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Abstract
We propose a method for variable selection in discriminant analysis with mixed con-
tinuous and binary variables. This method is based on a criterion that permits to reduce
the variable selection problem to a problem of estimating suitable permutation and
dimensionality. Then, estimators for these parameters are proposed and the resulting
method for selecting variables is shown to be consistent. A simulation study that per-
mits to study several properties of the proposed approach and to compare it with an
existing method is given, and an example on a real data set is provided.

Keywords Variable selection · Discriminant analysis · Classification · Mixed
variables

Mathematics Subject Classification 62H30 · 62H12

1 Introduction

The problem of classifying an observation into one of several classes on the basis of
data consisting of both continuous and categorical variables is an old problem that has
been tackled under different forms in the literature. The earliest works in this field go
back to Chang and Afifi (1979) and Krzanowski (1975) who used the location model
introduced by Olkin and Tate (1961) to form a classification rule in the context of dis-
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criminant analysis involving two groups. More recent work has focused on defining
distancemeasures betweenpopulations ormaking inference on them (e.g.,Krzanowski
1983, 1984; Bar-Hen and Daudin 1995; Bedrick et al. 2000; de Leon and Carriere
2005).Oneof themost important problem in the context described above is the problem
of selecting the appropriate categorical and/or continuous variables to use for discrim-
ination. Indeed, it is well recognized that using fewer variables improve classification
performance and permits to avoid estimation problems (e.g. McLachlan 1992; Mahat
et al. 2007). There are several works dealing with this problem, mainly in the context
of a location model. Some of these works are based on the use of distances between
populations for determining the most predictive variables (Krzanowski 1983; Daudin
1986; Bar-Hen and Daudin 1995; Daudin and Bar-Hen 1999). Krusinska (1989a, b,
1990) used methods based on the percentage of misclassification, Hotelling’s T 2 and
graphical models. More recently, Mahat et al. (2007) proposed a method based on
distance between groups as measured by smoothed Kullback–Leiler divergence. All
these works consider the case of two groups and, to the best of our knowledge, the case
of more than two groups have not yet been considered for variable selection purpose.
So, it is of great interest to introduce a method that can be used when the number of
groups is greater than two. Such an approach have been proposed recently in Nkiet
(2012) for the case of continuous variables only. It is based on a criterion that permits
to characterize the set of variables that are appropriate for discrimination by means of
two parameters, so that the variable selection problem reduces to that of estimating
these parameters.

In this paper, we extend the approach of Nkiet (2012) to the case of mixed variables.
The resulting method has two advantages; first, it can be used when the number
of groups is greater than two, and secondly it just requires that the random vector
consisting of the continuous variables has finite fourth order moment. No assumption
on the distribution of this random vector is needed and, therefore, we do not suppose
that the locationmodel holds. In Sect. 2, we introduce a criterion bymeans ofwhich the
set of variables to be estimated is characterized by means of suitable permutation and
dimensionality. Then, estimating this criterion is tackled in Sect. 3. More precisely,
empirical estimators as well as non-parametric smoothing procedure are used for
defining an estimator of the criterion. In the first case, we obtain properties of the
resulting estimator that permits to obtain its asymptotic distribution. Section 4 is
devoted to the definition of our proposal for variable selection. Consistency of the
method, when empirical estimators are used, is then proved. Section 5 is devoted to
the presentation of numerical experiments made in order to study several properties
of the proposal and to compare it with an existing method. The first issue that is
adressed concerns the impact of choosing penalty functions that are involved in our
procedure, and that of the type of estimators that is used. The results reveal low
impact on the performance of the proposed method, and that in case of very small
cell incidences it is preferable to use smoothed estimators. Since this method depends
on two real parameters, it is of interest to study their influence on its performance
and, consequently, to define a strategy that permits to choose optimal values for them;
we propose a method based on leave-one-out cross validation for obtaining these
optimal values. When using this approach, the obtained results show that the proposal
is competitive with that of Mahat et al. (2007). A real data example is given in Sect. 6.
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2 Statement of the problem

Letting (Ω,A, P) be a probability space, we consider random vectors X =
(
X (1), . . . , X (p)

)T
and Y = (

Y (1), . . . ,Y (d)
)T

defined on this probability space and
with values in R

p and {0, 1}d respectively. The r.v. X consists of continuous random
variables whereas Y consists of binary random variables. As usual, Y may be associ-
ated to amultinomial random variable by consideringU = 1+∑d

j=1 Y
( j) 2 j−1 which

has values in {1, . . . , M}, where M = 2d . In fact, Y is essentially the binary represen-
tation of U , and U provides a labeling of the underlying d-dimensional contingency
table. Suppose that the observations of (X ,Y ) come from q groups π1, . . . πq (with
q ≥ 2) characterized by a random variable Z with values in {1, . . . , q}; this means
that (X ,Y ) belongs to π� if, and only if, one has Z = �. Such framework has been
considered in the literature for classification purposes. Indeed, for the case of two
groups, that is when q = 2, Krzanowski (1975) proposed a classification rule based
on a normal distribution location model where, conditionally on U = m and Z = �,
the vector X has the p-variate distribution N (μm�,Σ). This rule allocates a future
observation (x, y) of (X ,Y ) to π1 if

(μm1 − μm2)
T Σ−1

(
x − 1

2
(μm1 + μm2)

)
≥ log

(
pm2

pm1

)
+ log(γ ), (1)

where m = 1 +∑d
j=1 y

( j) 2 j−1, pm� = P(U = m|Z = �) and γ is a constant that
depends on costs due to missclassification and prior probabilities for the two groups.
The case where q > 2 was considered by de Leon et al. (2011) in the context of
general mixed-data models. In this case, the optimum rule classifies an observation
(x, y) into the class π�∗ if

δ(�∗)
m (x, y) = max

�=1,...,q
δ(�)
m (x, y) (2)

where

δ(�)
m (x, y) = (μm�)

TΣ−1x − 1

2
(μm�)

