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Abstract
We consider the problem of breaking a multivariate (vector) time series into segments
over which the data is well explained as independent samples from a Gaussian distri-
bution. We formulate this as a covariance-regularized maximum likelihood problem,
which can be reduced to a combinatorial optimization problem of searching over
the possible breakpoints, or segment boundaries. This problem can be solved using
dynamic programming, with complexity that grows with the square of the time series
length. We propose a heuristic method that approximately solves the problem in linear
timewith respect to this length, and always yields a locally optimal choice, in the sense
that no change of any one breakpoint improves the objective. Our method, which we
call greedy Gaussian segmentation (GGS), easily scales to problems with vectors of
dimension over 1000 and time series of arbitrary length. We discuss methods that can
be used to validate such a model using data, and also to automatically choose appro-
priate values of the two hyperparameters in the method. Finally, we illustrate our GGS
approach on financial time series and Wikipedia text data.
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1 Introduction

Many applications, including weather measurements (Xu 2002), car sensors (Hallac
et al. 2016), and financial returns (Nystrup et al. 2017), contain long sequences of
multivariate time series data. With data sets such as these, there are many benefits to
partitioning the time series into segments, where each segment can be explained by
as simple a model as possible. Partitioning can be used for denoising (Abonyi et al.
2005), anomaly detection (Rajagopalan and Ray 2006), regime-change identification
(Nystrup et al. 2016), and more. Breaking a large data set down into smaller, simpler
components is also a key aspect of many unsupervised learning algorithms (Hastie
et al. 2009, Chapter 14).

In this paper, we analyze the time series partitioning problem by formulating
it as a covariance-regularized likelihood maximization problem, where the data in
each segment can be explained as independent samples from a multivariate Gaussian
distribution.We propose an efficient heuristic, which we call the greedy Gaussian seg-
mentation (GGS) algorithm, that approximately finds the optimal breakpoints using
a greedy homotopy approach based on the number of segments (Zangwill and Garcia
1981). The memory usage of the algorithm is a modest multiple of the memory used to
represent the original data, and the time complexity is linear in the number of observa-
tions, with significant opportunities for exploiting parallelism. Our method is able to
scale to arbitrarily long time series and multivariate vectors of dimension over 1000.
We also discuss several extensions of this approach, including a streaming algorithm
for real-time partitioning, as well as a method of validating the model and selecting
optimal values of the hyperparameters. Last, we implement the GGS algorithm in a
Python software package GGS, available online at https://github.com/cvxgrp/GGS,
and apply it to various financial time series and Wikipedia text data to illustrate our
method’s accuracy, scalability, and interpretability.

1.1 Related work

This work relates to recent advancements in both optimization and time series segmen-
tation. Many variants of our problem have been studied in several contexts, including
Bayesian change-point detection (Booth and Smith 1982; Lee 1998; Son and Kim
2005; Cheon and Kim 2010; Bauwens and Rombouts 2012), change-point detection
based on hypothesis testing (Crosier 1988; Venter and Steel 1996; De Gooijer 2006;
Galeano andWied 2014; Li 2015), mixture models (Verbeek et al. 2003; Abonyi et al.
2005; Picard et al. 2011; Samé et al. 2011), hidden Markov models and the Viterbi
algorithm (Rydén et al. 1998; Ge and Smyth 2001; Bulla 2011; Hu et al. 2015; Nystrup
et al. 2017), and convex segmentation Katz and Crammer (2014), all trying to find
breakpoints in time series data.

The different methods make different assumptions about the data (see Esling and
Agon 2012 for a comprehensive survey). GGS assumes that, in each segment, the
mean and covariance are constant and unrelated to the means and covariances in all
other segments. This differs from ergodic hidden Markov models (Rydén et al. 1998;
Ge and Smyth 2001; Bulla 2011; Hu et al. 2015; Nystrup et al. 2017), which implicitly
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assume that the underlying segments will repeat themselves, with some structure to
when the transitions are likely to occur. In a left-to-right hidden Markov model (Bakis
1976; Cappé et al. 2005), though, additional constraints are imposed to ensure non-
repeatability of segments, similar to GGS. Alternatively, trend filtering problems (Kim
et al. 2009) assume that neighboring segments have similar statistical parameters;when
a transition occurs, the new parameters are not too far from the previous ones. Other
models have tried to solve the problem of change-point detection when the number
of breakpoints is unknown (Basseville and Nikiforov 1993; Chouakria-Douzal 2003),
including in streaming settings (Guralnik and Srivastava 1999; Gustafsson 2000).

GGS uses a straightforward approach based on the maximum likelihood of the data
(we address how to incorporate many of these alternative assumptions in Sect. 5).
In real world contexts, deciding on which approach to use depends entirely on the
underlying structure of the data; a reasonable choice of method can be determined
via cross-validation of the various models. Our work is novel in that it allows for an
extremely scalable greedy algorithm to detect breakpoints in multivariate time series.
That is, GGS is able to solve much larger problems than many of these other methods,
both in terms of vector dimension and the length of the time series. Additionally, its
robustness allows GGS to be used as a black-box method which can automatically
determine an appropriate number of breakpoints, as well as the model parameters
within each segment, using cross-validation.

