
Advances in Data Analysis and Classification (2019) 13:65–87
https://doi.org/10.1007/s11634-018-0338-x

REGULAR ART ICLE

Clustering via finite nonparametric ICAmixture models

Xiaotian Zhu1 · David R. Hunter2

Received: 31 March 2017 / Revised: 14 August 2018 / Accepted: 16 August 2018 /
Published online: 28 August 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
We propose a novel extension of nonparametric multivariate finite mixture models
by dropping the standard conditional independence assumption and incorporating
the independent component analysis (ICA) structure instead. This innovation extends
nonparametric mixture model estimation methods to situations in which conditional
independence, a necessary assumption for the unique identifiability of the parameters
in such models, is clearly violated. We formulate an objective function in terms of
penalized smoothed Kullback–Leibler distance and introduce the nonlinear smoothed
majorization-minimization independent component analysis algorithm for optimizing
this function and estimating the model parameters. Our algorithm does not require
any labeled observations a priori; it may be used for fully unsupervised clustering
problems in a multivariate setting. We have implemented a practical version of this
algorithm,which utilizes the FastICA algorithm, in theR package icamix.We illustrate
this new methodology using several applications in unsupervised learning and image
processing.

Keywords Independent component analysis · Kernel density estimation ·
Nonparametric estimation · Penalized smoothed likelihood · Unsupervised learning

Mathematics Subject Classification 62H30 · 62G07

1 Introduction

Cluster analysis, or clustering, is one of several general approaches to the problem
of unsupervised learning, that is, classification when no class labels are given. In
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practice, clustering is often based on heuristic ideas and intuitive measures, such
as hierarchical clustering or k-means clustering, that do not assume a probability
model. By contrast, this paper focuses on model-based clustering, in which data are
viewed as coming from a mixture of probability distributions, each representing a
cluster. Typically, the distributions are assumed to come from a parametric family
such as normal (Fraley andRaftery 1998, 2002; Banfield andRaftery 1993), and group
membership is learned from data by estimation algorithms that are often variations
of the expectation-maximization method described by Dempster et al. (1977). Since
the early work of Wolfe (1963) and others, the literature on model-based clustering
has expanded enormously. Indeed, there are several book-length treatments of mixture
models, such as Frühwirth-Schnatter (2006) and McLachlan and Peel (2000).

The advent of easily accessible computing power has given rise to semi- and non-
parametric methods that avoid the standard assumption that the cluster densities come
from a known parametric family, and applications and extensions of these methods
are growing more common in the literature. A semiparametric model-based clus-
tering analysis for DNA microarray data can be found in Han and Davis (2006).
Azzalini and Torelli (2007) propose nonparametric density estimation using Delau-
nay triangulation for clustering via identification of subpopulations with regions
with high density of the underlying probability distribution. Li et al. (2007) develop
a clustering approach based on mode identification by applying new optimization
techniques to a nonparametric density estimator. Vichi (2008) fits semiparametric
clustering models to dissimilarity data. In Zhang et al. (2009), a semiparametric
model is introduced to account for varying impacts of factors over clusters by using
cluster-level covariates. Mallapragada et al. (2010) propose a non-parametric mixture
model (NMM) for data clustering. Guglielmi et al. (2014) fit Bayesian semipara-
metric logit models to grouped data of in-hospital survival outcomes of patients
hospitalized with ST-segment Elevation Myocardial Infarction diagnosis. Certain
mixtures of linear regressions also fall under the category of semiparametric model-
based clustering. For instance, Hunter and Young (2012) present an algorithm for
estimating parameters in a mixture-of-regressions model in which the errors are
assumed to be independent and identically distributed but no other distributional
assumption is made. Huang et al. (2013) propose nonparametric finite mixture-of-
regression models for analysis of U.S. housing price index (HPI) data. Vandekerkhove
(2013) studies estimation of a semiparametric mixture-of-regressions model of two
components when one component is known. Bajari et al. (2011) views a game
abstractly as a semiparametric mixture distribution and studies the semiparametric
efficiency bound of this model. Finally, Butucea and Vandekerkhove (2014) consider
a semiparametric mixture of two distributions that are equal up to a shift parame-
ter.

The current article combines recent advances in methods for multivariate non-
parametric finite mixture models under an assumption that we refer to as the
conditional independence assumption with another method, called independent com-
ponents analysis (ICA), that solves one of the main drawbacks of this assumption. To
illustrate this drawback, let us first introduce the modeling framework: suppose that
r -dimensional vectors Yi = (Yi1,Yi2, . . . ,Yir )�, 1 ≤ i ≤ n, are a simple random
sample from a finite mixture of m > 1 components with positive mixing propor-
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tions λ1, λ2, . . . , λm that sum up to 1, and (Lebesgue measurable) density functions
q1, q2, . . . , qm respectively. This gives the mixture density

d(y) =
m∑

j=1

λ j q j (y) (1)

for y ∈ Rr . The sole assumption imposed on the densities q1, q2, . . . , qm is that the
coordinates of y are independent given the component from which y is sampled, so
that Eq. (1) becomes

d(y) =
m∑

j=1

λ j

r∏

k=1

q jk(yk). (2)

The basic idea of conditional independence is outlined by Hall and Zhou (2003), and,
notably, Allman et al. (2009) prove the generic identifiability of the parameters in
Eq. (2) for r ≥ 3 under some weak assumptions. Chauveau et al. (2015) present a
survey of the growing literature on the theory and algorithmic treatment of model (1)
under the conditional independence assumption. The algorithms in this article have
their roots in the EM-like algorithm of Benaglia et al. (2009), which is later modified
by Levine et al. (2011). An alternative estimation method to EM-like algorithms is the
method of moments approach described in Anandkumar et al. (2012). More recently,
Bonhomme et al. (2016a, b) provide new estimation algorithms for this model and
prove consistency and asymptotic normality of the estimators, an important statistical
innovation missing from earlier work. Related work on mixtures of nonparametric
hiddenMarkovmodels (HMMs) is presented byGassiat and Rousseau (2016), Gassiat
et al. (2016), and Castro et al. (2016); these authors describe links between their HMM
work and the model of Eq. (2).

