
Adv Data Anal Classif (2018) 12:953–972
https://doi.org/10.1007/s11634-018-0318-1

REGULAR ARTICLE

An efficient random forests algorithm for high
dimensional data classification

Qiang Wang1 · Thanh-Tung Nguyen2,4 ·
Joshua Z. Huang1 · Thuy Thi Nguyen3

Received: 15 December 2014 / Revised: 15 June 2017 / Accepted: 13 March 2018 /
Published online: 21 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract In this paper, we propose a new random forest (RF) algorithm to deal with
high dimensional data for classification using subspace feature sampling method and
feature value searching. The new subspace sampling method maintains the diversity
and randomness of the forest and enables one to generate trees with a lower pre-
diction error. A greedy technique is used to handle cardinal categorical features for
efficient node splitting when building decision trees in the forest. This allows trees to
handle very high cardinality meanwhile reducing computational time in building the
RF model. Extensive experiments on high dimensional real data sets including stan-
dard machine learning data sets and image data sets have been conducted. The results
demonstrated that the proposed approach for learningRFs significantly reducedpredic-
tion errors and outperformed most existing RFs when dealing with high-dimensional
data.
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1 Introduction

Recently, high dimensional data becomes very common in data mining and knowl-
edge discovery applications, i.e., data with thousands to millions of both samples and
features. Besides the huge number of samples that are collected, the high dimensional
nature of data in many applications is a statistically challenge when the number of fea-
tures is typically thousands of times larger than the number of samples, for examples
in Genome-wide association data, DNAmicroarrays and digital images. Furthermore,
the input data contains multiple data types, missing values, non-linear interactions
among features and the distribution is not Gaussian. This phenomenon is known as
the problem of curse of dimensionality (Donoho et al. 2000) because the large number
of features can increase the noise of the data, many types of analysis and classification
problems become significantly harder. State-of-the-art machine learning classifica-
tion methods can work well for data sets of moderate feature size but they suffer when
scaling for high dimensional data.

Random forests (RF)model (Ho 1998;Dietterich 2000;Breiman 2001) is an ensem-
ble machine learning method composed by un-pruned decision trees. RF is widely
used in data mining domain and achieved a good performance when dealing with
both regression and classification problems (Breiman 2001; Dietterich 2000; Banfield
et al. 2007). However, the performance of random forests suffers when applied to high
dimensional data (Xu et al. 2012; Ye et al. 2013; Nguyen et al. 2015; Deng and Runger
2013) because the simple feature sampling method is used to build the model.

Given a training data set L = {(Xi ,Yi ), X ∈ RM ,Y ∈ Y}Ni=1, where Xi are
features (also called predictor variables) and Y is the target (also called response
feature), Y ∈ {1, 2, . . . ,C} for a classification problem (C ≥ 2), N and M are
the number of training samples and features, respectively. A standard version of RF
independently and uniformly resamples observations from the training data L to draw
a bootstrap data setL∗ from which a decision tree T ∗ is grown. Repeating this process
K times produces a series of bootstrap data sets L∗

k and corresponding decision trees
T ∗
k (k = 1, 2, . . . , K ), afterwards, we aggregate all K trees to form a RF model.
Given an input X = x , the predicted value by the whole RF is obtained by aggregat-

ing the results given by individual trees. Let f̂k(x) denote the prediction of unknown
value y of input x ∈ R

M by the kth tree, we have

f̂ (x) = argmaxy∈Y

{
K∑

k=1

I
[
f̂k(x) = y

]}
, (1)

where I(·) denotes the indicator function and f̂ (x) denotes the RF prediction.
Recently, Xu et al. (2012) and Ye et al. (2013) proposed novel random forests by

weighting the input features and then selecting features to ensure that each subspace
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always contains informative features. Their efficient RF algorithms can be used to clas-
sify multi-class data. Amaratunga et al. (2008) presented a feature weighted method
for subspace sampling to deal with two-class problems, in which the t-test of variance
analysis is used to compute weights for the features. However in these sampling meth-
ods, they used a simple linear function to calculate the correlation measures between
the predictor features and the response feature. This measure was treated as a weight
for each predictor feature. Feature ranking was based on these simple weights and
feature interactions were neglected.