Our greedy algorithm is based on a top-down approach to segmentation (Douglas
and Peucker 1973), though there has also been related work using bottom-up methods
(Keogh et al. 2004). While our algorithm does achieve a locally optimal solution, we
note that it is possible to solve for the global optimum using dynamic programming
(Bellman 1961; Fragkou et al. 2004; Kehagias et al. 2006). However, these globally
optimal approaches have complexities that grow with the square of the time series
length, whereas our heuristic method scales linearly with the time series length. Our
model approximates �1/�2 trend filtering problems (Kim et al. 2009; Wahlberg et al.
2011, 2012), which use a penalty based on the fused group lasso (Tibshirani et al.
2005; Bleakley and Vert 2011) to couple together the model parameters at adjacent
times. However, these models are unable to scale up to the sizes we are aiming for, so
we develop a fast heuristic, similar to an �0 penalty (Candès et al. 2008), where each
breakpoint splits the time series into two independent problems. To ensure robustness,
we rely on covariance-regularized regression to avoid errors when there are more
dimensions than samples in a segment (Witten and Tibshirani 2009).

1.2 Outline

The rest of this paper is structured as follows. In Sect. 2, we formally define our
optimization problem. In Sect. 3, we explain the GGS algorithm for approximately
solving the problem in a scalable way. In Sect. 4, we describe a validation process for
choosing the two hyperparameters in our model. We then examine in Sect. 5 several
extensions of this approach which allow us to apply our algorithm to new types of
problems. Finally, we apply GGS to several real-world financial and Wikipedia data
sets, as well as a synthetic example, in Sect. 6.
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2 Problem setup

2.1 Segmented Gaussianmodel

We consider a given time series x1, . . . , xT ∈ Rn . (The times t = 1, . . . , T need not be
uniformly spaced in real time; all that matters in our model and method is that they are
ordered.) We will assume that the xt ’s are independent samples with xt ∼ N (μt , �t ),
where the meanμt and covariance�t only change at K � T breakpoints b1, . . . , bK .
These breakpoints divide the given T samples into K + 1 segments; in each segment,
the xt ’s are generated from the same multivariate Gaussian distribution. Our goal is to
determine K , the breakpoints b1, . . . , bK , and the means and covariances

μ(1), . . . , μ(K+1), �(1), . . . , �(K+1)

in the K + 1 segments between the breakpoints, from the given data x1, . . . , xT .
Introducing breakpoints b0 and bK+1, the breakpoints must satisfy

1 = b0 < b1 < · · · < bK < bK+1 = T + 1,

and the means and covariances are given by

(μt , �t ) = (μ(i), �(i)), bi−1 ≤ t < bi , i = 1, . . . , K .

(The subscript t denotes time t ; the superscript (i) and subscript on b denotes segment
i .) We refer to this parametrized distribution of x1, . . . , xT as the segmented Gaussian
model (SGM). The log-likelihood of the data x1, . . . , xT under this model is given by

�(b, μ,�) =
T∑

t=1

(
−1

2
(xt − μt )

T�−1
t (xt − μt ) − 1

2
log det�t − n

2
log(2π)

)

=
K+1∑

i=1

bi−1∑

t=bi−1

(
−1

2
(xt − μ(i))T (�(i))−1(xt − μ(i)) − 1

2
log det�(i) − n

2
log(2π)

)

=
K+1∑

i=1

�(i)(bi−1, bi , μ
(i), �(i)),

where

�(i)(bi−1, bi , μ
(i), �(i))

=
bi−1∑

t=bi−1

(
−1

2
(xt − μ(i))T (�(i))−1(xt − μ(i)) − 1

2
log det�(i) − n

2
log(2π)

)
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= −1

2

bi−1∑

t=bi−1

(xt − μ(i))T (�(i))−1(xt − μ(i))

− bi − bi−1

2

(
log det�(i) + n log(2π)

)

is the contribution from the i th segment. Here we use the notation b = (b1, . . . , bK ),
μ = (μ(1), . . . , μ(K+1)), and � = (�(1), . . . , �(K+1)), for the parameters in the
SGM. In all the expressions above we define log det� as −∞ if � is singular, i.e.,
not positive definite. Note that bi − bi−1 is the length of the i th segment.

2.2 Regularizedmaximum likelihood estimation

We will choose the model parameters by maximizing the covariance-regularized log-
likelihood for a given value of K , the number of breakpoints. We regularize the
covariance to avoid errors when there are more dimensions than samples in a seg-
ment, a well-known problem in high dimensional settings (Huang et al. 2006; Bickel
and Levina 2008; Witten and Tibshirani 2009). Thus we choose b, μ,� to maximize
the regularized log-likelihood

φ(b, μ,�) = �(b, μ,�) − λ

K+1∑

i=1

Tr(�(i))−1

=
K+1∑

i=1

(
�(i)(bi−1, bi , μ

(i), �(i)) − λTr(�(i))−1
)

, (1)

where λ ≥ 0 is a regularization parameter, with K fixed. (We discuss the choice of the
hyperparameters λ and K in Sect. 4.) This is a mixed combinatorial and continuous
optimization problem since it involves a search over the

(T−1
K

)
possible choices of the

breakpoints b1, . . . , bK , as well as the parameters μ and �. For λ = 0, this reduces
to maximum likelihood estimation, but we will assume henceforth that λ > 0. This
implies that we will only consider positive definite (invertible) estimated covariance
matrices.

If the breakpoints b are fixed, the regularized maximum likelihood problem has a
simple analytical solution. The optimal value of the i th segment mean is the empirical
mean over the segment,

μ(i) = 1

bi − bi−1

bi−1∑

t=bi−1

xt , (2)

and the optimal value of the i th segment covariance is

�(i) = S(i) + λ

bi − bi−1
I , (3)
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where S(i) is the empirical covariance over the segment,

S(i) = 1

bi − bi−1

bi−1∑

t=bi−1

(xt − μ(i))(xt − μ(i))T .