TΣ−1μm� + log(pm�) + log(τ�), (3)

with τ� = P(Z = �). As it can be seen, these rules involve observations of all the
variables X ( j) in X . Nevertheless, as it is well recognized (see, e.g., McLachlan 1992;
Mahat et al. 2007), using fewer variables may improve classification performance. So,
it is of real interest to perform selection of the X ( j)’s from a sample of (X ,Y , Z).
For doing that, we extend an approach proposed by Nkiet (2012) for the case of
continuous variables to the case of mixed continuous-binary variables where selection
is from the continuous variables only. This approach first consists in introducing a
criterion by means of which the set of variables that are adequate for discrimination
is characterized. For any m ∈ {1, . . . , M} we put

pm = P(U = m), μm = E (X |U = m) , μ�,m = E (X |Z = �,U = m)
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and, assuming that E
(‖X‖2) < +∞ where ‖ · ‖ denotes the usual Euclidean norm of

R
p, we consider the covariance matrix of X conditionally on U = m given by

Vm = E

(
(X − μm) (X − μm)T |U = m

)
,

wher aT denotes the transpose of a. Througout this paperwe assume that thematrix Vm
is invertible. Let us represent the set of continuous variables by the set I = {1, . . . , p}
and, for any subset K := {i1, . . . , ik} of I , consider the k × p matrix defined by:

AK =

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

a(K )
11 a(K )

12 · · · a(K )
1p

a(K )
21 a(K )

22 · · · a(K )
2p

...
...

...
...

a(K )
k1 a(K )

k2 · · · a(K )
kp

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

where

a(K )
l j =

{
1 if j = il
0 if j �= il

, 1 ≤ l ≤ k, 1 ≤ j ≤ p.

Thismatrix selects from x inR
p the components contained in the set K ;more precisely,

AK transforms any vector x = (x1, . . . , xp)T in R
p to the vector AK x in R

k whose
components are the components xi of x such that i ∈ K . Then putting

p�|m = P(Z = �|U = m) and QK |m = AT
K

(
AK Vm AT

K

)−1
AK (4)

we introduce

ξK |m =
q∑

�=1

p2�|m‖ (Ip − VmQK |m
) (

μ�,m − μm
) ‖2, (5)

where Ip is the p × p identity matrix. In fact, ξK |m is the criterion introduced in
Nkiet (2012), conditionally on U = m. It quantifies the loss of information resulting
from selection of the variables of X belonging to K provided that the event {U =
m} is realized (see Theorem 2.1 in Nkiet 2012). From this, we look for a criterion
that quantifies the loss of information resulting from the above variable selection
but without taking into account the value that will be taken by U since this value is
unknown a priori. This leads to consider the criterion

ξK =
M∑

m=1

p2mξK |m (6)
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by means of which we will characterize the subset I0 of variables that do not make any
contribution for the discrimination between the q groups, that is variables of which
the related components of the vector Σ−1μm� that arises in the discriminant function
(3) are constant as � varies in {1, . . . , q}, for any m ∈ {1, . . . , M}. Therefore,

I0 =
M⋂

m=1

I0,m

where I0,m denotes the subset of continuous variables whose related components of
Σ−1μm� are constant for � ∈ {1, . . . , q}. Then, our problem reduces to the problem
of estimating the subset I1 given by

I1 = I − I0 =
M⋃

m=1

I1,m

where I1,m = I − I0,m . An explicit expression of I1,m can be obtained by using results
from McKay (1977) (see also Fujikoshi 1982, 1985). Indeed, let λ1,m ≥ λ2,m ≥
· · · ≥ λp,m denote the eigenvalues of Tm = V−1

m Bm where Bm is the between groups
covariance matrix conditionally on U = m given by

Bm =
q∑

�=1

p�|m(μ�,m − μm)(μ�,m − μm)T ,

and let υm
i = (υm

i1, . . . , υ
m
ip)

T (i = 1, . . . , p) be an eigenvector of Tm associated with
λi,m , then (see McKay 1977; Fujikoshi 1982),

I1,m = {k ∈ I |∃i ∈ {1, . . . , rm}, υm
ik �= 0

}
,

where rm denotes the rank of Tm .
Now, we give a characterization of I1 by means of the criterion (6). For doing that, we
consider the following assumption:
(A1): For all m ∈ {1, . . . , M}, pm > 0.
Then, we have:

Proposition 1 We assume that (A1) holds. Then, for K ⊂ I we have ξK = 0 if and
only if I1 ⊂ K.

Proof For anyfixedm ∈ {1, . . . , M}, we denote by P{U=m} the conditional probability
to the event {U = m}. Then applying Theorem 2.1 of Nkiet (2012) with the probability
space

(
Ω,A, P{U=m}), we obtain the equivalence: ξK |m = 0 ⇔ I1,m ⊂ K . Thus:

ξK = 0 ⇔
M∑

m=1

p2mξK |m = 0

⇔ ∀m ∈ {1, . . . , M} , ξK |m = 0
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⇔ ∀m ∈ {1, . . . , M} , I1,m ⊂ K

⇔
M⋃

m=1

I1,m ⊂ K .

�
From this proposition, it is easily seen that, putting Ki = I − {i}, one has the equiv-
alence: ξKi > 0 ⇔ i ∈ I1. Now, let σ = (σ (1), . . . , σ (p)) be the permutation of I
such that:

(a) ξKσ(1) ≥ ξKσ(2) ≥ · · · ≥ ξKσ(p) ;
(b) ξKσ(i) = ξKσ( j) and i < j imply σ (i) < σ ( j).

Remark 1 This just means that the ξKi ’s are ranked in nonincreasing order so that the
ex aequos are ranked in increasing order of the corresponding indices. Then, σ(i) is
the index corresponding to the i-th largest element.

Since I1 is a non-empty set, there exists an integer s ∈ I which is equal to p when
I1 = I , and satisfying

ξKσ(1) ≥ · · · ≥ ξKσ(s) > ξKσ(s+1) = · · · = ξKσ(p) = 0

when I1 �= I . The integer s will be the number of selected variables, and:

I1 = {σ (i) ; 1 ≤ i ≤ s} . (7)

Therefore, estimating I1 reduces to estimating the two parameters σ and s. For doing
that, we first need to consider an estimator of the criterion given in (6).

