore, MPG is the most influential factor on PPM. This might be partly explained
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Fig. 2 Corporations core competition data: mean squared prediction error: five-fold CV; ten-fold CV;
MCCV d = 20; MCCV d = 40

by that coaches tend to let good players with higher PPM play longer minutes per
game (i.e., higher MPG). The two groups of guards our new models found might be
explained by the difference between shooting guards and passing guards.

Example 2 (Corporations core competition data) We now analyze a corporations core
competition dataset, which includes descriptive statistics and financial data of 196
manufacturing listed companies for the year of 2017. Of interest is what determines the
value of a corporation. The response variable is themarket valueY , and the independent
variables are general assets (X1), sales revenue (X2), sales revenue growth rate (X3),
income per capita (X4), earning cash flow (X5), inventory turnover ratio (X6), accounts
receivable turnover (X7), earning per share (X8), return on equity (X9), research and
development expenditure (X10), proportion of scientific research personnel (X11),
proportions of stuffs with undergraduate degrees (X12), rate of production equipment
updates (X13), sales revenue within industry (X14), and market share (X15). Each
variable is scaled before further analysis.

Similar to the previous example, we compare the prediction performance of the
proposed models to the five existing models. Both CV and MCCV are applied to this
dataset and the mean squared prediction errors are shown in Fig. 2. We can see that the
MRSIP and the MLR are the best two models for this dataset. To better compare these
two methods, we also compute the average improving rates of MRSIP over MLR,
for the four cross-validation methods, which are 11.19%, 6.2%, 6.8%, and 27.10%,
respectively. As a conclusion, MRSIP is the best choice for this dataset, followed by
mixture of linear regressions.

Table 11 shows the standard errors and 95% confidence intervals for α, β1, and
β2, assuming the MRSIP. It can be seen that X1, X2, and X4 have significant effects
on mixing proportions. Note that there are variables like X3, which does not have
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significant effect on α or β’s, and therefore, variable selection methods might be
helpful to further improve the accuracy and homogeneity of the model estimation.
Hard clustering shows that most companies in the first component are innovative
companies, who spend huge amount of money on recruiting high-end talents and
developing new products, while the second component contains companies that are
mostly more traditional and conservative.

6 Discussion

In this paper, we propose two finite semiparametric mixture of regression models and
provide the modified EM algorithms to estimate them. We establish the identifiability
results of the new models and investigate the asymptotic properties of the proposed
estimation procedures. Throughout the article, we assume that the number of com-
ponents is known and fixed, but it requires more research to select the number of
components for the proposed semiparametric mixture models. It will be interesting to
know whether the recently proposed EM test (Chen and Li 2009; Li and Chen 2010)
can be extended to the proposed semiparametric mixture models. In addition, it is also
interesting to build some formal model selection procedure to compare different semi-
parametric mixture models. In the real data applications, we use the cross-validation
criteria to compare different models. When the models are nested, one might use
generalized likelihood ratio statistic proposed by Fan et al. (2001) to test any paramet-
ric assumption for the semiparametric models. Furthermore, the assumption of fixed
dimension of predictors can be relaxed and the proposedmodels can be extended to the
cases where the dimension of predictors p also diverges with the sample size n. This
might be done by using the idea of penalized local likelihood if the sparsity assump-
tion is added on the predictors. We employed kernel regression method to estimate the
nonparametric functions. One can also use local polynomial regression method (such
as local linear) to possibly reduce the bias and boundary effects of the estimators.

Acknowledgements The authors are grateful to the editor, the guest editor, and two referees for numerous
helpful comments during the preparation of the article. Funding was provided by National Natural Science
Foundation ofChina (GrantNo. 11601477), Natural Science Foundation (USA) (GrantNo.DMS-1461677),
Department of Energy (GrantNo. 10006272), the First ClassDiscipline of Zhejiang -A (ZhejiangUniversity
of Finance and Economics-Statistics), China (Grant No. NA) and Natural Science Foundation of Zhejiang
Province (Grant No. LY19A010006).

Appendix A

Technical conditions

(C1) The sample {(xi ,Yi ), i = 1, . . . , n} is independent and identically distributed
from its population (x,Y ). The support for x, denoted byX , is a compact subset
of R3.

(C2) The marginal density of α�x, denoted by f (·), is twice continuously differen-
tiable and positive at the point z.
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(C3) The kernel function K (·) has a bounded support, and satisfies that

∫
K (t)dt = 1,

∫
t K (t)dt = 0,

∫
t2K (t)dt < ∞,

∫
K 2(t)dt < ∞,

∫
|K 3(t)|dt < ∞.