Note that the empirical covariance S(i) can be singular, for example when bi −bi−1 <

n, but for λ > 0 (which we assume), �(i) is always positive definite. Thus, for any
fixed choice of breakpoints b, the mean and covariance parameters that maximize the
regularized log-likelihood (1) are given by (2) and (3), respectively. The optimal value
of the covariance (3) is similar to a Stein-type shrinkage estimator (Ledoit and Wolf
2004).

Using these optimal values of the mean and covariance parameters, the regularized
log-likelihood (1) can be expressed in terms of b alone, as

φ(b) = C − 1

2

K+1∑

i=1(
(bi − bi−1) log det

(
S(i) + λ

bi − bi−1
I

)
− λTr

(
S(i) + λ

bi − bi−1
I

)−1
)

= C +
K+1∑

i=1

ψ(bi−1, bi ),

where C = −(Tn/2)(log(2π) + 1) is a constant that does not depend on b, and

ψ(bi−1, bi ) = −1

2

(
(bi − bi−1) log det

(
S(i) + λ

bi − bi−1
I

)
− λTr

(
S(i) + λ

bi − bi−1
I

)−1
)

.

(Note that S(i) depends on bi−1 and bi .) Without regularization, i.e., with λ = 0, we
have

ψ(bi−1, bi ) = −1

2
(bi − bi−1) log det S

(i).

More generally, we have reduced the regularized maximum likelihood estimation
problem, for fixed values of K and λ, to the purely combinatorial problem

maximize − 1

2

K+1∑

i=1

(
(bi − bi−1) log det

(
S(i) + λ

bi − bi−1
I

)

−λTr
(
S(i) + λ

bi − bi−1
I

)−1
)

, (4)

where the variable to be chosen is the collection of breakpoints b = (b1, . . . , bK ).
These can take

(T−1
K

)
possible values. Note that the breakpoints bi appear in the objec-
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tive of (4) both explicitly and implicitly, through the empirical covariance matrices
S(i), which depend on the breakpoints.

2.2.1 Efficiently computing the objective

For future reference, we mention how the objective in (4) can be computed, given
b. We first compute the empirical covariance matrices S(i), which costs order Tn2

flops. This step can be carried out in parallel, on up to K + 1 processors. The storage
required to store these matrices is order Kn2 doubles. (For comparison, the storage
required for the original problem data is Tn. Since we typically have Kn ≤ T , i.e.,
the average segment length is at least n, the storage of S(i) is no more than the storage
of the original data.)

For each segment i = 1, . . . , K+1,we carry out the following steps (again, possibly
in parallel) to evaluate ψ(bi−1, bi ). We first carry out the Cholesky factorization

LLT = S(i) + λ

bi − bi−1
I ,

where L is lower triangular with positive diagonal entries, which costs order n3 flops.
The log-determinant term can be computed in order n flops, as 2

∑n
i=1 log(Lii ), and

the trace term in order n3 flops, as ‖L−1‖2F . The overall complexity of evaluating the
objective is order Tn2 + Kn3 flops, and this can be easily parallelized into K + 1
independent tasks. While we make no assumptions about T , n, and K (other than
K < T ), the two terms are equal in order when T = Kn, which means that the
average segment length is on the order of n, the vector dimension. This is the thresh-
old at which the empirical covariance matrices (can) become nonsingular, though in
most applications, useful values of K are much smaller, which means the first term
dominates (in order). With the assumption that the average segment length is at least
n, the overall complexity of evaluating the objective is Tn2.

As an example, we might expect a serial implementation for a data set with T =
1000 and n = 100 to require on the order of 0.01 seconds to evaluate the objective,
using the very conservative estimate of 1Gflop/sec for computer speed.

2.2.2 Globally optimal solution

The problem (4) can be solved globally by dynamic programming (Bellman 1961;
Fragkou et al. 2004; Kehagias et al. 2006). We take as states the set of pairs (bi−1, bi ),
with bi−1 < bi , so the state space has cardinality T (T − 1)/2. We consider the
selection of a sequence of K states, with the state transition constraint that (p, q)

must be succeeded by a state of the form (q, r). The complexity of this dynamic
programming method is n3KT 2. Our interest, however, is in a method for large T ,
so we instead seek a heuristic method for solving (4) approximately, but with linear
complexity in the time series length T .
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734 D. Hallac et al.

2.2.3 Our method

In Sect. 3, we describe a heuristic method for approximately solving problem (4). The
method is not guaranteed to find the globally optimal choice of breakpoints, but it
does find breakpoints with high (if not always highest) objective value, and the ones
it finds are 1-OPT, meaning that no change of any one breakpoint can increase the
objective. The storage requirements of the method are on the order of the storage
required to evaluate the objective, and the computational cost is typically smaller than
a few hundred evaluations of the objective function.

3 Greedy Gaussian segmentation

In this section we describe a greedy algorithm for fitting an SGM to data, which we
call greedy Gaussian segmentation (GGS). GGS computes an approximate solution
of (4) in a scalable way, in each iteration adding one breakpoint and then adjusting all
the breakpoints to (approximately) maximize the objective. In the literature on time
series segmentation, this is similar to the standard “top-down” approach (Keogh et al.
2004).

