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Abstract Mixtures of common t factor analyzers (MCtFA) have been shown its effec-
tiveness in robustifying mixtures of common factor analyzers (MCFA) when handling
model-based clustering of the high-dimensional data with heavy tails. However, the
MCtFA model may still suffer from a lack of robustness against observations whose
distributions are highly asymmetric. This paper presents a further robust extension
of the MCFA and MCtFA models, called the mixture of common restricted skew-t
factor analyzers (MCrstFA), by assuming a restricted multivariate skew-t distribution
for the common factors. The MCrstFA model can be used to accommodate severely
non-normal (skewed and leptokurtic) random phenomena while preserving its par-
simony in factor-analytic representation and performing graphical visualization in
low-dimensional plots. A computationally feasible expectation conditional maximiza-
tion either algorithm is developed to carry out maximum likelihood estimation. The
numbers of factors and mixture components are simultaneously determined based on
common likelihood penalized criteria. The usefulness of our proposed model is illus-
trated with simulated and real datasets, and experimental results signify its superiority
over some existing competitors.
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1 Introduction

Mixtures of factor analyzers (MFA), originally introduced by Ghahramani and Hinton
(1997), provide a global non-linear approach to dimension reduction via the adoption
of component distributions having a factor-analytic representation for the component-
covariance matrices. To substantially reduce the number of parameters in component
matrices, especially when the number of components (g) or features (p) becomes
large, Baek et al. (2010) extended the MFA by using common component factor load-
ings, known as mixtures of common factor analyzers (MCFA), which have now been
a popular tool for high-dimensional data analysis. To deal with data with extreme val-
ues or outliers commonly observed in microarray experiments, Baek and McLachlan
(2011) presented a robust version of MCFA using multivariate Student’s-t distributed
component errors and factors, calledmixtures of common t-factor analyzers (MCtFA).
Recently, Wang (2013, 2015) extended the MCFA and MCtFA approaches to accom-
modating high-dimensional data with possibly missing values.

The specification of component factors and errors on both MFA and MCFA rests
on the assumption of multivariate normality for computational convenience and math-
ematical tractability, but the two models are highly vulnerable to outliers. Although
the use of MCtFA model is less affected by the violation of normality, it may still
suffer from the lack of robustness against highly asymmetric observations. In many
practical problems, however, the data to be analyzed may contain a group or groups of
observations whose distributions are moderately or severely skewed and/or of having
heavy tails. As shown in many empirical studies, a slight deviation from normality
may seriously affect the estimates of mixture parameters and subsequently lead to
spurious groups as well as misleading statistical inference.

Over the past few decades, there has been growing interest in adopting more flexi-
ble parametric distributions to accommodate non-normal features such as asymmetry
and longer-than-normal tails leading to non-zero skewness and excess kurtosis, see
the monograph by Azzalini (2014) for a more comprehensive overview. Lin et al.
(2015) proposed a robust extension of factor analysis models based on the restricted
multivariate skew-t (rMST) distribution (Pyne et al. 2009). Other related proposals
include mixtures of skew-normal/t factor analyzers (Lin et al. 2016, 2018), mix-
tures of generalized hyperbolic (GH) factor analyzers (Tortora et al. 2016), mixtures
of skew-t factor analyzers (Murray et al. 2014a), and mixtures of common skew-t
factor analyzers (Murray et al. 2014b). Besides, Murray et al. (2017a) presented an
extended version of MFA with the component factors and errors following the skew-t
distribution considered by Sahu et al. (2003), which is referred to as the unrestricted
multivariate skew-t (uMST) distribution by Lee and McLachlan (2014).

Note that the rMST and uMST distributions are not nested within each other, and
they are equivalent only in the univariate case. Moreover, Sahu et al. (2003) have high-

123



Mixtures of common restricted skew-t factor analyzers 447

lighted that the calculation of the uMST density becomes cumbersome as p increases.
The computational difficulty of the uMST formulation was also pointed out byMurray
et al. (2017a; Section 5). Azzalini et al. (2016) have provided a detailed comparison
between the rMST and uMST distributions in terms of the merits of both distributions
for datamodeling.When comparing the twodistributions in the context ofmodel-based
clustering, their illustrative examples indicate that “neither formulation is markedly
superior and, if these results were to be taken in favor of either formulation, it would
be the classical formulation”, namely the rMST distribution adopted in this paper.

Further, it is interesting to note that the skew-t distribution adopted byMurray et al.
(2014a, b), arising from the family of GH distributions (Barndorff-Nielsen and Shep-
hard 2001), is referred to as the generalized hyperbolic skew-t (GHST) distribution
henceforth. Its density form is rather different from the rMST distribution and does not
include the skew-normal as a limiting case (Lee and Poon 2011). The model proposed
by Murray et al. (2014b) is henceforth referred to as mixtures of common generalized
hyperbolic skew-t factor analyzers (MCghstFA).

In this paper, we propose an alternative skew extension of the MCtFA model based
on the rMST distribution, called the mixture of common restricted skew-t factor
analyzers (MCrstFA) model. This new proposal preserves resistance to extremely
non-normal effects commonly happen in high-dimensional data. Similar to MCFA
and MCtFA models, common factor loadings are utilized for parsimoniously mod-
eling the component-covariance matrices. To portray the observed data into a lower
dimensional space and avoid possible singularities, the scale-covariance matrices for
component errors (Di ) are generally assumed to be homogeneous (Di = D). Under
certain circumstances, Di can be relaxed to be unequal or modified to different types
such as (isotropic with unequal variances) or (isotropic with equal variance). Lately,
Wang and Lin (2017) presented a modification of MCtFA using component-specific
Di and empirically demonstrated its advantage in classifying new subjects whose true
group labels are unknown in advance.

The rest of the paper is structured as follows. In Sect. 2, we establish the notation and
outline some preliminary properties of the rMST distribution. In Sect. 3, we present
the specification of MCrstFA model and develop a workable expectation conditional
maximization either (ECME) algorithm for carrying maximum likelihood (ML) esti-
mation. In Sect. 4, the initialization alongwith the stopping rules, the criteria formodel
selection and clustering performance, and the identifiability issues are discussed. In
Sect. 5, we conduct two simulation studies to examine the validity of MCrstFAmodel.
The methodology is illustrated on a real example concerning human liver cancer data
in Sect. 6. Concluding remarks and directions for future works are given in Sect. 7.
Some detailed proofs and supplementary information are deferred to appendices.

2 Notation and prerequisites

We first review the rMST distribution and study its related properties. Let φp(·;μ,Σ)

be the probability density function (pdf) of a multivariate normal distribution with
mean vector μ and covariance matrix Σ , denoted by Np(μ,Σ); Φ(·) the cumulative
distribution function (cdf) of the standard normal distribution; T N (ν, σ 2; (a, b)) the
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truncated normal distribution defined as a normal distribution N (μ, σ 2) lying within
an interval (a, b); tp(·;μ,Σ, ν) the pdf of a p-variate t distribution with location μ,
scale-covariance matrix Σ and the degree of freedom (DOF) ν; g(x;α, β) the pdf of
gammadistribution given byβαxα−1 exp{−βx}/Γ (α); T (·; ν) the cdf of theStudent’s
t distribution with zero mean, unit scale variance and DOF ν; 1p a p × 1 vector with
all elements being 1; I p a p × p identity matrix; Diag{·} a diagonal matrix made by
extracting the main diagonal elements of a square matrix or the diagonalization of a
vector; A1/2 the square root of a symmetric matrix A.

Following Pyne et al. (2009), a p-dimensional random vector Y is said to follow the
rMST distribution with location vector μ ∈ R

p, scale-covariance matrix Σ , skewness
vector λ ∈ R

p and DOF ν ∈ R
+, denoted as Y ∼ r STp(μ,Σ,λ, ν), if it has the pdf:

ψp( y;μ,Σ,λ, ν) = 2tp( y;μ,Ω, ν)T

(
M

√
ν + p

ν + δ
; ν + p

)
, (1)

where Ω = Σ + λλ�, δ = ( y − μ)�Ω−1( y − μ) and M = λ�Ω−1( y − μ)/(1 −
λ�Ω−1λ)1/2. Note that the distribution of Y is reduced to tp(μ,Σ, ν) by setting
λ = 0 and to r SNp(μ,Σ,λ) as ν → ∞. Furthermore, the family of (1) also includes
Np(μ,Σ), obtained by letting λ = 0 and ν → ∞.

Alternatively, the rMST distribution can be hierarchically represented as

Y | (γ, τ ) ∼ Np(μ + λγ,Σ/τ),

γ | τ ∼ T N (0, 1/τ ; (0,∞)),

τ ∼ Gamma(ν/2, ν/2), (2)

whereGamma(α, β) stands for the gamma distributionwithmeanα/β. Figure 1 shows
the perspective plots with added contours for rMST densities under μ = (0, 0)�,
Σ = I2, ν = 4 and various specifications of λ = (λ1, λ2)

�. It is clearly seen that these
plots are non-elliptical and can be skewed and correlated toward different directions
depending on the chosen parameters. Therefore, the rMST distribution provides a
flexible mechanism to adapt well to more complicated data.

3 Methodology

3.1 Model formulation

Suppose that Y = (Y1, . . . ,Yn) forms a random sample of size n in which each
Y j = (Y j1, . . . ,Y jp)

� is a p-dimensional vector of feature variables. Suppose further
that these samples come independently from g distinct subgroups in a heterogeneous
population. The MCrstFA model for each Y j is

Y j = AU i j + ei j with probability πi (i = 1, . . . , g), (3)
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(a) λ1,λ2)=(3,3) λ1,λ2)=(3,−3)

λ1,λ2)=(−3,3) λ1,λ2)=(−3,−3)

( (b) (

(c) ( (d) (

Fig. 1 The contours of bivariate rMST distribution with μ = (0, 0)�, Σ = I2 and ν = 4 for different
values of λ1 and λ2

for j = 1, . . . , n, where A is a p × q matrix of common factor loadings, U i j is a
q-dimensional (q < p) vector of component factors, ei j is a p-dimensional vector of
component errors, and πi s are the mixing proportions subject to

∑g
i=1 πi = 1.