Genuer et al. (2010) proposed a new RF involving a ranking of explanatory fea-
tures using the RF score of importance and a stepwise ascending feature introduction
strategy. Deng and Runger (2013) proposed a guided regularized RF (GRRF) and the
weights are calculated using RF to produce importance scores from the out-of-bag
data, in which these weights are used to guide the feature selection process. They
found that the least regularized subset selected by GRRF with minimal regularization
ensures better accuracy than the complete feature set. In these approaches, a regular RF
was used as a classifier due to the fact that their RF models may have higher variance
than RF because the trees are correlated.

Tuv et al. (2009) presented an ensemble of decision trees for both classification and
regression. The features are partitioned into important features and irrelevant ones
using a cut-off point, which comes straight from the classical hypothesis test with null
distribution obtained by random permutations. The complex feature interactions were
provided in the context of multiple hypothesis test for high-dimensional problems.
However, the information gain at higher levels of a tree in the forest is weighted
differently than the information gain at lower levels of the tree. In fact, at lower levels
of a tree, the information gain is reduced because of the effect of splits on different
features at higher levels of the tree.

Our new approach addresses the abovementioned problems by employing different
techniques for feature weighting subspace selection. Given a training data set L, we
first use a feature permutation technique to measure the importance of features and
produce raw feature importance scores. Then we apply p-value assessment to find the
cut-off between informative and uninformative features. Theχ2 statistic is used for the
classification problem to find the subset of highly informative features.When sampling
the feature subspace, features from the group of highly informative features are taken
into account for splitting the data at a node. Since the subspace always contains highly
informative features, it can guarantee a better split at the node, therefore assuring
a qualified tree. This sampling method always provides enough highly informative
features for the subspace features at any levels of the decision tree. By using just a
new feature sampling method, the diversity and random of the forests in the Breiman’s
framework (Breiman 2001) are maintained.

For efficient node splitting when building decision trees in the forest for dealing
with categorical features, an unique categorical value in the current candidate feature
is chosen by the probability distribution. This is a greedy technique for searching the
cut-point s∗ to handle cardinal categorical features for efficient node splitting. It allows
to reduce the computational time and trees can handle very high cardinality.

The above feature subspace selection and greedy searching schemes are used for
building trees in our new learning random forests algorithm, called ssRF, for solv-
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ing classification problems. The proposed approach achieves a better computational
efficiency than that achieved by existing RF. Our experimental results have shown
that with the proposed feature sampling method and new greedy search scheme, our
random forests outperformed existing random forests in reduction of prediction errors
when applied to high dimensional data, even though a small feature subspace size of
�log2(M) + 1� is used.

2 Feature partition and subspace selection

2.1 Importance measure of features from a tree and random forest

Classification and Regression Tree (CART) method involves repeated binary splits
of subsets of samples, namely nodes or leaves, into two child nodes. For each split,
one predictor feature and a corresponding cut-point (chosen according to the node
impurity criterion) are used to split a parent node into two child nodes (Breiman et al.
1984; Louppe et al. 2013).

Denote the parent node to be split as t in a decision tree, a split on feature X j

is determined by the decrease in node impurity ΔR(X j , t). Consider splitting at a
node t for a classification tree, when the response feature Y ∈ L contains C classes,
Y ∈ {1, 2, . . . ,C}, the Gini index is used to reflect the node impurity R(t). Let Φc(t)
be the class frequency for class c ∈ C in a node t . Let s denote a proposed split for a
feature X j that splits t into left and right children nodes tL and tR depending onwhether
cases X j ≤ s or X j > s; i.e., tL = {Xi j ∈ t, Xi j ≤ s} and tR = {Xi j ∈ t, Xi j > s}.
The Gini node impurity for t is defined as

Gini(t) =
C∑
c=1

Φc(t)[1 − Φc(t)]. (2)

The Gini index is given by

ΔR(s, t) = Gini(tL)p(tL) + Gini(tR)p(tR). (3)

where Gini(tL) and Gini(tR) are the Gini node impurity for tL and tR ; p(tL) =
NL(t)/N (t) and p(tR) = NR(t)/N (t) are the proportions of observations that go left
and right; N (t), NL(t), NR(t) are the total number of samples of t, tL , tR , respectively.
To achieve a good split,we seek the cut-pointmaximizing the decrease in node impurity
and equivalently minimizing ΔR(s, t) with respect to s (Breiman et al. 1984).