3 Estimating the criterion

Let {(Xi ,Yi , Zi )}1≤i≤n be an i.i.d. sample of (X ,Y , Z) with

Xi =
(
X (1)
i , . . . , X (p)

i

)T
and Yi =

(
Y (1)
i , . . . ,Y (d)

i

)T ;

we putUi = 1+∑d
j=1 Y

( j)
i 2 j−1. In this section, we define estimators for the criterion

given in (6) by estimating the parameters involved in its definition. First, empirical
estimators are introduced and properties of the resulting estimator of the criterion
are given, and secondly we consider estimators obtained by using non-parametric
smoothing procedures as in Mahat et al. (2007).
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3.1 Empirical estimators

Putting

N (n)
m =

n∑

i=1

1{Ui=m} and N (n)
�,m =

n∑

i=1

1{Zi=�,Ui=m},

we estimate pm , p�|m , μm , μ�,m and Vm respectively by:

p̂(n)
m = N (n)

m

n
, p̂(n)

�|m = N (n)
�,m

N (n)
m

, μ̂(n)
m = 1

N (n)
m

n∑

i=1

1{Ui=m}Xi ,

μ̂
(n)
�,m = 1

N (n)
�,m

n∑

i=1

1{Zi=�,Ui=m}Xi

and

V̂ (n)
m = 1

N (n)
m

n∑

i=1

1{Ui=m}
(
Xi − μ̂(n)

m

) (
Xi − μ̂(n)

m

)T
.

Then, considering

Q̂(n)
K |m = AT

K

(
AK V̂

(n)
m AT

K

)−1
AK

and

ξ̂
(n)
K |m =

q∑

�=1

(
p̂(n)
�|m
)2 ‖

(
Ip − V̂ (n)

m Q̂(n)
K |m
) (

μ̂
(n)
�,m − μ̂(n)

m

)
‖2,

we take as estimator of ξK the random variable ξ̂
(n)
K defined by:

ξ̂
(n)
K =

M∑

m=1

(
p̂(n)
m

)2
ξ̂

(n)
K |m . (8)

Now, we will derive a result which establishes strong consistency for ξ̂
(n)
K and will

be useful for determining its asymptotic distribution and consistency of the proposed
method for selecting variables for n approaching +∞. Let us consider the random
matrices

X =

⎛

⎜⎜
⎜
⎝

1{Z=1,U=1}X . . . 1{Z=1,U=M}X
1{Z=2,U=1}X . . . 1{Z=2,U=M}X

...
. . .

...

1{Z=q,U=1}X . . . 1{Z=q,U=M}X

⎞

⎟⎟
⎟
⎠

,
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Xi =

⎛

⎜⎜⎜
⎝

1{Zi=1,Ui=1}Xi . . . 1{Zi=1,Ui=M}Xi

1{Zi=2,Ui=1}Xi . . . 1{Zi=2,Ui=M}Xi
...

. . .
...

1{Zi=q,Ui=1}Xi . . . 1{Zi=q,Ui=M}Xi

⎞

⎟⎟⎟
⎠

with values in the spaceMqp,M (R) of pq×M matrices.We also introduce the random
vectors

Y =

⎛

⎜⎜⎜
⎝

1{U=1}X
1{U=2}X

...

1{U=M}X

⎞

⎟⎟⎟
⎠

, Yi =

⎛

⎜⎜⎜
⎝

1{Ui=1}Xi

1{Ui=2}Xi
...

1{Ui=M}Xi

⎞

⎟⎟⎟
⎠

, Z =

⎛

⎜⎜⎜
⎝

1{U=1}
1{U=2}

...

1{U=M}

⎞

⎟⎟⎟
⎠

, Zi =

⎛

⎜⎜⎜
⎝

1{Ui=1}
1{Ui=2}

...

1{Ui=M}

⎞

⎟⎟⎟
⎠

,

and the random matrices

U =

⎛

⎜⎜⎜
⎝

1{Z=1,U=1} . . . 1{Z=1,U=M}
1{Z=2,U=1} . . . 1{Z=2,U=M}

...
. . .

...

1{Z=q,U=1} . . . 1{Z=q,U=M}

⎞

⎟⎟⎟
⎠

, Ui =

⎛

⎜⎜⎜
⎝

1{Zi=1,Ui=1} . . . 1{Zi=1,Ui=M}
1{Zi=2,Ui=1} . . . 1{Zi=2,Ui=M}

...
. . .

...

1{Zi=q,Ui=1} . . . 1{Zi=q,Ui=M}

⎞

⎟⎟⎟
⎠

,

and

V =

⎛

⎜⎜⎜
⎝

1{U=1}XXT

1{U=2}XXT

...

1{U=M}XXT

⎞

⎟⎟⎟
⎠

, Vi =

⎛

⎜⎜⎜
⎝

1{Ui=1}Xi XT
i

1{Ui=2}Xi XT
i

...

1{Ui=M}Xi XT
i

⎞

⎟⎟⎟
⎠

.

Further, we consider the random matrices

W = (X ,Y,Z,U ,V), Wi = (Xi ,Yi ,Zi ,Ui ,Vi )

with values in

E = Mqp,M (R) × R
pM × R

M × Mq,M (R) × MpM,p(R);

then, we put

Ŵ (n) = √
n

(
1

n

n∑

i=1

Wi − E(W)

)

. (9)

Note that, for any (a, b, c, d, e) ∈ E , we can write:

a =

⎛

⎜⎜
⎜
⎝

a1,1 a1,2 . . . a1,M
a2,1 a2,2 . . . a2,M
...

...
. . .

...

aq,1 aq,2 . . . aq,M

⎞

⎟⎟
⎟
⎠

, where a�,m ∈ R
p, 1 ≤ � ≤ q, 1 ≤ m ≤ M,
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b =

⎛

⎜⎜⎜
⎝

b1
b2
...

bM

⎞

⎟⎟⎟
⎠

, where bm ∈ R
p, 1 ≤ m ≤ M,

c =

⎛

⎜⎜⎜
⎝

c1
c2
...

cM

⎞

⎟⎟⎟
⎠

, where cm ∈ R, 1 ≤ m ≤ M,

d =

⎛

⎜⎜⎜
⎝

d1,1 d1,2 . . . d1,M
d2,1 d2,2 . . . d2,M
...

...
. . .

