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Abstract
We consider model-based clustering methods for continuous, correlated data that
account for external information available in the presence of mixed-type fixed covari-
ates by proposing theMoEClust suite of models. These models allow different subsets
of covariates to influence the component weights and/or component densities by mod-
elling the parameters of the mixture as functions of the covariates. A familiar range
of constrained eigen-decomposition parameterisations of the component covariance
matrices are also accommodated. This paper thus addresses the equivalent aims of
including covariates in Gaussian parsimonious clustering models and incorporating
parsimonious covariance structures into all special cases of the Gaussian mixture of
experts framework. TheMoEClust models demonstrate significant improvement from
both perspectives in applications to both univariate and multivariate data sets. Novel
extensions to include a uniform noise component for capturing outliers and to address
initialisation of the EM algorithm, model selection, and the visualisation of results are
also proposed.
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1 Introduction

In many analyses using the standard mixture model framework, a clustering method
is typically implemented on the outcome variables only. Reference is not made to
the associated covariates until the structure of the produced clustering is investigated
in light of the information present in the covariates. Therefore, interpretations of the
values of themodel parameterswithin each component are guidedby covariates that are
not actually used in the construction of the clusters. It is desirable to have covariates
incorporated into the clustering process and not only into the interpretation of the
clustering structure and model parameters, thereby making them endogenous rather
than exogenous to the clustering model. This both exploits clustering capabilities and
provides richer insight into the type of observation which characterises each cluster.

When each observation consists of a response variable yi on which the cluster-
ing is based and covariates xi there are, broadly speaking, two main approaches in
the literature to having covariates guide construction of the clusters, neatly sum-
marised by Lamont et al. (2016) and compared in Ingrassia et al. (2012). Letting
zi denote the latent cluster membership indicator vector, where zig = 1 if obser-
vation i belongs to cluster g and zig = 0 otherwise, the first approach assumes
that zi affects the distribution of xi . In probabilistic terms, this means to replace
the actual group-specific conditional distribution f

(
yi | xi , zig = 1

)
P
(
zig = 1

)
with

f
(
yi |xi , zig = 1

)
f
(
xi | zig = 1

)
P
(
zig = 1

)
. The name ‘cluster-weighted model’

(CWM) is frequently given to this approach, e.g. Dang et al. (2017) and Ingrassia
et al. (2015); the latter provides a recent extension allowing for mixed-type covariates,
with a further generalisation presented in Punzo and Ingrassia (2016). Noting the use
of the alternative term ‘mixtures of regressions with random covariates’ to describe
CWMs (e.g. Hennig 2000) provides opportunity to clarify that the remainder of this
paper focuses on the second approach, with fixed potentially mixed-type covariates
affecting cluster membership via f

(
yi | xi , zig = 1

)
P
(
zig = 1 | xi

)
.

This is achieved using the mixture of experts (MoE) paradigm (Dayton and
Macready 1988; Jacobs et al. 1991) in which the parameters of the mixture are mod-
elled as functions of fixed, potentially mixed-type covariates. We present, for finite
mixtures ofmultivariate, continuous, correlated responses, a unifying framework com-
bining all of the special cases of the Gaussian MoE model with the flexibility afforded
by the covariance constraints in the Gaussian parsimonious clustering model (GPCM)
family (Banfield and Raftery 1993; Celeux and Govaert 1995). This has, to date, been
lacking for all but the mixture of regressions and the mixture of regressions with con-
comitant variables where the same covariates enter both parts of the model (Dang and
McNicholas 2015).

Parsimony is obtained in GPCMs by imposing constraints on the elements of an
eigen-decomposition of the component covariance matrices. For MoE models, reduc-
ing the number of covariance parameters in this manner can help offset the number of
regression parameters introduced by covariates, which is particularly advantageous
when model selection is conducted using information criteria with penalty terms
involving parameter counts. The main contribution of this paper is the development
of a framework combining GPCM constraints with all of the special cases of the
Gaussian MoE framework whereby different subsets of covariates can enter either,
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neither, or both the component densities and component weights. We also consider
the special cases of the MoE framework for univariate response data with equal and
unequal variance across components. Thus, this paper addresses the aim of incorpo-
rating potentially mixed-type covariates into the GPCM family and the equivalent
aim of bringing GPCM covariance constraints into the Gaussian MoE framework, by
proposing the MoEClust model family. The name MoEClust comes from the interest
in employing MoE models chiefly for clustering purposes. From both perspectives,
MoEClust models show significant improvement in applications to both univariate
and multivariate response data.

Other novel contributions include the addition of a noise component for capturing
outlying observations, and proposed solutions to initialising the EM algorithm sensi-
bly, addressing the issue of model selection, and a means for visualising the results
of MoEClust models. We also expand the number of special cases in the MoE frame-
work from four to six, by considering more parsimonious counterparts to the standard
mixture model and the mixture of regressions by constraining the mixing proportions.
In addition, a software implementation for the full suite of MoEClust models is pro-
vided by the associated R package MoEClust (Murphy and Murphy 2019), which
is available from www.r-project.org (R Core Team 2019), with which all results were
obtained. The syntax of the popular mclust package (Scrucca et al. 2016) is closely
mimicked, with formula interfaces for specifying covariates in the gating and/or expert
networks.

The structure of the paper is as follows. For both Gaussian mixtures of experts and
MoEClustmodels, themodelling frameworks and inferential procedures are described,
respectively, in Sects. 2 and 3. Section 3.3 describes the addition of a noise component
for capturing outliers. Section 4 discusses proposals for addressing some practical
issues affecting performance, namely the initialisation of the EM algorithm used to fit
the models (Sect. 4.1), and issues aroundmodel selection (Sect. 4.2). The performance
of the proposed models is illustrated in Sect. 5 with applications to univariate response
CO2 emissions data (Sect. 5.1) and multivariate response data from the Australian
Institute of Sports (Sect. 5.2). Finally, the paper concludes with a brief discussion in
Sect. 6, with some additional results deferred to the Appendices.

2 Modelling

This section builds up the MoEClust models by first describing the mixture of experts
(MoE)modelling framework in Sect. 2.1—elaborating on the special cases of theMoE
model in Sect. 2.1.1—and then extending to the family of MoEClust models compris-
ing Gaussian mixture of experts models with parsimonious covariance structures from
the GPCM family in Sects. 2.2 and 2.3. Finally, a brief review of existing models and
software is given in Sect. 2.4.

2.1 Mixtures of experts

Themixture of experts model (Dayton andMacready 1988; Jacobs et al. 1991) extends
the mixture model used to cluster response data yi by allowing the parameters of
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the model for observation i to depend on covariates xi . An independent sample of
response/outcomevariables of dimension p, denoted byY = (y1, . . . , yn), ismodelled
by a G-component finite mixture model where the model parameters depend on the
associated covariate inputsX = (x1, . . . , xn) of dimension d. TheMoEmodel is often
referred to as a conditional mixture model (Bishop 2006) because, given the set of
covariates xi , the distribution of the response variable yi is a finite mixture model:

f
(
yi | xi

) =
G∑

g=1

τg (xi ) f
(
yi | θ g (xi )

)

Each component is modelled by a probability density function f
(
yi | θ g (xi )

)
with

component-specific parameters θ g (xi ) and mixing proportions τg (xi ); the latter are
only allowed to depend on covariates when G ≥ 2. As usual, τg (xi ) > 0 and
∑G

g=1 τg (xi ) = 1.
TheMoE framework facilitates flexiblemodelling.While the response variable yi is

modelled via a finite mixture, model parameters are modelled as functions of related
covariates xi from the context under study. Both themixing proportions and the param-
eters of component densities can depend on covariates. The terminology used to
describe MoE models in the machine learning literature often refers to the compo-
nent densities f

(
yi | θ g (xi )

)
as ‘experts’ or the ‘expert network’, and to the mixing

proportions τg (xi ) as ‘gates’ or the ‘gating network’, hence the nomenclaturemixture
of experts. Given that covariates can be continuous and/or categorical with multiple
levels, we let d + 1 denote the number of columns in the corresponding design matri-
ces, accounting also for the intercept term, in contrast to the number of covariates
r .