Let I Sk(X j ) denote the importance score of feature X j in a single decision tree Tk .
We have

I Sk(X j ) =
∑
t∈Tk

ΔR(s, t).

Let I S j be an importance score of feature X j and I S j is computed over all K trees in
a random forest (Breiman 2001), defined as
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I S j =
K∑

k=1

I Sk(X j )/K .

We can normalize I S j to values in [0, 1] using the min-max normalization as follows:

V I j = I S j − min(I S j )

max(I S j ) − min(I S j )
. (4)

Having the raw importance scores V I j determined by Eq. (4) we can evaluate the
contributions of the features regarding predicting the response feature.

2.2 A new feature sampling method for subspace selection

In our approach we need to rank input features. We first compute importance scores
for all features according to Eq. (4). Denote the feature set as LX = {X j , j =
1, 2, . . . , M}. We randomly permute all values in each feature to get a corresponding
shadow feature set, denoted as LA = {A j }M1 . The shadow features do not have pre-
diction power to the response feature. Following the feature permutation procedure
recently presented in Nguyen et al. (2015), we ran RF R times from the extended
data set {LX ∪ LA,Y } to get importance scores V IrX j

and V IrA j
, and the comparison

sample denoted as V ∗ = max{Ar j , r = 1, . . . , R}.
The unequal varianceWelch’s two-sample t-test is then used to compare the impor-

tance score of a feature with the maximum importance scores of generated shadows.
The non-parametric statistical test is required because the importance scores across
the replicates are not normally distributed. Having computed the t statistic, we com-
pute the p-value for the feature and perform hypothesis test on V I X j > V

∗
. This test

confirms that if a feature is important, it consistently scores higher than the shadow
over multiple permutations. Therefore, any feature whose importance score is smaller
than the maximum importance score of noisy features, is considered less important.
Otherwise, it is considered important.

The p-value of a feature indicates the importance of the feature in the prediction.
The lower the p-value of a feature is correlated the feature is to the response feature,
and the more powerful the feature is in the prediction. The use of a p-value requires a
feature to consistently score higher than the shadow features over multiple replicates.
Given a statistical level, we can identify informative features from low-informative
ones.

Given all p values of features, we set threshold λ as a turning parameter, for instance
λ = 0.05. Any feature whose p-value is greater than λ is added to the low-informative
feature subset denoted as Xl , the direct relationship with the Y values is assessed
otherwise. We now consider the set of features X̃ = {LX \ Xl} obtained from the input
features after separating all low-informative features.

χ2(X j ,Y ) is used to test the association between the class label and each feature
X j ∈ X̃ . For the test of independence, a chi-squared probability of less than or
equal to 0.05 is commonly interpreted for rejecting the hypothesis that the feature is
independent of the response feature.
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Let Xh denote a subset of highly informative features. All features X j are added to
Xh whose p-value from the results of χ2-test is smaller than 0.05 and the remaining
features are added into a group of mid-informative features denoted as Xm .

The three subsets of features Xh, Xm and Xl are obtained using Algorithm 1.
At each node, we randomly select mtry (mtry > 1) features from three separated
groups. For a given subspace size, we choose proportions between highly informative,
mid-informative and low-informative features that depends on the size of the three
groups. Mtryhigh = 	mtry × (Mhigh/M)
, mtrymid = 	mtry × (Mmid/M)
 and
mtrylow = mtry − mtryhigh − mtrymid , where Mhigh and Mmid are the number of
features in Xh and Xm , respectively. These are merged to form the feature subspace for
splitting the node. The Random Forests diversity is maintained by using this randomly
selected subspaces.

Algorithm 1: Feature Partition
input : The training data set L and a random forest RF.

R, θ : The number of replicates and the threshold.
output: Xh , Xm and Xl .

Let SX = {L\Y }, M = ‖SX‖.
for r ← 1 to R do

SA ← permute(SX ).
SX,A = SX ∪ SA .
Build RF model from SX,A to produce {I SrX j

},
{I SrA j

} and I Smax
A , ( j = 1, . . . , M).