...

dq,1 dq,2 . . . dq,M

⎞

⎟⎟⎟
⎠

, where c�,m ∈ R, 1 ≤ � ≤ q, 1 ≤ m ≤ M,

e =

⎛

⎜⎜
⎜
⎝

e1
e2
...

eM

⎞

⎟⎟
⎟
⎠

, where em ∈ Mp,p(R), 1 ≤ m ≤ M .

We introduce the projectors

π�m
1 : (a, b, c, d, e) ∈ E �→ a�,m ∈ R

p,

πm
2 : (a, b, c, d, e) ∈ E �→ bm ∈ R

p,

πm
3 : (a, b, c, d, e) ∈ E �→ cm ∈ R,

π�m
4 : (a, b, c, d, e) ∈ E �→ d�,m ∈ R,

πm
5 : (a, b, c, d, e) ∈ E �→ em ∈ Mp,p(R),

the vector

Δ�,K |m = (Ip − VmQK |m
) (

μ�,m − μm
)

and the maps ΛK |m , Φ�,K |m and Ψ�,K |m defined on E by

ΛK |m(S) = 2pmπm
3 (S) ξK |m,

Φ�,K |m(S) = p−1
m

(
π�m
4 (S) − πm

3 (S) p�|m
)

‖Δ�,K |m‖,

and

Ψ�,K |m (S) = p−1
m

(
Ip − VmQK ,m

)
[
p−1
�|m
(
π�m
1 (S) − π�m

4 (S)μ�,m

)
− πm

2 (S) + πm
3 (S)μm

−
(
πm
5 (S) − πm

3 (S)
(
Vm + μmμT

m

))
QK |m

(
μ�,m − μm

)
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782 A. Mbina Mbina et al.

+
(

μm

(
πm
2 (S) − πm

3 (S)μm

)T
)

QK |m
(
μ�,m − μm

)

+
(
(
πm
2 (S) − πm

3 (S)μm
)
μT
m

)
QK |m

(
μ�,m − μm

)
]
.

Then, we can formulate the following theorem that asserts the consistency of ξ̂
(n)
K for

n approaching +∞. Moreover, we provide an asymptotic approximation for ξ̂
(n)
K that

will be useful for deriving its asymptotic distribution. Let us introduce the following
assumptions:
(A2): For all (�,m) ∈ {1, . . . , q} × {1, . . . , M}, p�|m > 0;
(A3): E

(‖X‖2) < +∞.

Then, we have:

Theorem 1 We assume that the asumptions (A1), (A2) and (A3) hold. Then, for any
subset K of I we have:

(i) ξ̂
(n)
K converges almost surely to ξK as n → +∞.

(ii)

nξ̂
(n)
K =

M∑

m=1

√
nΛ̂

(n)
K |m(Ŵ (n)) +

M∑

m=1

q∑

�=1

(
pmΦ̂

(n)
�,K |m

(
Ŵ (n)

)

+ pm p�|m‖Ψ̂ (n)
�,K |m

(
Ŵ (n)

)
+ √

nΔ�,K |m‖
)2

where
(
Λ̂

(n)
K |m
)

n∈N∗ ,
(
Φ̂

(n)
�,K |m

)

n∈N∗ and
(
Ψ̂

(n)
�,K |m

)

n∈N∗ are sequences of randomoper-

ators that converge almost surely uniformly toΛK |m,Φ�,K |m andΨ�,K |m respectively.

3.2 Non-parametric smoothing procedure

As it is well known, empirical estimators could be not suitable, because many cell
entries of the d-variate contingency table corresponding to the d-categorical variables
could be very small, so that corresponding estimates could be poor or non-existent
(see Aspakourov and Krzanowski 2000). To overcome these problems, smoothed non-
parametric estimators (of probabilities, means and covariance matrices) introduced in
Aspakourov and Krzanowski (2000) and Mahat et al. (2007) can be used in order to
estimate the criterion (6). Denote by D the dissimilarity defined on {1, . . . , M}2 by

D(m, k) = ‖ym − yk‖2,

where, for any k ∈ {1, . . . , M}, yk =
(
y(1)
k , . . . , y(d)

k

)T ∈ {0, 1}d is the vector

of binary variables satisfying 1 + ∑d
j=1 y

( j)
k 2 j−1 = k. Then, given a smoothing

parameter λ ∈]0, 1[, we consider the weights w(m, k) = λD(m,k) and estimate pm ,
p�|m , μm , μ�,m and Vm respectively by:
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p̃(n)
m =

∑M
j=1 w(m, j)N (n)

j
∑M

k=1
∑M

j=1 w(k, j)N (n)
j

, p̃(n)
�|m =

∑M
j=1 w(m, j)N (n)

�, j

p̃(n)
m
∑M

k=1
∑M

j=1 w(k, j)N (n)
�, j

,

μ̃(n)
m =

⎧
⎨

⎩

M∑

j=1

w(m, j)N (n)
j

⎫
⎬

⎭

−1
M∑

j=1

{

w(m, j)
n∑

i=1

1{Ui= j}Xi

}

,

μ̃
(n)
�,m =

⎧
⎨

⎩

M∑

j=1

w(m, j)N (n)
�, j

⎫
⎬

⎭

−1
M∑

j=1

{

w(m, j)
n∑

n=1

1{Zi=�,Ui= j}Xi

}

and

Ṽ (n)
m =

⎧
⎨

⎩

M∑

j=1

w(m, j)N (n)
j

⎫
⎬

⎭

−1
M∑

j=1

{

w(m, j)
n∑

i=1

1{Ui= j}(Xi − μ̃(n)
m )(Xi − μ̃(n)

m )T

}

.

Then, we obtain an estimator ξ̃
(n)
K of the criterion by replacing in (4), (5) and (6)

the parameters pm , p�|m , μm , μ�,m and Vm by their estimators given above. Note
that the smoothing parameter λ must be obtained before parameters can be estimated.
Mahat et al. (2007) suggested to choose a value of λ that gives good performance of
a classification rule and proposed to obtain it by minimizing Brier score (e.g. Hand
1997, p. 101). No consistency result has been given for the aforementioned estimators.