Although the conditional independence assumption of Eq. (2) is important theoreti-
cally due to its guarantee of identifiable parameters despite essentially no assumptions
other than r ≥ 3, it is clearly not appropriate for some clustering problems. As a simple
example, consider the well-known Fisher Iris data depicted in Fig. 1. In a model-based
clustering scenario, the goal of estimation would be to learn the shapes of the three
four-dimensional distributions, one for each species, without the benefit of the species
labels. Under the conditional independence assumption of Eq. (2), no bivariate plot
should exhibit correlation within any of the categories. Yet it is clear in Fig. 1a that
nonzero within-species correlation exists, so any correct classifier of the three species
would necessarily violate the conditional independence assumption.

To remedy this shortcoming, the algorithmwepropose in this article combines exist-
ing work on nonparametric mixture models with the ideas of independent components
analysis (ICA). The basic idea of ICA, as elucidated, for example, by Hyvarinen et al.
(2002), is to find a linear transformation of a multivariate dataset under which its
coordinates are as close to independent as possible.

We can see the result of applying our algorithm to the iris dataset in Fig. 1b,
in which each mixture component is associated with its own linear transformation.
The categorizations displayed in this figure are based on the highest probability of
each point among the three possible categories, and we observe that 7 of the 150
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(a) (b)

Fig. 1 a At left, the four-dimensional iris dataset with n = 150 and three distinct species. b At right,
the same dataset classified according to our algorithm into three groups, where each group is transformed
linearly in an attempt to achieve conditional independence. The numbers are the correct species labels,
while the seven points misclassified by the algorithm are circled

points are incorrectly classified—recall that the mixture model parameter estimates
are calculated without taking labels into account—but the correlation structure evident
in the left-hand plots has been eliminated. In the remainder of this article, we describe
the algorithm, discuss the potential issues of identifiability that arise, and illustrate the
algorithm’s performance on three datasets including one in which n = 10,000 and
r = 144. The result of our work is an algorithm we call the NSMM-ICA algorithm,
which we implement in the icamix package for R (R Core Team 2015), available at
http://cran.r-project.org/web/packages/icamix/index.html.

The novelty of the current article is its combination of the non-parametric mix-
ture structure with the linear transformations of ICA; previous work on model-based
clustering using ICA has imposed parametric assumptions on the component density
functions. Lee et al. (1999b) and Lee et al. (2000) propose parametric ICA mixture
models with algorithms based on the infomax principle for various unsupervised clas-
sification problems. Shah et al. (2004) apply the ICA mixture model methodology to
the problem of unsupervised classification of hyperspectral or multispectral imagery
where image data are captured at multiple or a continuous range of frequencies across
the electromagnetic spectrum. This is an important application of remote sensing and
land cover classification. Palmer et al. (2008) derive an asymptotic Newton algorithm
for Quasi-maximum likelihood estimation of the parametric ICA mixture model and
presents its application to EEG segmentation. Finally, Salazar et al. (2010) extend the
ICA mixture model methodology of Lee et al. (1999b) and others by positing that the
component density functions actually have the form of kernel density estimates—i.e.,
the components are themselves mixtures of parametric functions of a fixed and known
form (the kernel density itself), with one component per observation. Salazar et al.
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(2015) apply a similar idea in an agglomerative clustering framework; however, in our
work we assume that the number of mixture components is fixed and known.

As mentioned above, our work drops the parametric assumption of all the previous
ICA mixture model literature that we are aware of. Yet it does bear some similarities
to the work described in, for example, Salazar et al. (2010); Salazar et al. (2015),
becausewe also employ kernel density estimation in order to approximate the unknown
underlying univariate density functions that we describe below. There is the additional
similarity that these papers minimize a Kullback–Leibler divergence, which has a
similar form to our penalized and smoothed Kullback–Leibler divergence objective
function. However, a crucial distinction is that we do not assume the knowledge of
any of the category labels a priori; our algorithm is designed to handle completely
unsupervised multivariate clustering problems. In addition, there are methods other
than ICA in the literature based on the same idea of exploring mutlivariate data to
determine coordinate systems having some desirable property such as inter-coordinate
independence. Invariant co-ordinate selection (Tyler et al. 2009;Miettinen et al. 2015),
or ICS, is one such method, and Peña et al. (2010) in particular uses ICS to search for
cluster structure in the data based on the eigenvalues of a kurtosis matrix. This work
does not assume an underlying non-parametric mixture structure as in the current
article, yet in principle it would be possible to combine non-parametric mixtures with
ICS instead of ICA.

2 The nonparametric ICAmixturemodel

Most previous work on model (2) assumes that we observe the random sample
Y1, . . . ,Yn . However, in the current articlewe generalize this previouswork by adding
the assumption that the observed data are X1, . . . ,Xn , where Xi = A jYi for some
invertible r × r matrix A j , conditional on Yi being generated from the j th compo-
nent density q j . In other words, we introduce additional parameters A1, . . . ,Am , one
for each mixture component, consisting of the matrices that linearly transform the
latent Yi with independent coordinates into the observed Xi. When there is no mix-
ture structure, this assumption is exactly the independent component analysis (ICA)
framework as described by Hyvarinen et al. (2002). NB: The word “component” in
“ICA” is replaced by “coordinate” or “dimension” in the terminology of this article;
here, “component” refers to one of the mixture densities.