Set X̃ = ∅.
for j ← 1 to M do

Compute Wilcoxon rank-sum test with I SX j and I Smax
A .

Compute p j values for each feature X j .
if p j ≤ θ then

X̃ = X̃ ∪ X j (X j ∈ SX )

Set Xh = ∅, Xm = ∅, Xl = ∅.
Xl = SX \ X̃ .
for j ← 1 to ‖X̃‖ do

Compute χ2-test with X̃ and Y to get p j value.
if (p j < 0.05) then

Xh = Xh ∪ X j (X j ∈ X̃)

Xm = {X̃\Xh}.
return Xh , Xm , Xl

3 The proposed algorithm

3.1 The greedy search technique for node split

Consider the splitting of a node t into tL , tR based on the j th feature of X which is
assumed here to be a categorical feature whose possible values s ∈ S, and a finite set
S ∈ LX j . The decrease in node impurity ΔR(s, t) at the categorical value s in t is cal-
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culated by Eq. (3). The cut-point s∗ is a split such that ΔR(s∗, t) = maxs∈S ΔR(s, t)
(Breiman et al. 1984). In Breiman (2001) there are 2S−1 − 1 possible splits of the

Algorithm 2: Random Greedy Approach
input : A categorical feature X j
output: the cut-point s∗

Set S = unique(LX j )

S = randomize(S)/* randomize the order of S */
Initialize Ls = ∅ that sends data to the left branch.
for i ← 1 to ‖S‖ do

s ← Si
Ls ← s
/* Scan all categorical values s at node t in the current feature
X j */

for m ← 1 to N (t) do
if s == Xmj then

Compute the decrease in impurity ΔR(s, t) according to Eq. (3), then calculate how
good the split is.
if the split is improved then

Ls ← s /* keep s in Ls */

else
Ls = Ls \ s /* remove s from Ls */

s∗ ← Ls1 /* The first element of Ls */

cardinal S categorical values. The computational complexity when obtaining splits
can be reduced, S − 1 splits, if the values are sorted such that Y 1 ≤ Y 2 ≤ · · · Y S (see
Breiman et al. 1984, Theorem 4.5, Section 9.4). However, using this approach, there
is an exception when sorting values according to the average of the response values.
In our approach, we take full advantage of Breiman’s method for categorical data but
do not use the sorted Y values. We use the method introduced by Viswanathan et al.
(2011) to search the cut-point s∗. In each step, we choose the next unique categorical
value in the current candidate feature according to the probability distribution. In this
case, a categorical value s is tested to know how good the split is. We keep s if its split
is improved, a random categorical value is chosen otherwise. This step will stop after
S unique categorical values are tested. The random greedy approach is summarized in
Algorithm 2. The motivation behind this new approach of searching the cut-point s∗ is
to achieve better computational efficiency than that achieved by existingmethods. This
approach reduces computational complexity and can handle very high cardinality.

3.2 The ssRF algorithm

The new feature subspace sampling method is now used to generate splits at the nodes
of decision trees for buildingRF.The greedy randomsearch is used to split a categorical
feature at any level of trees.
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Table 1 Description of the classification data sets sorted by the number of features

Data set #Training #Testing #Features #Classes

Fbis 1711 752 2000 17

Brain-tumor1 72 18 5920 5

Prostate-tumor 82 20 10,509 2

La2s 1855 845 12,432 5

Lung-cancer 162 41 12,600 5

11-tumors 139 35 12,533 11

La1s 1963 887 13,195 5

GCM 152 38 16,063 14

The new random forests algorithm ssRF consists of following steps:

1. Given L, arrange highly related features and the weak important features from
the less important ones in three feature subsets Xh , Xm and Xl obtained by Algo-
rithm 1.

2. Sample the training set L with replacement to generate bagged samples Lk, k =
1, 2, . . . , K .

3. For each Lk , build a classification tree Tk as follows:
(a) At each node, select a subspace of mtry (mtry > 1) features randomly and

separately from Xl , Xm and Xh and use the subspace features as candidates
for splitting the node.

(b) Each tree is grown nondeterministically, without pruning until the minimum
node size nmin is reached. For a categorical feature in a node of each tree, the
greedy search in Algorithm 2 is used to search for the best split.