In the original formulation of the MoE model for continuous data (Jacobs et al.
1991), themixing proportions (gating network) aremodeled usingmultinomial logistic
regression (MLR), though this need not strictly be the case; Geweke and Keane (2007)
impose a multinomial probit structure here instead. The mixture components (expert
networks) are generalised linear models (GLM; McCullagh and Nelder 1983). Thus:

τ̂g (xi ) = exp
(
x̃i β̂g

)

∑G
h=1 exp

(
x̃i β̂h

) and �̂g = {
ψ

(
x̃i γ̂ g

)
, �̂g

}
(1)

for some link function ψ (·), with a collection of parameters in the component densi-
ties (comprising a (d + 1)× pmatrix of expert network regression parameters γ̂ g and
the p× p component covariance matrix �̂g), a (d + 1)-dimensional vector of regres-
sion parameters β̂g in the gates, and x̃i = (1, xi ). Note that expert network covariates
influence only the component means, and not the component covariance matrices.
Henceforth, we restrict our attention to continuous outcome variables as per theGPCM
family. Therefore, component densities are assumed to be the p-dimensional multi-
variate Gaussian φ (·), and the link function ψ (·) is simply the identity, such that
covariates are linearly related to the response variables, i.e.:
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(a) (b)

(c) (d)

Fig. 1 The graphical model representation of the mixture of experts models. The differences between the
special cases are due to the presence or absence of edges between the covariatesX and the latent variable Z
and/or response variable Y. Note that different subsets of the covariates in X can enter these two different
parts of the full MoE model in (d)

f
(
yi | xi

) =
G∑

g=1

τg (xi ) φ
(
yi | θ g (xi ) = {

x̃iγ g,�g
})

(2)

2.1.1 The MoE family of models

It is possible that some, none, or all model parameters depend on the covariates. This
leads to the four special cases of the Gaussian MoE framework shown in Fig. 1, with
the following interpretations, due to Gormley and Murphy (2011):

(a) in the mixture model the distribution of yi depends on the latent cluster member-
ship variable zi , the distribution of zi is independent of the covariates xi , and yi
is independent of xi conditional on zi : f

(
yi

) = ∑G
g=1 τgφ

(
yi | θ g = {

μg,�g
})

.

(b) in the expert network MoE model the distribution of yi depends on the covariates
xi and the latent cluster membership variable zi , and the distribution of zi is
independent of xi : f

(
yi | xi

) = ∑G
g=1 τgφ

(
yi | θ g

(
xi

) = {
x̃iγ g,�g

})
.

(c) in the gating networkMoEmodel the distribution of yi depends on the latent clus-
ter membership variable zi , zi depends on the covariates xi , and yi is independent
of xi conditional on zi : f

(
yi | xi

) = ∑G
g=1 τg

(
xi

)
φ
(
yi | θ g = {

μg,�g
})

.

(d) in the full MoE model, given by (2), the distribution of yi depends on both the
covariates xi and on the latent clustermembership variable zi , and the distribution
of the latent variable zi depends in turn on the covariates xi .

For models (c) and (d), zi has a multinomial distribution with a single trial and prob-
abilities equal to τg (xi ). The full MoE model thus has the following latent variable
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representation:
(
yi | xi , zig = 1

) ∼ φ
(
yi | θ g (xi ) = {

x̃iγ g,�g
})

,P
(
zig = 1 | xi

) =
τg (xi ).

The MoE family can be expanded further, from four to six special cases, by con-
sidering the models in (a) and (b), under which covariates do not enter the gating
network, by constraining the mixing proportions to be equal, i.e. τg = 1/G ∀ g. This
leads, respectively, to the equal mixing proportion mixture model and equal mixing
proportion expert network MoEmodel. Such models are more parsimonious than their
counterparts with unconstrained τ , as they require estimation of G − 1 fewer param-
eters. Note that the size of a cluster is proportional to τg , which is distinct from its
volume (Celeux and Govaert 1995). Thus, situations where τig = τg (xi ), τig = τg , or
τig = 1/G can all be accomodated. The six special cases of this MoE framework can
be applied to both univariate and multivariate response data.

It is worth noting that CWMs most fundamentally differ from MoE mod-
els in their handling of the mixing proportions τg and in how the joint den-
sity f

(
xi , zig = 1

)
is treated, either as P

(
zig = 1 | xi

) = τg (xi ) (MoE) or
f
(
xi | zig = 1

)
P

(
zig = 1

)
(CWM). In other words, the direction of the edge between

X and Z in the full MoE model in Fig. 1d is reversed under CWMs (Ingrassia et al.
2012). By virtue of modelling the distribution of the covariates, CWMs are also inher-
ently less parsimonious. The same covariate(s) can enter both parts of fullMoEmodels,
in principle. Such models can provide a useful estimation of the conditional density of
the outcome given the covariates, but the interpretation of the clustering model and the
effect of the covariates becomes more difficult in this case. Conversely, allowing dif-
ferent covariates enter different parts of the model further differentiates MoE models
from CWMs. It is common to distinguish among the overall set of covariates between
concomitant gating network variables and explanatory expert network variables. Thus,
for clarity, x(G)

i and x(E)
i will henceforth refer, respectively, to the possibly overlap-

ping subsets of gating and expert network covariates, such that xi = {
x(G)
i ∪ x(E)

i

}
,

with the dimensions of the associated design matrices given by dG + 1 and dE + 1.
Higher order terms, transformations, and interaction effects between covariates are
also allowed in both networks.

2.2 Gaussian parsimonious clusteringmodels

Parsimony has been considered extensively in the model-based clustering literature.
In particular, the volume of work on Gaussian and/or parsimonious mixtures has
increased hugely since the work of Banfield and Raftery (1993) and Celeux and Gov-
aert (1995). These works introduced the family of GPCMs, which are implemented
in the popular R package mclust (Scrucca et al. 2016). The influence of GPCMs
is clear on many other works which obtain parsimony in the component covariance
matrices; e.g., using constrained factor-analytic structures (McNicholas and Murphy
2008), the multivariate t-distribution and associated tEIGEN family (Andrews and
McNicholas 2012), and the multivariate contaminated normal distribution (Punzo and
McNicholas 2016).

Parsimonious covariance matrix parameterisations are obtained in GPCMs by
means of imposing constraints on the components of an eigen-decomposition of the
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form �g = λgDgAgD�
g , where λg is a scalar controlling the volume, Ag is a diag-

onal matrix, with entries proportional to the eigenvalues of �g with det(Ag) = 1,
specifying the shape of the density contours, and Dg is p × p orthogonal matrix, the
columns of which are the eigenvectors of �g , governing the corresponding ellipsoid’s
orientation. Imposing constraints reduces the number of free covariance parameters
from Gp (p + 1) /2 in the unconstrained (VVV) model. This is desirable when p is
even moderately large. Thus, GPCMs allow for intermediate component covariance
matrices lying between homoscedasticity and heteroscedasticity. Table 1 summarises
the geometric characteristics of the GPCM constraints, which are then shown in Fig. 2.

Note for models with names ending in I that the number of parameters is linear
in the data dimension p. Thus, the diagonal models are especially parsimonious and
useful in n ≤ p settings. While there are 2 variance parameterisations for mixtures of
univariate response data, and 14 covariance parameterisations for mixtures of multi-
variate response data, considering the equal mixing proportion constraint doubles the
number of models available in each of these cases.

2.3 TheMoEClust family of models

Interest lies in bringing parsimonious covariance structures to Gaussian MoE models:

f
(
yi | xi

) =
G∑

g=1

τg
(
x(G)
i

)
φ
(
yi

∣∣ θ g
(
x(E)
i

) =
{
x̃(E)
i γ g,�g

} )

where �g can follow any of the GPCM constraints outlined in Table 1. It is equivalent
to say that interest lies in incorporating covariate information into the GPCM model
family. Using the covariance constraints, combined with the six special cases of the
MoE model described in Sect. 2.1.1, yields the MoEClust family of models, which
are capable of dealing with correlated responses and offering additional parsimony
in the component densities compared to current implementations of Gaussian MoE
models, by virtue of allowing the size, volume, shape, and/or orientation to be equal
or unequal across components. For MoE models, every continuous covariate added to
the gating and expert networks introducesG−1 andGp additional regression parame-
ters, respectively. Parsimonious MoEClust models allow the increase in the number of
regression parameters to be offset by the reduction in the number of covariance param-
eters. This can be advantageous when model selection is conducted using information
criteria which include penalty terms based on parameter counts (see Sect. 4.2).

2.4 Existingmodels and software

A number of tools for fittingMoEmodels are available in the R programming environ-
ment (R Core Team 2019). These include flexmix (Grün and Leisch 2007, 2008),
mixtools (Benaglia et al. 2009), and others. Tools for fittingGPCMswithout covari-
ates include mclust (Scrucca et al. 2016) and Rmixmod (Lebret et al. 2015).