To aid notation, let us define qA for any nonnegative function q on Rr and invertible
r × r matrix A as

qA(x) = q(A−1x)| det A|−1,

which is the density function of a linearly transformed random variable having density
q after left-multiplication by A.

Our ICA mixture model may thus be described formally as follows: We observe a
random sample X1, . . . ,Xn from the mixture density

g(x) =
m∑

j=1

λ j f j (x), (3)

123



70 X. Zhu, D. R. Hunter

where
f j (x) = (q j )A j (x) (4)

and

q j (y) =
r∏

k=1

q jk(yk). (5)

For each observed Xi , we shall define the usual latent variables

Zi j = I {Xi is drawn from the j th mixture component}

and Yi = A−1
j Xi for the unique j such that Zi j = 1. For estimation purposes, we

write
(e j )A j = λ j f j ,

so e j (x) = λ j q j (x). Since any constant multiple of Yi can be absorbed into the A j

matrices, we mitigate against non-identifiable parameters by further assuming

Var Yik = 1 (6)

for all i and for 1 ≤ k ≤ r . Finally, we assume for each j , 1 ≤ j ≤ m, at most
one of the density functions q j1, . . . , q jr is a normal density function. The reason
for this last assumption is that ICA operates on standardized versions of the data,
and thus if a subset of the linearly transformed Y coordinates is multivariate normal,
the standardized versions are always standard multivariate normal so there is no way
to uniquely identify an ICA transformation A j . Thus, the non-normality assumption,
along with assumptions (4), (5), and (6), are commonly used in the literature on ICA
(Hyvarinen et al. 2002). Since the q jk are not assumed to follow any parametric form,
we call the model

g(x) =
m∑

j=1

λ j | det A j |−1
r∏

k=1

q jk

(
[A−1

j x]k
)

(7)

a nonparametric ICA mixture model.
It is not known whether the parameters in Eq. (7) are uniquely identifiable in the

case of perfect information about the form of g(x). Our empirical experience with our
algorithm, ofwhichwe provide examples in Sect. 5, suggests that parameter estimation
is well-behaved, yet this important theoretical question remains. For example, general
identifiability does not follow directly from the facts that the q jk and λ j parameters
are uniquely determined by Eq. (2) and the A j parameters are uniquely determined by
Eq. (5) togetherwithX = A jY, even under the usual assumptions that are stated above.
It may be possible to extend themethods ofAllman et al. (2009) to prove identifiability,
but for nowwe are in a situation analogous to the period just prior to the publication of
that article, when estimation algorithms existed for cases in which only special cases
of identifiability had been addressed in the literature and no general identifiability
result had yet been established. It is also important to realize that even in a case where
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parameters are theoretically within the set of identifiable parameters, estimation may
still be difficult when the true parameters happen to be near the boundary of that set.
However, here again we can point to our empirical experience in an example such
as the iris dataset of Sect. 1. Quite often, the iris species have been modeled in the
literature as multivariate normal distributions, suggesting that the data are generated
from a set of parameters quite close to non-identifiability; yet in practice, our algorithm
appears to find reasonable A j estimates as shown in Fig. 1b.

3 Parameter estimation

This section introduces an MM-like algorithm that seeks to estimate the parameters
e = (e1, e2, . . . , em) and A = (A1,A2, . . . ,Am) by minimizing a function that gives
in some sense the distance between the empirical data distribution and the theoretical
mixture distribution determined by the parameters.

We begin by defining some operators that will aid notation. Much of the devel-
opment of this section follows the recent work of Levine et al. (2011) and Zhu and
Hunter (2016); the novelty here is in the incorporation of the A j matrices into the usual
conditional independence framework, which requires some delicacy.

First, we define the linear smoothing, or convolution, operators Sh and S∗
h on

L1(Rr ). Let sh(·, ·) ∈ L1(R × R) be a nonnegative kernel function satisfying

∫
sh(v, z) dz =

∫
sh(v, z) dv = 1 (8)

for v, z ∈ R. Here, h > 0 is a user-specified tuning parameter often referred to as a
bandwidth in smoothing contexts. For any f ∈ L1(Rr ), define Sh f and S∗

h f by

(Sh f )(x) =
∫

s̃h(x,u) f (u) du and (S∗
h f )(x) =

∫
s̃h(u, x) f (u) du,

where

s̃h(x,u) =
r∏

k=1

sh(xk, uk) for x,u ∈ Rr . (9)

Furthermore, let
(Nh f )(x) = exp[(S∗

h log f )(x)].
Notice that (Nh) as an operator on L1(Rr ) is nonlinear, as it is the exponentiation of
the linear operator Sh applied to the logarithm of a function. This nonlinear smoothing
operator plays an important role in the algorithm.

Finally, we reproduce the projection-multiplication operator of Zhu and Hunter
(2016), defined as

(P f )(x) =

[∏r
k=1

∫
f (x) dx1 dx2 · · · dxk−1 dxk+1 · · · dxr

]

[∫
f
](r−1)

. (10)
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Zhu and Hunter (2016) point out that when f is a density on Rr , the right side of
(10) simplifies because the denominator is 1, and also that the P and Sh operators
commute, i.e., (P ◦ Sh) f = (Sh ◦ P) f .