4 Selection of variables

From Eq. (7) it is seen that estimation of I1 reduces to the determination of the permu-
tation σ = (σ (1), . . . , σ (p)) and the number of selected variables s. In this section,
estimators of σ and s are proposed and consistency properties of these estimators
are obtained in Theorem 2 for the case where the criterion ξK is estimated by using
empirical estimators as indicated in (8).

4.1 Estimation of� and s

Let us consider a sequence ( fn)n∈N∗ of functions from I to R+ such that fn ∼ n−α f
whereα ∈ ]0, 1/2[ and f is a strictly decreasing function from I toR+. Then, recalling
that Ki = I − {i}, we put

φ̂
(n)
i = ξ̂

(n)
Ki

+ fn (i) (i ∈ I ) (10)

and we take as estimator of σ the random permutation σ̂ (n) of I such that

φ̂
(n)

σ̂ (n)(1)
≥ φ̂

(n)

σ̂ (n)(2)
≥ · · · ≥ φ̂

(n)

σ̂ (n)(p)
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and if φ̂
(n)

σ̂ (n)(i)
= φ̂

(n)

σ̂ (n)( j)
with i < j , then the order is defined by σ̂ (n) (i) < σ̂ (n) ( j).

Remark 2 Just like σ , the permutation σ̂ (n) = (
σ̂ (n)(1), . . . , σ̂ (n)(p)

)
is defined by

ranking the φ̂
(n)
i ’s in nonincreasing order so that the ex aequo are ranked in increasing

order of the corresponding indices. Then, σ̂ (n)(i) is the index corresponding to the
i-th largest element.

Furthermore, we consider the random set Ĵ (n)
i = {σ̂ (n) ( j) ; 1 ≤ j ≤ i

}
and the ran-

dom variable
ψ̂

(n)
i = ξ̂

(n)

Ĵ (n)
i

+ gn
(
σ̂ (n) (i)

)
(i ∈ I ) (11)

where (gn)n∈N∗ is a sequence of functions from I to R+ such that gn ∼ n−βg where
β ∈ ]0, 1[ and g is a strictly increasing function. Then, we take as estimator of s the
random variable

ŝ(n) = min

{
i ∈ I / ψ̂

(n)
i = min

j∈I

(
ψ̂

(n)
j

)}
.

The variable selection is achieved by taking the random set

Î (n)
1 =

{
σ̂ (n) (i) ; 1 ≤ i ≤ ŝ(n)

}

as estimator of I1.

Remark 3 Since limn→+∞ fn(i) = 0 and limn→+∞ gn(i) = 0 for any i ∈ I , it
is easily deduced from (10), (11) and Theorem 1 that φ̂

(n)
i and ψ̂

(n)
i are consistent

estimators of ξKi and ξJi (with Ji := {σ ( j) ; 1 ≤ j ≤ i} ) respectively, just like ξ̂
(n)
Ki

and ξ̂
(n)

Ĵ (n)
i

. The penalty terms fn(i) and gn (̂σ (n)(i)) that are introduced in (10) and (11)

permit to avoid ties in the values of φ̂
(n)
i and ψ̂

(n)
i . Indeed, even if one has ξ̂

(n)
Ki

= ξ̂
(n)
K j

(resp. ξ̂
(n)
Ji

= ξ̂
(n)
J j

) for i �= j , we will have φ̂
(n)
i �= φ̂

(n)
j (resp. ψ̂

(n)
i �= ψ̂

(n)
j ). This

property is necessary, in the proof of Theorem 2 given below, for obtaining consistency
of the proposed estimators σ̂ (n) and ŝ(n). If we directly use ξ̂

(n)
Ki

and ξ̂
(n)

Ĵ (n)
i

consistency

cannot be obtained because the aforementioned property may not be satisfied. This
motivates the introduction of the penalty functions fn and gn in (10) and (11).

4.2 Consistency

When the empirical estimators defined in Sect. 3.1 are considerd, we establish con-
sistency for the preceding estimators. We first give a proposition that is useful for
proving the consistency theorem. There exist t ∈ I and (m1, . . . ,mt ) ∈ I t such
that m1 + · · · + mt = p, and ξKσ(1) = · · · = ξKσ(m1)

> ξKσ(m1+1) = · · · =
ξKσ(m1+m2)

> · · · · · · > ξKσ(m1+···+mt−1+1) = · · · = ξKσ(m1+···+mt )
. We consider the

set E of integers � satisfying 1 ≤ � ≤ t and m� ≥ 2, and we put m0 := 0 and
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F� :=
{∑�−1

k=0 mk + 1, . . . ,
∑�

k=0 mk − 1
}

(� ∈ {1, . . . , t}). Then, introducing the

assumption
(A4): E

(‖X‖4) < +∞,

we have:

Proposition 2 We assume that the asumptions (A1), (A2) and (A4) hold, and that

E �= ∅. Then for any � ∈ E and any i ∈ F�, nα
(
ξ̂

(n)
Kσ(i)

− ξ̂
(n)
Kσ(i+1)

)
converges in

probability to 0, as n → +∞.

The following theorem gives consistency of the estimators σ̂ (n) and ŝ(n) defined in
Sect. 4.1. The proof of this theorem is similar to that of Theorem 3.1 in Nkiet (2012).

Theorem 2 We assume that the asumptions (A1), (A2) and (A4) hold. Then, we have:

(i) limn→+∞ P
(
σ̂ (n) = σ

) = 1;
(ii) ŝ(n) converges in probability to s, as n → +∞.

As a consequence of this theorem, we easily obtain:

lim
n→+∞ P

(
Î (n)
1 = I1

)
= 1.

This shows the consistency of our method for selecting variables in discriminant
analysis with mixed variables.

Remark 4 Technical arguments in the proofs of Proposition 2 and Theorem 2motivate
the introduction of fn and gn in (10) and (11) (see Remark 3). They also explain the
choice of f , g, α and β with the related properties. Indeed:

(i) in the proof of Proposition 2 we have, for instance, the inequality

| Â(n)
i | ≤ nα−1/2

(
‖Λ̂(n)

Kσ(i)|m‖∞ + ‖Λ̂(n)
Kσ(i+1)|m‖∞

)
‖Ŵ (n)‖E

fromwhich wewant to prove that Â(n)
i converges in probability to 0 as n → +∞.