The flexmix package (Grün and Leisch 2007, 2008) can accommodate the full
range ofMoEmodels outlined in Sect. 2.1.1, excluding those forwhich τ is constrained
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EII VII EEI VEI EVI VVI EEE

EVE VEE EEV VEV EVV VVE VVV

Fig. 2 Ellipses of isodensity for each of the 14 parsimonious eigen-decomposition covariance parameteri-
sations for multivariate data in GPCMs, with three components in two dimensions

to be equal, in the case of univariate yi , though only models with unequal variance can
be fitted. The user can specify the form of the GLM and covariates (if any) to be used
in the gating and expert networks, for which the package has a similar interface to the
(glm) functions within R. In the case of a multivariate continuous response, there is
functionality for multivariate Gaussian component distributions though only for mod-
els without expert network covariates. Furthermore, only the VVI and VVV constraints
and models with unequal mixing proportions or gating concomitants are facilitated.

For univariate data, the mixtools package (Benaglia et al. 2009) can accom-
modate the expert network MoE model with equal or unequal variance; it can also
accommodate the full MoE model, though only for G = 2, with unequal variance,
and with the restriction that all covariates enter both part of the model. The package
allows for nonparametric estimation of the functional form for the mixing propor-
tions (gating networks) and the component densities (expert networks), so it offers
further flexibility beyond flexmix in these cases. However, the multivariate models
in mixtools use the local independence assumption, so it does not directly offer the
facility tomodelmultivariate Gaussian component densities with non-diagonal covari-
ance. Furthermore, multivariate responsemodels in mixtools do not yet incorporate
covariates in any way, and the equal mixing proportions constraint is not facilitated in
any way either.

The mclust package (Scrucca et al. 2016) and Rmixmod package (Lebret et al.
2015) can accommodate the full range of covariance constraints in Table 1, and are
thus examples of existing software which can fit GPCMs, but only using the standard
finite mixture model (model (a) in Fig. 1) or the equal mixing proportions mixture
model; i.e., they do not facilitate dependency on covariates in any way.

Another important contribution in this area is by Dang and McNicholas (2015).
This work introduces eigen-decomposition parsimony to the MoE framework, though
only for the expert network MoEmodel and the full MoEmodel. However, for the full
MoE model, all covariates are assumed to enter into both parts of the model. Thus,
the MoEclust model family completes the work of Dang and McNicholas (2015) by
considering all six special cases of the MoE framework, whereby different subsets of
covariates can enter either, neither, or both the component densities and/or component
weights, as well as models with equal mixing proportions. In addition, our unify-
ing MoEClust framework also incorporates such parsimonious models for univariate
response data.

123



302 K. Murphy , T. B. Murphy

Finally, it should be noted that eigen-decomposition parsimony has been introduced
to the alternative CWM framework, in which all covariates enter the same part of the
model, by Dang et al. (2017), for the multivariate Gaussian distributions of both
the response variables and the covariates, assuming only continuous covariates; see
also Punzo and Ingrassia (2015) for eigen-decomposition parsimony applied to the
covariates only. The flexCWM package (Mazza et al. 2018) allows GPCM covariance
structures in the distribution of the continuous covariates only, though only univariate
responses are accommodated. It also allows, simultaneously or otherwise, covariates
of other types, as well as omitting the distribution for the covariates entirely, leading
to non-parsimonious mixtures of regressions, with or without concomitant variables.

3 Model fitting via EM

To estimate the parameters of MoEClust models, we focus on maximum likelihood
estimation using the EM algorithm (Dempster et al. 1977). This is outlined first for
MoE models in Sect. 3.1 and then extended to MoEClust models in Sect. 3.2. Model
fitting details are described chiefly for the full MoE model only, for simplicity. A
simple trick involving the residuals of the weighted linear regressions in the expert
network assists fitting when using GPCM constraints. A uniform noise component
to capture outlying non-Gaussian observations is added in Sect. 3.3. When gating
concomitants are present, the noise component is treated in two different ways.

3.1 FittingMoEmodels

For the full mixture of experts model, the likelihood is of the form:

L (β, γ ,� |Y,X) =
n∏

i=1

G∑

g=1

τg
(
x(G)
i

)
φ
(
yi | θ g

(
x(E)
i

))

where τg
(
x(G)
i

)
and θ g

(
x(E)
i

)
are as defined by (1). The data are augmented by imputing

the latent cluster membership indicator zi = (zi1, . . . , ziG)�. Thus, the conditional
distribution of

(
yi , zi | xi

)
is of the form:

f
(
yi , zi | xi

) =
G∏

g=1

[
τg

(
x(G)
i

)
φ
(
yi | θ g

(
x(E)
i

))]zig

Hence, the complete data likelihood is of the form:

Lc (β, γ ,� |Y,X,Z) =
n∏

i=1

G∏

g=1

[
τg

(
x(G)
i

)
φ
(
yi | θ g

(
x(E)
i

))]zig

and the complete data log-likelihood has the form:
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�c (β, γ ,� |Y,X,Z) =
n∑

i=1

G∑

g=1

zig
[
log τg

(
x(G)
i

) + logφ
(
yi | θ g

(
x(E)
i

))]

=
n∑

i=1

G∑

g=1

zig log τg
(
x(G)
i

) +
n∑

i=1

G∑

g=1

zig logφ
(
yi | θ g

(
x(E)
i

))

(3)

The iterative EM algorithm for MoE models follows in a similar manner to that
for standard mixture models. It consists of an E-step (expectation) which replaces
for each observation the missing data zi with their expected values ẑi , followed by a
M-step (maximisation), which maximises the expected complete data log-likelihood,
computed with the estimates Ẑ = (

ẑ1, . . . , ẑn
)
, to provide estimates of the compo-

nent weight parameters τ̂g
(
x(G)
i

)
and the component parameters θ̂ g

(
x(E)
i

)
. Aitken’s

acceleration criterion is used to assess convergence of the non-decreasing sequence
of log-likelihood estimates (Böhning et al. 1994). Parameter estimates produced on
convergence achieve at least a local maximum of the likelihood function. Upon con-
vergence, cluster memberships are estimated via the maximum a posteriori (MAP)
classification. The E-step involves computing:

ẑ(t+1)
ig = E

(
zig

∣∣ yi , xi , β̂
(t)

, γ̂ (t)
, �̂

(t)
)

= τ̂
(t)
g

(
x(G)
i

)
φ
(
yi | θ̂ (t)

g

(
x(E)
i

))

∑G
h=1 τ̂

(t)
h

(
x(G)
i

)
φ
(
yi | θ̂ (t)

h

(
x(E)
i

))

where
{
β̂

(t)
, γ̂ (t)

, �̂
(t)}

are the estimates of the parameters in the gating and expert
networks on the t-th iteration of the EM algorithm.

For the M-step, we notice that the complete data log-likelihood in (3) can be con-
sidered as a separation into the portion due to the gating network and the portion due
to the expert network. Thus, the expectated complete data log-likelihood (4) can be
maximised separately under the EM framework:

E

[
�c

(
β, γ ,� |Y,X,Z, β̂

(t)
, γ̂ (t)

, �̂
(t))] =

n∑

i=1

G∑

g=1

ẑ(t+1)
ig log τg

(
x(G)
i

)

+
n∑

i=1

G∑

g=1

ẑ(t+1)
ig logφ

(
yi | θ g

(
x(E)
i

))
(4)

The first term is of the same form as MLR, here written with component 1 as the
baseline reference level, for identifiability reasons:

log
τg

(
x(G)
i

)

τ1
(
x(G)
i

) = log
P
(
ẑ(t+1)
ig = 1

)

P
(
ẑ(t+1)
i1 = 1

) = x̃(G)
i βg ∀ g ∈ {2, . . . ,G} ,

where β1 = (0, . . . , 0)�
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Thus, methods for fitting such models can be used to maximise this term and estimate
the parameters in the gating network. The second term is of the same form as fitting
G separate weighted multivariate linear regressions, and thus methods for fitting such
models can be used to estimate the expert network parameters. Note that these are
multivariate in the sense of a multivariate outcome yi ; the associated design matrix
having dE +1 columns means these regressions are possibly also multivariate in terms
of the explanatory variables. Thus, fitting MoE models is straightforward in principle.

3.2 FittingMoEClust models

Maximising the second term in (4), corresponding to the expert network, gives rise to
the following expression:

− 1

2

(
p log 2π +

n∑

i=1

G∑

g=1

ẑ(t+1)
ig log|�g|

+
n∑

i=1

G∑

g=1

ẑ(t+1)
ig

(
yi − x̃(E)

i γ g

)�
�−1

g

(
yi − x̃(E)

i γ g

))
(5)

When the same set of regressors are used for each dependent variable, as is always
the case for MoEClust models, or when �g is diagonal, it can be shown that γ g does
not depend on�g , much like a Seemingly Unrelated Regression model (SUR; Zellner

1962). We first estimate γ̂ g and then �̂g . Fitting G separate multivariate regressions

(weighted by ẑig), yields G sets of n × p SUR residuals r̂ig = yi − x̃(E)
i γ g , which,

crucially, satisfy
∑n

i=1 ẑig r̂ig = 0. Thus, maximising (5) is equivalent to minimising:

n∑

i=1

G∑

g=1

ẑ(t+1)
ig log|�g| +

n∑

i=1

G∑

g=1

ẑ(t+1)
ig r̂�

ig�
−1
g r̂ig (6)

which is of the same form as the criterion used in the M-step of a standard Gaussian
finite mixture model with component covariance matrices �̂, component means
equal to zero, and new augmented data set R̂. Thus, when estimating the compo-
nent covariance matrices via (6), the same M-step function as used within mclust
can be applied to augmented data, constructed so that each observation is represented
as follows:
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1. Stack the G sets of SUR residuals into the (n × G) × p matrix R̂:

R̂ =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

r̂111 r̂112 . . . r̂11p
r̂211 r̂212 . . . r̂21p

.

