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Abstract
Laplacian support vector machine (LapSVM), which is based on the semi-supervised
manifold regularization learning framework, performs better than the standard SVM,
especially for the case where the supervised information is insufficient. However, the
use of hinge loss leads to the sensitivity ofLapSVMtonoise around the decision bound-
ary. To enhance the performance of LapSVM, we present a novel semi-supervised
SVMwith the asymmetric squared loss (asy-LapSVM) which deals with the expectile
distance and is less sensitive to noise-corrupted data. We further present a simple and
efficient functional iterative method to solve the proposed asy-LapSVM, in addition,
we prove the convergence of the functional iterativemethod from two aspects of theory
and experiment. Numerical experiments performed on a number of commonly used
datasets with noise of different variances demonstrate the validity of the proposed
asy-LapSVM and the feasibility of the presented functional iterative method.

Keywords Semi-supervised learning · Support vector machine · Noise sensitivity ·
Asymmetric squared loss

Mathematics Subject Classification 90C20 · 90C90

1 Introduction

As a powerful supervised learning algorithm based on solid theoretical foundations,
support vector machine (SVM) (Cristianini and Shawe-Taylor 2000; Vapnik 1995) has
gained substantial attention inmany research areas. By simultaneouslyminimizing the
regularization term and the hinge loss function, SVM implements the structural risk
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minimization principle rather than the traditional empirical risk minimization princi-
ple. Due to its remarkable characteristics such as the good generalization performance,
the absence of local minima and sparse representation of the solution, SVM and its
variants (Zhao et al. 2019; Melki et al. 2018) have been successfully applied to a wide
range of applications, including classification, regression, clustering, representational
learning and so on. However, there still exists a great space for improvements on the
traditional SVM.

On the one hand, the use of hinge loss function leads to the sensitivity of SVM to
re-sampling and noise around the decision boundary. To alleviate this disadvantage,
various methods have been proposed so far (Bi and Zhang 2004; Shivaswamy et al.
2006; Xu et al. 2009; Zhong 2012;Wang et al. 2015;Wang and Zhong 2014). Recently,
motivated by the link between the hinge loss and the shortest distance, Huang et al.
(2014) proposed a new SVM classifier with the pinball loss (Pin-SVM). The pinball
loss, which shares many good properties and brings noise insensitivity for classifica-
tion, is related to the quantile distance (Koenker 2005; Jumutc et al. 2013) between
two classes. The theoretical analysis and experimental results show that Pin-SVM is
more stable to noise-corrupted data compared with the traditional SVM. Lately, to
speed up the training process for Pin-SVM, Huang et al. (2014) further exploited the
expectile distance as a surrogate of the quantile distance and propose a new SVM
classifier with the asymmetric squared loss (aLS-SVM). This is motivated by the fact
that the expectile value, which is related to minimizing the asymmetric squared loss
(Lu et al. 2018), has similar statistical properties to the quantile value. In other words,
aLS-SVM is an approximation of Pin-SVM which can be effectively solved.

On the other hand, a main challenge for the standard SVM is its dependence on
sufficient supervised information. In many real-world applications, such as natural
language parsing (Tur et al. 2005), spam filtering (Guzella and Caminhas 2009), and
video surveillance (Zhang et al. 2011), the acquisition of enough labeled data is usu-
ally difficult while unlabeled data are available in large quantity. In such situations,
the performance of SVM usually deteriorates since a lot of information carried by the
unlabeled data is simply ignored. To handle the problem, semi-supervised learning
(SSL) is proposed. It has become an efficient paradigm (Chapelle et al. 2006; Scar-
dapane et al. 2016; Li et al. 2017; Calma et al. 2018), especially that with manifold
regularization (MR) (Belkin et al. 2006; Chen et al. 2014) which tries to capture the
geometric information from both labeled and unlabeled data and makes the smooth-
ness of classifiers along the intrinsic manifold via an additional regularization term.
With the addition of the MR into the conventional SVM, Belkin et al. (2006) pre-
sented the classical Laplacian SVM (LapSVM), in which the geometric information
embedded in the abundant unlabeled data is fully considered to build more reasonable
classifiers. After that, under the semi-supervisedMR learning framework, a number of
SVM-based SSL algorithms have emerged (Sun 2013; Khemchandani and Pal 2016;
Pei et al. 2017a, b). However, similar to SVM, LapSVM is sensitive to noise-corrupted
data, since it also employs the minimal distance which is related to the hinge loss to
measure the margin between two classes.

In this paper, inspired by the studies above, we propose a novel semi-supervised
support vector machine with the asymmetric squared loss (asy-LapSVM). Our moti-
vation mainly depends on the facts that the MR has the ability to encode the geometric
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information embedded in the unlabeled data and the expectile distance is stable to
noise-corrupted data. In other words, we hope that the proposed asy-LapSVM pos-
sesses the ability to make full use of the abundant unlabeled data, and moreover, it is
stable to noise-corrupted data. Moreover, to speed up the training process, we present
a simple and efficient functional iterative method to replace the traditional quadratic
programming (QP) to solve the involved optimization problems. The convergence
property of the iterative method is proved by both of the theory and experiments.
Experimental results on a number of commonly used datasets show that the proposed
asy-LapSVM achieves a significant performance in comparison with several popular
supervised learning (SL) and SSL algorithms.

In summary, by incorporating the properties of the SSL and the asymmetric squared
loss, the advantages of the proposed algorithm are as follows:

• We construct a robust LapSVM framework by adopting an asymmetric squared
loss, and it can be effectively solved with the help of a simple functional iterative
method.

• The proposed model belongs to inductive learning and is natural for out-of-sample
data, which can avoid expensive graph computation.

• The extensive comparison experiments with several related methods on widely
used benchmark datasets demonstrate the effectiveness of the proposed method.