Let us consider the hypothetical case of a known target density g(x),whichwe some-
times call the infinite sample size case. To estimate the parameters e = (e1, e2, . . . , em)

andA = (A1,A2, . . . ,Am), the idea is tominimize ameasure of the distance between g
and the mixture density determined by the parameters. Due to mathematical consider-
ations explained in Levine et al. (2011), we wish to first apply the nonlinear smoother
to the mixture density and then minimize the Kullback–Leibler distance between g
and this nonlinearly smoothed density. We therefore propose in this hypothetical case
to minimize

∫
g(x) log

⎡

⎣g(x)/
m∑

j=1

[Nhe j ]A j (x)

⎤

⎦ dx +
∫ ⎡

⎣
m∑

j=1

(e j )A j (x)

⎤

⎦ dx

with respect to e and A. To analyze an actual dataset, we would replace the g density
by the empirical distribution of the data, which leads to the objective function

�(e,A) = −
n∑

i=1

log
m∑

j=1

[Nhe j ]A j (xi ) +
∫ ⎡

⎣
m∑

j=1

(e j )A j (x)

⎤

⎦ dx (11)

to be minimized with respect to e and A.
Two aspects of Eq. (11) are worth noticing. First, the second integral is part of

a penalty term whose presence guarantees a convenient property of the functional
parameters e = (e1, e2, . . . , em) that minimize �(e,A) for a fixed A, and this property
is explained below in Eq. (12). Second, the definition of �(e,A) uses

∑
j [Nhe j ]A j (x)

instead of
∑

j Nh[(e j )A j ](x); that is, the nonlinear smoothing is applied before the
linear transformation. The intuition is that after the transformation, the data are no
longer conditionally independent and standardized, so the smoothing would affect
each dimension very differently if it were applied after the transformation.

An advantage of using the e parameters instead ofλ andq is that the latter parameter-
ization requires the constraint that every q j is a density function.With the e parameters,
such a constraint is unnecessary: As a straightforward corollary of Theorem 2.1 of
Zhu and Hunter (2016), any minimizer (ẽ, Ã) of (11) must satisfy

∫ ⎡

⎣
m∑

j=1

(e j )A j (x)

⎤

⎦ dx =
∫ m∑

j=1

ẽ j (x) dx = 1. (12)

4 The NSMM-ICA algorithm

Here, we derive an iterative algorithm for solving the main problem of minimiz-
ing Eq. (11). The algorithm is based on the MM framework, which stands for
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majorization-minimization (Hunter and Lange 2004) and which involves constructing
and minimizing an alternative to the �(e,A) function with respect to e and A at each
iteration.

4.1 Majorizing the objective function

Given the current estimate e(0) and A(0), let us define

w
(0)
j (x) =

[
Nhe

(0)
j

]

A(0)
j

(x)

∑m
j ′=1

[
Nhe

(0)
j ′
]

A(0)
j ′

(x)
.

Since
∑

j w
(0)
j (x) = 1, Jensen’s inequality gives

�(e,A) − �(e(0),A(0))

= −
∫

g(x) log
m∑

j=1

w
(0)
j (x)

(Nhe j )A j (x)

(Nhe
(0)
j )A(0)

j
(x)

dx +
∫ ⎛

⎝
m∑

j=1

(e j )A j −
m∑

j=1

(e(0)
j )A(0)

j

⎞

⎠

≤−
∫

g(x)
m∑

j=1

w
(0)
j (x) log

(Nhe j )A j (x)

(Nhe
(0)
j )A(0)

j
(x)

dx +
∫ ⎛

⎝
m∑

j=1

(e j )A j −
m∑

j=1

(e(0)
j )A(0)

j

⎞

⎠.

Thus, if we let

b(0)(e,A) = −
∫

g(x)
m∑

j=1

w
(0)
j (x) · log (Nhe j )A j (x) dx +

∫ ⎛

⎝
m∑

j=1

(e j )A j

⎞

⎠,

then
�(e,A) − �(e(0),A(0)) ≤ b(0)(e,A) − b(0)(e(0),A(0)).

Therefore b(0) majorizes � at (e(0),A(0)) up to an additive constant. We conclude that
minimizing b(0)(e,A)will create anMMalgorithm, as explained by Hunter and Lange
(2004), and taking the next estimate in the iterative algorithm to be the minimizer will
guarantee that the algorithm possesses a descent property.

4.2 Minimizing themajorizer

For each j , 1 ≤ j ≤ m, we wish to minimize

b(0)
j (e j ,A j ) = −

∫
g(x)w(0)

j (x) · log (Nhe j )A j (x) dx +
∫

(e j )A j (x) dx (13)
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with respect to e j and A j . Instead of finding a global minimizer for b(0)
j , we first

hold A j fixed and minimize with respect to e j , then plug in the resulting update to e j
and minimize with respect to A j . The resulting algorithm, which mimics the multiple
“conditional maximization” steps of the ECMalgorithm (Meng andRubin 1993), does
not actually minimize b(0)

j , but it does ensure that the next iteration achieves a smaller

value of b(0)
j . This property is enough to guarantee the descent property, which states

that the value of the objective function decreases at each iteration of the algorithm.
We find that Eq. (13) has a closed-form minimizer as a function of e j when A j is

held fixed.

Proposition 1 The minimizer of Eq. (13) with respect to e j , with A j held fixed, is

ê j (u) = | det A j |
[∫

g(A jx)w
(0)
j (A jx) dx

]r−1 ·
r∏

k=1

∫
g(A jy)w

(0)
j (A jy)sh(uk, yk) dy. (14)

A proof of Proposition 1 is provided in “Appendix A”.
Equation (14) can be rewritten as

ê j (u) =
[
P ◦ Sh(| det A j | · (g · w

(0)
j ) ◦ A j )

]
(u)

using the P operator of Eq. (10). In general, for any nonnegative function f on Rr ,

Sh( f ◦ A j ) = (Sh)A j ( f ) ◦ A j ,

where

(Sh)A j f (x) =
∫

| det A j |−1s̃h(A
−1
j x,A−1

j u) f (u) du.