.

.

.

.

.
. . .

.

.

.

r̂n11 r̂n12 . . . r̂n1p
r̂121 r̂122 . . . r̂12p
r̂221 r̂222 . . . r̂22p

.

.

.

.

.

.
. . .

.

.

.

r̂n21 r̂n22 . . . r̂n2p
.
.
.

.

.

.
. . .

.

.

.

r̂1G1 r̂1G2 . . . r̂1Gp
r̂2G1 r̂2G2 . . . r̂2Gp

.

.

.

.

.

.
. . .

.

.

.

r̂nG1 r̂nG2 . . . r̂nGp

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

2. Create the (n × G) × G block-diagonal matrix ζ̂ from the columns of Ẑ:

ζ̂ =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

ẑ11 0 . . . 0
ẑ21 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.

ẑn1 0 . . . 0
0 ẑ12 . . . 0
0 ẑ22 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 ẑn2 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . ẑ1G
0 0 . . . ẑ2G
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . ẑnG

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

Structuring the model in this manner allows GPCM covariance structures to be easily
imposed onGaussianMoEmodelswith gating and/or expert network covariates, hence
the nomenclature MoEClust. In the end, the M-step involves three sub-steps, each
using the current estimate of Ẑ: i) estimating the gating network parameters β̂g and
hence the component weights τ̂g

(
x(G)
i

)
via MLR, ii) estimating the expert network

parameters γ̂ g and hence the component-specific means via weighted multivariate
multiple linear regression, and iii) estimating the constrained component covariance
matrices �̂g using the augmented data set comprised of SUR residuals, as outlined
above.

In the absence of covariates in the gating and/or expert networks, under the special
cases outlined in Sect. 2.1.1, their respective contribution to (4) is maximised as per
the corresponding term in a standard GPCM. In other words, the gating and expert
networks, without covariates, can be seen as regressions with only an intercept term.
Thus, the augmented data structure is not required when there are no expert covariates
and the formula for estimating τ in the absence of concomitant variables is τ̂g =
n−1 ∑n

i=1 ẑig , rather than (1). As described in Sect. 2.1.1, it is sometimes useful to

123



306 K. Murphy , T. B. Murphy

expand the model family further by considering more parsimonious alternatives to the
special cases of models (a) and (b) in Fig. 1, where gating network concomitants are
omitted, by constraining themixing proportions to be equal and fixed, i.e. τg = 1/G∀g.
Similarly, removing the corresponding regression intercept(s) from the part(s) of the
model where covariates enter can yield further parsimony in appropriate settings.

3.3 Adding a noise component

For models with expert network covariates, and/or when the volume and/or shape dif-
fer across components, the mixture likelihood is unbounded. We restrict our interest
only to solutions for which the log-likelihood at convergence is finite. As per the eps
argument to the mclust R package’s emControl function (Scrucca et al. 2016),
we monitor the conditioning of the covariances and add a tolerance parameter (set to
the relative machine precision, i.e. 2.220446e-16 on IEEE compliant machines) to
the M-step estimation of the component covariances to control termination of the EM
algorithm on the basis of small eigenvalues. For models with unconstrained �g , each
cluster must contain at least p + 1 units to avoid computational singularity. Thus, in
practice, such spurious solutions with infinite likelihood occur especially for higher G
values, whereby either solutions with empty components reduce to ones with fewer
components, or uninteresting solutions with degenerate components containing too
few units or even singletons are found. Sensible initial allocations (see Sect. 4.1) and/or
the equal mixing proportion constraint, which help avoid empty or otherwise poorly
populated clusters, can help to alleviate this problem. García-Escudero et al. (2018)
offer an excellent discussion of the notions of spurious solutions and degenerate com-
ponents.

Further extendingMoEClustmodels via the inclusion of an additional uniformnoise
component can also help in addressing these issues, by capturing outlying observations
which do not fit the prevailing pattern of Gaussian clusters and thus would otherwise
be assigned to (possibly many) small clusters. In particular, the noise component
for encompassing clusters with non-Gaussian distributions is here distributed as a
homogeneous spatial Poisson process, as per Banfield and Raftery (1993). Such a
noise component can be included regardless of where covariates (if any) enter, and
regardless of the GPCM constraints employed. Model-fitting via the EM algorithm is
not greatly complicated by the addition of a noise component, though it is required
to estimate V , the hypervolume of the region from which the response data have
been drawn, or to consider V as an independent tuning parameter as per Hennig and
Coretto (2008), especially if n ≤ p. For univariate responses V is given by the range
of y1, . . . , yn . For multivariate data, V can be estimated by the hypervolume of the
convex hull, ellipsoid hull, or smallest hyperrectangle enclosing the data. We focus on
the latter method.

For initialisation, a column in which each entry is τ0 (the guess of the prior probab-
ility that observations are noise) is appended to the starting Z matrix, with the other
columns corresponding to non-noise components then multiplied by 1−τ0. The initial
τ0 should not be too high; it is set to 0.1 here. For models with a noise component and
no gating concomitants, the mixing proportions can be, as before, either constrained or
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unconstrained. In the latter case, we estimate τ0 and then constrain the remaining pro-
portions. We add the extension that concomitants, when present, are allowed to affect
(7) or not affect (8) the mixing proportion of the noise component. Henceforth, for
clarity, we refer to these settings as the gated noise (NG) and non-gated noise (NGN)
models, respectively. The NGNmodel assumes τ0 is constant across observations and
covariate patterns. It is thus the more parsimonious model; it requires only 1 extra
gating network parameter, rather than dG + 1 under the GN model, relative to models
without a noise component, though it is only defined for G ≥ 2.

GN: f
(
yi | xi

) =
G∑

g=1

τg
(
x(G)
i

)
φ
(
yi

∣∣ θ g
(
x(E)
i

) =
{
x̃(E)
i γ g,�g

} )
+ τ0

(
x(G)
i

)

V

(7)

NGN: f
(
yi | xi

) =
G∑

g=1

τg
(
x(G)
i

)
φ
(
yi

∣∣ θ g
(
x(E)
i

) =
{
x̃(E)
i γ g,�g

} )
+ τ0

V
(8)

4 Practical issues

In this section, factors affecting the performance of MoEClust models are discussed;
namely, the necessity of a good initial partition to prevent the EM algorithm from
converging to a suboptimal local maximum (Sect. 4.1), and the necessity of model
selection with regard to where and what covariates (if any) enter the model to yield
further parsimony by reducing the number of gating and/or expert network regression
parameters (Sect. 4.2). Novel strategies for dealing with both issues are proposed.

4.1 EM initialisation

With regards to initialisation of theEMalgorithm forG > 1MoEClustmodels,model-
based agglomerative hierarchical clustering and quantile-based clustering have been
found suitable for multivariate and univariate data, respectively. Both flexmix and
mixtools randomly initialise the allocations, despite the obvious computational
drawback of the need to run the EM algorithm from multiple random starting points.
However, when explanatory variables x(E)

i enter the expert network, it is useful to use
them to augment the initialisation strategy with extra steps. Algorithm 1 outlines the
proposed initialisation strategy, similar to that of Ning et al. (2008). It takes the initial
partition of the data (whether obtained by hierarchical clustering, random initialisation,
or some other method) and iteratively reallocates observations in such a way that each
subset can be well-modelled by a single expert.

When using a deterministic approach to obtain the starting partition forAlgorithm1,
initialisation can be further improved by considering information in the expert network
covariates to find a good clustering of the joint distribution of

(
yi , x

(E)
i

)
. When x(E)

i
includes categorical or ordinal covariates, the model-based approach to clustering
mixed-type data of McParland and Gormley (2016) is employed at this stage.
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Algorithm 1: Iterative reallocation initialisation with expert network covariates

0 Concatenate the response data and expert network covariates into a matrix.
1 Obtain some non-overlapping starting partition �1, �2, . . . , �G .

2 Estimate the expert network regressor ηg

(
γ g, ·

)
on every subset

{
�g

}G
g=1.