6. Given an input X = x , use Eq. (1) to predict the new sample for the classification
problem.

4 Experiments and evaluation

4.1 Data sets

Table 1 lists the real data sets used to evaluate the performance of random forests
models. The Fbis data set was compiled from the archive of the Foreign Broadcast
Information Service and the La1s, La2s data sets were taken from the archive of the
Los Angeles Times for TREC-5.1

Five gene data sets Brain-tumor1, Prostate-tumor, Lung-cancer, 11-tumors and
GCM are taken from http://www.gems-system.org, http://www.upo.es/eps/bigs/
datasets.html. Gene classification is an important problem in Genome-wide associa-
tion data analysis. The data sets are sorted by the dimensionality.

1 http://www.trec.nist.gov.
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Image classification and object recognition are important problems in computer
vision. Image data sets are well-known to be big and the feature space is usually high
dimensional. This challenges machine learning methods. In the experiments we tested
our system on four benchmark data sets, including: The Caltech categories data set,2

the Horse data set,3 the extended YaleB database (Georghiades et al. 2001) and the
AT&TORL data set (Samaria and Harter 1994). In the following we briefly summarize
the characters of the image data sets and the extracted features for each of them that
will be used in our experiments.

For the Caltech data set, we use a subset of 100 images from the Caltech face
dataset and 100 images from the Caltech background data set following the setting
in ICCV4 and Ye et al. (2013). The extended YaleB database consists of 2414 face
images of 38 individuals captured under various lighting conditions. Each image has
been cropped to a size of 192×168 pixels and normalized. TheHorse data consists of
170 images containing horses for the positive class and 170 images of the background
for the negative class. The AT&T ORL data set includes of 400 face images of 40
persons.

Extraction of features for image data representation is a complex process. Tradi-
tionally, feature extraction is used in conjunction with a classifier and the quality of
the extracted features strongly influences the performance of the classifier. One of
the most well-know methods for image feature extraction is the bag-of-words (Zhang
et al. 2007; Lepetit and Fua 2006). In our experiments, we use this type of features
for the Caltech and the Horse data sets. Derived data sets with codebook sizes of
300, 500, 1000, 3000, 5000, 7000, 10,000, 12,000 and 15,000 were used. For the face
data sets, we use two type of features: Eigenface (Turk and Pentland 1991) and the
random features (randomly sample pixels from the images). These features used in
our experiments are with dimensions of 30, 56, 120, and 504.

4.2 Evaluation measures and experimental settings

The performance of a random forests model was evaluated on a test data set with two
measures that are the Area under the curve (AUC) and the test accuracy, defined as:

Test Accuracy = 1

N

N∑
i=1

I (Q(di , yi ) − max j �=yi Q(di , j) > 0), (5)

where f̂Dt (xi ) is the prediction given X = x , I (·) is the indicator function; N is the
number of samples in test data Dt and yi indicates the true value of di ; Q(di , j) =∑K

k=1 I (hk(di ) = j) is the number of votes for di ∈ Dt on class j, hk is the kth tree
classifier.

2 http://www.vision.caltech.edu/html-files/archive.html.
3 http://pascal.inrialpes.fr/data/horses/.
4 http://people.csail.mit.edu/torralba/shortCourseRLOC/.
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Table 2 Comparison of
prediction performance (test
error) of the random forests
models

Data set RF GRRF wsRF ssRF

Fbis .236 .239 .159 .153

Brain-tumor1 .155 .143 .143 .110

Prostate-tumor .079 .068 .088 .069

La2s .210 .174 .130 .110

Lung-cancer .104 .079 .074 .059

11-tumors .125 .121 .097 .092

La1s .223 .196 .137 .128

GCM .347 .331 .305 .268Numbers in bold are the best
results

The latest RF (Liaw andWiener 2002), QRF (Meinshausen 2012) andGRRF (Deng
2013) R-packages were used in R environment to conduct these experiments. For the
GRRF model, we used a value of 0.1 for the coefficient γ because GRRF(0.1) has
shown competitive prediction performance in Deng and Runger (2013). The novel
wsRF model (Xu et al. 2012) using the weighted sampling method was intended to
solve the classification problem. The ssRF model with the new subspace sampling
method and the greedy random approach is a new implementation. In that implemen-
tation,we called the correspondingR/C++ functions inR environment. The parameters
R, mtry and λ for pre-computation of feature partition in Algorithm 1 were 30,