Furthermore, we assume that U i j and ei j are jointly distributed as

[
U i j

ei j

]
∼ r STp+q

([
ξ i
0

]
,

[
Ω i 0
0 Di

]
,

[
λi
0

]
, νi

)
, (4)

where ξ i is a q-dimensional location vector, Ω i is a q × q positive-definite scale
covariancematrix,λi ∈ R

q is a skewness vector, Di is a p×p positive diagonalmatrix,
and νi is the DOF. The specifications of Di and νi in (4) can be either constrained to
be equal or allowed to vary among components.

Based on (3) along with assumption (4), the pdf of Y j is

f ( y j ) =
g∑

i=1

πiψp( y j ;μi ,Σ i ,αi , νi ), (5)
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where

μi = Aξ i , Σ i = AΩ i A� + Di , αi = Aλi , (6)

andψp( y j ;μi ,Σ i ,αi , νi ) is the rMST density function defined in (1). Notice that the
representations in (6) cannot be uniquely determined because they remain unchanged
if the common factor loading matrix A is postmultiplied by any nonsingular matrix.
Thus, we must impose q2 constraints to achieve identifiability of A. As a result, the
number of free parameters in the MCrstFA is

d1 = (g − 1) + pg + q(p + g) + 1

2
gq(q + 1) − q2 + gq + g.

If Di s are constrained to be homogeneous across components, the number of param-
eters is

d2 = (g − 1) + p + q(p + g) + 1

2
gq(q + 1) − q2 + gq + g;

and if component DOFs are further assumed to be identical, the resulting number of
parameters is

d3 = (g − 1) + p + q(p + g) + 1

2
gq(q + 1) − q2 + gq + 1.

We remark that the number of parameters in MCrstFA is increased by qg involved in
λi (without adding too much complexity) as compared with MCFA and MCtFA.

To indicate the class membership of observation y j , we introduce allocation vari-
ables Z j = (Z1 j , . . . , Zgj )

�, defined as

Zi j =
{
1, Y j belongs to i th component;
0, otherwise.

Thus, we have Z j
iid∼ M (1;π1, . . . , πg), meaning a multinomial distribution with g

possible outcomes which can occur in a single trial, where πi = Pr(Zi j = 1) can be
regarded as the prior probability of y j belonging to the i th component.

According to (2) and (3), the MCrstFA model can be formulated by a five-level
hierarchical representation:

Y j | (U i j , γ j , τ j , Zi j = 1) ∼ Np(AU i j , τ
−1
j Di ),

U i j | (γ j , τ j , Zi j = 1) ∼ Nq(ξ i + λiγ j , τ
−1
j Ω i ),

γ j | (τ j , Zi j = 1) ∼ T N (0, τ−1
j ; (0,∞)),

τ j | (Zi j = 1) ∼ Gamma
(νi

2
,
νi

2

)
,

Z j ∼ M (1;π1, . . . , πg). (7)

By Bayes’ rule, it suffices to derive the following conditional distributions, and the
proofs of which are sketched in “Appendix A”. Specifically,
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U i j | ( y j , γ j , τ j , Zi j = 1) ∼ Nq

(
ξ i + λiγ j + β�

i ( y j − μi − αiγ j ), τ
−1
j (Iq

−β�
i A)Ω i

)
,

γ j | ( y j , τ j , Zi j = 1) ∼ T N (hi j , τ
−1
j σ 2

i ; (0,∞)),

f (τ j | y j , Zi j = 1) = Φ
(√

τ j Mi j
)

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
)g (

τ j ; νi + p

2
,
νi + δi j

2

)
,

Zi j = 1 | y j ∼ M (1; π̃1 j , . . . , π̃g j ), (8)

where β i = Σ−1
i AΩ i , δi j = ( y j − μi )

�V−1
i ( y j − μi ), and Mi j = hi j/σi with

V i = Σ i + αiα
�
i , hi j = α�

i V
−1
i ( y j − μi ) and σ 2

i = 1 − α�
i V

−1
i αi . Moreover,

π̃i j = P(Zi j = 1| y j ) = πiψp( y j ;μi ,Σ i ,αi , νi )∑g
h=1 πhψp( y j ;μh,Σh,αh, νh)

. (9)

To simplify the notation, we define bi j = ξ i + β�
i ( y j − μi ) and ci j (r) = {(νi +

p+ r)/(νi + δi j )}1/2 for r = −2, 0, 2, and let “| · · · ” represent conditioning on Y j =
y j and Zi j = 1. The following proposition summarizes some essential conditional
expectations for implementing the ECME algorithm described in the next subsection.

Proposition 1 Consider the posterior distributions given in (8), we establish the fol-
lowing conditional expectations:

E(τ j | · · · ) = {ci j (0)}2 T (Mi j ci j (2); νi + p + 2)

T (Mi j ci j (0); νi + p)
,

E(γ j | · · · ) = hi j + σi t (Mi j ci j (−2); νi + p − 2)

ci j (−2)T (Mi j ci j (0); νi + p)
,

E(τ jγ j | · · · ) = hi j E(τ j | · · · ) + σi ci j (0)
t (Mi j ci j (0); νi + p)

T (Mi j ci j (0); νi + p)
,

E(τ jγ
2
j | · · · ) = σ 2

i + hi j E(τ jγ j | · · · ),
E(U i j | · · · ) = bi j +

(
λi − β�

i αi

)
E(γ j | · · · ),

E(τ jU i j | · · · ) = bi j E(τ j | · · · ) +
(
λi − β�

i αi

)
E(τ jγ j | · · · ),

E(τ jγ jU i j | · · · ) = bi j E(τ jγ j | · · · ) +
(
λi − β�

i αi

)
E(τ jγ

2
j | · · · ),

E(τ jU i jU�
i j | · · · ) =

(
Iq − β�

i A
)

Ω i + E(τ jγ jU i j | · · · )(λi − β�
i αi )

�

+ E(τ jU i j | · · · )b�
i j , (10)
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and

E(log τ j | · · · ) =
∫ Mi j
−∞ t

(
x; 0, νi+δi j

νi+p , νi + p
)
fνi (x)dx

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
) + E(τ j | · · · )

−
(

νi + p

νi + δi j

)
+ DG

(
νi + p

2

)
− log

(
νi + δi j

2

)
, (11)

where fνi (x) is defined by (B.10).

Proof The results follow directly from some fundamental matrix manipulations and
the law of iterated expectations. See “Appendix B” for more details. �	

3.2 Parameter estimation via the ECME algorithm

The EM algorithm (Dempster et al. 1977) is a popular iterative method for findingML
estimates when the data are incomplete or the model contains latent variables. The
main advantage of EM lies in the fact of monotone convergence without sacrificing
simplicity. One common limitation of the EM algorithm is that the M-step usually
yields no closed forms for estimators of parameters. To overcome this weakness,
Meng and Rubin (1993) proposed the expectation conditional maximization (ECM)
algorithm to replace the M-step of EM with several computational simpler CM-steps,
each of which maximizes the expected complete-data log-likelihood function (known
as the Q-function) sequentially. Importantly, the authors also showed that the ECM
algorithm preserves all desiring properties of EM. In certain situations, some of the
CM-steps ofECMmaybe computationally intractable. Liu andRubin (1994) advanced
the ECM algorithm with the CM steps that maximize either the Q-function, called the
CMQ-step, or the corresponding constrained actual log-likelihood function, called the
CML-step. The method is referred to as the ECME algorithm.

For notational simplicity, we denote the observed data by y = ( y1, . . . , yn), allo-
cation indicators by Z = (z1, . . . , zn), latent factors by U = (U1, . . . ,Un), hidden
variables γ = (γ1, . . . , γn) and scaling weight variables by τ = (τ1, . . . , τn). There-
fore, the complete data yc comprise the observed data y together with missing data
ym = (Z,U, γ , τ ). From (5), it is readily seen that

Y j | (Zi j = 1) ∼ r STp(μi ,Σ i ,αi , νi ).

Therefore, the joint pdf of (Y , Z) is

f ( y, z) =
n∏
j=1

g∏
i=1

{πiψp( y j ;μi ,Σ i ,αi , νi )}zi j . (12)

Let θ i = (πi , ξ i ,Ω i , Di ,λi , νi ) be the parameter vector belonging to the i-th
component, andΘ = {A, θ1, . . . , θ g} the entire unknown parameters to be estimated.
According to (7), the complete-data log-likelihood function is
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�c(Θ | yc) =
g∑

i=1

n∑
j=1

zi j

{
logπi − 1

2
log |Di | − τ j

2
( y j − AU i j )

�D−1
i ( y j − AU i j )

− 1

2
log |Ω i | − τ j

2
(U i j − ξ i − λiγ j )

�Ω−1
i (U i j − ξ i − λiγ j )

− logΓ
(νi

2

)
+ νi

2
log

(νi

2

)
+ νi

2
log τ j − νi

2
τ j

}
.