3 For every observation, compute the Mahalanobis distance between yi and the fitted values

ŷig = ηg
(
γ g, x

(E)
i

)
: Mig = dM

(
yi , ŷig

) =
√(

yi − ŷig
)�

�̂
−1
g

(
yi − ŷig

)
.

4 Let ki = arg ming Mig .
5 Reassign observation i to subset �ki .
6 Repeat Steps 2-5 until convergence is achieved.

If at any stage a level is dropped from a categorical variable in subset�g the variable
itself is dropped from the corresponding regressor for the observations with missing
levels. Convergence of the algorithm is guaranteed and the additional computational
burden incurred is negligible. By using theMahalanobis distancemetric (Mahalanobis
1936), each observation is assigned to the cluster corresponding to the Gaussian ellip-
soid to which it is closest. This has the added advantage of potentially speeding up the
running of the EM algorithm. The estimates of ηg

(
γ g, ·

)
at convergence are used as

starting values for the expert network. The gating network is initialised by considering
the partition itself at convergence as a discrete approximation of the gates.

Figure 3 illustrates the necessity of this procedure using a toy data set, with a
single continuous covariate and a univariate response clearly arising from a mixture
of two linear regressions, which otherwise would not be discerned without including
the covariate in the initialisation routine via Algorithm 1. A further demonstration of
the utility of this strategy is shown in “Appendix B”.

Our initialisation strategy has the same limitation that the result may represent a
suboptimal local maximum.However, the problem is transferred from the difficult task
of initialising the EMalgorithm to initialisingAlgorithm 1. Thus, it is feasible to repeat
the algorithm with many different partitions and choose the best result to initialise the
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Fig. 3 Initial 2-component partitions on univariate data clearly arising from a mixture of two linear regres-
sions, obtained using a agglomerative hierarchical clustering, b random allocation, and c Algorithm 1
applied to the initialisation in (b), demonstrating the improvement achieved by incorporating expert net-
work covariates into the initialisation strategy. Allocations are distinguished using black points and red
triangles. Corresponding fitted lines are also shown
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EMalgorithm, since it converges very quickly, requiresmuch less computational effort
than the EM itself, and generally reduces the number of required EM iterations.

4.2 Model selection

Whether a variable should be considered as a covariate or part of the response is usually
clear from the context of the data being clustered. However, within the suite of MoE
models outlined in Sect. 2.1.1, it is natural to question which covariates, if any, are to
be included, and if so in which part(s) of the MoE model. Unless the manner in which
covariates enter is guided by the question of interest in the application under study,
this is a challenging problem as the space of MoE models is potentially very large
once variable selection for the covariates entering the gating and expert networks is
considered. Thus, only models where covariates enter all mixture components or all
component weights in a linear manner are typically considered in practice in order to
restrict the size of the model search space. However, even within this reduced space,
there are 2r models to consider when G = 1 and 22r models to consider otherwise.
Thus, the model space increases further if the number of components G is unknown.

Model comparison for theMoEClust family is evenmore challenging, especially for
multivariate response data for which there are potentially 14 different GPCM covari-
ance constraints to consider for models with G ≥ 2 and 3 otherwise. When p = 1,
there are 2 covariance constraints to consider when G ≥ 2 and 1 otherwise. Consid-
ering constraints on the mixing proportions further increases the model search space.
However, model selection can still be implemented in a similar manner to other model-
based clustering methods: the Bayesian Information Criterion (BIC; Schwarz 1978)
and Integrated Completed Likelihood (ICL; Biernacki et al. 2000) have been shown to
give suitable model selection criteria, both for the number of component densities (and
thus clusters) required and for selecting covariates to include in the model. The num-
ber of free parameters in the penalty term for these criteria of course depends on the
included gating and expert network covariates and the GPCM constraints employed.

For MoEClust models involving mixtures of GLMs, stepwise variable selection
approaches canbeused tofind the optimal covariates for inclusion in either themultino-
mial logistic regression (gating network) or themultivariate weighted linear regression
(expert network). Indeed, more parsimony can be achieved using variable selection,
as there are a total of G (dG + 1) +Gp (dE + 1) intercept and regression coefficients
to estimate for a G > 1 full MoE model. However, the selected covariates may only
be optimal for the given G and the given set of GPCM covariance matrix constraints.
MoEClust models also allow for covariates entering only one part of the model. Thus,
the recommend approach is a greedy stepwise search whereby each step could involve
adding/removing a component or adding/removing a single covariate, in either the
gating or expert network. Backward selection can be particularly cumbersome when
r is large. Thus, the recommended forward search algorithm proceeds as follows:
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Algorithm 2: Greedy Forward Stepwise Search for MoEClust Models

1 Start by fitting a G = 1 model with no covariates for all allowable model types.
2 Either:

• increase G by 1,
• add an explanatory variable to the expert network,
• add a concomitant variable to the gating network (only when G ≥ 2).

3 For every action in Step 2, consider the full range of allowable GPCM constraints.
4 Accept the change which yields the best improvement in terms of BIC or ICL.
5 Repeat Steps 2-5 until there is no further improvement in the selection criterion.

While one could consider changing the GPCM constraints as another potential
action in Step 2 of Algorithm 2, our experience suggests that increasing G or adding
covariates (especially in the expert network) can radically alter the covariance struc-
ture. Thus, we advise changing the GPCM constraints simultaneously and identifying
the optimum action by first finding the optimum constraints for each action. While
this is more computationally intensive than altering the GPCM constraints as a step
in itself, this makes the search less likely to miss optimal models as it traverses the
model space. See “Appendix A” for an example of how to conduct such a stepwise
search using code from the MoEClust R package (Murphy and Murphy 2019).

In certain special instances, some extra steps can be considered. When there are
no gating network concomitants, a choice can be made, for each action, between
fitted models with equal or unequal mixing proportions. We distinguish between G-
component models without a noise component and models with (G − 1) Gaussian
components plus an additional noise component. Thus,we recommend treatingmodels
with a noise component differently, by running a stepwise search for models excluding
the possibility of a noise component, running a separate stepwise search starting from
a G = 0 noise-only model, and ultimately choosing between the optimal models with
and without a noise component identified by each search. In the presence of a noise
component, one can also fit the GN andNGNmodels, in (7) and (8) respectively, when
evaluating every action involving models with gating network concomitants.

When r is not so prohibitively large as to render an exhaustive search infeasible,
Gormley and Murphy (2010) demonstrates how model selection criteria such as the
BIC can be employed to choose the appropriate number of components and guide
the inclusion of covariates across the six special cases of the MoE model described
in Sect. 2.1.1. Adapting this approach to MoEClust models where GPCM constraints
must also be chosen requires fixing the covariates to be included in the component
weights and densities and finding the G value and GPCM covariance structure which
together optimise some criterion. Different fits with different combinations of covari-
ates are then compared according to the same criterion.However, due to the highlighted
computational difficulties when r is large, Algorithm 2 remains the recommended
approach.

5 Results

The clustering performance of the MoEClust models is illustrated by application to
two well-known data sets: univariate CO2 data (Sect. 5.1) and multivariate data from
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the Australian Institute of Sports (Sect. 5.2). Additional results are provided for each
data set in the Appendices. In particular, code examples (“Appendix A”) and details of
the initialisation (“Appendix B’) for the CO2 data and results of the stepwise search
(“Appendix C”) for the AIS data are given.

Hereafter, any mention of methods for initialising the allocations, when covariates
enter the expert network, refers to finding a single initial partition for Algorithm 1.
The BIC and the stepwise search strategy outlined in Algorithm 2were used to find the
optimal number of components, choose the covariance type, and select the best subset
of covariates, as well as where to put them. Results of exhaustive searches are also
provided for demonstrative purposes. All results were obtained using the R package
MoEClust (Murphy and Murphy 2019).

5.1 CO2 data

As a univariate example of an application of MoEClust, data on the CO2 emissions
of n = 28 countries in the year 1996 (Hurn et al. 2003) are clustered, with Gaussian
component densities. Studying the relationship between CO2 and the covariate Gross
National Product (GNP), both measured per capita, is of interest. As consideration is
only being given to inclusion/exclusion of a single covariate in the gating and/or expert
networks, an exhaustive search is feasible. A range of models (G ∈ {1, . . . , 9}) are
fitted, with either the equal (E) or unequal variance (V) models from Table 1. Quantile-
based clustering of the CO2 values is used to initialise Algorithm 1 when the expert
network excludes GNP, otherwise hierarchical clustering of both CO2 and GNP is
used.