(C4) h → 0, nh → 0, and nh5 = O(1) as n → ∞.
(C5) The third derivative |∂3�(θ , y)/∂θi∂θ j∂θk | ≤ M(y) for all y and all θ in a

neighborhood of θ(z), and E[M(y)] < ∞.
(C6) The unknown functions θ(z) have continuous second derivative. For j =

1, . . . , k, σ 2
j (z) > 0, and π j (z) > 0 for all x ∈ X .

(C7) For all i and j , the following conditions hold:

E

[∣∣∣∣
∂�(θ(z),Y )

∂θi

∣∣∣∣
3
]

< ∞ E

[(
∂2�(θ(z),Y )

∂θi∂θ j

)2
]

< ∞

(C8) θ ′′
0(·) is continuous at the point z.

(C9) The third derivative |∂3�(π , y)/∂πi∂π j∂πk | ≤ M(y) for all y and all π in a
neighborhood of π(z), and E[M(y)] < ∞.

(C10) The unknown functions π(z) have continuous second derivative. For j =
1, . . . , k, π j (z) > 0 for all x ∈ X .

(C11) For all i and j , the following conditions hold:

E

[∣∣∣∣
∂�(π(z),Y )

∂πi

∣∣∣∣
3
]

< ∞ E

[(
∂2�(π(z),Y )

∂πi∂π j

)2
]

< ∞

(C11) π ′′(·) is continuous at the point z.
Proof of Theorem 1 Ichimura (1993) have shown that under conditions (i)–(iv), α is
identifiable. Further, Huang et al. (2013) showed that with condition (v), the nonpara-
metric functions are identifiable. Thus completes the proof. �
Proof of Theorem 2 Let

π̂∗
j = √

nh{π̂ j − π j (z)}, j = 1, . . . , k − 1.

m̂∗
j = √

nh{m̂ j − m j (z)}, j = 1, . . . , k,

σ̂ 2∗
j = √

nh{σ̂ 2
j − σ 2

j (z)}, j = 1, . . . , k.

Define π̂
∗ = (π̂∗

1 , . . . , π̂∗
k−1)

�, m̂∗ = (m̂∗
1, . . . , m̂

∗
k)

�, σ̂
∗ = (σ̂ ∗

1 , . . . , σ̂ ∗
k )� and

denote θ̂
∗ = (π̂

∗T
, m̂∗T

, (σ̂
∗2

)�)�. Let an = (nh)−1/2 and

�(θ(z), α̃, xi ,Yi )= log

⎧
⎨

⎩

k∑

j=1

π j (α̃
�xi )φ(Yi |m j (α̃

�xi ), σ 2
j (α̃

�xi ))

⎫
⎬

⎭ Kh(α̃
�xi − z).
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If (π̂ , m̂, σ̂
2
)� maximizes (4), then θ̂

∗
maximizes

�∗
n(θ

∗) = h
n∑

i=1

[�(θ(z) + anθ
∗, α̃, xi ,Yi ) − �(θ(z), α̃, xi ,Yi )]Kh(Ẑi − z) (22)

with respect to θ∗. By a Taylor expansion,

�∗
n(θ

∗) = W�
1nθ

∗ + 1

2
θ∗TA1nθ

∗ + op(1), (23)

where

W1n =
√
h

n

n∑

i=1

∂�(θ(z), α̃, xi ,Yi )
∂θ

Kh(Ẑi − z),

and

A2n = 1

n

n∑

i=1

∂2�(θ(z), α̃, xi ,Yi )

∂θ∂θ� Kh(Ẑi − z).

By WLLN, it can be shown that A1n = − f (z)I (1)
θ (z) + op(1). Therefore,

�∗
n(θ

∗) = W�
1nθ

∗ − 1

2
f (z)θ∗TI (1)

θ (z)θ∗ + op(1). (24)

Using the quadratic approximation lemma (see, for example, Fan and Gijbels 1996),
we have that

θ̂
∗ = f (z)−1I (1)

θ (z)−1W1n + op(1). (25)

Note that

W1n =
√
h

n

n∑

i=1

∂�(θ(z),α, xi ,Yi )
∂θ

Kh(Zi − z) + D1n + Op

(√
h

n
‖α̃ − α‖2

)

where

D1n =
√
h

n

n∑

i=1

{
∂2�(θ(z),α, xi ,Yi )

∂θ∂θ� [xiθ ′(Zi )]�Kh(Zi − z)

}
(α̃ − α).

Since
√
n(α̃ − α) = Op(1), it can be shown that

D1n = −√
h f (z)E

[
∂2�(θ(z),α, x,Y )

∂θ∂θ� [xθ ′(Z)]�
]

= op(1),

and

Op

(√
h

n
‖α̃ − α‖2

)
= op(1).
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Therefore,

W1n =
√
h

n

n∑

i=1

∂�(θ,α, xi ,Yi )
∂θ

Kh(Zi − z) + op(1).