To evaluate the Q-function, defined as Q(Θ | Θ̂
(k)

) = E
[
�c(Θ | yc) | y, Θ̂

(k)]
,

we first define the following conditional expectations:

ẑ(k)i j = P
(
Zi j = 1 | y j , Θ̂ (k)

)
, τ̂

(k)
i j = E

(
τ j | y j , Θ̂ (k)

, Zi j = 1
)

,

κ̂
(k)
i j = E

(
log τ j | y j , Θ̂ (k)

, Zi j = 1
)

, ŝ(k)
1i j = E

(
τ jγ j | y j , Θ̂ (k)

, Zi j = 1
)

,

ŝ(k)
2i j = E

(
τ jγ

2
j | y j , Θ̂ (k)

, Zi j = 1
)

, η̂
(k)
i j = E

(
τ jU i j | y j , Θ̂ (k)

, Zi j = 1
)

,

Ψ̂
(k)
i j = E

(
τ jU i jU�

i j | y j , Θ̂ (k)
, Zi j = 1

)
, ζ̂

(k)
i j =E

(
τ jγ jU i j | y j , Θ̂ (k)

, Zi j = 1
)

for i = 1, . . . , g and j = 1, . . . , n, which can be evaluated using (9), (10) and (11).
To update the mixture parameters Θ , the ECME algorithm proceeds as follows:

E-step: Given Θ = Θ̂
(k)
, calculate the Q-function, obtained as

Q(Θ | Θ̂
(k)

) =
g∑

i=1

n∑
j=1

ẑ(k)i j

{
logπi − 1

2
log |Di | − 1

2
log |Ω i | − logΓ

(νi

2

)

+ νi

2
log

(νi

2

)
+ νi

2
(κ̂

(k)
i j − τ̂

(k)
i j ) − 1

2
tr
(
D−1
i Υ i j − Ω−1

i Λi j
)}

,

(13)

where

Υ i j = Υ i j (A) = τ̂
(k)
i j y j y

�
j − y j η̂

(k)�
i j A� − Aη̂

(k)
i j y�

j + AΨ̂
(k)
i j A� (14)

and

Λi j = Λi j (ξ ,λ) = Ψ̂
(k)
i j − η̂

(k)
i j ξ�

i − ζ̂
(k)
i j λ�

i − ξ i

(
η̂

(k)�
i j − τ̂

(k)
i j ξ�

i − ŝ(k)
1i jλ

�
i

)
−λi

(
ζ̂

(k)�
i j − ŝ(k)

1i j ξ
�
i − ŝ(k)

2i jλ
�
i

)
. (15)
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CM-steps: Maximizing (13) with respect to πi , ξ i , λi , A, Ω i and Di , we obtain

π̂
(k+1)
i = 1

n

n∑
j=1

ẑ(k)i j ,

ξ̂
(k+1)
i =

(∑n
j=1 ẑ

(k)
i j η̂

(k)
i j

) (∑n
j=1 ẑ

(k)
i j ŝ

(k)
2i j

)
−

(∑n
j=1 ẑ

(k)
i j ζ̂

(k)
i j

) (∑n
j=1 ẑ

(k)
i j ŝ

(k)
1i j

)
(∑n

j=1 ẑ
(k)
i j τ̂

(k)
i j

) (∑n
j=1 ẑ

(k)
i j ŝ

(k)
2i j

)
−

(∑n
j=1 ẑ

(k)
i j ŝ

(k)
1i j

)2 ,

λ̂
(k+1)
i =

(∑n
j=1 ẑ

(k)
i j τ̂

(k)
i j

) (∑n
j=1 ẑ

(k)
i j ζ̂

(k)
i j

)
−

(∑n
j=1 ẑ

(k)
i j ŝ

(k)
1i j

) (∑n
j=1 ẑ

(k)
i j η̂

(k)
i j

)
(∑n

j=1 ẑ
(k)
i j τ̂

(k)
i j

) (∑n
j=1 ẑ

(k)
i j ŝ

(k)
2i j

)
−

(∑n
j=1 ẑ

(k)
i j ŝ

(k)
1i j

)2 ,

Â
(k+1) =

⎛
⎝ g∑

i=1

n∑
j=1

ẑ(k)i j y j η̂
(k)�
i j

⎞
⎠

⎛
⎝ g∑

i=1

n∑
j=1

ẑ(k)i j Ψ̂
(k)
i j

⎞
⎠

−1

,

Ω̂
(k+1)
i =

∑n
j=1 ẑ

(k)
i j Λ̂

(k+1)
i j∑n

j=1 ẑ
(k)
i j

and D̂
(k+1)
i = Diag{∑n

j=1 ẑ
(k)
i j Υ̂

(k+1)
i j }∑n

j=1 ẑ
(k)
i j

,

where Υ̂
(k+1)
i j and Λ̂

(k+1)
i j areΥ i j andΛi j in (14) and (15)with ξ i ,λi and A

replaced by ξ̂
(k+1)
i , λ̂

(k+1)
i and Â

(k+1)
, respectively. Moreover, when Di s

are assumed to be the same, say Di = D for all i , the updated estimator

of D is given by D̂
(k+1) = n−1Diag{∑g

i=1

∑n
j=1 ẑ

(k)
i j Υ̂

(k+1)
i j }. The proof

of the updated estimators is sketched in “Appendix C”.
CML-step: In light of (12), the updated estimator of νi can be obtained by solving

the following equations:

ν̂
(k+1)
i = argmax

νi

{ n∑
j=1

ẑ(k+1)
i j log

(
ψp( y j ; μ̂

(k+1)
i , Σ̂

(k+1)
i , α̂

(k+1)
i , νi )

)}
,

(16)

for i = 1, . . . , g, where μ̂
(k+1)
i = Â

(k+1)
ξ̂

(k+1)
i , Σ̂

(k+1)
i = Â

(k+1)
Ω̂

(k+1)
i

Â
(k+1)� + D̂

(k+1)
i and α̂

(k+1)
i = Â

(k+1)
λ̂

(k+1)
i .

In the case of assuming common DOFs, say νi = ν for all i , the updated estimator of
ν is obtained by maximizing the constrained actual log-likelihood function, that is,

ν̂(k+1) = argmax
ν

{ n∑
j=1

log
( g∑

i=1

π̂
(k+1)
i ψp( y j ; μ̂

(k+1)
i , Σ̂

(k+1)
i , α̂

(k+1)
i , ν)

)}
.

(17)

Herein, we remark that the solutions of (16) and (17) involve carrying out a one-
dimensional search using the built-in R function optim function over a box constraint
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(2, 200). Given an initial guess of parameters Θ̂
(0)

, the above ECME procedure is per-
formed recursively until maximization of the log-likelihood function is achieved. The
resultingML estimates are denoted by Θ̂ = ( Â, π̂i , ξ̂ i , Ω̂ i , D̂i , λ̂i , ν̂i , i = 1, . . . , g).
As a result, the posterior probability of y j belonging to the i-th component of the mix-

ture is calculated by replacing Θ in (9) with Θ = Θ̂ , denoted by ẑi j = P(Zi j = 1 |
y j , Θ̂). Based on the maximum a posteriori (MAP) classification rule, y j is assigned
to group s if max{ẑi j }gi=1 occurs at i = s.

Consequently, the conditional expectations of the factor scores U i j given y j and
the i-th membership of the mixture meaning that Zi j = 1 can be estimated by ûi j =
E(U i j | Y j = y j , Zi j = 1, Θ̂) which is given in (10) with Θ substituted by Θ̂ .
Then, the j-th estimated factor scores corresponding to y j can be calculated as

û j =
g∑

i=1

ẑi j ûi j , j = 1 . . . n. (18)

An alternative estimator of (18) is given by

û j =
g∑

i=1

MAP{ẑi j }ûi j , (19)

where MAP{ẑi j } = 1, if max{ẑh j }gh=1 occurs at h = i , and MAP{ẑi j } = 0 otherwise.
These estimated factor scores can be used to portray the observed data into a lower
dimensional space (Baek et al. 2010; Baek and McLachlan 2011) and be applied to
feature extractions (Ueda et al. 2000).

4 Practical issues from computational aspects

4.1 Initialization and stopping rules

Like other iterative procedures, the ECME algorithm may suffer from convergence
difficulties such as singularity of component covariancematrices or undetermined local
maximum. To alleviate such problems, one simple strategy is to try many different
initial values and select the solution that provides the highest likelihood. To obtain
different sets of initial values, this can be done by performing multiple times of K -
means (Hartigan and Wong 1979) clustering or random starts (McLachlan and Peel
2000) in the sense that each sample point is randomly assigned to one of clusters. We
recommend below a simple way of generating sensible initial values.

1. Given initialmemberships obtained by a single run of clustering through K -means,

we set Ẑ
(0)
j = (ẑ(0)1 j , . . . , ẑ

(0)
g j ). The initial values of πi s are

π̂
(0)
i = 1

n

n∑
j=1

ẑ(0)i j , i = 1, . . . , g.
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2. Let y(i) be the collection of the i-th partitioned group.After that, we compute factor

scores using theRbuilt-in factanal function. The initial estimates of ξ̂
(0)
i , Ω̂

(0)
i , λ̂

(0)
i

and ν̂
(0)
i , for i = 1, . . . , g, are obtained by implementing REMMIXskew package

(Wang et al. 2009) for fitting the rMST distribution to the estimated factor scores.
3. Perform the principal components analysis (PCA) method to obtain the factor

loading matrix for y(i), denoted by B̂
(0)
i for i = 1, . . . , g. The initial estimate of

A is specified as

Â
(0) =

g∑
i=1

π̂
(0)
i B̂

(0)
i Ω̂

(0)−1/2

i .

4. The initial estimate of Di is obtained as a diagonalmatrix formed from the diagonal
elements of the sample covariancematrix of y(i). For the restricted case of Di = D,

the initial estimate D̂
(0)

is formed as the diagonal elements of the pooled within-
cluster sample covariance matrix of y(1), . . . , y(g).

Since the ECME algorithm is an iterative method, the stopping rules should be
specified. In our experimental studies, we adopt by default the traditional criterion to
terminate the algorithm when a predefined the maximum number of iterations kmax =
2×104 is reached orwhen the difference between two successive log-likelihood values
is less than 10−6. Alternatively, one can use the Aitken acceleration-based stopping
criterion (Aitken 1926; McLachlan and Krishnan 2008), which is at least as strict as
lack of progress in likelihood in the neighborhood of a maximum (McNicholas et al.
2010).