Moreover, compared with the very recently published algorithms, such as the pure
SSL algorithms in references (Huang et al. 2014; Ma et al. 2019), the proposed asy-
LapSVM not only maintains their primary advantages such as the ability to make use
of unlabeled data and handle unseen data in the testing phase directly, but also makes
them less sensitive to noise-corrupted data (feature noises). As for the robust SSL
algorithms algorithms in references (Du et al. 2019; Pei et al. 2018; Gu et al. 2019),
they are all proposed for outliers among labeled data (label noises).

The remainder of this paper is organized as follows. Section 2 briefly outlines
the background. The novel asy-LapSVM is proposed in Sect. 3, which includes both
the linear and nonlinear cases. Moreover, the proof of convergence of the iterative
algorithm is given. After presenting the experimental results on multiple datasets in
Sect. 4, we conclude this paper in Sect. 5.

2 Background

In this section, some background knowledge of the proposed algorithm including the
asymmetric squared loss function and the semi-supervised manifold regularization
learning framework is briefly reviewed.

2.1 Asymmetric squared loss function

In the field of machine learning, loss function is usually one of the key issues in
designing learning algorithms since most problems require it to describe the cost of
the discrepancy between the prediction and the observation. In fact, the use of the
loss function can be traced back to a long time ago. For example, the least-square
loss function for regression was already employed by Legendre, Gauss, and Adrain in
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the early 19th century (Steinwart and Christmann 2008). At present, various margin-
based loss functions, such as hinge loss, squared loss, exponential loss, logistic loss,
and brown boost loss have been exploited to search for the optimal classification and
regression functions.

In a binary classification problem, a large margin between two classes plays an
important role to obtain a good classifier. Traditionally, the margin is measured by
the minimal distance between two sets, which is related to the hinge loss (1) or the
squared hinge loss (2):

vhin(r) = max{0, r}, (1)

vshin(r) = max{0, r}2, (2)

where r = 1 − y f (x), in which x ∈ Rd is the input sample, y ∈ {+1,−1} is the
corresponding output, and f (x) is the prediction. However, measuring the margin
by the minimal value leads to the sensitivity of the corresponding classifiers to re-
sampling and noise around the decision boundary. To overcome thisweak point, Huang
et al. (2014) employed the quantile value which has been deeply studied and widely
applied in regression problems, as a surrogate of the minimal value to measure the
margin between classes, and proposed the following pinball loss (3) which brings
noise insensitivity:

vpin(r) =
{
ur , r ≥ 0,

−(1 − u)r , r < 0,
(3)

where 0 < u < 1. Different from the hinge loss, the pinball loss gives an additional
penalty on the correctly classified samples. So, the pinball loss can be regarded as an
extension to the hinge loss. However, the pinball loss is non-smooth and its minimiza-
tion is more difficult than that of smooth loss functions. Hence, Huang et al. (2014)
modified the measurement of margin by taking the expectile value, which is related
to the following smooth asymmetric squared loss:

vasy(r) =
{
ur2, r ≥ 0,

(1 − u)r2, r < 0.
(4)

The property of asymmetric squared loss is similar to that of the pinball loss. From the
definition of vasy(·), one observes that when the value of u is 1, it becomes the squared
hinge loss vshin(·). Similar to the difference between the pinball loss and the hinge
loss, the asymmetric squared loss, which gives an asymmetric penalty for negative and
positive losses, can be seen as a generalized squared hinge loss. The plots of vhin(r),
vshin(r), vpin(r) and vasy(r) with u = 0.83 are shown in Fig. 1.

2.2 Semi-supervisedmanifold regularization learning framework

The idea of regularization, which is widely used in machine learning, has its root in
mathematics to solve ill-posed problems (Tikhonov 1963). A number of popular learn-
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Fig. 1 Plots of loss functions

ing algorithms can be interpreted as a supervised regularization learning framework
that consists of different loss functions and complexity measures in an appropriately
chosen Reproducing Kernel Hilbert Space (RKHS).

Given a set of labeled samplesSl = {xi , yi }li=1 generated according to a probability
distribution, the standard supervised regularization learning framework can be written
as:

min
f ∈Hk

l∑
i=1

v(ri ) + λ1‖ f ‖2k, (5)

where ri = 1 − yi f (xi ) for i = 1, . . . , l, v stands for some loss function on the
labeled samples, λ1 is the weight of ‖ f ‖2k that controls the complexity of the unknown
function f , in which ‖ · ‖k is a norm related to a Mercer kernel k in the RKHS Hk .
For the choice of k, it can be the linear kernel function, the polynomial kernel function
(POLY) and the radial basis function kernel function (RBF) and so on. In the numerical
experiments, the RBF kernel (6) which gains an advantages over others (Lu et al. 2018)
will be employed:

k(xi , x j ) = exp(−σ‖xi − x j‖2), (6)

where σ is the kernel parameter.
It is clear that the excellent performance of standard supervised regularization

learning framework (5) is in premise of sufficient labeled samples. However, in many
real-world applications, the acquisition of labeled data is generally more difficult than
the collection of unlabeled ones. In such situations, a learning framework that is able
to make full use of unlabeled data to improve recognition performance is of potentially
great significance. In the light of this idea, by adding a manifold regularization term
‖ f ‖2I in formulation (5), Belkin et al. (2006) proposed the following semi-supervised
manifold regularization learning framework:
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min
f ∈Hk

l∑
i=1

v(ri ) + λ1‖ f ‖2k + λ2‖ f ‖2I, (7)

where λ2 is the weight of ‖ f ‖2I in the low dimensional manifold (or intrinsic norm),
which enforces f smoothness along the intrinsic manifold.