Thus, we may also write

(ê j )A j (u) =
[
PA j ◦ (Sh)A j (g · w

(0)
j )
]
(u),

where
PA j f (u) = [P( fA−1

j
)]A j (u) = [P( f ◦ A j )](A−1

j u).

Now let us turn to the minimization of Eq. (13) with respect to A j . We first define

q̂ jk(uk) = | det A j |∫
g(A jx)w

(0)
j (A jx) dx

∫
g(A jy)w

(0)
j (A jy)sh(uk, yk) dy. (15)

If we apply the change of variables x = A jy to Eq. (13) and then plug in ê j (u)

into the resulting expression for b(0)
j (e j ,A j ), we find that minimizing the result with

respect to A j is equivalent to minimizing
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log | det A j | +
r∑

k=1

∫
q̂ jk(u) log q̂ jk(u) du (16)

with respect to A j , where q̂ jk depends on A j through (15).
In Expression (16), q̂ jk is the kth margin of the kernel smoothed version of (g ·

w
(0)
j )A−1

j
/
∫
g · w

(0)
j . In the discrete case where dG(x) is the empirical distribution,

q̂ jk is the kth margin of the kernel density estimate based on the linearly transformed

(byA−1
j ) weighted observed data set, where the weight for the data point xi isw

(0)
j (xi ).

Let us denote this weighted data set by D(0)
j and hence its linear transformation by

A−1
i D(0)

j . By (15), the optimization mechanism at the current step views A−1
j D(0)

j as

a weighted sample generated from the unknown density function q j , where D
(0)
j is a

weighted sample from the j th mixing component and A−1
j is the matrix that recovers

the associated ICA transformations. Let us call A−1
j a recovering matrix.

By Eq. (6), we may treat | det A j | as fixed given the weighted data A−1
j D(0)

j . The
second term in (16) is an estimate of the sum of marginal entropies of q j , which is
equal, up to a term that does not involve A j , to the mutual information of marginals
of q j . According to Hyvarinen et al. (2002), minimizing mutual information in this
setting—that is, minimizing the mutual information of A−1

j S given a randomly chosen
weighted sample from S)—can be acheived by existing ICA algorithms such as the
fastICA algorithm described in Sect. 4.3.

To summarize, the NSMM-ICA iterative algorithm will iterate as follows, where
the parameters at the t th iteration will be denoted by (e(t),A(t)):

Majorization Step: For 1 ≤ j ≤ m, compute

w
(t)
j (x) =

(Nhe
(t)
j )A(t)

j
(x)

∑m
j=1(Nhe

(t)
j )A(t)

j
(x)

.

ICA Step: Use the fastICA technique of Sect. 4.3 to find A(t+1)
j subject to (6) that

minimizes
r∑

k=1

∫
q̂(t+1)
jk (u) log q̂(t+1)

jk (u) du,

for j = 1, . . . ,m, where q̂(t+1)
jk (uk) is defined in Eq. (15).

Minimization Step: Let

e(t+1)
j (u) = λ̂

(t+1)
j q̂(t+1)

j (u) = λ̂
(t+1)
j

r∏

k=1

q̂(t+1)
jk (uk),

where

λ̂
(t+1)
j =

∫
(g · w

(t)
j ).
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4.3 Practical implementation of NSMM-ICA

Section 4.2 suggests alternating NSMM and ICA methods to form an iterative algo-
rithm for the estimation of the nonparametric ICA mixture model. This section
describes the practical considerations that went into the development of a package
for R (R Core Team 2015), called icamix, that implements these ideas.

Empirical evidence suggests that NSMM and the npEM algorithm of Benaglia
et al. (2009) tend to give very similar estimates (Levine et al. 2011). The reason is
that usually Nh f is close to f itself. This suggests that the smoothed version of the
algorithm can reasonably be replaced by the non-smoothed version because the former
is more computationally burdensome than the latter. The decision to implement this
non-smoothed version affects only Step 1 of the algorithm below. The result is an
algorithm that fails to achieve the provable descent property of the smoothed version
but which is much faster and which appears to result in nearly identical results for
most test problems.

Among themany ICA techniques available in the literature, herewe use the efficient
and well-tested FastICA of Hyvarinen et al. (2002). At each iteration, FastICA will
be applied to a weighted dataset, where the weight on observation i for component j
is determined as the estimate, given the information available at the present iteration,
of the probability that observation i falls into component j .

Assume we are given raw data as a matrix X� = {x1, x2, . . . , xn}�, where
xi = (xi1, xi2, xi3, . . . , xir )� for 1 ≤ i ≤ n.We first choose a set of starting parameter
values. Since our algorithm, like any MM algorithm, finds at best a local minimum, it
is possible that different starting values will lead to different solutions. In the icamix
package, we begin with a k-means clustering solution, which assigns each data point
to a distinct mixture component (and which itself has a stochastic element that allows
for ease in choosing multiple starting points). Given this initial partition, straight-
forward estimation (e.g., using FastICA) on the separate components leads to initial
parameter values. Then, our algorithm iterates through Steps 1 through 4 below until
a convergence criterion is met.

Step 1. For all i and j , estimate the j th component weight for the i th observation
using the non-smoothed densities:

p(t)
i j = λ

(t)
j f (t)

j (xi )
∑m

j ′=1 λ
(t)
j ′ f (t)

j ′ (xi )
=

λ
(t)
j

∣∣∣det A(t)
j

∣∣∣
−1∏r

k=1 q
(t)
jk

([
(A(t)

j )−1xi
]

k

)

∑m
j ′=1 λ

(t)
j ′
∣∣∣det A(t)

j ′
∣∣∣
−1∏r

k=1 q
(t)
j ′,k
([

(A(t)
j ′ )−1xi

]

k

) .