√
M

and 0.05, respectively.
For the three data sets Fbis, La2s, La1s, the number of samples is fixed in the

training and testing data, as shown in Table 1. From each training data set we built 10
random forest models; each of the classification model had 500 trees. The number of
the minimum node size nmin was 1. The number of features-candidates was set with
the default setting to mtry = �log2(M) + 1�. For the gene data sets Brain-tumor1,
Prostate-tumor, Lung-cancer, 11-tumors and GCM. The 5-fold cross-validation was
used to evaluate the prediction performance of the models on gene data sets. For the
visual data sets, 10-fold cross-validation was used to evaluate the prediction perfor-
mance of the models. From each fold, we built the models with 500 trees, the subspace
size is fixed mtry = √

M and the gene partition was re-calculated on each training
fold data set.

The average of test error of the models were computed according to Eq. (5), where
Test Error = 1 − Test Accuracy. All experiments were conducted on the six 64-bit
Linux machines, each one equipped with IntelR XeonR CPU E5620 2.40 GHz, 16
cores, 4 MB cache, and 32 GB main memory. The ssRF and wsRF models were
implemented as multi-thread processes, while other models were run as single-thread
processes.

4.3 Experimental results on real data sets

Table 2 presents the average test error results of random forest models with 10 repe-
titions on the data sets. Table 3 shows the prediction test errors on the three data sets
Fbis, La2s, La1s against the number of trees and features. Table 4 shows the prediction
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performance on the gene data sets. We can see that the ssRF model always provided
good results and achieved lower prediction error when varying K and mtry on both
kind of data sets. In some cases where the ssRF model did not obtain the best results
compared with the wsRF, GRRFmodels on Fbis, La1s, Prostate-tumor and 11-tumors
the data sets, the differences from the best results were minor.

The RF model require larger number of features to achieve the lower prediction
error, as shown in the right part of Table 3. This means the RF model could achieve
better prediction performance only if they are provided with a much larger feature
subspace. For solving the classification problem, the size of the subspace in the default
settings of RF (Liaw and Wiener 2002) was set to mtry = �√M�. With this size,
the computational time for building a RF is still too high, especially for large high
dimensional data. These empirical results indicated that, the ssRFmodel does not need
many features in the subspace to achieve good prediction performance. For application
on high dimensional data, when the ssRF model uses a subspace of features of size
mtry = �log2(M) + 1� features, the achieved results can be satisfactory. In general,
when the feature subspace of the same size as the one suggested by Breiman is used,
the ssRF model gives lower prediction error with a less computational time than those
reported by Breiman. This achievement is considered to be one of the contributions in
this work.

We also test the effect of the depth of the tree on the three data sets, the
results have shown in Table 5, the minimum number of samples per leaf nmin was
increased stepwise from 3 to 15 while holding other parameters (K = 200 and
mtry = �log2(M) + 1�) fixed. It can be seen that the ssRF model outperformed
other random forests models on all cases. The prediction test error of the ssRF model
always produced the best results even though nmin = 15. These results demonstrated
that, at lower levels of the tree, the gain is reduced because of the effect of splits on dif-
ferent features at higher levels of the tree. The other random forests models reduce the
prediction accuracy dramatically while the ssRF model always is stable and produces
the best results. This was because the feature weighting subspace sampling method
was used in generating trees in the ssRF model. The selected subspace of features
contains enough highly informative features at any levels of the decision tree. The
effect of the new sampling method is clearly demonstrated in this result.