Given l labeled and m unlabeled data in the training set

S = Sl ∪ Su = {xi , yi }li=1 ∪ {xi }ni=l+1, (8)

where xi ∈ Rd , i = 1, . . . , n (n = l + m is the number of training samples), and
yi ∈ {−1, 1} for i = 1, . . . , l. Su denotes a set of m unlabeled data which are drawn
according to a marginal distribution. The manifold regularization term ‖ f ‖2I can be
reexpressed as:

‖ f ‖2I =
n∑

i=1

n∑
j=1

Wi j ( f (xi ) − f (x j ))
2 = fT Lf, (9)

where f = [ f (x1), . . . , f (xn)]T is the vector of the n values of f on the training
data, L is the graph Laplacian associated to S, given by L = G − W , where W is
the adjacency matrix which can be defined by the p nearest neighbors, and its non-
negative edge weight Wi j represents the similarity of every pair of input instances. G
is a diagonal matrix with its i-th diagonal element Gii = ∑n

j=1 Wi j represents the
weight degree of vertex i . When the manifold regularization term (9) is used in the
semi-supervised regularization learning framework (7), we can understand it by the
means: if the samples xi and x j has higher similarity (Wi j is larger), the difference of
f (xi ) and f (x j ) will obtain a big punishment.
By applying the hinge loss function to the semi-supervised manifold regularization

learning framework (7), Belkin et al. (2006) proposed the classical LapSVM which
can exploit the geometric information of the marginal distribution embedded in unla-
beled data to construct a more reasonable classifier. Due to its excellent performance,
LapSVM becomes a powerful choice for SSL. More details about LapSVM can be
found in Belkin et al. (2006).

3 Semi-supervised SVMwith asymmetric squared loss

In this section, we elaborate the formulation of the proposed semi-supervised SVM
with the asymmetric squared loss (asy-LapSVM) for semi-supervised binary classifi-
cation problem. After giving the detailed derivations of the proposed asy-LapSVM in
the linear and nonlinear cases, we present a simple and efficient functional iterative
method to optimize them. Then we prove the convergence of the proposed functional
iterative method in theory. And in the end, we summary the proposed asy-LapSVM.
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3.1 Linear asy-LapSVM

Although LapSVM has shown good generalization, we notice that hinge loss function
is noise sensibility. To further improve its generalization performance, we provide a
stable asy-LapSVM, especially for noise-corrupted data. In specific, unlike LapSVM,
we exploit the asymmetric squared loss (4) as a surrogate of the hinge loss for the
proposed linear asy-LapSVM. Meanwhile, we maximize the margin measured by the
expectile distance between two classes by optimizing with respect to both the weight
vector w and the bias term b of the linear asy-LapSVM classifier f (x) = wT x + b.
Thus, the regularization term ‖ f ‖2k can be expressed as:

‖ f ‖2k = 1

2
(‖w‖2 + b2). (10)

As for the manifold regularization term ‖ f ‖2I, it has the following form:

‖ f ‖2I = fT Lf = wT DT LDw, (11)

where D = [x1, . . . , xn]T and f = [ f (x1), . . . , f (xn)]T = [wT x1, . . . ,wT xn]T =
Dw, in which we deliberately reduce the bias term b for convenience.

By substituting the asymmetric squared loss (4), the regularization term (10) and
the manifold regularization term (11) into the semi-supervised manifold regulariza-
tion learning framework (7), the primal problem of the linear asy-LapSVM can be
formulated as

min
w,b,ξ

1
2 (‖w‖2 + b2) + c

2ξ
T ξ + λ

2wT DT LDw

s.t. Y (Dw + eb) ≥ el − 1
u ξ ,

Y (Dw + eb) ≤ el + 1
1−u ξ ,

(12)

where 0 < u < 1, c and λ are the regularization parameters, ξ is the error variable
vector, el is the vector of ones of l dimension, e is the vector of ones of n dimension,
Y ∈ Rl×n is a matrix with elements Yii = yi and other elements are zeros.

Introducing the nonnegative Lagrange parameter vectors α1 and α2, the Lagrangian
function for the problem (12) can be expressed as

L(w, b, ξ ,α1,α2) = 1

2
(‖w‖2 + b2) + c

2
ξ T ξ + λ

2
wT DT LDw

− αT
1

[
Y (Dw + eb) − el + 1

u
ξ

]

− αT
2

[
−Y (Dw + eb) + el + 1

1 − u
ξ

]
.

(13)

According to the following Karush–Kuhn–Tucker (KKT) conditions

∂L
∂w

= (I + λDT LD)w − DTY T (α1 − α2) = 0, (14)
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∂L
∂b

= b − eT Y T (α1 − α2) = 0, (15)

∂L
∂ξ

= cξ −
(

α1

u
+ α2

1 − u

)
= 0, (16)

we get

w = (I + λDT LD)−1DTY T (α1 − α2), (17)

b = eT Y T (α1 − α2), (18)

ξ = 1

c

(
α1

u
+ α2

1 − u

)
. (19)

Then the following dual problem of (12) can be derived by substituting the above Eqs.
(17)–(19) into the Lagrangian function (13)

min
α1,α2

1
2 (α1 − α2)

T F(α1 − α2) + 1
2c

(
α1
u + α2

1−u

)T (
α1
u + α2

1−u

)
− eTl (α1 − α2)

s.t. α1 ≥ 0el ,
α2 ≥ 0el ,

(20)

where F = Y (D(I + λDT LD)−1DT + eeT )Y T .
Although the proposed asy-LapSVM can be solved by the classical quadratic pro-

gramming, inspired by the idea in Balasundaram and Benipal (2016), we adopt a
simple functional iterative method, which leads to the minimization of a differentiable
convex function in a space of dimensionality equal to the number of classified points
and in some cases is dramatically faster than a standard quadratic programming SVM
solver, to solve the dual problem (20). Specifically, based on theKarush–Kuhn–Tucker
(KKT) necessary and sufficient optimality conditions for the dual problem (20), we
have

0el ≤ α1 ⊥
(
F + I

cu2

)
α1 −

(
F − I

cu(1 − u)

)
α2 − el ≥ 0el ,

0el ≤ α2 ⊥
(
F + I

c(1 − u)2

)
α2 −

(
F − I

cu(1 − u)

)
α1 + el ≥ 0el ,

(21)

⇔

0el ≤ α1

cu2(1 − u)
⊥ α1

cu2(1 − u)
+

(
F − I

cu(1 − u)

)
(α1 − α2) − el ≥ 0el ,

0el ≤ α2

cu(1 − u)2
⊥ α2

cu(1 − u)2
−

(
F − I

cu(1 − u)