4.2 Model selection and performance evaluation

The log-likelihood value cannot be adopted as amodel selection criterion because it is a
nondecreasing function of the number of components (g) and the dimension of factors
(q).We use theBayesian information criterion (BIC; Schwarz 1978) and the integrated
classification likelihood (ICL; Biernacki et al. 2000) to determine the best pair of
(g, q) over a number of candidate models for achieving satisfactory performance
(McNicholas and Murphy 2008; Lin et al. 2016). The BIC and ICL are defined as

BIC = d log n − 2�max and ICL = BIC + 2ENT( ẑ),

where d is the number of free parameters, �max is the maximized log-likelihood value,
and ENT( ẑ) = − ∑g

i=1

∑n
j=1 ẑi j log ẑi j is a penalty term called entropy that favors

well-separatedmixtures. The ICL penalizes complexmodel seriously and selectsmore
parsimonious models than does BIC.

To evaluate the clustering performance ofmodel-based approach, the adjustedRand
index (ARI;Hubert andArabie 1985) and the correct classification rate (CCR;Lee et al.
2003) are employed. Typically, the ARI value ranges between 0 and 1 in most cases,
but it can be negative corresponding to a poor level of agreement, e.g., fewer instances
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are correctly classified than would be expected by chance. The metric of CCR has a
value between 0 and 1. The CCR is determined to have the lowest misclassification
rate by comparing all permutations of the MAP clustering labels with the true class
labels.

4.3 Identifiability issues

The mixture model itself suffers from an non-identifiability problem arising from a
permutation of the class labels in parameter vectors. The switching issue of class labels
is often inherent in Bayesian implementation of mixture models. However, this is not
a problem in practice when employing the EM-based algorithm to estimate mixture
densities since we can still determine a sequence of ML estimates that are consistent
and asymptotically efficient, see McLachlan and Basford (1988).

On the other hand, there is another identifiability problem corresponding to the
rotational indeterminacy of common factor loading matrix A. As suggested by Baek
et al. (2010), a unique solution of A, say Â

∗
, can be obtained by postmultiplying a

nonsingular matrix for which the solution is orthonormal, i.e., Â
∗�

Â
∗ = Iq . This

can be achieved by adopting the Cholesky decomposition to find the upper triangular

matrix C of order q such that Â
�
Â = C�C, resulting in Â

∗ = ÂĈ
−1

.
Related to the standard errors of theMLestimates, it would be of interest to calculate

them using the empirical information matrix for Θ in a manner analogous to Wang
and Lin (2016). This procedure will be tackled by the authors in a future paper.

5 Simulation

We conduct two simulation experiments to demonstrate the proposed techniques.
Unless otherwise stated, we shall consider only the case of Di = D for all i in
the later analysis.

5.1 Experiment 1

In this experiment, to compare the accuracy of three parsimonious factor-analytic
approaches for clustering and representing low-dimensional data, we generate a p = 3
dimensional dataset of size n = 1000 from a g = 2 component mixture of rMST
distributions. The presumed mixture parameters as involved in (5) are

π1 = 0.5, π2 = 0.5, μ1 = (0, 0, 0)�, μ2 = (1, 1, 3)�,

ν1 = 4, ν2 = 5, α1 = (− 2,− 5,− 5)�, α2 = (− 2, 5, 5)�,

Σ1 =
⎡
⎣ 4 − 1.8 − 1

− 1.8 2 0.9
− 1 0.9 2

⎤
⎦ and Σ2 =

⎡
⎣ 4 1.8 0.8
1.8 2 0.5
0.8 0.5 2

⎤
⎦ .
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Table 1 Cross-tabulations of
true (A, B) and predicted (1, 2)
class memberships for three
parsimonious factor-analytic
approaches for the simulated
data

MCFA MCtFA MCrstFA

1 2 1 2 1 2

A 61 439 490 10 495 5

B 51 449 38 462 23 477

The MCFA, MCtFA and MCrstFA models with q = 2 factors and g = 2
components are fitted via the ECME algorithm to the simulated data. When the
parameter estimates and the corresponding factor scores are obtained under each fit-
ted model, we can compare the clustering performance and calculate the predicted
values of each observed feature vector y j . As anticipated, the MCrstFA approach
gives the best clustering result (ARI = 0.891;CCR = 0.972), followed closely
by MCtFA (ARI = 0.817;CCR = 0.952). The MCFA has the worst performance
(ARI = 1.78 × 10−6;CCR = 0.51), indicating a lack of ability to cluster mixtures
of skewed data with outliers. A cross-tabulation of the true and predicted class mem-
berships is given in Table 1. As can be seen, the MCrstFA approach provides fewer
misclassified observations and outperforms the other two considered approaches, say
MCtFA and MCFA.

Figure 2 displays plots of the actual observations y j overlaid with predicted obser-

vations ŷ j , calculated as ŷ j = Âû j , ( j = 1, . . . , 1000), where Â is the estimated
projection matrix, and û j is the estimated factor scores defined in (18). As shown in
Fig. 2a, the MCFA model performs poorly because of a lack of mechanisms to cope
with data exhibiting non-normal features. On the other hand, it is clearly observed from
Fig. 2b, c that the original scattering structure of two groups can be retrieved quite well
using the MCtFA and MCrstFA approaches, but the MCtFA is slightly unfavored due
to somewhat poor fit caused by having 20 more misclassified units than the MCrstFA.

5.2 Experiment 2

To further demonstrate the validity of the MCrstFA approach for handing the data of
higher dimensions, we perform a second simulation experiment in situations where
the MCrstFA holds exactly. In this study, data were generated from the 3-component
MCrstFA model with q = 2, and p = 10 and 20. We perform 100 Monte Carlo
(MC) repetitions of sample size n = 1500 observations and equal mixing propor-
tions, namely πi = 1/3 for all i . The elements of p × q common factor loadings
A were randomly generated from N (0, 1), while the component DOFs are taken as
(ν1, ν2, ν3) = (4, 6, 9). The location vectors, scale-covariance matrices and skewness
parameters of the component factors U i j are chosen as

ξ1 = (0, 2.5)�, ξ2 = (− 2.5, 0)�, ξ3 = (2.5, 0)�,

λ1 = (5, 5)�, λ2 = (− 5,− 5)�, λ3 = (0, 0)�,

Ω1 =
[
0.1 0
0 0.45

]
, Ω2 =

[
0.45 0
0 0.1

]
, Ω3 =

[
0.45 0
0 0.1

]
.
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Fig. 2 Original observations and the predicted observations by MCFA, MCtFA, and MCrstFA

Figure 3 gives an illustration of the generated bivariate factor scores based on one
simulated case for each of the three components. Typically, these component factor
scores look somewhat well separated and exhibit non-elliptical scattering patterns
and heavy tails. The component error vectors ei j s were drawn independently from
tp(0, D, νi ), where diagonal elements of D were randomly generated from a uniform
distribution ranging between 0.1 and 0.3.

We process each of 100 MC simulated datasets by fitting the MCFA, MCtFA and
MCrstFAmodels. Comparisons were made on the adequacy of overall fitness in terms
ofBIC and ICLand the classification agreement on the true and predictedmemberships
assessed by ARI and CCR. Table 2 lists the average values of criteria together with
the corresponding standard deviations (Std) under every scenario considered. As a
guide to select the most plausible model, the frequencies (Freq) preferred by these
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Fig. 3 Scatter plot of generated bivariate factors for each of g = 3 components

criteria are also reported. In all cases, the MCrstFA model provides better fits and
clustering results than the other two approaches. In particular, the MCFA and MCtFA
are seldom or even never chosen by these four indices due to a lack of sufficient
robustness against skewness. We have also undertaken the simulation study with a
much higher dimension, say p = 100, and found that the MCrstFA model still works
similarly well without degrading its performance.

6 Application to real data

We applied our method to the human liver cancer data (Chen et al. 2002), which con-
sist of p = 85 gene expressions partitioned into two subpopulations. Hepatocellular
carcinoma (HCC) is one of the 10 leading causes of death in the world. Chen et al.
(2002) used cDNA microarrays to characterize patterns of gene expression in HCC,
from which they found that the expression patterns in HCC and nontumor liver tissues
(LIVER) are distinctly different from one another. In the data, there are n = 179 sam-
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Fig. 4 Boxplots for the 30 genes in the human liver cancer data. The x-coordinate indicates the order of
original genes

ples in the genomic expression patterns from patients, of which 104 belong to HCC
and 75 to LIVER.

Figure 4 depicts the boxplots of top 30 genes which have the most significant differ-
ence between two classes obtained by performing the two-sample t-test. Apparently,
the distribution of each selected gene is highly skewed or has a long tail.

We implement the two-component MCFA, MCtFA, MCrstFA and MCghstFA
approaches with q ranging from 1 to 10. In the same vein as that of the simula-
tion experiments, we assume Di = D for all i , but place no restrictions on component
DOFs. A comparison of some characterizations between theMCrstFA andMCghstFA
models is summarized in Table 5. When fitting the MCghstFA model, we implement
the ECM algorithm described in “Appendix D”. For clarity, Table 3 presents only the
fitting results and classification agreements of each method with q ranging from 5 to
10. Judging from BIC and ICL, the best fitted model is given by the MCghstFA model
with q = 8. While comparing the classification performance, the MCrstFA model
with q = 6 provides the best agreement on predicting the true group memberships
(ARI = 0.2427 and CCR = 0.7486) for this dataset. Notice that the best classifier
does not necessarily give the best fit to the data. Again, theMCrstFA approach demon-
strates its usefulness in clustering high-dimensional data with asymmetry and/or fat
tails.