Steps 2, 3a, 3b, 3c, and 4 are now repeated separately for each value of j , 1 ≤ j ≤ m:
Step 2. Update the λ parameters:

λ
(t+1)
j = 1

n

n∑

i=1

p(t)
i j .
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Step 3a. Centering FastICA step for component j : For each i , define

x̃i ← xi −
∑n

i=1 xi p
(t)
i j

∑n
i=1 p

(t)
i j

.

Step 3b. Decorrelating FastICA step for component j : We first obtain the eigen-
value decomposition as ∑n

i=1 x̃i x̃
�
i p(t)

i j
∑n

i=1 p
(t)
i j

= E j D j E
�
j ,

then let Vj = E j D
−1/2
j E�

j and zi j = Vj x̃i for i = 1, . . . , n. Here, the notation zi j
refers to the j th component version of the i th observation of the z vector, which is
r -dimensional. Therefore,

∑n
i=1 zi jz

�
i j p

(t)
i j

∑n
i=1 p

(t)
i j

= Vj E j D j E
�
j V

�
j = I . (17)

The transformed data zi j with weights p(t)
i j , 1 ≤ i ≤ n, thus have their coordinates

uncorrelated and standardized according to (17). Since Z j = Vj X̃ = VjA jS, we need

to first estimate
(
VjA j

)−1, of which the i th row is the same as wi j in (18) below, and
multiply it by Vj on the right to get an update of A−1

j .
Step 3c. Symmetric orthogonalization FastICA step for component j : At this step,

we enter an internal loop that ultimately results in the update of the A j matrix. Let
Wj = [w1 j ,w2 j , . . . ,wr j ]� for r -dimensional unit length vectorsw1 j ,w2 j , . . . ,wr j .
The first time we enter Step 3c, we may simply take wi j to be the i th standard basis
vector for each j , and at succeeding iterations we take thesewi j to be rows of the most
recent Wj matrix.

The inner loop then proceeds by updating thewi j from their previous values accord-
ing to

wi j ←
∑n

i=1 zi j g(w
�
i jzi j )p

(t)
i j

∑n
i=1 p

(t)
i j

− wi j

∑n
i=1 g′(w�

i jzi j )p
(t)
i j

∑n
i=1 p

(t)
i j

, (18)

where g may be chosen to be either g(y) = tanh(α1y) for some 1 ≤ α1 ≤ 2 or
g(y) = y exp(−y2/2) (Hyvarinen et al. 2002). Let Wj = [w1 j ,w2 j , . . . ,wr j ]� and
then symmetrize and orthogonalize by

Wj ← (WjW
�
j )−1/2Wj . (19)

Iteratively update the wi j , i = 1, . . . , r using Eqs. (18) and (19) until convergence
is achieved. More precisely, we choose a tolerance τ and stop updating when

max
1≤i≤r

{∣∣∣
(
w(previous)
i j

)� · w(current)
i j − 1

∣∣∣
}

≤ τ.
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Finally, set
A(t+1)
j = V−1

j W−1
j .

Step 4. Non-parametric density estimation step: For all j and k, let

q(t+1)
jk (u) =

(
n∑

i=1

p(t+1)
i j

)−1 n∑

i=1

p(t+1)
i j

1

h
K

⎛

⎜⎝
u −

[
(A(t+1)

j )−1xi
]

k

h

⎞

⎟⎠ .

The R package icamix makes use of the Rcpp (Eddelbuettel and François 2011;
Eddelbuettel 2013) andRcppArmadillo (Eddelbuettel and Sanderson 2014) packages
for compiling and calling the core algorithms implemented in C++ code to speed up
the calculations.

In the discrete algorithm we have developed, a single fixed bandwidth calculated
from the data will not be sensible, especially because the scale is now changing accord-
ing to the ICA framework. Thus we propose an iterative scheme for choosing the
bandwidth similar to that of Benaglia et al. (2011), whereby

ht+1
jk = 0.5 · SDt+1

jk · (nλt+1
j )−0.2 = 0.5 · (nλt+1

j )−0.2. (20)

For simplicity, we replace min {SDt+1
j,l , IQRt+1

j,l /1.349} in the original Benaglia et al.

(2011) formulation by SDt+1
j,l = 1.We also propose the ad hoc coefficient of 0.5 rather

than Silverman’s 0.9 used by Benaglia et al. (2011) in order to capture fine features of
the density for better performance in the classification task.Our experience is that using
0.9 tends to oversmooth the estimated density. Simulation studies and applications we
have run suggest that Eq. (20) works well in practice.

When running the algorithm,we have determined that Step 4 dominates the comput-
ing time. By making use of Gaussian kernels and utilizing certain symmetric structure
in evaluating some of Gaussians, we are able to lower the computing cost for the kernel
density estimation step by about 50% with respect to the mixtools package. Further
improvement might be possible via the Fast Gauss Transform (Raykar et al. 2005) and
related techniques, though we have not implemented these improvements.

5 Applications

Here, we describe our experience applying themodifiedNSMM-ICAalgorithm imple-
mented in the icamix package to several datasets of varying size.