Figure 1 is provided to illustrate the speed of splitting of a categorical feature
using the greedy random approach described in Algorithm 2. The feature subspace for
splitting a nodewasmtry = 1, 2 and 3. In order to train themodels, a categorical subset
was selected from the Fbis data set and we increased the number of objects in this data
set with 20 times. The RF model requires high number of iterations when obtaining
categorical splits, whichmakes it computational time high. Oneworth noting remark is
that the ssRFmodel uses the random greedy method to search the cut-point has almost
linear relationship between the computational time and the number of samples. In
addition, the fact that the Fbis subset has maximum 28 levels of categorical features.
This means that the cost of evaluating all possible categorical splits is not too high
when compared to our random greedy method. In domains containing categorical
features with a large set of values, the advantage of our random greedy method would
be even more evident.
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Table 5 The prediction test errors of the classification random forestsmodels against the number of samples
per leaf nmin

Data set Model nmin = 3 nmin = 5 nmin = 8 nmin = 10 nmin = 15

Fbis RF .2358 .2513 .2959 .3231 .3711

GRRF .2388 .2509 .2972 .3197 .3656

wsRF .1885 .1997 .2005 .2289 .2317

ssRF .1661 .1674 .1738 .1838 .2008

La2s RF .2096 .2071 .2731 .3323 .4094

GRRF .1735 .1717 .2754 .3201 .3627

wsRF .1294 .1283 .1618 .1737 .1910

ssRF .1109 .1101 .1107 .1139 .1316

La1s RF .2230 .2237 .2635 .3526 .3968

GRRF .1950 .1921 .2956 .3577 .3968

wsRF .1464 .1566 .1664 .1839 .2027

ssRF .1397 .1402 .1417 .1454 .1578

Numbers in bold are the best results

Fig. 1 Comparison of the computational time on splitting categorical data

Figures 2 and 3 show the box plots of the recognition rate (%) of the models on
the YaleB andORL image data sets using eigenface and random features, respectively.
From these figures, we can observe that the ssRF and GRRF models always produced
good results, the GRRF model demonstrated better results on some cases, for exam-
ples, YaleB + Eigenface 120 features, YaleB + Eigenface 504 features and ORL +
randomface 504 features. The reason could be that truly informative features in this
kind of data sets were many. Therefore, when the informative feature set was large, so
the chance of selecting informative features in the subspace increased, which in turn
increased the average recognition rates of the GRRFmodel. However, the ssRF model
produced the best results in the remaining cases. The effect of the new approach for
feature subspace selection is clearly demonstrated in these results, although these data
sets are not very high dimensional.
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Fig. 2 Box plots of recognition rate (%) using Eigenface and random features on the YaleB data set

Fig. 3 Box plots of recognition rate (%) using Eigenface and random features on the ORL image data set

Table 6 shows the classification results in terms of accuracy (mean± std-dev%)
on the two image data sets, Caltech and Horse. Our proposed ssRF model with the
new feature selection method is tested with different codebook sizes, from 300 to
15,000. We can see that the ssRF model consistently obtained highest results when
varying the number of the used codebook sizes. Table 7 shows the results of our
ssRF model in terms of AUC measure (mean± std-dev%) on the two image data
sets, Caltech and Horse. Again, the new proposed ssRF model is tested with different
codebook sizes, from300 to 15,000. It can be seen clearly that the ssRFmodel obtained
highest results and outperformed other existing RF models, including traditional RF,
recently proposed wsRF and GRRF. There is only one case when the GRRF model is
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Table 8 The prediction test accuracy (mean± std-dev%) of the models on the visual data sets against the
number of trees K