Table 4 compares the best classification results obtained from the fitted MCFA
(q = 10), MCtFA (q = 6), MCrstFA (q = 6) and MCghstFA (q = 10) models. We
found that the number of the correctly classified HCC tissues in the fit of MCrstFA is
more than those of the other three approaches. However, there is no obvious difference
among them in predicting the class memberships of LIVER tissues.

123



Mixtures of common restricted skew-t factor analyzers 463

Table 3 Comparison of fitting results and implied clustering versus the true membership of the human
liver cancer data

Model Factors �max d BIC ICL ARI CCR

MCFA 5 − 15, 110.06 526 32,948.69 32,948.69 − 0.0028 0.5475

6 − 14, 952.48 614 33,090.02 33,098.36 − 0.0006 0.5531

7 − 14, 714.43 702 33,070.41 33,077.98 0.0022 0.5587

8 − 14, 502.58 790 33,103.20 33,108.02 − 0.0121 0.5196

9 − 14, 355.34 878 33,265.21 33,275.42 0.0490 0.6201

10 − 14, 178.00 966 33,367.02 33,371.90 0.0700 0.6369

MCtFA 5 − 14, 198.9 528 31,136.73 31,136.77 − 0.0028 0.5475

6 − 14, 026.77 616 31,248.97 31,278.82 0.1020 0.6648

7 − 13, 700.85 704 31,053.61 31,055.07 − 0.0143 0.5196

8 − 13, 491.35 792 31,091.12 31,094.50 − 0.0147 0.5140

9 − 13, 266.24 880 31,097.39 31,106.04 0.0198 0.5866

10 − 13, 131.82 968 31,285.04 31,292.45 0.0241 0.5922

MCrstFA 5 − 14, 154.58 538 31,099.97 31,100.02 − 0.0028 0.5475

6 − 13, 986.08 628 31,229.84 31,253.25 0.2427 0.7486

7 − 13, 655.81 718 31,036.16 31,049.49 − 0.0074 0.5363

8 − 13, 443.11 808 31,077.62 31,106.66 0.0801 0.6480

9 − 13, 204.65 898 31,067.58 31,076.36 0.0286 0.5978

10 − 13, 069.24 988 31,263.61 31,270.71 0.0241 0.5922

MCghstFA 5 − 14, 131.31 538 31,053.42 31,053.44 − 0.0028 0.5475

6 − 13, 971.05 628 31,199.77 31,226.22 0.0120 0.5754

7 − 13, 477.30 718 30,679.15 30,679.19 − 0.0136 0.5251

8 − 13, 095.40 808 30,382.17 30,382.53 − 0.0147 0.5140

9 − 13, 079.05 898 30,816.38 30,816.44 − 0.0140 0.5084

10 − 13, 012.70 988 31,150.53 31,151.09 0.0755 0.6425

The smallest BIC and ICL scores and the largest ARI and CCR values under each family of considered
models are indicated in bold

Table 4 Cross-tabulations of true and predicted (1,2) class memberships for four mixtures of common
factor-analytic approaches for the human liver cancer data

MCFA (q = 10) MCtFA (q = 6) MCrstFA (q = 6) MCghstFA (q = 10)

1 2 1 2 1 2 1 2

HCC 47 57 53 51 67 37 48 56

LIVER 8 67 9 66 8 67 8 67

To visualize the clustering results in a low-dimensional space, Fig. 5 portrays the
data in a 3D space using the factor scores estimated by (19). In the plot, we use the
second, third and fifth factors in the fit of MCrstFA with q = 6 factors. The estimated
factor scores in Fig. 5a, b are plotted according to the true and implied clustering
labels, respectively. It can be observed from the two plots that the two clusters are
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Fig. 5 Plot of the (estimated) posterior mean factor scores via the MCrstFA approach for the human liver
cancer data based on a the true class labels, and b the implied clustering labels. (◦) HCC; (�) LIVER; (+)
Misclassification

inherently overlapped so that no approach works satisfactorily on classifying these
tissues. Most of the misclassified tissues, labelled by ‘plus symbol’ in Fig. 5b, appear
in the overlapping area between two clusters.

7 Conclusion

We propose an extension of MCFA in which component factors and errors are jointly
modeled by the rMST distribution, called the MCrstFA model, as a new model-
based tool for analyzing high-dimensional data with strong degree of abnormality and
multimodality.An attractive feature of theMCrstFA is that the componentmeans, com-
ponent covariancematrices aswell as component skewness parameters are represented
by common factor loadings, allowing parsimonious model fitting while preserving its
robustness.

We describe an analytically simple ECME procedure developed under a five-level
hierarchy for fitting the MCrstFA. This approach enables us to project high-
dimensional clustering results into a low-dimensional space through displaying
estimated factor scores. Numerical simulation studies and experimental data demon-
strate its usefulness and flexibility on the basis of model fitting and outright clustering.

The techniques presented so far are limited to the likelihood-based approach and
focus on complete data analysis. Some possible avenues for future research include
building a framework to handle the presence of censoring observations (Castro et al.
2015; Lachos et al. 2017) or the occurrence of missing values (Ouyang et al. 2004;
Lin 2014; Wang et al. 2017a, b), both of which are common problems in the analysis
of high-dimensional data. Although our estimating procedure is easy to implement,
there is a lack of feasible guidelines for a joint determination of (g, q) within a single
run of the training process. Toward this end, variational Bayes (VB) approximations
(Waterhouse et al. 1996; Jordan et al. 1999; Beal 2003) have been presented as an
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iterativeBayesian alternative to theEM-based algorithm for their fast and deterministic
nature. The attractive feature of the VB scheme allows for an automated learning of
parameter estimation and model selection. The VB approach has been effectively
applied to Gaussian mixtures (Teschendorff et al. 2005), MFA models (Ghahramani
and Beal 2000), and mixtures of normal inverse Gaussian distributions (Subedi and
McNicholas 2014) for simultaneously estimating model parameters and determining
the number of components. Therefore, it isworthwhile to develop a novelVBalgorithm
for learning the MCrstFA model. Another inspiration for future work is to extend the
MCrstFA model based on a broader family of multivariate skew distributions such
as the scale mixtures of skew-normal distributions (Cabral et al. 2012; Prates et al.
2013), the multivariate canonical fundamental skew-t distributions (Arellano-Valle
and Genton 2005; Lee and McLachlan 2016), and the hidden truncation hyperbolic
distributions introduced very recently by Murray et al. (2017b).
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Appendix A: Proof of hierarchical representation (8)

It follows from (7) that

E
(
Y jU�

i j | γ j , τ j , Zi j = 1
)

= E
[
E

(
Y jU�

i j | U i j , γ j , τ j , Zi j = 1
)

| γ j , τ j , Zi j = 1
]

= E
[
E(Y j | U i j , γ j , τ j , Zi j = 1)U�

i j | γ j , τ j , Zi j = 1
]

= E
(
AU i jU�

i j | γ j , τ j , Zi j = 1
)

= A
[
τ−1
j Ω i + (ξ i + λiγ j )(ξ i + λiγ j )

�]
,

and

cov
(
Y j ,U�

i j | γ j , τ j , Zi j = 1
)

= E
(
Y jU�

i j | γ j , τ j , Zi j = 1
)

− E(Y j | γ j , τ j , Zi j = 1)E
(
U�

i j | γ j , τ j , Zi j = 1
)

= A
[
τ−1
j Ω i + (ξ i + λiγ j )(ξ i + λiγ j )

�]
− (μi + αiγ j )(ξ i + λiγ j )

�

= A
[
τ−1
j Ω i + (ξ i + λiγ j )(ξ i + λiγ j )

�]
− A(ξ i + λiγ j )(ξ i + λiγ j )

�

= τ−1
j AΩ i .
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This gives rise to the following joint distribution:

[
Y j

U i j

] ∣∣∣∣(γ j , τ j , Zi j = 1) ∼ Np+q

([
μi + αiγ j

ξ i + λiγ j

]
, τ−1

j

[
Σ i AΩ i

Ω�
i A� Ω i

])
.

We then have the following standard results:

E(U i j | y j , γ j , τ j , Zi j = 1)

= (ξ i + λiγ j ) +
(
τ−1
j Ω�

i A�)
(τ−1

j Σ i )
−1( y j − μi − αiγ j )

= ξ i + λiγ j + β�
i ( y j − μi − αiγ j ),

and

cov(U i j | y j , γ j , τ j , Zi j = 1) = τ−1
j Ω i −

(
τ−1
j Ω�

i A�)
(τ−1

j Σ i )
−1(τ−1

j AΩ i )

= τ−1
j

(
Iq − β�

i A
)

Ω i ,

where β i = Σ−1
i AΩ i . Using the characterization of the multivariate normal distribu-

tion, we can obtain

U i j | ( y j , γ j , τ j , Zi j = 1) ∼ Nq

(
ξ i + λiγ j + β�

i ( y j − μi − αiγ j ), τ
−1
j

(
Iq

−β�
i A)Ω i

)
.

With similar arguments, we have

f
(
y j , γ j , τ j | zi j = 1

)
= f

(
y j | γ j , τ j , zi j = 1

)
f

(
γ j | τ j , zi j = 1

)
f

(
τ j | zi j = 1

)
= 2|Σ i |− 1

2
(

νi
2

) νi
2

(2π)
p+1
2 Γ

(
νi
2

)τ
p+νi+1

2 −1
j exp

{
−τ j

2

[(
γ j − hi

)2
σ 2
i

+ δi j + νi

]}
,

f
(
y j , τ j | zi j = 1

) = 2|Σ i |− 1
2 σi

(
νi
2

) νi
2

(2π)
p
2 Γ

(
νi
2

) τ
p+νi
2 −1

j

exp
{
−τ j

2

[
δi j + νi

]}
Φ

(√
τ j Mi j

)
,

f
(
γ j | y j , τ j , zi j = 1

) = f
(
y j , γ j , τ j | zi j = 1

)
f

(
y j , τ j | zi j = 1

) =
φ

(
γ j ; hi , τ−1

j σ 2
i

)
Φ

(√
τ j Mi j

) .