3.1 Split subroutine

The main building block of our algorithm is the Split subroutine. The function
Split(bi−1, bi ) takes segment i and finds the t that maximizes ψ(bi−1, t) + ψ(t, bi )
over all values of t between bi−1 and bi . (We assume that bi − bi−1 > 1; otherwise
we cannot split the i th segment into two segments.) The time t = Split(bi−1, bi )
is the optimal place to add a breakpoint between bi−1 and bi . The value of
ψ(bi−1, t) + ψ(t, bi ) − ψ(bi−1, bi ) is the increase in the objective if we add a new
breakpoint at t . This is highest when we choose t = Split(bi−1, bi ). Due to the regu-
larization term, it is possible for this maximum increase to be negative, which means
that adding any breakpoint between bi−1 and bi actually decreases the objective. The
Split subroutine is summarized in Algorithm 1.

Algorithm 1 Splitting a single interval into two separate segments
Input: xbi−1 , . . . , xbi , along with empirical mean μ and covariance �.
1: initialize μleft = 0, μright = μ, �left = λI , �right = � + λI .
2: for t = bi−1 + 1, . . . , bi − 1 do
3: Update μleft , μright , �left , �right .
4: Calculate ψt = ψ(bi−1, t) + ψ(t, bi ).
5: end for
6: return The t which maximizes ψt and the value of ψt − ψ(bi−1, bi ) for that t .

In Split, line 3, updating the empirical mean and covariance of the left and right
segments resulting from adding a breakpoint at t , is done in a recursive setting in
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order n2 flops (Welford 1962). Line 4, evaluating ψt , requires order n3 flops, which
dominates. The total cost of running Split is order (bi − bi−1)n3.

3.2 GGS algorithm

We can use the Split subroutine to develop a simple greedy method for finding good
choices of K breakpoints, for K = 1, . . . , Kmax, by alternating between adding a new
breakpoint to the current set of breakpoints, and then adjusting the positions of all
breakpoints until the result is 1-OPT, i.e., no change of any one breakpoint improves
the objective. This GGS approach is outlined in Algorithm 2.

Algorithm 2 Greedy Gaussian segmentation
Input: x1, . . . , xT , K

max.
1: initialize b0 = 1, b1 = T + 1.
2: for K = 0, . . . , Kmax-1 do

AddNewBreakpoint:
3: for i = 1, . . . , K + 1 do
4: (ti , ψincrease) = Split(bi−1, bi ).
5: end for
6: if All ψincrease’s are negative and K > 0 then
7: return (b1, . . . , bK ).
8: else if All ψincrease’s are negative then
9: return ().
10: end if
11: Add a new breakpoint at the ti with the largest corresponding value of ψincrease.
12: Relabel the breakpoints so that 1 = b0 < b1 < · · · < bK+1 < bK+2 = T + 1.

AdjustBreakpoints:
13: repeat
14: for i = 1, . . . , K do
15: (ti , �increase) = Split(bi−1, bi+1).
16: If ti 	= bi , set bi = ti .
17: end for
18: until Stationary.
19: end for
20: return (b1, . . . , bK ).

In line 2, we loop over the addition of new breakpoints, adding exactly one new
breakpoint each iteration. Thus, the algorithm finds good sets of breakpoints, for
K = 1, . . . , Kmax, unless it quits early in line 6. This occurs when the addition of
any new breakpoint will decrease the objective. In AdjustBreakpoints, we loop over
the current segmentation and adjust each breakpoint alone to maximize the objective.
In this step the objective can either increase or stay the same, and we repeat until the
current choice of breakpoints is 1-OPT. In AdjustBreakpoints, there is no need to call
Split(bi−1, bi+1) more than once if the arguments have not changed.

The outer loop over K must be run serially, since in each iteration we start with the
breakpoints from the previous iteration. Lines 3 and 4 (in AddNewBreakpoint) can be
run in parallel over the K +1 segments.We can also parallelize AdjustBreakpoints, by
alternately adjusting the even and odd breakpoints (each of which can be parallelized)
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until stationarity. GGS requires storage on the order of Kn2 numbers. As already
mentioned, this is typically the same order as, or less than, the storage required for the
original data.

Ignoring opportunities for parallelization, running iteration K of GGS requires
order K Ln3T flops, where L is the average number of iterations required in Adjust-
Breakpoints. When parallelized, the complexity drops to Ln3T flops.While we do not
know an upper bound on L , we have observed empirically that it is modest when K
is not too large; that is, AdjustBreakpoints runs just a few outer loops over the break-
points. Summing from K = 1 to K = Kmax, and assuming L is a constant, gives a
complexity of order (Kmax)2n3T (without parallelization), or Kmaxn3T (with paral-
lelization). In contrast, the dynamic programming method (Bellman 1961; Fragkou
et al. 2004; Kehagias et al. 2006) requires order Kmaxn3T 2 flops.

4 Validation and parameter selection

Our GGS method has just two hyperparameters: λ, which controls the amount of
(inverse) covariance regularization, and Kmax, the maximum number of breakpoints.
In applications where the reason for segmentation is to identify interesting timeswhere
the statistics of the data change, K (and λ) might be chosen by hand, or by aesthetic or
other considerations, such as whether the segmentation identifies known or suspected
times when something changed. The hyperparameter values can also be chosen by
a more principled method, such as Bayesian or Akaike information criterion (Hastie
et al. 2009, Chapter 7). In this section, we describe a simple method of selecting the
hyperparameters through out-of-sample or cross validation.We first describe the basic
idea with 10:1 out-of-sample validation.