Since, as n → +∞, ‖Λ̂(n)
Kσ(i)|m‖∞ + ‖Λ̂(n)

Kσ(i+1)|m‖∞ converges almost surely to

‖ΛKσ(i)|m‖∞ + ‖ΛKσ(i+1)|m‖∞ and ‖Ŵ (n)‖E converges in distribution to ‖W‖E ,
where W has a normal distribution, we have to take α < 1/2 in order to obtain
the required convergence property. In addition, for having limn→+∞ fn(i) = 0
we must take α > 0.

(ii) In the proof of Theorem 2, a similar argument leads to 0 < β < 1. Further,
we want to obtain f (σ (i)) − f (σ (i + 1)) > 0 and g(σ (i)) − g(σ (s)) > 0 for
(i, s) ∈ I 2 satisfying σ(i) < σ(i + 1) and σ(i) > σ(s). That is why f (resp. g)
is taken as a strictly decreasing (resp. increasing) function.

Remark 5 The variable selection method that is described above can be performed by
using smoothed non-parametric estimators defined in Sect. 3.2. It suffices to replace
ξ̂

(n)
Ki

and ξ̂
(n)

Ĵi
by ξ̃

(n)
Ki

and ξ̃
(n)

Ĵi
in (10) and (11). But, since no consistency results are

known for these estimators, we could not garantee consistency of the resultingmethod.
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5 Numerical experiments

In this section, we report results of simulations made for studying properties of the
proposed method. Several issues are adressed: the influence of the penalty functions
fn and gn introduced in (10) and (11), the type of estimator and the parameters α

and β on the performance of the procedure, optimal choice of these parameters and
comparison with the method proposed in Mahat et al. (2007).

5.1 The simulated data sets

Each data set was generated as follows: for a given value of p, Xi is generated from
a multivariate normal distribution in R

p with mean μ and covariance matrix given by
Γ = 1

2 (Ip+ Jp), where Ip is the p× p identitymatrix and Jp is the p× pmatrixwhose
elements are all equal to 1. For a given d and M = 2d ,Ui is generated from a discrete
distribution on {1, . . . , M} with probabilities q1, . . . , qM such that

∑M
k=1 qk = 1, that

is equivalent to generate Yi as random vector with d coordinates being binary random
variables. For this, two models are used:

(i) Model 1: q1 = q2 = · · · = qM = 1/M (uniform distribution);
(ii) Model 2: M = 8 and q1 = q3 = q5 = 0.001, q2 = q4 = q6 = q7 = q8 =

0.1994.

Model 2 corresponds to the case where many cell incidences are very small and will
be relevant in order to compare empirical and non-parametric estimators. Two groups
of data was generated as indicated above with μ = μ1 = (0, . . . , 0)T for the first
group and μ = μ2 = (μ

(2)
1 , . . . , μ

(2)
p )T for the second group, where

μ
(2)
2k = 0 and μ

(2)
2k−1 = k/p

for k = 1, . . . , [(p + 1)/2], the notation [x] denoting the integer part of x . Our
simulated data is based on two independent data sets: training data and test data,
each with sample size n = 100, 300, 500, 1000 and with size n1 = n2 = n/2 for
the two groups. The training data is used for selecting variables and the test data is
used for computing the correct classification rate (CCR), that is the proportion of
correct classification. For the two groups case (i.e. when q = 2) classification after
variable selection is achieved by using the rule (1) assuming equal costs and equal
prior probabilities in both two groups (hence log(γ ) = 0), and for the multiple classes
case (i.e. when q > 2) the rule (2) is used assuming that τ1 = · · · = τq . The average
of CCR over 1000 independent replications is used for measuring the performance of
the methods.

5.2 Influence of penalty functions and type of estimator

In order to evaluate the impact of penalty functions on the performance of our method
we took fn(i) = n−α/hk(i) and gn(i) = n−βhk(i), k = 1, . . . , 13,withα = β = 1/4,
h1(x) = x , h2(x) = x0.1, h3(x) = x0.5, h4(x) = x0.9, h5(x) = x10, h6(x) =
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ln(x), h7(x) = ln(x)0.1, h8(x) = ln(x)0.5, h9(x) = ln(x)0.9, h10(x) = x ln(x),
h11(x) = (x ln(x))0.1, h12(x) = (x ln(x))0.5, h13(x) = (x ln(x))0.9. For each of these
functions, we computed CCR by using both empirical estimators from Sect. 3.1 and
non-parametric smoothing procedure introduced in Sect. 3.2. For this latter type of
estimator, the smoothing parameter λ was computed from a cross validation method
on the training sample in order to maximize correct classification rate. The results
for Model 1 are given in Table 1. It is observed that there is no significant difference
between the results obtained for the different functions. So, it seems that choosing
penalty functions has no influence on the performance of our method. Also, the results
in Table 1 don’t really show any significant difference between the empirical and
smoothed estimators when cell entries of the d-dimensional variate contingency table
corresponding to the d categorical variables are not small. However, when Model 2
is used, i.e in the case where the aforementioned cell entries are very small, we see
in Table 2 that estimates based on empirical estimators can often not be computed
(NA=not available), certainly because of the absence of observations in some cells,
while the results are suitable with smoothed estimators. This suggests that one should
prefer to use smoothed estimator for performing the proposed method.

5.3 Influence of parameters˛ andˇ

Since tuning parametersmay have impact on the performance of a statistical procedure,
it is important to study their influence. That is why numerical experiments have been
carried out in order to investigate the influence of α and β on the performance of our
method. For doing that, we made simulations as indicated above by taking

fn(i) = n−α ln(i)−0.1 and gn(i) = n−β ln(i)0.1 (12)

with α = 0.1, 0.2, 0.3, 0.4, 0.45, and β varying in [0, 1[. The results are reported
in Fig. 1a–c. Although the obtained curves vary as α and β vary, we cannot say that
these parameters have a marked impact on the performance of our method. Indeed, all
differences in CCR values are negligible since they do not exceed 0.003. Thus, one can
think that, in practice, our method can be performed with arbitrary values for α and
β without significantly affecting its performance. However, an interesting alternative
would be to determine optimal values of these parameters. An approach for doing that
via cross-model validation is described in the following section.