Hence, it is trivial to establish that γ j | ( y j , τ j , Zi j = 1) ∼ T N (hi , τ
−1
j σ 2

i ; (0,∞)).
Furthermore, standard calculation gives
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f (τ j | y j , Zi j = 1) = f ( y j , τ j | Zi j = 1)

f ( y j | Zi j = 1)

= τ
νi+p
2 −1

j

Γ
( νi+p

2

) (
νi + δi j

2

) νi+p
2 Φ(

√
τ j Mi j )

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
)

× exp
{
−τ j

2

[
δi j + νi

]}
= Φ(

√
τ j Mi j )

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
)g (

τ j ; νi + p

2
,

νi + δi j

2

)
.

Appendix B: Proof of Proposition 1

(a) Standard calculation of conditional expectation yields

E(τ j | y j , zi j = 1) =
∫ ∞

0
τ j f (τ j | y j , zi j = 1)dτ j

=
∫ ∞

0
τ j

Φ
(√

τ j Mi j
)

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
)g (

τ j ; νi + p

2
,

νi + δi j

2

)
dτ j

=
(

νi+p
νi+δi j

)
T

(
Mi j

√
νi+p
νi+δi j

; νi + p
) ∫ ∞

0
Φ

(√
τ j Mi j

)
g

(
τ j ; νi + p + 2

2
,

νi + δi j

2

)
dτ j

=
(

νi + p

νi + δi j

) T
(
Mi j

√
νi+p+2
νi+δi j

; νi + p + 2
)

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
) . (B.1)

(b) Because γ j | ( y j , τ j , Zi j = 1) ∼ T N (hi , τ
−1
j σ 2

i ; (0,∞)), we obtain

E(γ j | y j , τ j , zi j = 1) = hi j + σi√
τ j

φ
(√

τ j Mi j
)

Φ
(√

τ j Mi j
) . (B.2)

(c) We first need to show

E

(
τ

k
2
j

φ
(√

τ j Mi j
)

Φ
(√

τ j Mi j
) ∣∣∣∣ y j , zi j = 1

)

= 1

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
) ∫ ∞

0
τ

k
2
j φ

(√
τ j Mi j

)
g

(
τ j ; νi + p

2
,

νi + δi j

2

)
dτ j

= 1

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
) ∫ ∞

0
τ

k−1
2

j φ
(
Mi j ; 0, τ−1

j

)
g

(
τ j ; νi + p

2
,

νi + δi j

2

)
dτ j
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=
Γ

(
νi+p+k−1

2

) ∫ ∞
0 φ

(
Mi j ; 0, τ−1

j

)
g

(
τ j ; νi+p+k−1

2 ,
νi+δi j

2

)
dτ j

Γ
( νi+p

2

) (
νi+δi j

2

) k−1
2

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
)

=
Γ

(
νi+p+k−1

2

) √
νi+p+k−1

νi+δi j
t
(
Mi j

√
νi+p+k−1

νi+δi j
; νi + p + k − 1

)
Γ

( νi+p
2

) (
νi+δi j

2

) k−1
2

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
) . (B.3)

Applying the result in (B.3) with k = − 1 and (B.2) yields

E(γ j | y j , zi j = 1) = E[E(γ j | y j , τ j , zi j = 1) | y j , zi j = 1]

= E

[
hi j + σi√

τ j

φ
(√

τ j Mi j
)

Φ
(√

τ j Mi j
) ∣∣∣∣y j , zi j = 1

]

= hi j + σi E

(
1√
τ j

φ
(√

τ j Mi j
)

Φ
(√

τ j Mi j
) ∣∣∣∣ y j , zi j = 1

)

= hi j + σi√
νi+p−2
νi+δi j

t
(
Mi j

√
νi+p−2
νi+δi j

; νi + p − 2
)

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
) . (B.4)

(d) Using (B.1), (B.2) and (B.3) with k = 1, we have

E(τ jγ j | y j , zi j = 1) = E[E(τ jγ j | y j , τ j , zi j = 1)| y j , zi j = 1]
= E[τ j E(γ j | y j , τ j , zi j = 1)| y j , zi j = 1]

= E

[
τ j

(
hi j + σi√

τ j

φ
(√

τ j Mi j
)

Φ
(√

τ j Mi j
)
) ∣∣∣∣y j , zi j = 1

]

= hi j E(τ j | y j , zi j = 1) + σi E

[
√

τ j
φ

(√
τ j Mi j

)
Φ

(√
τ j Mi j

) ∣∣∣∣ y j , zi j = 1

]

= hi j

⎡
⎢⎣ νi + p

νi + δi j

T
(
Mi j

√
νi+p+2
νi+δi j

; νi + p + 2
)

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
)

⎤
⎥⎦

+ σi

⎡
⎢⎣

√
νi + p

νi + δi j

t
(
Mi j

√
νi+p
νi+δi j

; νi + p
)

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
)

⎤
⎥⎦ . (B.5)

(e) Using the result of (B.2), the second moment of a truncated normal distribution is
given by
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E
(
γ 2
j | y j , τ j , zi j = 1

)
= hi j E(γ j | y j , τ j , zi j = 1) + σ 2

i

τ j

= hi j

(
hi j + σi√

τ j

φ
(√

τ j Mi j
)

Φ
(√

τ j Mi j
)
)

+ σ 2
i

τ j
. (B.6)

(f) Applying the double expectation and using (B.5) and (B.6), we have

E
(
τ jγ

2
j | y j , zi j = 1

)
= E

[
E

(
τ jγ

2
j | y j , τ j , zi j = 1

)
| y j , zi j = 1

]
= E

[
τ j E

(
γ 2
j | y j , τ j , zi j = 1

)
| y j , zi j = 1

]
= E

{
τ j

[
hi j E(γ j | y j , τ j , zi j = 1) + τ−1

j σ 2
i

]
| y j , zi j = 1

}
= hi j E

(
τ jγ j | y j , zi j = 1

) + σ 2
i . (B.7)

(g) Applying the double expectation and the result of (B.4), we have

E(U i j | y j , zi j = 1) = E
[
E(U i j | y j , γ j , τ j , zi j = 1)| y j , zi j = 1

]
= E

[
ξ i + λiγ j + β�

i ( y j − μi − αiγ j )| y j , zi j = 1
]

= ξ i + β�
i ( y j − μi ) + (λi − β�

i αi )E(γ j | y j , zi j = 1). (B.8)

(h) Applying the double expectation and using (B.1) and (B.5), we have

E(τ jU i j | y j , zi j = 1) = E
[
E(τ jU i j | y j , γ j , τ j , zi j = 1)| y j , zi j = 1

]
= E

[
τ j E(U i j | y j , γ j , τ j , zi j = 1)| y j , zi j = 1

]
= E

{
τ j

[
ξ i + λiγ j + β�

i ( y j − μi − αiγ j )
]
| y j , zi j = 1

}
=

[
ξ i + β�

i ( y j − μi )
]
E(τ j | y j , zi j = 1)

+
(
λi − β�

i αi

)
E(τ jγ j | y j , zi j = 1). (B.9)

(i) Applying the double expectation and using (B.5) and (B.7), we have

E
(
τ jγ jU i j | y j , zi j = 1

)
= E

[
E(τ jγ jU i j | y j , γ j , τ j , zi j = 1)| y j , zi j = 1

]
= E

[
τ jγ j E(U i j | y j , γ j , τ j , zi j = 1)| y j , zi j = 1

]
= E

{
τ jγ j [ξ i + λiγ j + β�

i ( y j − μi − αiγ j )]| y j , zi j = 1
}

=
[
ξ i + β�

i ( y j − μi )
]
E(τ jγ j | y j , zi j = 1)

+ (λi − β�
i αi )E(τ jγ

2
j | y j , zi j = 1).
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(j) Applying the double expectation and using (B.8) and (B.9), we have

E
(
τ jU i jU�

i j | y j , zi j = 1
)

= E
[
E

(
τ jU i jU�

i j | y j , γ j , τ j , zi j = 1
)

| y j , zi j = 1
]

= E
[
τ j E(U i jU�

i j | y j , γ j , τ j , zi j = 1)| y j , zi j = 1
]

= E
{
τ j [E(U i j | y j , γ j , τ j , zi j = 1)E(U�

i j | y j , γ j , τ j , zi j = 1)

+ cov(U i j | y j , γ j , τ j , zi j = 1)]| y j , zi j = 1
}

= E
{
τ j [E(U i j | y j , γ j , τ j , zi j = 1)(ξ i + λiγ j + β�

i ( y j − μi − αiγ j ))
�

+ τ−1
j (Iq − β�

i A)Ω i ]| y j , zi j = 1
}

= E(γ jτ jU i j | y j , zi j = 1)(λi − β�
i αi )

�

+ E(τ jU i j | y j , zi j = 1)[ξ i + β�
i ( y j − μi )]� + (Iq − β�

i A)Ω i .

(k) It is known that
∫ ∞
0 f (τ j | y j , Zi j = 1)dτ j = 1, that is,

∫ ∞

0

Φ
(√

τ j Mi j
)

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
) (

νi+δi j
2 )

(
νi+p
2 )

Γ (
νi+p
2 )

exp

{
−νi + δi j

2
τ j

}
dτ j = 1.

Then

d

dνi

∫ ∞

0
b jΦ

(√
τ j Mi j

)
exp

{
−νi + δi j

2
τ j

}
dτ j = 0,

where

b j =
(

νi+δi j
2

)(νi+p)/2

Γ
( νi+p

2

)
T

(
Mi j

√
νi+p
νi+δi j

; νi + p
) .