We remove 10% of the data at random, leaving us with 0.9T remaining samples.
The 10% of samples are our test set, and the remaining samples are the training set,
which we use to fit our model. We choose some reasonable value for Kmax, such as
Kmax = (T /n)/3 (which corresponds to the average segment length 3n) or a much
smaller number when T /n is large. For multiple values of λ, typically logarithmically
spaced over a wide range, we run the GGS algorithm. This gives us one SGM for each
value of λ and each value of K . For each of these SGMs, we note the log-likelihood
on the training data, and also on the test data. (It is convenient to divide each of these
by the number of data points, so they become the average log-likelihood per sample.
In this way the numbers for the training and test sets can be compared.) To calculate
the log-likelihood on the test set, we simply evaluate

�(xt ) = −1

2
(xt − μ(i))T (�(i))−1(xt − μ(i)) − 1

2
log det�(i) − n

2
log(2π),

if t falls in the i th segment of the model. The overall test set log-likelihood is then
defined, on a test set X , as

1

|X |
∑

xt∈X
�(xt ).
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Note that when t is the time index of a sample in the test set, it cannot be a breakpoint
of the model, since the model was developed using the data in the training set.

We then apply standard principles of validation. If for a particular SGM (found by
GGSwith a particular value of λ and K ) the average log-likelihood on the training and
test sets is similar, we conclude the model is not over-fit, and therefore a reasonable
candidate. Among candidate models, we then choose one that has a high value of
average log-likelihood. If many models have reasonably high average log-likelihood,
we choose one with a small value of K and a large value of λ. (In the former case
to get the simplest model that explains the data, and in the latter case to get the least
sensitive model that explains the data.)

Standard cross-validation is an extension of out-of-sample validation that can give
us evenmore confidence in a proposed SGM. In cross-validationwe divide the original
data into 10 equal size ‘folds’ of randomly chosen samples, and carry out out-of-
sample validation 10 times, with each fold as the test set. If the results are reasonably
consistent across the folds, both in terms of training and test average log-likelihood
and the breakpoints themselves, we can have confidence that the SGM fits the data.

5 Variations and extensions

The basic model and method can be extended in many ways, several of which we
describe here.

5.1 Warm-start

GGS builds SGMs by increasing K , starting from K = 0. It can also be used in warm-
start mode, meaning we start the algorithm from a given choice of initial breakpoints.
As an extreme version, we can start with a random set of K breakpoints, and then run
AdjustBreakpoints until we have a 1-OPT solution. The main benefit of a warm start is
that it allows for a significant computational speedup. Whereas a (parallelized) GGS
algorithm has a runtime of O(KmaxTn3), this warm-start method takes only O(Tn3),
since it can skip the first Kmax − 1 steps of Algorithm 2. However, as we will show
in Sect. 6.2, this speedup comes with a tradeoff, as the solution accuracy tends to drop
when running GGS in warm-start mode as compared to the original algorithm.

5.2 Backtracking

In GGSwe add one breakpoint per iteration. While we adjust the previous breakpoints
found, we never remove a breakpoint. One variation is to occasionally remove a break-
point. This can be done using a subroutine called Combine. This function evaluates,
for each breakpoint, the decrease in objective value if that breakpoint is removed. In
a backtracking step, we remove the breakpoint that decreases the objective the least;
we then can adjust the remaining breakpoints and continue with the GGS algorithm,
adding a new breakpoint. (If we end up adding the breakpoint we removed back in,
nothing has been achieved.) We also note that backtracking allows for GGS to be
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solved by a bottom-up method (Keogh et al. 2004; Borenstein and Ullman 2008). We
do so by starting with T − 1 breakpoints and continually backtracking until only K
breakpoints remain.

5.3 Streaming

We can deploy GGS when the data is streaming. We maintain a memory of the last M
samples and run GGS on this data set. We could do this from scratch as each new data
point or group of data points arrives, complete with selection of the hyperparameters
and validation. Another option is to fix λ and K , and then to run GGS in warm-start
mode, which means that we keep the previous breakpoints (shifted appropriately), and
then run AdjustBreakpoints from this starting point (as well as AddBreakpoint if a
breakpoint has fallen off our memory).

In streaming mode, the GGS algorithm provides an estimate of the statistics of
future time samples, namely, the mean and covariance in the SGM in the most recent
segment.

5.4 Multiple samples at the same time

Our approach can easily incorporate the case where we havemore than one data vector
for any given time t . We simply change the sums over each segment for the empirical
mean and covariance to include any data samples in the given time range.

5.5 Cyclic data

In cyclic data, the times t are interpreted modulo T , so xT and x1 are adjacent. A
good example is a vector time series that represents daily measurements over multiple
years; we simply map all measurements to t = 1, . . . , 365 (ignoring leap years), and
modify the model and method to be cyclic. The only subtlety here arises in choosing
the first breakpoint, since one breakpoint does not split a cyclic set of times into
two segments. Evidently we need two breakpoints to split a cyclic set of times into
two segments. We modify GGS by arbitrarily choosing a first breakpoint, and then
running as usual, including the ‘wrap-around’ segment as a segment. Thus, the first
step chooses the second breakpoint, which splits the cyclic data into two segments. The
AdjustBreakpoints method now adjusts both the chosen breakpoint and the arbitrarily
chosen original one.

5.6 Regularization across time

In our current model, the estimates on either side of a breakpoint are independent
of each other. We can, however, carry out a post-processing step to shrink models
on either side of each breakpoint towards each other. We can do this by fixing the
breakpoints and then adjusting the continuous model parameters to minimize our
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original objective minus a regularization term that penalizes deviations of (�(i), μ(i))

from (�(i−1), μ(i−1)).