Data set Model K = 20 K = 50 K = 80 K = 100 K = 200

YaleB±eigenface ssRF .757± .1 .857± .1 .881± .1 .889± .0 .912± .0

(M = 504) RF .719± .1 .795± .1 .807± .1 .817± .1 .829± .1

wsRF .776± .1 .856± .0 .881± .0 .893± .0 .907± .0

GRRF .747± .0 .847± .1 .872± .0 .896± .0 .919± .0

YaleB± randomface ssRF .947± .0 .976± .0 .980± .0 .982± .0 .986± .0

(M = 504) RF .880± .0 .926± .0 .941± .0 .949± .0 .961± .0

wsRF .954± .0 .979± .0 .982± .0 .981± .0 .984± .0

GRRF .957± .0 .981± .0 .984± .0 .989± .0 .988± .0

ORL±eigenface ssRF .763± .6 .873± .3 .918± .2 .933± .2 .948± .2

(M = 504) RF .718± .2 .788± .4 .820± .3 .828± .3 .855± .5

wsRF .783± .4 .888± .3 .900± .1 .913± .2 .925± .2

GRRF .735± .6 .850± .2 .900± .1 .908± .3 .948± .1

ORL± randomface ssRF .878± .3 .925± .2 .955± .1 .943± .1 .960± .1

(M = 504) RF .775± .3 .820± .7 .845± .2 .875± .2 .860± .2

wsRF .870± .5 .938± .2 .938± .0 .950± .1 .955± .1

GRRF .873± .1 .933± .1 .945± .1 .943± .1 .955± .1

Caltech ssRF .950± .3 .975± .1 .965± .1 1.000± .0 .985± .1

(M = 15,000) RF .565± .6 .575± .2 .545± .1 .555± .2 .535± .1

wsRF .685±1.2 .665± .4 .705±1.0 .675± .8 .695±1.4

GRRF .790± .5 .816± .1 7.700±5.1 .786± .4 .858± .3

Horse ssRF .695± .4 .729± .2 .735± .6 .721± .5 .772± .1

(M = 15,000) RF .556± .5 .588± .3 .600± .4 .606± .3 .626± .3

wsRF .574± .2 .647± .7 .629± .3 .621± .5 .641± .5

GRRF .666± .5 .660± .2 .669± .4 .617± .1 .695± .3

The number of feature dimensions in each data set is fixed. Numbers in bold are the best results

Table 9 AUC results (mean± std-dev%) of random forest models against the number of trees K

Data set Model K = 20 K = 50 K = 80 K = 100 K = 200

Caltech ssRF .995± .3 .999± .1 1.00± .1 1.00± .0 1.00± .1

RF .851± .6 .817± .2 .826± .1 .865± .2 .864± .1

wsRF .841±1.2 .845± .4 .834±1.0 .850± .8 .870±1.4

GRRF .846± .5 .860± .1 .862±5.1 .908± .4 .923± .3

Horse ssRF .849± .4 .887± .2 .895± .6 .898± .5 .897± .1

RF .637± .5 .664± .3 .692± .4 .696± .3 .733± .3

wsRF .635± .2 .687± .7 .679± .3 .671± .5 .718± .5

GRRF .786± .5 .778± .2 .785± .4 .699± .1 .806± .3

The number of codebook size was 15,000. Numbers in bold are the best results
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slightly better in both tables, the Caltech data set with codebook size of 700, but this
is neglectable.

Table 8 reports the test results of the models when varying the number of trees K ,
the number of the used features M is fixed for each data set. One can see that for
all of the tested random forests models, when the number of trees K in the forests
is increased, the accuracy is improved. We are interested in the performance of the
models when the number of the used features (or codebook sizes) varied. When the
number of the used features was moderate, for example M = 504 in the face data
sets, the ssRF model was comparable to state-of-the-art wsRF and GRRF models.
However, when the codebook size was large, i.e. high dimensional data (M = 15,000
in our experiments), our ssRF model significantly surpassed those of stat-of-the-art
models. More than that, the truly informative features sets detected and selected by
our new feature subspace selection method are small. Using only a small subset of
features significantly reduces computational time in building a random forests model.

The advance of the ssRF model is further confirmed by the AUC results shown in
Table 9. One can see that with the high dimensional data (codebook size M = 15,000
in this experiment), when the number of trees K in the forests is varied, our ssRFmodel
outperformed and was significantly better than all the above mentioned stat-of-the-art
random forests models.

5 Conclusions

We have presented a new random forest algorithm based on the state-of-the-art RF
for high dimensional data. In this algorithm, we propose a new approach for feature
subspace selection and feature value searching in random forests to deal with high
dimension of feature space for classification. Our first contribution is a new feature
weighting subspace sampling method in RF. Our second contribution is a greedy tech-
nique to handle cardinal categorical features for efficient node splitting when building
decision trees in the forest. This enables the tree to handle very high cardinality, to
deal with missing values meanwhile reducing computational time. The small subspace
size mtry = �log2(M) + 1� reported by Breiman can be used in our algorithm to get
lower prediction error.With ssRF, the feature space is reduced and the performance for
classification is preserved and improved. Experimental results have demonstrated the
improvement of our ssRF in reduction of prediction errors in comparison with existing
recent proposed random forests, and especially it performed well on high dimensional
data.
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