To complete the proof, we now calculate the mean and variance ofWn . Note that

E(W1n) = √
nhE

[
E

[
∂�(θ,α, xi ,Yi )

∂θ
Kh(Zi − z)|Z = z0

]]

= √
nh

[
1

2
f (z)Λ

′′
1(z|z) + f ′(z)Λ′

1(z|z)
]

κ2h
2. (26)

Similarly, we can show that

Cov(W1n) = f (z)I (1)
θ (z)ν0 + op(1),

where κl = ∫
t l K (t)dt and νl = ∫

t l K 2(t)dt . The rest of the proof follows a standard
argument. �
Proof of Theorem 3 Denote Z = α�x and Ẑ = α̂

�x. Let �(θ(z), X ,Y ) =
log

∑k
j=1 π j (z)φ(Y |m j (z), σ 2

j (z)). If θ̂(z0; α̂) maximizes (4), then it solves

0 = n−1
n∑

i=1

∂�(θ̂(z0; α̂), Xi ,Yi )

∂θ
Kh(Ẑi − z0).

Apply a Taylor expansion and use the conditions on h, we obtain

0 = n−1
n∑

i=1

q1i (Zi )Kh(Zi − z0)

+ n−1
n∑

i=1

[q2i (Zi )Kh(Zi − z0)] ( hatθ(z0; α̂) − θ(z0))

+ n−1
n∑

i=1

q2i (Zi )[xiθ ′(Zi )]�Kh(Zi − z0)(α̂ − α) + op(n
−1/2) + Op(h

2)

By similar argument as in the previous proof,

θ̂(z0; α̂) − θ(z0) = n−1 f −1(z0)I
(1)−1
θ (z0)

n∑

i=1

q1i (Zi )Kh(Zi − z0)

− I (1)−1
θ (z0)E{q2(Z)[xθ ′(Z)]�|Z = z0}(α̂ − α) + op(n

−1/2).

(27)
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Note that

θ̂(α̂
�xi ; α̂) − θ(α�xi ) = θ̂(α̂

�xi ; α̂) − θ̂(α�xi ; α̂) + θ̂(α�xi ; α̂) − θ(α�xi )

= (θ̂
′
(α�xi ; α̂))�(α̂

� − α�)xi + θ̂(α�xi ; α̂) − θ(α�
0 xi ) + op(n

−1/2)

= (θ ′(α�xi ))�(α̂
� − α�)xi + θ̂(α�xi ; α̂) − θ(α�xi ) + op(n

−1/2), (28)

where the second part is handled by (27).
Since α̂ maximizes (9), it is the solution to

0 = λα̂ + n−1/2
n∑

i=1

xi θ̂
′
(α̂

�xi ; α̂)
∂�(θ̂(α̂

�xi ; α̂), Xi ,Yi )

∂θ
,

where λ is the Lagrange multiplier. By the Taylor expansion and using (28), we have
that

0 = λα̂ + n−1/2
n∑

i=1

xiθ ′(Zi )q1i (Zi )

+ n−1/2
n∑

i=1

xiθ ′(Zi )q2i (Zi )[θ̂(α̂
�xi ) − θ(α�xi )] + op(1)

= λα̂ + n−1/2
n∑

i=1

xiθ ′(Zi )q1i (Zi )

+ n−1/2
n∑

i=1

xiθ ′(Zi )q2i (Zi )(xiθ ′(Zi ))
�(α̂ − α)

+ n−1/2
n∑

i=1

xiθ ′(Zi )q2i (Zi )[θ̂(Zi ) − θ(Zi )]) + op(1).

Define
Aα = E{[xθ ′(Z)]q2(Z)[xθ ′(Z)]�},

and apply (27),

0 = λα̂ + n−1/2
n∑

i=1

xiθ ′(Zi )q1i (Zi ) + n1/2Aβ(α̂ − α)

− n−1/2
n∑

i=1

xiθ ′(Zi )q2i (Zi )I
−1
θ (Zi )E{q2(Z)[xθ ′(Z)]�|Z = Zi }(α̂ − α)

+ n−1/2
n∑

i=1

xiθ ′(Zi )q2i (Zi )n
−1 f −1(Zi )I

−1
θ (Zi )
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×
n∑

t=1

q1t (Zt )Kh(Zt − Zi ) + op(1)

= λα̂ + n−1/2
n∑

i=1

xiθ ′(Zi )q1i (Zi ) + Q1n
1/2(α̂ − α)

+ n−1/2
n∑

i=1

xiθ ′(Zi )q2i (Zi )n
−1 f −1(Zi )I

(1)−1
θ (Zi )

×
n∑

t=1

q1t (Zt )Kh(Zt − Zi ) + op(1). (29)