5.7 Non-Gaussian data

Our segmentedGaussianmodel and associated regularizedmaximum likelihood prob-
lem (4) can be generalized to other statistical models. The problem is tractable, at least
in theory, when the associated regularized maximum likelihood problem is convex. In
this case we can compute the optimal parameters over a segment by solving a convex
optimization problem, whereas in the SGM we have an analytical solution in terms of
the empirical mean and covariance. Thus we can segment Poisson or Bernoulli data,
or even heterogeneous exponential family distributions (Lee and Hastie 2015; Tansey
et al. 2015).

6 Experiments

In this section, we describe our implementation of GGS, and the results of some
numerical experiments to illustrate the model and the method.

6.1 Implementation

We have implemented GGS as a Python package GGS available at https://github.
com/cvxgrp/GGS. GGS is capable of carrying out full ten-fold cross-validation to
help users choose values of the hyperparameters. GGS uses NumPy for the numerical
computations, and the multiprocessing package to carry out the algorithm in
parallel for different cross-validation folds for a single λ. (The current implementation
does not support parallelism over the segments of a single fold, and the advantages of
parallelism will only be seen when GGS is run on a computer with multiple cores.)

6.2 Financial indices

In financial markets, regime changes have been shown to have important implications
for asset class and portfolio performance (Ang and Timmermann 2012; Sheikh and
Sun 2012; Nystrup et al. 2015, 2017). We start with a small example with n = 3,
where we can visualize and plot all entries of the segment parameters μ(i) and �(i).

6.2.1 Data set description

Our data set consists of 19 years of daily returns, from January 1997 toDecember 2015,
for n = 3 indices for stocks, oil, and government bonds: MSCI World, S&P GSCI
Crude Oil, and J.P. Morgan Global Government Bonds. We use log-return data, i.e.,
the logarithm of the end-of-day price increase from the previous day. The time series
length is T = 4943. Cumulative returns for the three indices are shown in Fig. 1.
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Fig. 1 Cumulative returns over the 19-year period for a stock, oil, and bond index

We can clearly see multiple ‘regimes’ in the return series, although the individual
behaviors of the three indices are quite different.

6.2.2 GGS algorithm

We run GGS on the data with Kmax = 30 and λ = 10−4. Figure 2 shows the objective
function versus K , i.e., the objective in each iteration of GGS.We see a sharp increase
in the objective up to around K = 8 or K = 10 — our first hint that a choice in
this range would be reasonable. For this example n is very small, so the computation
time is dominated by Python overhead. Still, our single-threaded GGS solver took less
than 30 seconds to compute these 30 models on a standard laptop with a 1.7 GHz
Intel i7 processor. The average number of passes through the data for the breakpoint
adjustments was under two.

6.2.3 Cross-validation

We next use 10-fold cross-validation to determine reasonable values for K and λ. We
plot the average log-likelihood over the 10 folds versus K in Fig. 3 for various values
of λ. When λ is large, the curves stop before K = Kmax, since GGS terminates early.
These plots clearly show that increasing K above 10 does not increase the average
log-likelihood in the test set; andmoreover past this point the log-likelihood on the test
and training sets begin to diverge, meaning the model is overfit. Though Fig. 3 only
goes up to K = 30, we find that for values of K above around 60, the log-likelihood
begins to drop significantly. Furthermore, we see that values of λ up to λ = 10−4

yield roughly the same high log-likelihood. This suggests that choices of K = 10
and λ = 10−4 are reasonable, aligning with our general preference for models which
are simple (small K ) and not too sensitive to noise (large λ). Cross-validation also
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Fig. 2 Objective φ(b) versus number of breakpoints K for λ = 10−4

Fig. 3 Average training and test set log-likelihood during 10-fold cross validation for various λ’s and across
all values of K ≤ 30. a λ = 10−6, b λ = 10−5, c λ = 10−4 and d λ = 10−3
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Fig. 4 Segmented Gaussian model obtained with λ = 10−4, K = 10

reveals that the choice of breakpoint locations is very stable for these values of K and
λ, across the 10 folds.

6.2.4 Results

Figure 4 shows the model obtained by GGS with λ = 10−4 and K = 10. We plot
the covariance matrix by showing the square root of the diagonal entries (i.e., the
volatilities), and the three correlations, versus t . During the financial crisis in 2008,
the mean return of stocks and oil was very negative and the volatility was high. The
stock market and the oil price were almost uncorrelated before 2008, but have been
positively correlated since then. It is interesting to see how the correlation between
stocks and bonds has varied over time: It was strongly positive in 1997 and very
negative in 1998, in 2002, and in the five years from mid-2007 to mid-2012. The
sudden shift in this correlation between 1997 and 1998 is why GGS yields two rel-
atively short segments in the [1997, 1999] window, rather than breaking up a longer
segment (such as [1999, 2002], where the correlation structure is more homogenous).
The extent of these variations would be difficult to capture using a sliding window;
the window would have to be very short, which would lead to noisy estimates. The
segmentation approach yields a more interpretable partitioning with no dependence
on a (prespecified, fixed) window length. Approaches to risk modeling (Alexander
2000) and portfolio optimization (Partovi and Caputo 2004; Meucci 2009) based on
principal component analysis are questionable, when volatilities and correlations are
changing as significantly as is the case in Fig. 4 (see also Fenn et al. (2011)). We
plot the cumulative index returns along with the chosen breakpoints in Fig. 5. We can
clearly see natural segments and boundaries, for example the Russian default in 1998
and the 2008 financial crisis.
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Fig. 5 Cumulative returns with vertical bars at the model breakpoints