By Leibnitz’s rule, we can obtain

E(log τ j | y j , zi j = 1) − E(τ j | y j , zi j = 1) + log

(
νi + δi j

2

)
+

(
νi + p

νi + δi j

)

−DG

(
νi + p

2

)
−

∫ Mi j
−∞ t

(
x; 0, νi+δi j

νi+p , νi + p
)
fνi (x)dx

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
) = 0,

where

fνi (x) = DG

(
νi + p + 1

2

)
− DG

(
νi + p

2

)
− 1

π(νi + δi j )

− log

(
1 + x2

νi + δi j

)
+ (νi + p + 1)x2

(νi + δi j )(x2 + νi + δi j )
. (B.10)
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It follows that

E(log τ j | y j , zi j = 1) = E(τ j | y j , zi j = 1) − log

(
νi + δi j

2

)
−

(
νi + p

νi + δi j

)

+DG

(
νi + p

2

)
+

∫ Mi j
−∞ t

(
x; 0, νi+δi j

νi+p , νi + p
)
fνi (x)dx

T
(
Mi j

√
νi+p
νi+δi j

; νi + p
) .

Appendix C: Proof of CM-steps

(a) By the Lagrange multiplier method, we define

L(πi , λ) = Q(Θ | Θ̂
(k)

) − λ

( g∑
i=1

πi − 1

)
,

and then take partial derivatives, yielding

∂L(πi , λ)

∂πi
=

n∑
j=1

ẑ(k)i j
1

πi
− λ = 0, and

∂L(πi , λ)

∂λ
= −

( g∑
i=1

πi − 1

)
= 0.

Since
∑g

i=1

∑n
j=1 ẑ

(k)
i j = n, we obtain π̂

(k+1)
i = ∑n

j=1 ẑ
(k)
i j /n.

(b) Differentiating Q(Θ | Θ̂
(k)

) with respect to ξ i leads to

∂Q

∂ξ i
= −1

2

∂

∂ξ i

n∑
j=1

ẑ(k)i j Ω−1
i tr

[
− η̂

(k)
i j ξ�

i − ξ i η̂
(k)�
i j

+ ξ i τ̂
(k)
i j ξ�

i + ξ i ŝ
(k)
1i jλ

�
i + λi ŝ

(k)
1i j ξ

�
i

]

= tr

{
Ω−1

i

n∑
j=1

ẑ(k)i j

[
η̂

(k)
i j − τ̂

(k)
i j ξ i − ŝ(k)

1i jλi

] }
.

Moreover, the partial derivative of Q(Θ | Θ̂
(k)

) with respect to λi is

∂Q

∂λi
= −1

2

∂

∂λi

n∑
j=1

ẑ(k)i j Ω−1
i tr

[
− ζ̂

(k)
i j λ�

i + ξ i ŝ
(k)
1i jλ

�
i

−λi ζ̂
(k)�
i j + λi ŝ

(k)
1i j ξ

�
i + λi ŝ

(k)
2i jλ

�
i

]

= tr

{
Ω−1

i

n∑
j=1

ẑ(k)i j

[
ζ̂

(k)
i j − ŝ(k)

1i j ξ i − ŝ(k)
2i jλi

] }
.
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Solving the above two equations, we get

∂Q

∂ξ i
=

n∑
j=1

ẑ(k)i j Ω−1
i (η̂

(k)
i j − ŝ(k)

1i jλi ) −
n∑
j=1

ẑ(k)i j Ω−1
i τ̂

(k)
i j ξ i = 0, (C.1)

∂Q

∂λi
=

n∑
j=1

ẑ(k)i j Ω−1
i (ζ̂

(k)
i j − ŝ(k)

1i j ξ i ) −
n∑
j=1

ẑ(k)i j Ω−1
i ŝ(k)

2i jλi = 0. (C.2)

After rearrangement, (C.1) and (C.2) can be rewritten as

n∑
j=1

ẑ(k)i j τ̂
(k)
i j ξ i +

n∑
j=1

ẑ(k)i j ŝ
(k)
1i jλi =

n∑
j=1

ẑ(k)i j η̂
(k)
i j ,

n∑
j=1

ẑ(k)i j ŝ
(k)
1i j ξ i +

n∑
j=1

ẑ(k)i j ŝ
(k)
2i jλi =

n∑
j=1

ẑ(k)i j ζ̂
(k)
i j .

Using Cramer’s law, the solutions of the two linear equations are

ξ̂
(k+1)
i =

(∑n
j=1 ẑ

(k)
i j η̂

(k)
i j

) (∑n
j=1 ẑ

(k)
i j ŝ

(k)
2i j

)
−

(∑n
j=1 ẑ

(k)
i j ζ̂

(k)
i j

) (∑n
j=1 ẑ

(k)
i j ŝ

(k)
1i j

)
(∑n

j=1 ẑ
(k)
i j τ̂

(k)
i j

) (∑n
j=1 ẑ

(k)
i j ŝ

(k)
2i j

)
−

(∑n
j=1 ẑ

(k)
i j ŝ

(k)
1i j

)2 ,

and

λ̂
(k+1)
i =

(∑n
j=1 ẑ

(k)
i j τ̂

(k)
i j

) (∑n
j=1 ẑ

(k)
i j ζ̂

(k)
i j

)
−

(∑n
j=1 ẑ

(k)
i j ŝ

(k)
1i j

) (∑n
j=1 ẑ

(k)
i j η̂

(k)
i j

)
(∑n

j=1 ẑ
(k)
i j τ̂

(k)
i j

) (∑n
j=1 ẑ

(k)
i j ŝ

(k)
2i j

)
−

(∑n
j=1 ẑ

(k)
i j ŝ

(k)
1i j

)2 .

(c) The partial derivative of Q(Θ | Θ̂
(k)

) with respect to A is

∂Q

∂A
= −1

2

∂

∂A

g∑
i=1

n∑
j=1

ẑ(k)i j tr

(
− D−1

i y j η̂
(k)�
i j A�

− D−1
i Aη̂

(k)
i j y�

j + D−1
i AΨ̂

(k)
i j A�

)

= tr

⎛
⎝ g∑

i=1

n∑
j=1

ẑ(k)i j D−1
i y j η̂

(k)�
i j −

g∑
i=1

n∑
j=1

ẑ(k)i j D−1
i Ψ̂

(k)
i j A

⎞
⎠ . (C.3)

Equating (C.3) to the zero matrix, we have

Â
(k+1) =

⎛
⎝ g∑

i=1

n∑
j=1

ẑ(k)i j y j η̂
(k)�
i j

⎞
⎠

⎛
⎝ g∑

i=1

n∑
j=1

ẑ(k)i j Ψ̂
(k)
i j

⎞
⎠

−1

.
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(d) The partial derivative of Q(Θ | Θ̂
(k)

) with respect to Ω i is

∂Q

∂Ω−1
i

= 1

2

∂

∂Ω−1
i

n∑
j=1

ẑ(k)i j

{
log |Ω−1

i | − tr
(
Ω−1

i Λi j

)}

= 1

2

n∑
j=1

ẑ(k)i j

[
2Ω i − Diag{Ω i } − (

2Λi j − Diag{Λi j }
)]

. (C.4)

Equating (C.4) to the zero vector gives

Ω̂
(k+1)
i =

∑n
j=1 ẑ

(k)
i j Λ̂

(k+1)
i j∑n

j=1 ẑ
(k)
i j

.

(e) Taking the partial derivative of Q(Θ | Θ̂
(k)

) with respect to Di yields

∂Q

∂D−1
i

= 1

2

∂

∂D−1
i

n∑
j=1

ẑ(k)i j

[
log |D−1

i | − tr
(
D−1
i Υ i j

)]

= 1

2

n∑
j=1

ẑ(k)i j (Di − Υ i j ). (C.5)

We have the following estimator

D̂
(k+1)
i =

Diag
{∑n

j=1 ẑ
(k)
i j Υ̂

(k+1)
i j

}
∑n

j=1 ẑ
(k)
i j

obtained by equating (C.5) to the zero matrix.

Appendix D: Parameter estimation for the MCghstFA model using the
ECM algorithm

According to Table 5, the MCghstFA model admits a three-level hierarchy:

[
Y j

U i j

] ∣∣∣(Wj , Zi j = 1) ∼ Np+q

([
Aξ i + Wj Aλi
ξ i + Wjλi

]
,Wj

[
AΩ i A + D AΩ i

Ω i A� Ω i

])
,

Wj | Zi j = 1 ∼ Γ −1
(νi

2
,
νi

2

)
,

Z j ∼ M (1;π1, . . . , πg). (D.1)

From (D.1), it can be verified that

Y j | (Wj , Zi j = 1) ∼ Np
(
Aξ i + Wj Aλi ,Wj (AΩ i A + D)

)
,
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and

U i j | ( y j ,Wj , Zi j = 1) ∼ Nq(μ2·1,Σ22·1), (D.2)

where μ2·1 = ξ i + Wjλi + Ω i A�(AΩ i A� + D)−1( y j − Aξ i − Wj Aλi ) and Σ22·1
= Wj (Ω i − Ω i A�(AΩ i A� + D)−1AΩ i ) = Wj (Ω

−1
i − A�D−1A)−1.

A positive random variable X is said to follow the Generalized Inverse Gaussian
(GIG) distribution (Good 1953), denoted by W ∼ GIG(ψ, χ, r), if it has the pdf

fG IG(w;ψ, χ, r) = χ−r (
√

χψ)r

2Kr (
√

χψ)
wq−1 exp

{
−1

2
(χw−1 + ψw)

}
, (D.3)

where ψ, χ ∈ R
+, r ∈ R, and Kq is the modified Bessel function of the third kind

with index r . Some particular moments of the GIG distribution have tractable forms,
for instance,

E(Wa) = (χ/ψ)a/2 Kr+a(
√

ψχ)

Kr (
√

ψχ)
, a ∈ R, (D.4)

and

E(logW ) = log(χ/ψ)1/2 + K ′
r (

√
ψχ)

Kr (
√

ψχ)
, (D.5)

where

K ′
r (x) = dKr (x)

dr
= 1

2

∫ ∞

0
log(y)yr−1 exp

{
− x

2

(
y + 1

y

)}
dy, x > 0.