)
(α1 − α2) + el ≥ 0el ,

(22)
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⇔

0el ≤ α1

cu2(1 − u)2
⊥ α1

cu2(1 − u)2

+ 1

(1 − u)

((
F − I

cu(1 − u)

)
(α1 − α2) − el

)
≥ 0el ,

0el ≤ α2

cu2(1 − u)2
⊥ α2

cu2(1 − u)2
− 1

u

((
F − I

cu(1 − u)

)
(α1 − α2) − el

)
≥ 0el , (23)

where the symbol “⊥” represents two vectors are orthogonal. By exploiting the easily
established identity between any two vectors a and b (Fung and Mangasarian 2004):

0 ≤ a ⊥ (a − b) ≥ 0 ⇔ a = b+ = b + |b|
2

, (24)

where b+ = max{0, b} and |b| denotes the vector with all of its components set
to absolute values, the optimality conditions (23) can be written in the following
equivalent form:

α1

cu2(1 − u)2
=

(
1

(1 − u)

(
−

(
F − I

cu(1 − u)

)
(α1 − α2) + el

))
+

= 1

2(1 − u)

(
−

(
F − I

cu(1 − u)

)
(α1 − α2) + el

+
∣∣∣∣−

(
F − I

cu(1 − u)

)
(α1 − α2) + el

∣∣∣∣
)

,

α2

cu2(1 − u)2
=

(
1

u

((
F − I

cu(1 − u)

)
(α1 − α2) − el

))
+

= 1

2u

((
F − I

cu(1 − u)

)
(α1 − α2) − el

+
∣∣∣∣
(
F − I

cu(1 − u)

)
(α1 − α2) − el

∣∣∣∣
)

.

(25)

Next, let α = α1 − α2, we obtain the following absolute value equation problem:

α

cu2(1 − u)2
= 1

2(1 − u)

(
−

(
F − I

cu(1 − u)

)
α + el

+
∣∣∣∣−

(
F − I

cu(1 − u)

)
α + el

∣∣∣∣
)

− 1

2u

((
F − I

cu(1 − u)

)
α − el

+
∣∣∣∣
(
F − I

cu(1 − u)

)
α − el

∣∣∣∣
)

123



168 H. Pei et al.

= 1

2u(1 − u)

(
−

(
F − I

cu(1 − u)

)
α + el

+(2u − 1)

∣∣∣∣
(
F − I

cu(1 − u)

)
α − el

∣∣∣∣
)

, (26)

⇔ (
F + I

cu(1 − u)

)
α = el + (2u − 1)

∣∣∣∣
(
F − I

cu(1 − u)

)
α − el

∣∣∣∣ . (27)

The problem (27) can be solved by a simple functional iterative method given by

αi+1 =
(
F + I

cu(1 − u)

)−1 (
el + (2u − 1)

∣∣∣∣
(
F − I

cu(1 − u)

)
αi − el

∣∣∣∣
)

,

i = 0, 1, 2, . . . , (28)

After the optimal solution α∗ is obtained, we get the following linear asy-LapSVM
classifier which is represented by the dual variables

f (x) = wT x + b = α∗T Y (D(I + λDT LD)−1x + e). (29)

3.2 Nonlinear asy-LapSVM

The same as the linear case, the asymmetric squared loss (4) is exploited in the pro-
posed nonlinear asy-LapSVM, and the margin measured by the expectile distance is
maximized by optimizing with respect to both the weight vector w and the bias term
b of the nonlinear asy-LapSVM classifier f (x) = wTφ(x) + b, where φ(·) is a non-
linear mapping function from a low-dimensional input space to a high-dimensional
Hilbert space H . Thus, the regularization term ‖ f ‖2k can be expressed as:

‖ f ‖2k = 1

2
(‖w‖2 + b2). (30)

As for the manifold regularization term ‖ f ‖2I, on the basis of the constructed graph
laplacian matrix L , the manifold regularization term is defined as:

‖ f ‖2I = fT Lf = wT DT
1 LD1w, (31)

where D1 = [φ(x1), . . . , φ(xn)]T includes all of the labeled and unlabeled samples
in S and f = [ f (x1), . . . , f (xn)]T = [wTφ(x1), . . . ,wTφ(xn)]T = D1w, in which
we deliberately reduce the bias term b for convenience.

By substituting the asymmetric squared loss (4), the regularization term (30) and the
manifold regularization term (31) into the the semi-supervisedmanifold regularization
learning framework (7), the primal problem of the nonlinear asy-LapSVM can be
formulated as

123



A novel semi-supervised support vector machine with… 169

min
w,b,ξ

1
2 (‖w‖2 + b2) + c

2ξ
T ξ + λ

2wT DT
1 LD1w

s.t. Y (D1w + eb) ≥ el − 1
u ξ ,

Y (D1w + eb) ≤ el + 1
1−u ξ ,

(32)

where the constant u, the parameters c and λ, the vectors ξ , el and e, the matrix Y
have the same meanings as the ones in problems (12).

According to the Representer Theorem (Belkin et al. 2006), w can be expressed
as w = ∑n

i=1 ρiφ(xi ) = DT
1 ρ, where ρ ∈ Rn is a parameter vector. Then the terms

containing w in the optimization problem (32) can be rewritten as

1

2
‖w‖2 = 1

2
(DT

1 ρ)T (DT
1 ρ) = 1

2
ρT Kρ, (33)

λ

2
wT DT

1 LD1w = λ

2
(DT

1 ρ)T DT
1 LD1(D

T
1 ρ) = λ

2
ρT K LKρ, (34)

where K ∈ Rn×n is a Gram matrix with elements Ki, j = k(xi , x j ).
Based on the above analysis, the nonlinear optimization problem (32) can be con-

verted into the following form:

min
ρ,b,ξ

1
2ρ

T F1ρ + 1
2b

2 + c
2ξ

T ξ

s.t. Y (Kρ + eb) ≥ el − 1
u ξ ,

Y (Kρ + eb) ≤ el + 1
1−u ξ ,

(35)

where F1 = K + λK LK is a symmetric positive semi-definite matrix since the Gram
matrix K and the graphLaplacian L are two symmetric positive semi-definitematrices.