Table 2 gives BIC and ICL values for the top model under each of the six special
cases of theMoE framework. The chosen model hadG = 3, equal variances (i.e. the E
constraint), equal mixing proportions, and GNP in the expert network; thus, this is an
equal mixing proportion expert network MoE model. This model maximised both the
BIC and ICL criteria, and was also identified by the forward stepwise search described
in Algorithm 2, starting from a G = 1 model (BIC= −163.90), adding a component
(BIC= −163.16), addingGNP to the expert network and changing to the Vmodel type
(BIC= −157.20), and finally adding a further component, constraining the mixing
proportions, and changing back to the E model type (BIC= −155.20). Thereafter,
neither adding a component nor adding GNP to the gating network improved the BIC.
Code to reproduce both the exhaustive and stepwise searches using the MoEClust R
package is given in “Appendix A”.

Repeating both the exhaustive and stepwise searches with the addition of a noise
component for all models also failed to yield any model with an improved BIC. The
fourth row of Table 2 corresponds to a full MoE, with GNP included in both parts of
themodel; its sub-optimal BIC highlights the benefits of themodel selection approach.
The parameters of the optimal model are given in Table 3. Its fit is exhibited in Fig. 4,
showing the relationship between CO2 and GNP is clustered around three differ-
ent linear regression lines; one cluster of eight countries with a large slope value
and two equally-sized clusters, each with different intercepts but near-zero slope val-
ues.
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Table 2 The MoEClust BIC and ICL values of the top models under the six MoE special cases for the CO2
data

Special case Gating Expert G GPCM BIC ICL

Mixture Model 2 E −163.16 −163.91

Expert Network MoE Model GNP 2 V −157.20 −160.04

Gating Network MoE Model GNP 2 E −166.05 −166.68

Full MoE Model GNP GNP 2 V −159.25 −161.47

Equal Mixing Proportion Mixture
Model

Equal 2 V −165.19 −184.71

Equal Mixing Proportion Expert
Network MoE Model

Equal GNP 3 E −155.20 −159.06

Each row is optimal with respect to G and GPCM type, given the included covariates

Table 3 Estimated parameters of the optimal MoEClust model fit to the CO2 data

Parameter Component 1 Component 2 Component 3

Proportion 1/3 1/3 1/3

(Intercept) 1.41 7.29 10.84

GNP 0.68 −0.04 −0.04

σ 2
g 0.98 0.98 0.98
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Fig. 4 Scatter plots of GNP against CO2 emissions for n = 28 countries with three linear regression
components from the optimal MoEClust model with equal variances and mixing proportions
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The optimal model contains GNP in the expert network and has constraints
on the component variances and mixing proportions. These are features of MoEClust,
which neither MoE nor GPCM models can fully accommodate. While flexmix
and mixtools can fit the sub-optimal expert network MoE model in row four of
Table 2, with unequal variances and mixing proportions (which achieves the second
highest BIC value), our initialisation strategy ultimately leads to the same or higher
BIC estimates. Across 50 random starts, BIC values of −157.29 and −157.20 are
achieved using flexmix and mixtools, respectively. Among these random starts,
BIC values as low as −163.67 are obtained. However, the MoEClust R package,
with Algorithm 1 invoked, achieves a BIC of −157.20 with only a single initial par-
tition. Using MoEClust without this initialisation strategy also yields the lower BIC
value of−163.67. A further demonstration of the advantages of our initialisation strat-
egy, using instead the optimal model for the the CO2 data, is provided in “Appendix
B”.

5.2 Australian institute of sport (AIS) data

Various physical and hematological (blood) measurements were made on 102 male
and 100 female athletes at the Australian Institute of Sport (AIS; Cook and Weisberg
1994). The thirteen variables recorded in the study are detailed in Table 4.

MoEClust models are used to investigate the clustering structure in the athletes’
hematological measurements and investigate how covariates may influence these
measurements and the clusters. Cluster allocations are initialised using model-based
agglomerative hierarchical clustering. Results of the forward stepwise model search
described in Algorithm 2, with all covariates considered for inclusion, are given in
“Appendix C”. The optimal model (BIC= −4010.14) is a 2-component EVE equal
mixing proportion expert network MoE model, which thus has clusters of equal size,
volume, and orientation, and unequal shape. Notably, the only covariate (Sex), only

Table 4 Australian Institute of Sports data variables

Response Description Covariate Description (Units)

RCC Red cell count BMI Body mass index (kg/m2)

WCC White cell count SSF Sum of skin folds (mm)

Hc Hematocrit Bfat Body fat percentage (%)

Hg Hemoglobin LBM Lean body mass (kg)

Fe Plasma ferritin Ht Height (cm)

concentration Wt Weight (kg)

Sex A factor with levels: female, male

Sport A factor with levels: Basketball, Field,
Gym, Netball, Rowing, Swimming,
Tennis, Track 400m, Track Sprint,
Water Polo

The p = 5 in the first column are hematological response variables and the others, the r = 8 covariates,
are physical measurements for the athlete
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Table 5 The BIC and ICL values for a selection of MoEClust models fitted to the Australian Institute of
Sports data

Rank (BIC) Gating Expert G GPCM BIC ICL No.
parameters

186 Sex 2 VVV −4113.31 −4121.32 42

801 Sex 5 VVI −4319.85 −4345.55 58

278 2 EVE −4146.16 −4201.61 30

3 Sex 2 EVE −4015.35 −4059.43 40

19 Sex 3 EVE −4037.32 −4066.66 42

2 BMI Sex 2 EVE −4013.40 −4074.10 41

264 Equal 2 EVE −4140.98 −4192.21 29

1 Equal Sex 2 EVE −4010.14 −4057.87 39

20 BMI, Sex 3 EEE −4038.75 −4043.01 36

Rows 1 and 2 give the optimal models under settings available in flexmix; models without expert network
covariates, using either the VVV or VVI covariance constraints. Among the more general MoEClust family,
the last row gives the top model according to the ICL criterion and the remaining rows give the top models
according to the BIC criterion for each of the six special cases of the MoE framework. Thus, row 3
corresponds to the optimal model according to mclust

enters in one part of the model, the expert network. The sub-optimal BIC values
for the best model with all covariates in both parts of the model (G = 1, EEE,
BIC= −4234.79), which is the same as the best model with all covariates in the
expert network only (regardless of τ being constrained or not), and all covariates in
the gating network only (G = 2, VEE, BIC= −4092.79), highlight the need for the
model selection strategy employed. As the optimal model uses the EVE constraints,
it has 19 covariance parameters; an otherwise exactly equivalent VVV model, having
30 such parameters, yields a lower BIC of −4056.19, thus showcasing the benefits of
the parsimonious covariance constraints. The difference of 11 covariance parameters
between these models is exactly one more than the number of regression parameters
introduced by the expert network covariate.

Subsequently, and purely for the purposes of comparing certain special cases of
interest, an exhaustive search over a range of MoEClust models is conducted, with
G ∈ {1, . . . , 9}. This is rendered feasible by only considering the covariates BMI
and Sex; allowing either, neither, or both to enter either, neither, or both of the gating
and expert networks. Note that BMI is itself computed using the covariates measuring
weight (Wt) and height (Ht). With 3 permissible covariance parameterisations for the
single componentmodels, and 14 otherwise, 16 possible combinations of gating and/or
expert network covariate settings, and consideration also being given to models with
equal mixing proportions, this still requires fitting 2, 252MoEClust models. However,
some spurious solutions were found, particularly for higher values of G, in the sense
that models with empty components or degenerate components with few observations
reduced to equivalent models with fewer non-empty components (see Sect. 3.3). Table
5 gives the BIC and ICL values of a selection of these fitted models, representing the
optimal models for certain special cases of interest.
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Table 6 Coefficients of the
expert network linear regressions
for the G = 2 Gaussian clusters
in the optimal MoEClust model
(with an extra noise component
and gating concomitants
entering the non-noise clusters)
fit to the AIS data, with female
as the reference level for the
explanatory variable ‘Sex’

RCC WCC Hc Hg Fe

Cluster 1

(Intercept) 4.56 6.89 42.34 14.08 49.70

Sexmale 0.42 0.12 2.95 1.30 28.21

Cluster 2

(Intercept) 4.26 6.93 38.91 13.11 59.71

Sexmale 0.86 0.59 7.36 2.80 132.64

The inclusion of covariates improves the fit compared to GPCMmodels. Similarly,
using GPCM covariance constraints improves the fit compared to standard Gaussian
MoE models. The top three models according to BIC all have 2 components, the EVE
covariance constraints, and the covariate Sex in the expert network; they differ only in
their treatment of the gating network. Models with equal and unequal mixing propor-
tions, and with BMI as a gating concomitant, have zero, one, and two associated gating
network parameters, respectively. The optimal model has equal mixing proportions
and was also identified above via Algorithm 2. The full MoE model with BMI in the
gating network and Sex in the expert network is an interesting case as it does not fit the
framework ofDang andMcNicholas (2015), which assumes that when covariates enter
the model, they enter in both parts. The best such model has ‘Sex’ in both networks
(G = 2, EVE) and achieves a BIC of −4020.22 with a corresponding rank of 8.