Interchanging the summations in the last term, we get

n−1/2
n∑

i=1

[
n−1

n∑

t=1

xtθ ′(Zt )q2t (Zt )Kh(Zt − Zi ) f
−1(Zt )I

−1
θ (Zt )q1i (Zi )

]

= n−1/2
n∑

i=1

E[xθ ′(Z)q2(Z)|Zi ]I (1)−1
θ (Zi )q1i (Zi ) + op(1). (30)

Let Γα = I − αα� + op(1). Combining (29) and (30), and multiply by Γα , we
have

ΓαQ1n
1/2(α̂ − α) = n−1/2

n∑

i=1

Γα{xiθ ′(Zi )

+ E[xθ ′(Z)q2(Z)|Zi ]I (1)−1
θ (Zi )}q1i (Zi ) + op(1). (31)

It can be shown that the right-hand side of (31) has the covariance matrix ΓαQ1Γα ,
and therefore, completes the proof. �

Proof of Theorem 4 Ichimura (1993) have shown that under conditions (i)–(iv), α is
identifiable. Furthermore, Huang and Yao (2012) showed that with condition (v),
(π(·),β, σ 2) are identifiable. Thus completes the proof. �

Proof of Theorem 5 This proof is similar to the proof of Theorem 2.
Let π̂∗

j = √
nh{π̂ j − π j (z)}, j = 1, . . . , k − 1, and π̂

∗ = (π̂∗
1 , . . . , π̂∗

k−1)
�. It can

be shown that
π̂

∗ = f (z)−1I (2)−1
π (z)W2n + op(1),

where

W2n =
√
h

n

n∑

i=1

∂�(π(z), λ̂, xi ,Yi )
∂π

Kh(Ẑi − z).
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To complete the proof, notice that

E(W2n) = √
nhE

{
E[∂�(π ,λ, xi ,Yi )

∂π
Kh(Zi − z)|Z = z0]

}

= √
nh[1

2
f (z)Λ′′

2(z|z) + f ′(z)Λ′
2(z|z)]κ2h2,

and Cov(W2n) = f (z)I (2)
π (z)ν0 + op(1). The rest of the proof follows a standard

argument. �
Proof of Theorem 6s The proof is similar to the proof of Theorem 3. It can be shown
that

π̂(z0; λ̂) − π(z0) = n−1 f −1(z0)I
(2)−1
π (z0)

n∑

i=1

qπ i (Zi )Kh(Zi − z0)

−I (2)−1
π (z0)E{qππ (Z)[xπ ′(Z)]�|Z = z0}(α̂ − α) − I (2)−1

π (z0)E{qπη(Z)|Z
= z0}(η̂ − η) + op(n

−1/2),

and therefore,

π̂(Ẑi ; λ̂) − π(Zi ) = {xiπ ′(Zi )}�(α̂ − α) + π̂(Zi ; λ̂)

−π(Zi ) + op(n
− 1

2 ). (32)

Since λ̂ maximizes (14), it is the solution to

0 = γ

(
α̂

0

)
+ n− 1

2

n∑

i=1

(
xi π̂

′
(Ẑi ; λ̂)

I

)
qπ (π̂(Ẑi ; λ̂), λ̂),

where γ is the Lagrange multiplier. By Taylor series and (32)

0 = γ

(
α̂

0

)
+ n− 1

2

n∑

i=1

Λ1i qπ i (Zi ) + n
1
2Q2

(
α̂ − α

η̂ − η

)

+ n− 1
2

n∑

i=1

Λ1i qππ i (Zi )n
−1 f −1(Zi )I

(2)−1
π (Zi )

×
n∑

j=1

qπ j (Z j )Kh(Z j − Zi ) + op(1)

= γ

(
α̂

0

)
+ n− 1

2

n∑

i=1

Λ1i qπ i (Zi ) + n
1
2Q2

(
α̂ − α

η̂ − η

)

+ n− 1
2

n∑

i=1

E[Λ1i qππ (Zi )]I (2)−1
π (Zi )qπ i (Zi ) + op(1), (33)
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where Λ1i =
(
xiπ ′(Zi )

I

)
, and the last equation is the result of interchanging the

summations. Let Γα =
(
I − αα� 0

0 I

)
+op(1). By (33), and multiply by Γα , we have

n
1
2 ΓαQ2

(
α̂ − α

η̂ − η

)
= n− 1

2

n∑

i=1

Γα

{
Λ1i − I (2)−1

π (Zi )E[Λ1i (Zi )qππ (Zi )|Zi ]
}

× qπ i (Zi ) + op(1). (34)

It can be shown that the right-hand side of (34) has the covariance matrix ΓαQ2Γα ,
and thus, completes the proof. �
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