The Lagrange function of the optimization problem (35) can be written as

L(ρ, ξ ,α1,α2) = 1

2
ρT F1ρ + 1

2
b2 + c

2
ξ T ξ − αT

1

[
Y (Kρ + eb) − el + 1

u
ξ

]

− αT
2

[
−Y (Kρ + eb) + el + 1

1 − u
ξ

]
,

(36)

where α1 and α2 are Lagrange parameter vectors.
Differentiating the Lagrange function (36) with respect to ρ, b, ξ and setting them

equal to zero, we can obtain

∂L
∂ρ

= F1ρ − KY T (α1 − α2) = 0 ⇒ ρ = F−1
1 KY T (α1 − α2), (37)

∂L
∂b

= b − eT Y T (α1 − α2) = 0 ⇒ b = eT Y T (α1 − α2), (38)

∂L
∂ξ

= cξ −
(

α1

u
+ α2

1 − u

)
= 0 ⇒ ξ = 1

c

(
α1

u
+ α2

1 − u

)
. (39)
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It is worth noting that although the matrix F1 in (37) is always positive semi-definite, it
may not bewell conditioned in some situations. In the light of the idea of regularization,
F−1
1 can be revised by (ε I + F1)−1, where ε I (ε > 0) is a regularization term. In

the following, we shall continue to use F−1
1 with the understanding that, if need be,

(ε I + F1)−1 is to be used.
Then the following dual problem of (35) can be derived by substituting the above

Eqs. (37)–(39) into the Lagrangian function (36)

min
α1,α2

1
2 (α1 − α2)

T F2(α1 − α2) + 1
2c

(
α1
u + α2

1−u

)T (
α1
u + α2

1−u

)
− eTl (α1 − α2)

s.t. α1 ≥ 0el ,
α2 ≥ 0el .

(40)

where F2 = Y (K F−1
1 K + eeT )Y T .

We solve the dual problem (40) by a functional iterative method. Specifically, based
on the Karush–Kuhn–Tucker (KKT) necessary and sufficient optimality conditions for
the dual problem (40) , we have

0el ≤ α1 ⊥
(
F2 + I

cu2

)
α1 −

(
F2 − I

cu(1 − u)

)
α2 − el ≥ 0el ,

0el ≤ α2 ⊥
(
F2 + I

c(1 − u)2

)
α2 −

(
F2 − I

cu(1 − u)

)
α1 + el ≥ 0el , (41)

⇔

0el ≤ α1

cu2(1 − u)
⊥ α1

cu2(1 − u)
+

(
F2 − I

cu(1 − u)

)
(α1 − α2) − el ≥ 0el ,

0el ≤ α2

cu(1 − u)2
⊥ α2

cu(1 − u)2
−

(
F2 − I

cu(1 − u)

)
(α1 − α2) + el ≥ 0el ,

(42)

⇔

0el ≤ α1

cu2(1 − u)2
⊥ α1

cu2(1−u)2
+ 1

(1−u)

((
F2− I

cu(1−u)

)
(α1 − α2)−el

)
≥ 0el ,

0el ≤ α2

cu2(1−u)2
⊥ α2

cu2(1−u)2
− 1

u

((
F2− I

cu(1−u)

)
(α1−α2) − el

)
≥0el .

(43)

By exploiting the identity (24), the optimality conditions (43) can be written in the
following equivalent form:
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α1

cu2(1 − u)2
=

(
1

(1 − u)

(
−

(
F2 − I

cu(1 − u)

)
(α1 − α2) + el

))
+

= 1

2(1 − u)

(
−

(
F2 − I

cu(1 − u)

)
(α1 − α2) + el

+
∣∣∣∣−

(
F2 − I

cu(1 − u)

)
(α1 − α2) + el

∣∣∣∣
)

,

α2

cu2(1 − u)2
=

(
1

u

((
F2 − I

cu(1 − u)

)
(α1 − α2) − el

))
+

= 1

2u

((
F2 − I

cu(1 − u)

)
(α1 − α2) − el

+
∣∣∣∣
(
F2 − I

cu(1 − u)

)
(α1 − α2) − el

∣∣∣∣
)

. (44)

Let α = α1 − α2, we obtain the following absolute value equation problem:

α

cu2(1 − u)2
= 1

2(1 − u)

(
−

(
F2 − I

cu(1 − u)

)
α + el

+
∣∣∣∣−

(
F2 − I

cu(1 − u)

)
α + el

∣∣∣∣
)

− 1

2u

((
F2 − I

cu(1 − u)

)
α − el

+
∣∣∣∣
(
F2 − I

cu(1 − u)

)
α − el

∣∣∣∣
)

= 1

2u(1 − u)

(
−

(
F2 − I

cu(1 − u)

)
α + el

+ (2u − 1)

∣∣∣∣
(
F2 − I

cu(1 − u)

)
α − el

∣∣∣∣
)

,

(45)

⇔
(
F2 + I

cu(1 − u)

)
α = el + (2u − 1)

∣∣∣∣
(
F2 − I

cu(1 − u)

)
α − el

∣∣∣∣ . (46)

The problem (46) can be solved by the simple functional iterative method given by

αi+1 =
(
F2 + I

cu(1 − u)

)−1 (
el + (2u − 1)

∣∣∣∣
(
F2 − I

cu(1 − u)

)
αi − el

∣∣∣∣
)

,

i = 0, 1, 2, . . . . (47)

After the optimal solution α∗ is obtained, we get the following nonlinear asy-
LapSVM classifier which is represented by the dual variables
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f (x) = wTφ(x) + b =
n∑

i=1

ρ∗
i k(xi , x) + b∗ (48)

where ρ∗ = F−1
1 KY Tα∗ and b∗ = eT Y Tα∗.

Next, we prove the convergence of the proposed functional iterative method in the
following Theorem.