Up to now,models with a noise component have not yet been considered for the AIS
data. Thus, another stepwise search is conducted, including a noise component for
all candidate models and starting from a G = 0 noise-only model (see “Appendix
C”). Consideration was also given to both the GN and NGN model types, in (7) and
(8) respectively, where models included gating concomitants, and to models with
equal/unequal mixing proportions for the non-noise components for models without
gating concomitants. The optimal model thus found has two EEE Gaussian clusters
and an additional noise component. The covariate ‘Sex’ enters the expert network
(see Table 6). Both ‘SSF’ and ‘Ht’ enter the gating network, though not for the noise
component, which has a constant mixing proportion (τ̂0 ≈ 0.08), as per the NGN
model in (8). Thus, the Gaussian clusters have equal volume, shape, and orientation,
but unequal size. This model achieves a BIC value of −3989.83, which compares
favourably to simply adding a noise component to the previously optimal model from
Table 5 (BIC=−3992.81) and to models with a noise component but no variable
selection (or no covariates at all).

Thegatingnetworkhas an intercept of 10.60 and slope coefficients of 0.04 (SSF) and
−0.08 (Ht). Thus, higher SSFvalues increase the probability of belonging to the second
Gaussian cluster, to which taller athletes are less likely to belong, and the probability of
belonging to the noise component is constant. Though every observation has its own
mean parameter in the presence of expert covariates, given by the fitted values of
the expert network (shown in Table 6), the means are summarised in Table 7 by the
posterior mean of the fitted values of the model according to (9). The noise component
is accounted for by V̄ , the p-dimensional centroid of the region used to estimate V .
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μ̂g =
∑n

i=1 ẑig ŷi∑n
i=1 ẑig

=
∑n

i=1 ẑig
(∑G

g=1 ẑig
(
x̃(E)
i γ̂ g

) + ẑi0V̄
)

∑n
i=1 ẑig

(9)

Given that there exists a binary variable, ‘Sex’, in the expert network for the optimal
MoEClust model, there are effectively four Gaussian components plus an additional
noise component. By virtue of the EEE constraint on the Gaussian components, all
four components and thus both clusters in fact share the same covariance matrix.
Components 1 and 2, corresponding to females and males in Cluster 1, share the
same covariance matrix but differ according to their means. The same is true for
females and males (Components 3 and 4) in Cluster 2. Table 7 gives the means and
average gates in terms of both components and clusters, as well as the common �̂

matrix.
Though the plots in Fig. 4 are suitable for univariate data with a single continuous

expert network covariate, visualisingMoEClust results formultivariate datawith r > 1
mixed-type covariates constitutes a much greater challenge. For the optimal model fit-
ted to the AIS data, the data and clustering results are shown using a generalised
pairs plot in Fig. 5. This plot depicts the pairwise relationships between the hema-
tological response variables, the included gating and expert network covariates, and
the MAP classification, coloured according to the MAP classification. The marginal
distributions of each variable are given along the diagonal. For the hematological
response variables, ellipses with axes related to the within-cluster covariances are
drawn. For the purposes of visualising Fig. 5, owing to the presence of an expert net-
work covariate in the fitted model, the MVN ellipses in panels depicting two response
variables are centered on the posterior mean of the fitted values, as described in
(9). The shape and size of the ellipses are also modified for the same reason: they
are derived by adding the extra variability in the component means to �̂g . Thus,
the depicted ellipses do not conform to the EEE covariance constraints of the opti-
mal model.

It is clear from Fig. 5 that the variables ‘Hematocrit’ (Hc), ‘Hemoglobin’ (Hg),
and ‘plasma ferritin concentration’ (Fe), and the gating network concomitants ‘SSF’
and ‘Ht’, are driving much of the separation between the clusters. On the other hand,
the expert network covariate ‘Sex’ is driving separation within the Gaussian clusters.
The correspondence between theMAP cluster assignment and the Sex label is notably
poor, with an adjusted Rand index (Hubert and Arabie 1985) of just 0.11. This index
is higher for models where Sex does not enter the expert network, especially when
it instead enters the gating network, though such fitted models all have sub-optimal
BIC values (see Table 5). This is because, under the optimal model, the athletes’ size
in terms of their SSF and height measurements, rather than their Sex, influences the
probability of cluster membership, and athletes are divided by Sex within each cluster
rather than the clusters necessarily capturing their Sex.

Indeed, Table 6 implies that males, on average, have elevated levels of all five blood
measurements in both Gaussian clusters. However, themagnitude of this effect is more
pronounced in Cluster 2, related to athletes with higher average SSF measurements
(a proxy for body fat) and lower average height. Interestingly, Fig. 5 also shows
that females have higher average SSF measurements and lower average height; this
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Fig. 5 Generalised pairs plot for the optimal MoEClust model fit to the AIS data, depicting pairwise
relationships between the hematological response variables, the expert network covariate Sex, the gating
concomitants SSF and Ht, and the MAP classification. Colours and plotting symbols correspond to the
MAP classification: blue circles and red squares for the two Gaussian clusters; grey crosses for the 4 female
and 9 male outlying observations assigned to the uniform noise component. Mosaic plots are used to depict
two categorical variables, scatter plots are used for panels involving two continuous variables, and a mix of
box-plots and jittered strip-plots are used for mixed pairs (colour figure online)

may explain why there are more males than females in Cluster 1, and the reverse in
Cluster 2, given the signs of the gating network coefficients for SSF (0.04) and Ht
(−0.08).

6 Discussion

The development of a suite ofMoEClustmodels has been outlined, clearly demonstrat-
ing the utility of mixture of experts models for parsimonious model-based clustering
where covariates are available. A novelmeans of visualising suchmodels has also been
proposed. The ability of MoEClust models to jointly model the response variable(s)
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and related covariates provides deeper and more principled insight into the relations
between suchdata in amixture-model based analysis, andprovides a principledmethod
for both creating and explaining the clustering,with reference to information contained
in covariates. Their demonstrated use to cluster observations and appropriately cap-
ture heterogeneity in cross-sectional data provides only a glimpse of their potential
flexibility and utility in a wide range of settings. Indeed, given that general MoE mod-
els have been used, under different names, in several fields, including but not limited
to statistics (Grün and Leisch 2007, 2008), biology (Wang et al. 1996), econometrics
(Wang et al. 1998), marketing (Wedel and Kamakura 2012), and medicine (Thompson
et al. 1998), MoEClust models could prove useful in many domains.

Improvement over GPCM models has been introduced by accounting for external
information available in the presence of potentially mixed-type covariates. Similarly,
improvement overGaussianmixture of expertsmodels which incorporate fixed covari-
ates has been introduced by allowing GPCM family covariance structures in the
component densities. MoEClust models are thus Gaussian parsimonious MoEmodels
where the size, volume, shape, and/or orientation can be equal or unequal across com-
ponents. MoEClust models have been further extended to accomodate the presence
of an additional uniform noise component to capture departures from Gaussianity, in
such a way that observations are smoothly classified as belonging to Gaussian clusters
or as outliers. In particular, two means of doing so have been proposed for models
which include gating concomitants. Due to sensitivity of the final solution obtained by
the EM algorithm to the initial values, an iterative reallocation procedure based on
the Mahalanobis distance has been proposed to mitigate against convergence to sub-
optimal local maxima for models with expert network covariates. This initialisation
algorithm converges quickly and also speeds up convergence of the EM algorithm
itself.

Previous parsimonious Gaussian mixtures of experts (Dang andMcNicholas 2015)
accommodated only the cases where all covariates enter the expert network MoE
model, or the full MoE model with the restriction that all covariates enter both parts
of the model. MoEClust constitutes a unifying framework whereby different subsets
of covariates can enter either, neither, or both the gating and/or expert networks of
Gaussian parsimonious MoE models. Considering the standard mixture model (with
no dependence on covariates), or the expert networkMoEmodel,with the equalmixing
proportion constraint expands the model family further.

On a cautionary note, care must be exercised in choosing how and where covari-
ates enter when a MoEClust model is used as a clustering tool, as the interpretation
of the analysis fundamentally depends on where covariates enter, which of the six
special cases of the MoE framework is invoked, and on which GPCM constraints are
employed. To this end, a novel greedy forward stepwise search algorithm has been
employed formodel/variable selection purposes. This strategy has the added advantage
of introducing additional parsimony, by potentially reducing the number of regression
parameters in the gating and/or expert networks.