6.2.5 Comparison with randomwarm-start

We fix the hyperparameters K = 10 and λ = 10−4, and attempt to find a better SGM
using warm-start with random breakpoints. This step is not needed; we carry this
out to demonstrate that while GGS does not find the model that globally maximizes
the objective, it is effective. We run 10,000 warm-start random initial breakpoint
computations, running AdjustBreakpoints until the model is 1-OPT and computing
the objective found in each case. (In this case the number of passes over the data set far
exceeds two, the typical number in GGS.) The complementary CDF of the objective
for these 10,000 computations is shown in Fig. 6, as well as the objective values found
by GGS for K = 8 through K = 11. We see that the random initializations can
sometimes lead to very poor results; over 50% of the simulations, even though they
are locally optimal, have smaller objectives than the K = 9 step of GGS. On the other
hand, the random initializations do find some SGMs with objective slightly exceeding
the one found by GGS, demonstrating that GGS did not find the globally optimal
set of breakpoints. These SGMs have similar breakpoints, and similar cross-validated
log-likelihood, as the one found by GGS. As a practical matter, these SGMs are no
better than the one found by GGS. There are two advantages of GGS over the random
search: First, it is much faster; and second, it finds models for a range of values of K ,
which is useful before we select the value of K to use.

6.3 Large-scale financial example

6.3.1 Data set description

We next look at a larger example to emphasize the scalability of GGS. We look at
all companies currently in the S&P 500 index that have been publicly listed for the
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Fig. 6 Empirical complementary CDF of φ(b) for 10,000 randomly initialized results for K = 10, λ =
10−4. Vertical bars represent GGS solutions for different values of K

entire 19-year period from before (from 1997 to 2015), which leaves 309 companies.
Note that there are slightly fewer trading days for the S&P 500 each year than the
global indices, since the S&P 500 does not trade during US holidays, while the global
indices still move. The 19-year data set yields a 309×4782 data matrix. We take daily
log-returns for these stocks and run the GGS algorithm to detect relevant breakpoints.

6.3.2 GGS scalability

We run GGS on this much larger data set up to Kmax = 10. Our serial implementation
of the GGS algorithm, on the same 1.7 GHz Intel i7 processor, took 36min, where
AdjustBreakpoint took an average of 3.5 passes through the data at each K . Note that
this aligns very closely with our predicted runtime fromSect. 3.2, whichwas estimated
as (Kmax)2LTn.

6.3.3 Cross-validation

We run 10-fold cross-validation to find good values of the hyperparameters K and λ.
The average log-likelihood of the test and training sets are displayed in Fig. 7. From
the results, we can see that the log-likelihood is maximized at a much smaller value
of K , indicating fewer breakpoints. This is in part because, with n = 309, we need
more samples in each segment to get an accurate estimate of the 309×309 covariance
matrix, as opposed to the 3×3 covariance in the smaller example. Our cross-validation
results suggest choosing K = 3 and λ = 5 × 10−2, and as in the small example, the
results are very stable near these values.
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Fig. 7 Average training and test set log-likelihood during 10-fold cross validation for various λ’s for the
309-stock example. Note that not all λ’s go all the way up to K = 10 because our algorithm stops when it
determines that it will no longer benefit from adding an additional split. a λ = 5 × 10−3, b λ = 10−2, c
λ = 5 × 10−2 and d λ = 10−1

6.3.4 Results

We plot the mean, standard deviation, and cumulative return of a uniform, buy-and-
hold portfolio (i.e., investing $1 into each of the 309 stocks in 1997). The results are
shown in Fig. 8. Note that there is a selection bias in the data set, since these companies
all remained in the S&P 500 in 2016, and the total return is 8x over the 19-year period.
Like before, the 2008 financial crisis stands out. It is the only segment with a negative
mean value. The partitioning seems intuitively right. The first, highly volatile, segment
includes both the build-up and burst of the dot–com bubble. The second segment is the
bull market that led to the financial crisis in 2008. The third segment is the financial
crisis and the fourth segment is the market rally that followed the crisis. These break
points were also found in the multiasset example in Figs. 4 and 5.

6.4 Wikipedia text data

We examine an example from the field of natural language processing (NLP) to illus-
trate how GGS can be applied to a very different type of data set, beyond traditional
time series examples.
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Fig. 8 Mean, standard deviation, and cumulative return for a uniform portfolio with K = 3, λ = 5× 10−2

6.4.1 Data set description

We look at text data from English-languageWikipedia.We obtain our data by concate-
nating the introductions, i.e., the text that precedes the Table of Contents section on
the Wikipedia webpage, of five separate articles, with titles George Clooney, Botany,
Julius Caesar, Jazz, and Denmark. Here, the “time series” consists of the sequence
of words from these five articles in order. After basic preprocessing (removing words
that appear at least five times and in multiple articles), our data set consists of 1282
words, with each article contributing between 224 and 286 words. We then convert
each word into a 300-dimensional vector using a pretrained Word2Vec embedding
of three million unique words (or short phrases), trained on the Google News data
set of approximately 100 billion words, available at https://code.google.com/archive/
p/word2vec/. This leaves us with a 300 × 1282 data matrix. Our hope is that GGS
can detect the breakpoints between the five concatenated articles, based solely on the
change in mean and covariance of the vectors associated with the words in our vector
series.