Theorem 1 Assume that α ∈ Rl is the solution of the absolute value Eq. (46) and
0.5 < u < 1, then, for any starting vector α0 ∈ Rl , the sequence of iterates generated
by (47) will always converge to α with linear rate of convergence.

Proof According to the conditions given in the above theorem, by using (46) and (47),
we get(

F2 + I

cu(1 − u)

)
(αi+1 − α)

= (2u − 1)

(∣∣∣∣
(
F2 − I

cu(1 − u)

)
αi − el

∣∣∣∣ −
∣∣∣∣
(
F2 − I

cu(1 − u)

)
α − el

∣∣∣∣
)

,

i = 0, 1, 2, . . . .

Since ∣∣∣∣
(∣∣∣∣

(
F2 − I

cu(1 − u)

)
αi − el

∣∣∣∣ −
∣∣∣∣
(
F2 − I

cu(1 − u)

)
α − el

∣∣∣∣
)∣∣∣∣

≤
∣∣∣∣
(
F2 − I

cu(1 − u)

)
(αi − α)

∣∣∣∣ ,
we have∥∥∥∥

(
F2 + I

cu(1 − u)

)
(αi+1 − α)

∥∥∥∥
≤ (2u − 1)

∥∥∥∥
(
F2 − I

cu(1 − u)

)
(αi − α)

∥∥∥∥
= (2u − 1)∥∥∥∥∥

(
F2 − I

cu(1 − u)

) (
F2 + I

cu(1 − u)

)−1 (
F2 + I

cu(1 − u)

)
(αi − α)

∥∥∥∥∥
≤ (2u − 1)

∥∥∥∥∥
(
F2 − I

cu(1 − u)

) (
F2 + I

cu(1 − u)

)−1
∥∥∥∥∥∥∥∥∥

(
F2 + I

cu(1 − u)

)
(αi − α)

∥∥∥∥ .

Let {q1, . . . , ql} be the set of the nonnegative eigenvalues of the positive semi-
definite matrix F2. Clearly, the eigenvalues of (F2 − I

cu(1−u)
)(F2 + I

cu(1−u)
)−1 will

become:
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{
q1 − 1

cu(1−u)

q1 + 1
cu(1−u)

, . . . ,
ql − 1

cu(1−u)

ql + 1
cu(1−u)

}
,

So, (2u − 1)||(F2 − 1
cu(1−u)

)(F2 + 1
cu(1−u)

)−1|| = (2u − 1)max{| q1−
1

cu(1−u)

q1+ 1
cu(1−u)

|, . . . ,

| ql−
1

cu(1−u)

ql+ 1
cu(1−u)

|} < 1 is always true. This shows the Theorem 1 holds. ��

Although we only prove the convergence of the nonlinear case, the convergence of
the linear case also can be easily gotten in the similar way. In the end, we summary
the proposed nonlinear asy-LapSVM as follows:

Input. A set of l labeled data and m unlabeled data S = Sl ∪ Su = {(xi , yi )}li=1 ∪
{xi }ni=l+1, the constant u, the positive parameters c and λ, the kernel parameter σ , the
number of the nearest neighbors p, the vector of ones of l dimension el , the vector of
ones of n dimension e, the matrix Y ∈ Rl×n with elements Yii = yi according to the
class of each sample, the maximum number of iterations max I = 15, the tolerance
tol = 10−4, and initial iteration number t = 0.

Step 1. Compute the graph Laplacian matrix L = G − W , in which W denotes the
adjacency matrix which is constructed by p nearest neighbors with n nodes in S and
edge weights Wi j are calculated by binary weights. G denotes the diagonal matrix
with its diagonal elements Gii = ∑n

j=1 Wi j representing the weight degree of the
vertex i .

Step 2. Choose a proper kernel function k(·, ·), and compute the Gram matrix K .

Step 3. Compute the matrices

F2 = Y (K (K + λK LK )−1K + eeT )Y T ,

Q =
(
F2 + I

cu(1 − u)

)−1

,

Q1 = F2 − I

cu(1 − u)
,

where I ∈ Rl×l is an identity matrix.

Step 4. Compute the initial vector

α0 = Qel .

Step 5. Compute αt+1 via

αt+1 = Q(el + (2u − 1)|Q1α
t − el |), i = 0, 1, 2, . . . .

Step 6. If ‖wt+1 − wt‖ < tol or t > max I , stop; else, let t = t + 1 and goto Step 5.

Step 7. Compute the bias term b = eT Y Tαt .
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Step 8. Derive the nonlinear asy-LapSVM classifier

f (x) = wTφ(x) + b =
n∑

i=1

ρi k(xi , x) + b,

where ρ = (K + λK LK )−1KY Tαt .

4 Numerical experiments

In this section, we will verify the validity of the proposed asy-LapSVM by comparing
it with several closely relevant algorithms on different kinds of datasets with noise of
different variances. After the experimental setup and data are described in Sects. 4.1
and 4.2, we carefully analyze the performance of our proposed asy-LapSVM in the
following subsections.

4.1 Experimental setup

We compare the proposed asy-LapSVM with a group of popular supervised learning
(SL) algorithms [SVM (Cristianini and Shawe-Taylor 2000), regularized least squares
(RLS) (Belkin et al. 2006), extreme learningmachine (ELM) (Huang et al. 2006), aLS-
SVM (Huang et al. 2014)] and semi-supervised learning (SSL) algorithms (LapSVM
(Belkin et al. 2006), Laplacian RLS (LapRLS) (Belkin et al. 2006), semi-supervised
ELM (SSELM) (Huang et al. 2014)). In the experiments, the sigmoid activation func-
tion is used for the two algorithms with ELM, and the number of hidden neurons is
set to 1000. For the remaining algorithms and the proposed asy-LapSVM, the RBF
kernel (6) which meets the Mercer’s theorem is employed. For the choice of param-
eters, a set of possible values are first predefined, and 5-fold cross validation is used
for all the compared methods. In order to avoid the bias caused by different sample
partition, 5-fold cross validation with different partition repeats 10 times at random,
and the average testing accuracies are computed to obtain the final evaluation results.
The ranges of the five parameters are listed as follows:

– c : {2−3, 2−2, 2−1, 20, 21, 22, 23},
– λ : {2−3, 2−2, 2−1, 20, 21, 22, 23},
– p : {5, 10, 15, 20},
– σ : {2−3, 2−2, 2−1, 20, 21, 22, 23},
– u : {0.55, 0.65, 0.75, 0.83, 0.95, 0.99}.
In themodel training, we randomly select 10% training samples as labeled samples,

and the remaining training samples are regarded as unlabeled samples. For supervised
algorithms, we use only the selected labeled samples to train the classifier, while for
semi-supervised algorithms, we use all the training set with both labeled and unlabeled
samples to train the classifier. The simulations of all the algorithms are carried out
in MATLAB R2016a on a personal computer with system configuration: Intel Core
i7 (3.6 GHz) and 8 GB random access memory. We use the quadratic programming
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(QP) solver embedded in MATLAB to solve all the QP problems and the MATLAB
operation “\” to realize the matrix inverse involved in the algorithms.

4.2 Data specification

In this subsection, several publicly available datasets including one artificial dataset,
six UCI1 datasets and five image datasets are employed to study the performance
of the proposed asy-LapSVM. The G50C2 artificial dataset is generated from two
unit covariance normal distributions with equal probabilities. The class means are
adjusted so that the Bayes error is 5%. For the image datasets, the Coil-203 dataset
includes 1440 grey-scale images sampled from 20 objects, and each object has 72
images with the size of 32 × 32. The USPS4 handwritten digit dataset consists of
7,291 training images and 2,007 test images with size of 16 × 16. The YaleB5 face
recognition dataset admittedly contains manifold structures includes 2414 grey human
facial images sampled from 38 persons, and each person has about 64 different images
with size of 32×32. TheMultiple Features (MF)6 handwritten numeral dataset consists
of 10 classes and 2,000 samples. The NUS-WIDE-OBJECT (NWO)7 dataset contains
31 categories and 30,000 network images (17,927 for training and 12,703 for testing)
created by the media search laboratory of National University of Singapore.

In order to fit into the binary-class environment, we choose two pairwise digits in
the USPS dataset, three pairwise objects in the Coil-20 dataset, three pairwise facial
images in the YaleB face recognition dataset, eight pairwise subsets in the MF dataset,
and seven pairwise subsets in the NWO dataset to constitute 23 binary-class image
datasets, namely, USPS1, USPS2, Coil-201, Coil-202, Coil-203, YaleB1, YaleB2,
YaleB3, MF1, MF2, MF3, MF4, MF5, MF6, MF7, MF8, NWO1, NWO2, NWO3,
NWO4, NWO5, NWO6, and NWO7. To facilitate the calculation, the well-known
principal component analysis (PCA) is adopted to preprocess these image datasets,
where the dimension and accumulative contribution rate after processing are displayed
in Table 1. The features of each dataset are corrupted by zero-mean Gaussian noise,
and the ratio of the variance of noise to that of the features, denoted as z, is set to
be 0 (i.e., noise-free), 0.05, and 0.1. The training and test data are aggravated by the
same noise. The important statistics of these employed datasets are summarized in
Table 1, where “No.” denotes the ordinal numbers of the datasets. “Selected class”
and “Selected size” denote the classes and sizes selected from the original datasets,
respectively. “Dimension” denotes the number of the original features.

1 http://archive.ics.uci.edu/ml/index.php.
2 http://people.cs.uchicago.edu/~vikass/manifoldregularization.html.
3 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
4 http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html.
5 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
6 http://archive.ics.uci.edu/ml/datasets/Multiple+Features.
7 http://lms.comp.nus.edu.sg/research/NUS-WIDE.html.
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Table 1 Information of the employed datasets

No. Datasets Selected
classes

Selected
size

Dimension Accumulative
contribution
rate

Reduced
dimension

1 G50C – (275, 275) 50 – –

2 Blood – (570, 178) 4 – –

3 Spect – (55, 212) 22 – –

4 Ionosphere – (126, 225) 34 – –

5 Fourclass – (307, 307) 2 – –

6 Monks2 – (395, 206) 6 – –

7 Pima – (500, 268) 8 – –

8 Coil-201 (1, 2) (72, 72) 1024 95.15% 30

9 Coil-202 (2, 4) (72, 72) 1024 95.12% 32

10 Coil-203 (2, 8) (72, 72) 1024 95.20% 26

11 USPS1 (3, 8) (731, 645) 256 95.09% 38

12 USPS2 (1, 2) (1194, 1005) 256 95.05% 22

13 YaleB1 (1, 2) (64, 64) 1024 93.04% 8

14 YaleB2 (5, 10) (64, 64) 1024 92.34% 8

15 YaleB3 (21, 36) (64, 64) 1024 89.16% 8

16 MF1 (1, 2) (200, 200) 649 95.05% 104

17 MF2 (1, 3) (200, 200) 649 95.11% 109

18 MF3 (1, 4) (200, 200) 649 95.07% 110

19 MF4 (2, 3) (200, 200) 649 95.05% 113

20 MF5 (2, 4) (200, 200) 649 95.02% 117

21 MF6 (3, 4) (200, 200) 649 95.01% 120

22 MF7 (4, 5) (200, 200) 649 95.10% 112

23 MF8 (5, 6) (200, 200) 649 95.06% 114

24 NWO1 (1, 2) (351, 964) 1134 92.03% 380

25 NWO2 (1, 3) (351, 1336) 1134 92.02% 414

26 NWO3 (1, 4) (351, 90) 1134 92.01% 232

27 NWO4 (2, 3) (964, 1336) 1134 92.02% 445

28 NWO5 (2, 5) (964, 674) 1134 92.05% 413

29 NWO6 (3, 5) (1336, 674) 1134 92.02% 450

30 NWO7 (5, 6) (674, 606) 1134 92.25% 390

4.3 Experimental results and discussions

The results of the eight algorithms on the aforementioned datasets with different
proportion noise are shown in Table 2, where the best ones are presented in bold. In
addition, the learning time (second) takenbyeachmethodunder theoptimal parameters
obtained by one 5-fold cross validation is listed in Table 3. For better interpretation,
the comparison results of the time among the proposed asy-LapSVM and other three
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Fig. 2 The learning time (s) of the proposed asy-LapSVM and the three SSL algorithms on the employed
datasets with z = 0

SSL algorithms in the absence of noise are visualized in Fig. 2, where indexes on the
horizontal axis denote the ordinal numbers of the employed datasets.