Gating networkMoEClust models may be of particular interest to users of GPCMs;
while concomitants influence the probability of cluster membership, the correspon-
dance thereafter between component densities and clusters has the same interpretation
as in standard GPCMs. When covariates enter the component densities, we warn that
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observations with very different response values can be clustered together, because
they are being modelled using the same GLM; similarly, regression distributions with
distinct parameters do not necessarily lead to well-separated clusters.

MoEClust models allow the number of parameters introduced by gating and expert
network covariates to be offset by a reduction in the number of covariance parameters.
This is particularly advantageous when model selection is conducted using the BIC
or ICL, which include a penalty term based on the parameter count. Thus, MoEClust
models may tend to favour including covariates more than standard Gaussian MoE
models would. This is particularly true for explanatory variables in the expert network,
which tend to necessitate more regression parameters (Gp) than concomitant variables
in the gating network (G−1) per additional continuous covariate or level of categorical
covariates included. Thus, in cases where a MoE model might elect to include a
concomitant variable in the gating network, a MoEClust model with fewer covariance
parameters may elect to include it as an explanatory expert network variable instead.
While this does lead to a better fit, it can complicate interpretation.

Possible directions for future work in this area include investigating the utility of
nonparametric estimation of the gating network (Young and Hunter 2010), as well
as exploring the use of regularisation penalties in the gating and expert networks to
help with variable selection when the number of covariates r is large. Regularisation in
another, Bayesian sense, by specifying a prior on the component variances/covariances
in the spirit of Fraley and Raftery (2007), and/or component regression parameters,
could also prove useful for avoiding spurious solutions due to computational singu-
larity described in Sect. 3.3. MoEClust models could also be developed in the context
of hierarchical mixtures of experts (Jordan and Jacobs 1994), and/or extended to the
supervised or semi-supervised model-based classification settings, where some or all
observations are labelled.

Beyond the family of GPCM constraints, MoEClust models could be extended to
avail of parsimonious factor-analytic covariance structures for high-dimensional data
(McNicholas and Murphy 2008). These could be incorporated into Gaussian mixture
of experts models using residuals in an equivalent fashion to Sect. 3.2 above. Similarly,
MoEClustmodels could benefit from the heavier tails of themultivariate t-distribution,
and the robustness to outliers it affords, by considering the associated tEIGEN family
of covariance constraints (Andrews andMcNicholas 2012). However, our inclusion of
a uniform noise component has the advantage of drawing a clearer distinction between
observations belonging to clusters or designated as outliers.

Acknowledgements This work was supported by the Science Foundation Ireland funded Insight Centre
for Data Analytics in University College Dublin under Grant Number SFI/12/RC/2289_P2.

Appendix A: CO2 data: code examples

Code to reproduce both the exhaustive (Listing 1) and greedy forward stepwise (Listing
2) searches for the CO2 data described in Sect. 5.1, using the MoEClust R package
(Murphy and Murphy 2019), is provided below. The code in Listing 1 can be used to
reproduce the results in Table 2.
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Listing 1 Exhaustive search R code for the CO2 data.

library(MoEClust)
data(CO2data)
CO2 <- CO2data$CO2
GNP <- CO2data$GNP

# Fit models under the 6 special cases of the MoE framework
m1 <- MoE_clust(CO2 , G=1:9)
m2 <- MoE_clust(CO2 , G=2:9, gating=~GNP)
m3 <- MoE_clust(CO2 , G=1:9, expert=~GNP)
m4 <- MoE_clust(CO2 , G=2:9, gating=~GNP , expert=~GNP)
m5 <- MoE_clust(CO2 , G=2:9, equalPro=TRUE)
m6 <- MoE_clust(CO2 , G=2:9, expert=~GNP , equalPro=TRUE)

# Collate results and rank (by BIC) only the 6 optimal models
res <- list(m1=m1, m2=m2, m3=m3 , m4=m4, m5=m5 , m6=m6)
(comp <- MoE_compare(res , optimal.only=TRUE))

Listing 2 Stepwise search R code for the CO2 data.

library(MoEClust)
data(CO2data)
CO2 <- CO2data$CO2
GNP <- CO2data$GNP

# Conduct a stepwise search
(mod1 <- MoE_stepwise(CO2 , GNP))

# Conduct a stepwise search for models with a noise component
(mod2 <- MoE_stepwise(CO2 , GNP , noise=TRUE))

# Compare both sets of results to choose the optimal model
(best <- MoE_compare(mod1 , mod2 , optimal.only=TRUE)$optimal)

Appendix B: CO2 data: initialisation

The solutions for the optimal G = 3 equal mixing proportion expert network
MoEClust model with equal component variances and the explanatory variable ‘GNP’
fit to the CO2 data with and without the initial partition being passed through Algo-
rithm 1 are shown in Fig. 6. A BIC value of−155.20 is achieved after 18 EM iterations
with our proposed initialisation strategy compared to a value of −161.06 in 30 EM
iterations without. While the models differ only in terms of the initialisation strategy
employed, Table 2 shows that the model would not have been identified as optimal
according to the BIC criterion had Algorithm 1 not been used. The superior solution
in Fig. 6a has one cluster with a steep slope and two clusters with near-zero slopes but
different intercepts.
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Fig. 6 Scatter plots of GNP against CO2 emissions for n = 28 countries showing three linear regression
components from the optimal MoEClust model, with equal variances and mixing proportions, with (a) and
without (b) the initialisation strategy described in Algorithm 1 invoked

Appendix C: AIS data: stepwise model search

For the AIS data, Table 8 gives the results of the greedy forward stepwise model
selection strategy described in Algorithm 2, showing the action yielding the best
improvement in terms of BIC for each step. This forward search is less computation-
ally onerous than its equivalent in the backwards direction. A 2-component EVE equal
mixing proportion expert network MoE model is chosen, in which the mixing propor-
tions are constrained to be equal and Sex enters the expert network. This same model
was identified after an exhaustive search over a range of G values, the full range of
GPCM covariance constraints, and every possible combination of the BMI and Sex
covariates in the gating and expert networks (see Table 5). Note, however, that the
remaining covariates in Table 4 are also considered for inclusion here.

Table 8 Results of the forward stepwise model selection algorithm applied to the AIS data where candidate
models do not include a noise component

Step Optimal action G GPCM Gating Expert BIC

1 – 1 EEE – − 4202.79

2 Add explanatory variable (Expert) 1 EEE – Sex − 4050.64

3 Add component and constrain mixing
proportions

2 EVE Equal Sex − 4010.14

4 Stop 2 EVE Equal Sex − 4010.14

All covariates in Table 4 are considered for inclusion in both parts of the model. The optimal action and
associated BIC value is detailed for each step. The resulting models are described in terms of the number of
Gaussian components G, the GPCM constraints used, and the treatment of the gating and expert networks
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Table 9 Results of the forward stepwise model selection algorithm applied to the AIS data where all
candidate models explicitly include a noise component

Step Optimal action G GPCM Gating Expert BIC

1 – 0 – – – − 4869.82

2 Add component 1 EEE − 4149.46

3 Add explanatory variable
(Expert)

1 EEE Sex − 4013.55

4 Add component 2 VEE Sex − 3991.17

5 Add concomitant (Gating) 2 EVE NGN: SSF Sex − 3990.09

6 Add concomitant (Gating) 2 EEE NGN: SSF, Ht Sex − 3989.83

7 Stop 2 EEE NGN: SSF, Ht Sex − 3989.83

All covariates in Table 4 are considered for inclusion in both parts of the model. The optimal action and
associated BIC value is detailed for each step. The resulting models are described in terms of the number
of Gaussian (i.e. non-noise) components G, the GPCM constraints used, and the treatment of the gating
and expert networks. When gating concomitants are included, the chosen models here correspond to the
NGNmodel in (8). Thus, the noise component’s mixing weight is constant and independent of the included
concomitants

To give consideration to outlying observations departing from the prevailing pat-
tern of Gaussianity, a separate stepwise search is conducted, starting from a G = 0
noise-only model, with all candidate models having an additional noise component.
Thus, a distinction is made between the model found by following the steps shown in
Table 8 with G = 2 EVE Gaussian components, and the model found by the second
stepwise search described in Table 9 with three, of which two are EEE Gaussian and
one is uniform. Ultimately, the model with the noise component identified in Table
9 is chosen, based on its superior BIC. Aside from the noise component, it similarly
includes ‘Sex’ in the expert network, but differs in its treatment of the gating network
and the GPCM constraints employed for the Gaussian clusters. It is a full MoE model
where the Gaussian clusters have equal volume, shape, and orientation, the expert
network includes the covariate ‘Sex’, and the both ‘SSF’ and ‘Ht’ influence the prob-
ability of belonging to the Gaussian clusters but not the additional noise component,
as per (8).
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