(D.6)

By Bayes’ Theorem, the conditional pdf of Wj given y j can be written as

f (w j | y j , Zi j = 1) ∝ w
−(νi+p)/2−1
j exp

{
− 1

2

[
(νi + Δi j )w

−1
j

+ (λ�
i A�(

AΩ i A� + D)−1Aλi
)
w j

]}
,

where Δi j = ( y j − Aξ i )
�(AΩ i A� + D)−1( y j − Aξ i ). It follows from (D.3) that

Wj | ( y j , Zi j = 1) ∼ GIG

(
λ�
i A�(AΩ i A� + D)−1Aλi , νi + Δi j ,−νi + p

2

)
.

Alternatively, the MCghstFA model can be represented by a four-level hierarchy:

Y j | (U i j ,Wj , Zi j = 1) ∼ Np(AU i j ,Wj D),

U i j | (Wj , Zi j = 1) ∼ Nq(ξ i + Wjλi ,WjΩ i ),
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Wj | Zi j = 1 ∼ Γ −1
(νi

2
,
νi

2

)
,

Z j ∼ M (1;π1, . . . , πg). (D.7)

From (D.7), the complete-data log-likelihood function for Θ on the basis of Y c

= { y j ,U i j ,Wj , Z j }nj=1, for i = 1, . . . , g, is given by

�c(Θ | Y c) =
g∑

i=1

n∑
j=1

Zi j log

{
πi logφp( y j | AU i j ,Wj D)φp(U i j | ξ i

+Wjλi ,WjΩ i ) × f
(
w j | νi

2
,
νi

2

) }

=
g∑

i=1

n∑
j=1

Zi j

{
logπi − 1

2
log |Wj D| − 1

2
log |WjΩ i |

− W−1
j

2

[
( y j − AU i j )

�D−1( y j − AU i j )

+ (U i j − ξ i − Wjλi )
�Ω−1

i (U i j − ξ i − Wjλi )
]

+ νi

2
log

(νi

2

)
− logΓ

(νi

2

)
−

(νi

2
+ 1

)
logWj − νi

2Wj

}
. (D.8)

To evaluate the expected value of (D.8), called the Q function, we first calculate

ẑi j = E
(
Zi j | y j , Θ̂

)
=

π̂iζ
(
y j ; Âξ̂ i , ÂΩ̂ i Â

� + D̂, Âλ̂i , ν̂i

)
f ( y j ; Θ̂)

, (D.9)

which is the posterior probability of y j belonging to the i th component of the mix-
ture. In addition, we utilize the results (D.4) and (D.5) to calculate of the following
conditional expectations:

ŝ1i j = E(Wj | y j , Zi j = 1, Θ̂)

=
(

ν̂i + Δ̂i j

λ̂
�
i Â

�
( ÂΩ̂ i Â

� + D̂)
−1

Âλ̂i

)1/2 K− (ν̂+p)
2 +1

(ω̂i j )

K− (ν̂+p)
2

(ω̂i j )
,

ŝ2i j = E(W−1
j | y j , Zi j = 1, Θ̂)

=
(

ν̂i + Δ̂i j

λ̂
�
i Â

�
( ÂΩ̂ i Â

� + D̂)
−1

Âλ̂i

)−1/2 K− (ν̂+p)
2 −1

(ω̂i j )

K− (ν̂+p)
2

(ω̂i j )
,

ŝ3i j = E(logWj | y j , Zi j = 1, Θ̂)

= log

(
ν̂i + Δ̂i j

λ̂
�
i Â

�
( ÂΩ̂ i Â

� + D̂)
−1

Âλ̂i

)1/2

+
K ′

− (ν̂+p)
2

(ω̂i j )

K− (ν̂+p)
2

(ω̂i j )
, (D.10)
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where ω̂i j =
√

(ν̂i + Δ̂i j )λ̂
�
i Â

�
( ÂΩ̂ i Â

� + D̂)−1 Âλ̂i and K ′
− (ν̂+p)

2

(ω̂i j ) is evaluated

via (D.6). By (D.2), we obtain

ûi j = E
(
U i j | y j , Zi j = 1, Θ̂

)
= E

[
E(U i j | y j ,Wj , Zi j = 1) | y j , Zi j = 1, Θ̂

]
= ξ̂ i + ŝ1i j λ̂i + γ̂

�
i ( y j − Âξ̂ i − ŝ1i j Âλ̂i ), (D.11)

η̂i j = E
(
W−1

j U i j | y j , Zi j = 1, Θ̂
)

= E
[
W−1

j E(U i j | y j ,Wj , Zi j = 1) | y j , Zi j = 1, Θ̂
]

= λ̂i − γ̂
�
i Âλ̂i + ŝ2i j

(
ξ̂ i + γ̂

�
i ( y j − Âξ̂ i )

)
, (D.12)

and

Ψ̂ i j = E
(
W−1

j U i jU�
i j | y j , Zi j = 1, Θ̂

)
= E

[
W−1

j E(U i jU�
i j | y j ,Wj , Zi j = 1) | y j , Zi j = 1, Θ̂

]
= E

[
W−1

j

[
E(U i j | y j , Wj , Zi j = 1)E(U�

i j | y j ,Wj , Zi j = 1)

+ cov (U i j | y j ,Wj , Zi j = 1)
] | y j , Zi j = 1, Θ̂

]
= η̂i j

(
ξ̂ i + γ̂

�
i ( y j − Âξ̂ i )

)� + ûi j
(
λ̂i − γ̂

�
i Âλ̂i

)�

+
(
Ω̂

−1
i + Â

�
D̂

−1
Â

)−1
, (D.13)

where γ̂ i = ( ÂΩ̂ i Â
� + D̂)−1 ÂΩ̂ i .

After some algebraic manipulations, the resulting Q function that gets rid of the
constants is given by

Q(Θ | Θ̂) =
g∑

i=1

n∑
j=1

ẑi j

{
logπi − 1

2
log |D| − 1

2
log |Ω i | − 1

2
tr
(
D−1

[
ŝ2i j y j y

�
j

− y j η̂
�
i j A

� − Aη̂i j y
�
j + AΨ̂ i j A�])

− 1

2
tr

(
Ω−1

i

[
Ψ̂ i j − η̂i jξ

�
i − ξ i η̂

�
i j

+ ŝ2i jξ iξ
�
i + ŝ1i jλiλ

�
i − (ûi j − ξ i )λ

�
i − λi (ûi j − ξ i )

�])

+
(νi

2

)
log

(νi

2

)
− νi

2
ŝ2i j − νi

2
ŝ3i j − logΓ

(νi

2

) }
. (D.14)
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Taking partial derivatives of (D.14) with respect to ξ i and λi and equating them to
zero vectors yield

n∑
j=1

ẑi j
(
η̂i j − ŝ2i jξ i − λi

) = 0, (D.15)

n∑
j=1

ẑi j
(
ûi j − ξ i − ŝ1i jλi

) = 0. (D.16)

In summary, the ECM algorithm for estimating the parameters of MCghstFA pro-
ceeds as follows:

E-step: Given the current value Θ = Θ̂ , compute ẑi j , ŝ1i j , ŝ2i j , ŝ3i j , ûi j , η̂i j and

Ψ̂ i j as defined in (D.9)–(D.13) for i = 1, . . . , g and j = 1, . . . , n.
CM step 1: Maximizing (D.14) with respect to πi and using the Lagrange multiplier

method, this gives π̂i = n̂i/n, where n̂i = ∑n
j=1 ẑi j .

CM step 2: Update parameters ξ i and λi by solving simultaneous Eqs. (D.15) and
(D.16). Simple matrix algebra yields

ξ̂ i =
( ∑n

j=1 ẑi j ŝ1i j
)( ∑n

j=1 ẑi j η̂i j
) − n̂i (

∑n
j=1 ẑi j ûi j

)
( ∑n

j=1 ẑi j ŝ1i j
)( ∑n

j=1 ẑi j ŝ2i j
) − n̂2i

and

λ̂i =
( ∑n

j=1 ẑi j ŝ2i j
)( ∑n

j=1 ẑi j ûi j
) − n̂i (

∑n
j=1 ẑi j η̂i j

)
( ∑n

j=1 ẑi j ŝ1i j
)( ∑n

j=1 ẑi j ŝ2i j
) − n̂2i

.

CM-step3: The updates for A, Ω i and D are given by

Â =
⎛
⎝ g∑

i=1

n∑
j=1

ẑi j ŷ j η̂
�
i j

⎞
⎠

⎛
⎝ g∑

i=1

n∑
j=1

ẑi j Ψ̂ i j

⎞
⎠

−1

,

Ω̂ i = 1

n̂i

n∑
j=1

ẑi j
[
Ψ̂ i j − η̂i j ξ̂

�
i − ξ̂ i η̂

�
i j + ŝ2i j ξ̂ i ξ̂

�
i + ŝ1i j λ̂i λ̂

�
i

− (ûi j − ξ̂ i )λ̂
�
i − λ̂i (ûi j − ξ̂ i )

�]
,

D̂ = 1

n
Diag

{ g∑
i=1

n∑
j=1

ẑi j
(
ŝ2i j y j y

�
j − y j η̂

�
i j Â

�)}
.

CM step 4: Calculate ν̂i by solving the root of the following equation:

log
(νi

2

)
− DG

(νi

2

)
+ 1 − 1

n̂i

n∑
j=1

ẑi j (ŝ2i j + ŝ3i j ) = 0.
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