6.4.2 GGS results

WerunGGS to split the data into five segments—i.e., K = 4—anduse cross-validation
to select λ = 10−3. (We note, however, that this example is quite robust to the selection
of λ, and any value from 10−6 to 10−3 yields the exact same breakpoint locations.)
We plot the results in Fig. 9, which show GGS achieving a near-perfect split of the
five articles. Figure 9 also shows a representative word (or short phrase) in the Google
News data set that is among the top five “most similar” words, out of the entire three
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Fig. 9 Actual and GGS predicted breakpoints for the concatenation of the five Wikipedia articles, along
with the predicted most similar word to the mean of each GGS segment

million word corpus, to the average (mean) of each GGS segment, as measured by
cosine similarity. We see that GGS correctly identifies both the breakpoint locations
and the general topic of each segment.

6.5 Comparison with left-to-right HMM on synthetic data

We next analyze a synthetic example where observations are generated from a given
sequence of segments. This provides a known ground truth, allowing us to compare
GGS with a common baseline, a left-to-right hidden Markov model (HMM) (Bakis
1976; Cappé et al. 2005). Left-to-right HMMs, like GGS, split the data into non-
repeatable segments, where each segment is defined by a Gaussian distribution. The
HMMs in this experiment are implemented using the rarhsmm library (Xu and Liu
2017), which includes the same shrinkage estimator for the covariance matrices used
in GGS (see Sect. 2.2). The shrinkage estimator results in more reliable estimates not
only of the covariance matrices but also of the transition matrix and the hidden states
(Fiecas et al. 2017).

6.5.1 Data set description

We start by generating 10 random covariance matrices. We do so by setting �i =
A(i)A(i)T , i = 1, . . . , 10,where A(i) ∈ R25×25 is a randommatrixwhere each element
A(i)
j,k was generated independently from the standard normal distribution.Our synthetic

data set then has 10 ground truth segments (or K = 9 breakpoints), where segment
i has zero mean and covariance �i . Each segment is of length 100 (so the total time
series has T = 1000 observations). Each of the 100 readings per segment is sampled
independently from the given distribution. Thus, our final data set consists of a 25 ×
1000 data matrix, consisting of 10 independent segments, each of length 100.
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Fig. 10 GGS correctly identifies that there are 10 underlying segments in the data (from the kink in the plots
at K = 9). a Objective versus breakpoints for λ = 10. b Average training/test log-likelihood for λ = 10

6.5.2 Results

We run bothGGSand the left-to-rightHMMon this data set. ForGGS,we immediately
notice a kink in the objective at K = 9, as shown in Fig. 10a, indicating that the data
should be split into K + 1 = 10 segments. We use cross-validation to choose an
appropriate value of λ, which yields λ = 10. We plot the training and test set log-
likelihoods at λ = 10 in Fig. 10b. (Similar to the Wikipedia text example, though, the
breakpoint locations are relatively robust to our selection of λ. GGS returns identical
breakpoints for any λ between 10−3 and 103). For this value of λ (and thus for the
whole range of λ between 10−3 and 103), we split the data perfectly, identifying the
nine breakpoints at their exact locations.

Left-to-right HMMs have various methods for determining the number of seg-
ments, such as AIC or BIC. Here we instead simply use the correct number of
segments, and initialize the transition matrix as its true value. Note that this is the
best-case scenario for the left-to-right HMM. Even with this advantage, the left-
to-right HMM struggles to properly split the time series. Whereas GGS correctly
identifies [100, 200, 300, 400, 500, 600, 700, 800, 900] as the breakpoints, the left-
to-right HMM gets at least one breakpoint completely wrong (and splits the data at,
for example, [100, 200, 300, 400, 500, 600, 663, 700, 800]).

These results are consistent. In fact, when this experiment was repeated 100 times
(with different randomly generated data), GGS identified the correct breakpoints every
single time. We also note that GGS is robust to n (the dimension of the data), K
(the number of breakpoints), and T /(K + 1) (the average segment length), perfectly
splitting the data at the exact breakpoints for all tests across at least one order of
magnitude in each of these three parameters. On the other hand, the 100 left-to-right
HMM experiments correctly labeled on average just 7.46 of the nine true breakpoints
(and never more than eight). In these HMM experiments, instead of ten segments of
length 100, the shortest segment had an average length of 26, and the longest segment
had an average length of 200. Additionally, the left-to-right HMM struggles as the
parameters change, performing even worse when K increases and when T /(K +1) is
small compared to n (though formal analysis of the robustness of left-to-rightHMMs is
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outside the scope of this paper). This comes as no surprise, because finding the global
maximum among all local maxima of the likelihood function for an HMMwith many
states is known to be difficult problem (Cappé et al. 2005, Chapter 1.4). Therefore, as
shown by these these experiments, GGS appears to outperform left-to-right HMMs in
this setting.

7 Summary

We have analyzed the problem of breaking a multivariate time series into segments,
where the data in each segment could be modeled as independent samples from a mul-
tivariate Gaussian distribution. Our greedy Gaussian segmentation (GGS) algorithm is
able to approximately maximize the covariance-regularized log-likelihood in an effi-
cient manner, easily scaling to vectors with dimension over 1000 and time series of any
length. Examples on both small and large data sets yielded useful insights. Our imple-
mentation, available at https://github.com/cvxgrp/GGS, can be used to solve problems
in a variety of applications. For example, the regularized parameter estimates obtained
by GGS could be used as inputs to portfolio optimization, where correlations between
different assets play an important role when determining optimal holdings.
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