5.4 Choosing optimal (˛,ˇ)

We propose a method for making an optimal choice of (α, β) based on leave-one-
out cross validation used in order to maximize corect classification rate. For each
k ∈ {1, . . . , n}, after removing the k-th observation for X and Y in the training sample
our method for selecting variable is applied on this remaining sample with a given
value for (α, β) and penalty functions taken as in (12). Then, the observation that have
been removed is allocated to a group g̃α,β(k) in {1, . . . , q} by using the rule given in
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Table 1 Average of CCR values over 1000 replications for Model 1 with q = 2 classes, d = 3 binary
variables, M = 23 = 8, and p = 5 continuous variables

Function CCR

Empirical estimators Non-parametric estimators

n = 100 (n1 = n2 = 50)

h1 0.60800 0.60800

h2 0.60900 0.60900

h3 0.61000 0.61000

h4 0.60900 0.60900

h5 0.60800 0.60800

h6 0.61028 0.61028

h7 0.60903 0.60903

h8 0.61066 0.61066

h9 0.60898 0.60898

h10 0.60842 0.60842

h11 0.60948 0.60948

h12 0.60915 0.60915

h13 0.60908 0.60908

n = 300 (n1 = n2 = 150)

h1 0.56421 0.56424

h2 0.56328 0.56332

h3 0.56417 0.56417

h4 0.56346 0.56346

h5 0.56382 0.56382

h6 0.56343 0.56343

h7 0.56374 0.56374

h8 0.56354 0.56354

h9 0.56312 0.56312

h10 0.56379 0.56379

h11 0.56404 0.56404

h12 0.56345 0.56345

h13 0.56375 0.56375

n = 500(n1 = n2 = 250)

h1 0.54998 0.54998

h2 0.55047 0.55067

h3 0.55032 0.55039

h4 0.55049 0.55058

h5 0.54982 0.55982

h6 0.55058 0.55062

h7 0.55050 0.55054

h8 0.55008 0.55013

h9 0.54972 0.54934
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Table 1 continued

Function CCR

Empirical estimators Non-parametric estimators

h10 0.55013 0.55018

h11 0.55036 0.55037

h12 0.55046 0.55046

h13 0.55028 0.55028

Weightings obtained from 13 penalty functions fn = n−1/4/hk and gn = n−1/4hk , k = 1, . . . , 13

Table 2 Average of CCR values over 1000 replications for Model 2 with q = 2 classes, d = 3 binary
variables, M = 23 = 8, and p = 5 continuous variables

n n1 = n2 CCR

Empirical estimators Non-parametric estimators

100 50 NA 0.54000

300 150 NA 0.56670

500 250 NA 0.52400

Weightings obtained from penalty functions f7 = n−1/4/h7 and g7 = n−1/4h7

(1) (for the two groups case) or in (2) (for the case of more than two groups) based on
the variables that have been selected in the previous step. Then, we consider

CV (α, β) = 1

n

n∑

k=1

1{Zk=g̃α,β (k)}

and we take as optimal value for (α, β) the pair (αopt , βopt ) defined by:

(αopt , βopt ) = argmax
(α,β)∈]0,1/2[×]0,1[

CV (α, β). (13)

5.5 Algorithm

Algorithm1 describes the proposed method for practically choose optimal (α, β) from
simulated data. It can obviously be adapted for permorming our method on real data
sets.

5.6 Comparison with themethod of Mahat et al. (2007)

In order to compare our method to that of Mahat et al. (2007), 1000 independent repli-
cations were made. For each of these replications the method described in Algorithm
1 was performed:
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Fig. 1 Average of CCR values
over 1000 replications for Model
1 with q = 2 classes, d = 3
binary variables, M = 23 = 8,
p = 5 continuous variables,
α = 0.1, 0.2, 0.3, 0.4, 0.45
and β varying in ]0, 1[.
Weightings obtained from
penalty functions f7 = n−α/h7
and g7 = n−βh7. a n = 100. b
n = 300. c n = 500
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Algorithm 1 Computation of Correct Classification Rate with simulated data

Simulate a training data set S1 as indicated in 5.1

Finely discretize the rectangle R =]0, 1/2[×]0, 1[ so as to obtain a grid of points G

for all (α, β) ∈ G do

for k = 1, · · · , n do

Remove the k-th observation from this training data set, the remaining data set is denote by S(−k)
1

Apply variable selection method on S(−k)
1 so as to obtain a set Î (−k)

1 of relevant variables

Allocate the removed observation to one of the groups by using the rules (1) or (2), the variables

selected in Î (−k)
1 , and estimates of parameters involved in the rules from the data in S(−k)

1

Letting g̃α,β (k) be the group to which the removed observation is allocated in the previous step,
set εk = 1 if g̃α,β (k) is the real group of this observation, and εk = 0 otherwise

end for

Set CV (α, β) = n−1∑n
k=1 εk

end for

Take (̂α, β̂) that maximizes CV (α, β) over G

Apply variable selection method on the whole training set S1 with (̂α, β̂) so as to obtain a set Î1 of
relevant variables

Simulate an independent test data set S2 as indicated in 5.1

Compute the correct classification rate (CCR) on S2 by using the variables selected in Î1

(i) the training sample is used for selecting variables from our method and that of
Mahat et al. (2007); our method is used with penalty functions given in (12) and
optimal (α, β) obtained by using leave-one-out cross validation as indicated in
(13);

(ii) the test sample is then used for computing CCR for the two methods.

Model 1 was used with large number of variables: the number of continuous variables
is p = 100, and the number of binary variables is d = 6, 8; then, the number of cells
of the resulting multinomial variable is M = 64,256. The average of CCR over the
1000 replications is then computed. Table 3 gives the results for three methods:

• our method with empirical estimators (Meth1);
• our method with smoothed non-parametric estimators (Meth2);
• the method of Mahat et al. (2007) (Meth3).