5.1 Italian wine classification

The Italian wine data set is another popular data set used for comparing various
classifiers (Forina et al. 1988; Aeberhard et al. 1992). It contains results of a chemical
analysis of wines grown in Italy but derived from three different cultivars. A total
of 178 observations are recorded, each with 13 continuous attributes such as color
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Table 1 Wine data
classifications by
PCA+NSMM-ICA algorithm

Class 1 Class 2 Class 3

Barolo 59 0 0

Grignolino 6 61 4

Barbera 0 0 48

11 12 13 14 15

1
2

3
4

5
6

True Wine Class

V2

V
3

11 12 13 14 15

1
2

3
4

5
6

NSMM−ICA Class

V2

V
3

11 12 13 14 15

1
2

3
4

5
6

PCA + NSMM−ICA Class

V2

V
3

Fig. 2 Wine data: comparison of true species information (far left) and two results from our unsupervised
learning algorithms

intensity, magnesium and malic acid. There are 59, 71 and 48 instances in the first
(Barolo), second (Grignolino) and third (Barbera) wine classes, respectively (Table 1).

If we feed the unlabeled data directly to the NSMM-ICA algorithm, we obtain a
classification error rate equal to 28.65%, prompting us to consider remedies. it seems
that given the small number of observations, the relatively large number of attributes
may be somewhat challenging as there are too many parameters to estimate and some
of the attributes may consist of noise. So instead of using all 13 attributes, we first run
principal component analysis (PCA) on the attributes and then select the 5 PCA scores
that explain the largest proportion of variance in the attributes. Finally, we run the
NSMM-ICA algorithm on the data set with the chosen PCA scores as attributes. In this
way, the classification performance improves quite a lot, giving a classification error
rate equal to 5.62%. Hence, in situations with relatively large numbers of coordinates,
it might be worthwhile to utilize a dimension reduction technique followed by the
NSMM-ICA algorithm. Figure 2 shows a comparison of true species information and
results from our unsupervised learning algorithms.

5.2 Tone data

The tone perception experiment and data were first introduced byCohen (1984). These
data have been analyzed by Veaux (1989), Viele and Tong (2002), and Hunter and
Young (2012) in the context of mixtures of regressions. In each trial of the experiment,
a musician is presented with a fundamental tone plus a series of overtones determined
by a stretching ratio. Then the musician is asked to tune an adjustable tone to one
octave above the fundamental tone. Both the stretching ratio and the ratio of the
adjusted tone to the fundamental are reported for each trial. There are five musicians
involved in the experiment. However, the tone data set only contains 150 trials with the
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Fig. 3 Comparison of three algorithms for fitting the tone dataset of Cohen (1984). Only the plot labeled SP
EM explicitly assumes a mixture of regressions. The npEM algorithm does not utilize ICA and therefore
misses the two lines entirely

Table 2 Comparison of
mixtures of least squares fits for
the tone dataset of Cohen (1984)

SP EM NSMM-ICA/weighted LS

Component 1

β̂0 1.77533 1.82215

β̂1 0.11954 0.09076

Component 2

β̂0 0.02121 − 0.12111

β̂1 0.97929 1.05584

λ̂1 0.67653 0.46779

same musician. The problem of interest in conducting this experiment is to investigate
the theory that the musician would either tune the tones to the nominal octave at a
ratio of 2:1 to the fundamental tone (i.e., the interval memory hypothesis) or use the
overtone to tune the tone to the stretching ratio (i.e., the partial matching hypothesis).
The findings by Hunter and Young (2012) via modeling through a semi-parametric
mixture of regressions conforms with the latter theory.

For this unsupervised learning task, we run both the npEM algorithm by Benaglia
et al. (2009) and our NSMM-ICA algorithm on the tone data. Figure 3 shows that our
NSMM-ICA algorithm does a good job of classification, very close to the mixture-of-
regressions results obtained byHunter andYoung (2012), despite omitting any explicit
assumption of regression structure. The reason why the results of the npEM algorithm
shown in Fig. 3 do not look nearly as good is because with regression lines that have
nonzero slopes the mixture is far from being conditionally independent. Thus, the
additional ICA step in our algorithm is essential.

For comparing our result with that of Hunter and Young (2012), we can use the
estimated mixing weights obtained from NSMM-ICA to fit a weighted ordinary least
squaresmodel to obtain the regression coefficients. The results, summarized in Table 2,
reflect the difference in estimated membership between SP EM and our NSMM-ICA
primarily at the intersection of the two components, which is responsible for the
noticeable difference in the estimated mixing weights.
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Fig. 4 Two images as sources for data: newspaper and painting

5.3 Clustering images

Learning efficient codes for images obtained from different sources or contexts is
an important problem in the area of image processing. The task involves extracting
intrinsic structure in images by clustering and finding a complete set of efficient linear
basis functions for each image source, which results in coefficient values being as
statistically independent as possible. Techniques that utilize a parametric form of ICA
mixturemodels have been proposed in Lee et al. (1999a; 1999b; 2000). Here, we apply
the NSMM-ICA algorithm, which eliminates the parametric assumptions, to the task
of unsupervised learning of image codes.

The two images shown in Fig. 4 will be used as sources for the data set of the
application. One is a painting image (2508×1808 pixels) and the other is a newspaper
image (2057×1365 pixels). The images are transformed to grey scale: Each pixel
consists of a pixel intensity value ranging from 0 (black) to 1 (white).

We select 5000 12×12 pixel patches randomly from each image. So the complete
data set is of dimension 10,000×144. The NSMM-ICA algorithm converges after 19
iterations, which lasts a little less than 8 hours. Again each bandwidth is automatically
learnedby the iterative schemewe implemented. The result shows avery good recovery
of the class-membership information, with a classification error rate of 1.2%.

The learned basis functions (i.e., a basis for the linear space of the pixel patches)
show interesting patterns. Figures 5 and 6 show the basis functions for each image.
The ones for the painting image appear smoother but more irregular, while the ones
for the newspaper image look spottier and more regular.