From the experimental results and experimental runtime reported in Tables 2 and
3 and Fig. 2, we can get the following conclusions:

(1) The SSL algorithms including the proposed asy-LapSVM perform better than the
corresponding SL ones in most cases, which might be attribute to the manifold
regularization which helps classifiers gain more geometric information embedded
in unlabeled data to achieve better performance.

(2) The proposed asy-LapSVM stands out the other three SSL algorithms (LapSVM,
LapRLS and SSELM) on 54 cases, which implies that adopting the asymmetric
squared loss can improve the prediction accuracy, especially for noise-corrupted
data. For example, the accuracy of asy-LapSVM in YaleB3 dataset with z = 0.10
is 92.55%, and nearly increases by 2.55% compared with the second best method
LapSVM.

(3) From Table 3, it can be easy to know that the SSL algorithms generally consume
longer time than the SL algorithms. The major reason is that, in addition to the
few labeled data which is considered in SL algorithms, the SSL algorithms need
to consider lots of unlabeled data.

(4) From Fig. 2, we can see that although the presented functional iterative method
for the proposed asy-LapSVM costs more time than LapRLS, it shows faster
learning speed than the other two SSL algorithms in most cases, which implies
the feasibility of the presented functional iterative method.

To sumup, the proposedmethod is always the best in termsof classification accuracy
and also preferable in terms of learning time among all the SSL algorithms, which
implies that the asy-LapSVM is a powerful SSL algorithm for semi-supervised binary-
class classification problems in the presence of noise.
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4.4 Statistical test

To further compare the performance of the proposed asy-LapSVM with the relevant
SSL algorithms, we employ the well-known nonparametric Friedman test with the
corresponding post hoc tests (Demsar 2006). The average ranks of four methods on 90
employed datasets in terms of accuracy are shown in Table 4. Under the null hypothesis
that all the algorithms are equivalent, we compute the Friedman statistics

TX2 = 12 × 90

4 × 5

[
2.632 + 2.792 + 2.542 + 2.032 − 4 × 52

4

]
= 14.769 (49)

and

TF = 89 × TX2

90 × 3 − TX2
= 5.15 (50)

which is distributed according to the F -distribution with (3, 87) degrees of freedom.
For α = 0.05,Fα(3, 267) = 2.6384 < 5.15, so we reject the null hypothesis. Next,

the Nemenyi post-hoc test is exploited to further compare the four algorithms in pairs.
Based on the Studentized range statistic divided by

√
2, we know qα = 2.569 and the

critical difference

CD = qα

√
4 × 5

6 × 90
= 0.4944. (51)

Thus, if the average ranks of two algorithms differ by at least CD, then their perfor-
mance is significantly different. From Table 4, we can derive the differences between
the proposed asy-LapSVM and other three SSL algorithms as follows:

d(LapSVM−asy-LapSVM) = 2.63 − 2.03 = 0.60 > 0.4944,

d(LapRLS−asy-LapSVM) = 2.79 − 2.03 = 0.76 > 0.4944,

d(SSELM−asy-LapSVM) = 2.54 − 2.03 = 0.51 > 0.4944,

(52)

where d(a− b) denotes the differences between two algorithms a and b. Then we can
summarize that the proposed asy-LapSVMperforms significantly better than the other
SSL algorithms on the employed datasets with noise of different variances.

4.5 Effect of the parameter u

In this subsection, we study the influence of the parameter u in loss function on the
performance of the proposed asy-LapSVM. In the experiments, the value of u is tuned
in the range {0.55, 0.65, 0.75, 0.83, 0.95, 0.99}. By changing it in the given range and
setting other parameters to be optimal values obtained by one 5-fold cross validation,
we estimate its influence on seven employed datasets with z = 0 and the results are
displayed in Fig. 3. As shown in Fig. 3, all the curves are almost invariable with
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Fig. 3 The classification accuracies of asy-LapSVM with respect to u on seven employed datasets with
z = 0
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Fig. 4 Analysis for the convergence of asy-LapSVM on four datasets with z = 0

the different values of u, which means that the value of u has little effect on the
performance of the proposed algorithm. In other words, the proposed asy-LapSVM is
insensitive to the parameter u.
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4.6 Analysis for the convergence

In this subsection, by exploiting an empirical justification (Ye 2005), we discuss the
convergence of the proposed asy-LapSVM on four employed datasets with z = 0.
The learning results are illustrated in Fig. 4, where the abscissa denotes the number of
iterations and the ordinate denotes the logarithm values of the objective function (35).
From Fig. 4, it can be clearly seen that the logarithm values of the objective function
change with the iterations and go fast steady in less than 10 iterations. Therefore, we
can conclude that the proposed algorithm converges in limited iterations.

5 Conclusion

A novel asy-LapSVM is proposed in this paper to enhance the generalization per-
formance of the classical LapSVM. To our knowledge, it is almost the first time to
employ the asymmetric squared loss to improve the performance of the SSL algo-
rithms. Moreover, we present a simple and efficient functional iterative method to
solve the proposed asy-LapSVM. And we further investigate the convergence of the
functional iterative method from both theoretical and experimental aspects. The valid-
ity of the proposed asy-LapSVMand the feasibility of the presented functional iterative
method are demonstrated by numerical experiments on a series of popular datasets
with noise of different variances.

However, limitations of the proposed asy-LapSVM still exist, such as it is not
suitable for online learning. The research along this line will be our future work.

Acknowledgements The authors gratefully acknowledge the helpful comments and suggestions of the
reviewers, which have improved the presentation.
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