The average of CCR before variable selection (denoted by CCRb in Table 3 and
Table 4) is also computed in order to compare the results with that corresponding to
the ’true’ model involving all p continuous variables. The results in Table 3 do not
show a superiority of one of the methods compared to the other. However, they give
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Table 3 Average of CCR values over 1000 replications for Model 1 with q = 2 classes, d = 6, 8 binary
variables, M = 64, 256, and p = 100 continuous variables

n n1 = n2 d = 6 d = 8

Meth1 Meth2 Meth3 CCRb Meth1 Meth2 Meth3 CCRb

300 150 NA 0.6300 0.6300 0.7234 NA 0.7200 0.7200 0.8754

500 250 NA 0.6375 0.6370 0.6697 NA 0.7000 0.7000 0.8208

1000 500 NA 0.5800 0.5800 0.6118 NA 0.6700 0.6700 0.7444

Weightings obtained from penalty functions fn = n−αopt /hk and gn = n−βopt hk , where (αopt , βopt ) is
obtained from cross-validation

Table 4 Average of CCR values over 1000 replications for Model 1 with q = 3 classes, d = 3, 8 binary
variables, M = 8, 256, and p = 25 continuous variables

n n1 = n2 = n3 d = 3 d = 8

Meth1 Meth2 CCRb Meth1 Meth2 CCRb

600 200 0.3840 0.4900 0.4495 NA 0.3830 0.6653

900 300 0.4530 0.5730 0.4349 NA 0.4820 0.6649

1200 400 0.4720 0.5470 0.4252 NA 0.5150 0.6489

Weightings obtained from penalty functions fn = n−αopt /hk and gn = n−βopt hk , where (αopt , βopt ) is
obtained from cross-validation

another illustration of the interest to use our method with smoothed non-parametric
estimators rather than empirical estimators, especially in high-dimensional context.
Indeed, when d = 8 and n = 300, 500, there are more cells than observations in each
dataset. Therefore, some cells do not have any incidence. When d = 6 or when d = 8
and n = 1000, some cells may have no incidence. Then estimates based on empirical
estimators cannot be computed while this problem does not arise for the smoothed
non-parametric estimators. Comparing the results with that obtained from the ’true’
model, it appears that our method has good behavior since the difference between
CCRb and CCR is not large, especially for large values of n.

One of the advantages of the method we propose is that it can be used when there
are more than two groups, which is not the case for classical methods, especially that
of Mahat et al. (2007). For illustrating this fact, we made simulations for the case of
three groups. Model 1 was used again with the first two groups taken as above, and a
third group corresponding to the mean μ3 = (μ

(3)
1 , . . . , μ

(3)
p )T with:

μ
(3)
2k = k/p and μ

(3)
2k−1 = 0,

for k = 1, . . . , [(p + 1)/2]. Taking p = 25 and d = 3, 8 we computed the average of
CCR over 1000 replications. The results are reported in Table 4. We obtained better
results with smoothed non-parametric estimators. When d = 3 the obtained results
are better than these from the ’true’ model, and when d = 8 the difference between
CCRb and CCR is larger.
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6 A data example

To further demonstrate its practical usefulness, we apply our method to the cover
type dataset from the Repository of Machine Learning Databases maintained by the
University of California at Irvine. This dataset consists of 1818 tree observations from
areas of the Roosevelt National Forest in Colorado. The units are the 1818 trees for
which several cartographic variables are observed. There are seven tree types, each
represented by an integer variable: (i) Spruce/Fir; (ii) Lodgepole Pine; (iii) Ponderosa
Pine; (iv) Cottonwood/Willow; (v) Aspen; (vi) Douglas-fir; (vii) Krummholz. The
tree type is an observed variable that induces 7 classes of units. For each unit 10
numerical variables and 44 binary variables are observed. The numerical variables are:
(V1) elevation (in meters); (V2) aspect (in degrees azimuth); (V3) slope (in degrees);
(V4) horizontal distance to nearest surface water features; (V5) vertical distance to
nearest surface water features; (V6) horizontal distance to nearest roadway; (V7)
hillshade index at 9am; (V8) hillshade index at noon; (V9) hillshade index at 3pm;
(V10) horizontal distance to nearest wildfire ignition points. We considered 10 of
the 44 aforementioned binary variables: 4 binary variables giving wilderness area
designation, and 6 binary variables defining soil type.

This data set is suitable for classification as it permits to predict the type of a given
tree for which the above binary and numerical variables are observed, by using an
allocation rule like the one defined in (2). We are interested in determining, among
the 10 numerical variables given above, those that are relevant for this classification
approach. For doing that, we applied our method on this data set, with n = 1818,
p = 10, q = 7, d = 10 and M = 210 = 1024, and by using the smoothed non-
parametric estimators defined in 3.2. The penalty functions used were the function
given in (12). The data set was divided in two parts of equal sizes n1 = n2 = n/2. The
first part was used as a training set for estimating optimal α and β via leave-one-out
cross validation as indicated in Sect. 5.4, and for selecting variables i.e. estimating the
set of relevant numerical variables for discriminating between the seven groups. The
second part is then used as a test sample for computing CCR afer variable selection by
using the rule (2) assuming that τ1 = · · · = τ7. We found that the relevant numerical
predictors are V 1, V 6 and V 10, and that CCR = 0.5830. We also computed CCR
with all 10 continuous variables (denoted by CCRb) in order to compare it with the
preceding value, and we obtained CCRb = 0.5940. These results suggests that:

• elevation (V1), horizontal distance to nearest roadway (V6) and horizontal dis-
tance to nearest wildfire ignition points (V10) are the most relevant variables for
predicting cover type in the presence of the binary variables giving wilderness area
designation and defining soil type;

• our method behaves well since the difference between CCRb and CCR is quite
small.

This example also shows the ability of our method to perform in case there are more
than two groups (here, there are q = 7 groups) and when both continuous and binary
variable have high dimensions.
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7 Conclusion

In this paper, we introduce a variable selection method for discrimination among
several groups with both continuous and categorical predictors. The main advantages
of the proposal are: (i) no assumption on the distribution of the involved predictors is
needed, in particular the locationmodel, which is classically assumed in this context, is
not supposed to hold; (ii) it can be used for more than two groups, which is not the case
for conventional methods which are limited to the case of two groups. Both theoretical
results and numerical studies show that our method behaves well, especially when
smoothed non-parametric estimators are used for estimating the proposed criterion.
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