6 Discussion

Although the conditional independence model for multivariate data is promising due
to the fact that its parameters are provably identifiable under weak conditions, even
some simple datasets such as thewell-known iris dataset clearly violate this conditional
independence assumption. The current article loosens this assumption, positing instead
that each multivariate component can be linearly transformed to having independent
coordinates. This gives a much more flexible model-based clustering framework than
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Fig. 5 Learned basis functions for the newspaper image of Fig. 4. Each basis function, which is a 144-
dimensional vector, is standardized to be within 0 and 1, then displayed as a 12 × 12 image patch

the conditional independence assumption alone. Among the particular favorable fea-
tures of this extended model is that it allows for linear feature extraction, as illustrated
by the tone data application of Sect. 5.2.

Yet much work remains to be done on this and similar methods. Despite the
favorable-looking results that we have obtained on the datasets in this article, the
theoretically important question of the identifiability of the parameters remains unre-
solved. A related issue is the fact that ICA cannot operate in the setting of multivariate
normal data, since in that case the standardized data are already standard multivariate
normal, so that there is no way to identify an ICA transformation. Thus, with the
increased flexibility of our current framework come additional questions regarding
conditions under which parameter identifiability holds.

In addition, large-sample behavior of the NSMM estimator such as convergence
rates is still not fully known; however, recent work on alternative algorithms such
as those of Bonhomme et al. (2016a), for which asymptotic properties have been
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Fig. 6 Learned basis functions for the painting image of Fig. 4. Each basis function, which is a 144-
dimensional vector, is standardized to be within 0 and 1, then displayed as a 12 × 12 image patch

proven,might provide suitable alternatives for estimation of the nonparametricmixture
structure. Similarly, alternatives to the ICA algorithm we employ here, such as ICS,
are also possible, and it is possible that exploiting the ability of ICS to search for
interesting clustering features as in Peña et al. (2010) could be exploited.

In addition, there is the question of computational efficiency given the burden of
estimatingmultiple univariate densities, particularly for large datasets. Our implemen-
tation of the algorithmcurrently replaces the smoothedNSMMportion of the algorithm
by the non-smoothed npEM of Benaglia et al. (2009), since empirical comparisons
have suggested that these two algorithms often result in nearly the same solutions. The
icamix package for R (R Core Team 2015), available on CRAN, interweaves npEM
with a weighted version of the FastICA algorithms (Hyvarinen et al. 2002). The pack-
age also implements an automated and adaptive scheme for bandwidth selection that
is based on the work of Benaglia et al. (2011). Further computing efficiencies may be
attainable through the use of the Fast Gauss Transform.
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It is important to remember that although this article compares some clustering
solutions obtained via our algorithm with those obtained using other techniques, such
as k-means clustering, model-based clustering yields much more than mere cluster
memberships:Not only does it assign each data point a probability vector of component
membership, but the statistical modeling of the individual components is often of
great interest beyond the assignment of individuals to groups. We did not explore
the component density estimates obtained via our algorithm in this article, but for an
example that does so in the nonparametric mixture modeling literature, consider the
water-level dataset as analyzed in Section 5.2 of Chauveau et al. (2015).

All in all, given its flexibility and hence wide applicability, we believe that the
novel approach to model-based clustering presented here has the potential to be a
useful alternative to existing approaches based on parametric mixtures or mixtures
that assume conditional independence.

A Proof of Proposition 1

We assume that for each 1 ≤ j ≤ m, there exists θ j > 0 such that

e j (x) = θ j

r∏

k=1

e jk(xk), (21)

where for each k, 1 ≤ k ≤ r , e jk ∈ L1(R) is positive. This overparameterization is
employed for the sake of convenience and does not influence identifiability because
we will never estimate θ j separately.

The change of variables x = A jy transforms Eq. (13) into

b(0)
j (e j ,A j ) = −

∫
g(A jy)w

(0)
j (A jy) · log

{
(Nhe j )(y)| det A j |−1

}
| det A j | dy

+
∫

e j (y) dy. (22)

Ignoring the term involving log | det A j |−1 since it does not involve e j , we find that

minimizing b(0)
j (e j ,A j ) as a function of e j with A j fixed is equivalent to minimizing

−
∫

g(A jy)w
(0)
j (A jy)

∫
s̄h(u, y) log e j (u)| det A j | du dy +

∫
e j (u) du, (23)

which by Eqs. (8), (9), and (21) equals

−
r∑

k=1

∫∫
g(A jy)w

(0)
j (A jy)sh(uk, yk) log e jk(uk)| det A j | duk dy

+θ j

∫ r∏

k=1

e jk(uk) duk (24)

plus a term involving log θ j but none of the e jk .
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Picking a specific k and viewing Expression (24) as an integral with respect to duk ,
we minimize it by minimizing the value of its integrand at each point. Differentiating
with respect to e jk(uk) and setting it equal to zero gives

−
∫
g(A jy)w

(0)
j (A jy)sh(uk, yk)| det A j | dy

e jk(uk)
+ θ j

⎡

⎣
∏

l 
=k

∫
e jk(ul) dul

⎤

⎦ = 0,

yielding

ê jk(uk) ∝
∫

g(A jy)w
(0)
j (A jy)sh(uk, yk) dy,

which implies

ê j (u) = α j

r∏

k=1

∫
g(A jy)w

(0)
j (A jy)sh(uk, yk) dy (25)

for some constant α j . To find α j , we plug (25) into (23), differentiate with respect to
α j , and set the result equal to zero to obtain

α j = | det A j |
[∫

g(A jx)w
(0)
j (A jx) dx

]r−1 ,

which implies Eq. (14).
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