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Abstract A multivariate outlier detection method for interval data is proposed that
makes use of a parametric approach tomodel the interval data. The trimmedmaximum
likelihood principle is adapted in order to robustly estimate the model parameters.
A simulation study demonstrates the usefulness of the robust estimates for outlier
detection, and new diagnostic plots allow gaining deeper insight into the structure of
real world interval data.
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1 Introduction

It is often the case that multivariate datasets include atypical data points, i.e. points
that deviate from the main pattern. Such data units are usually called outliers. Outlier
detection is important for two main reasons: on the one hand, outlying data points
may be interesting on their own, since they can reveal nonconforming phenomena; on
the other hand, the results of usual multivariate methods can be heavily influenced by
outliers. Outlierdetection may however be a tricky endeavor as some (false) outliers
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are often reported, even for data sets with none if no distinction is made between
outliers and distribution extremes (Filzmoser et al. 2005). Moreover, true outliers
may not stand out as expected since they may affect estimates of location and scatter
so much that they no longer look atypical–this is known as “masking effect” in the
literature (Hubert et al. 2008). Also, usual rules based on an appropriate cut-off value
for robustified Mahalanobis distances [see, for instance, Filzmoser et al. (2005) and
Rousseeuw and Zomeren (1990)] suffer from the drawback that they are independent
from the sample size.

In this paperwe address the problemof outlier detection inmultivariate interval data,
i.e., data where for each data unit and variable an interval rather than a single real value
is recorded. Interval datamay occur in different situations, e.g. when describing ranges
of variable values like daily stock prices or temperature ranges. Another common
and increasingly interesting source of interval data is the aggregation of large data
bases, when interval observations result from aggregating the real values describing
the individual units.

A common approach for multivariate outlier detection measures outlyingness by
Mahalanobis distances. A point i is considered an outlier if its distance D2

m,C (i)
from an appropriate estimate of the multivariate mean m is above a threshold, where
D2
m,C (i) = (xi −m)tC−1(xi −m) andC is an estimate of the covariancematrix. Under

the assumption of d-variate normality, D2
m,C (i) follows approximately a Chi-square

distribution with d degrees of freedom. Then the threshold for outlier labeling may be
an upper quantile of χ2

d , e.g., the 97.5% quantile.
However, if m and C are chosen to be the classical sample mean vector and covari-

ance matrix this procedure is not reliable, as D2
m,C (i) may be strongly affected by

atypical observations. Therefore, the Mahalanobis distances should be computed with
robust estimates of location and scatter. Rousseeuw and Zomeren (1990) use these
robust Mahalanobis distances (RD’s) for multivariate outlier detection. Many robust
estimators for location and covariance have been proposed in the literature.

The minimum covariance determinant (MCD) estimator (Rousseeuw 1984, 1985)
uses a subset of the original sample, consisting of the h points in the dataset for which
the determinant of the sample covariance matrix is minimal; this is very frequently
used in practice since a computationally fast algorithm is available (Rousseeuw and
Driessen 1999). Since theChi-square approximation to the distribution ofMahalanobis
distances based on the MCD estimator may not work well, even for moderately large
samples, finite samples approximations have been proposed (Cerioli 2010).

Trimmed likelihood estimators (Hadi and Luceño 1997) are also based on a sample
subset. In this case, the subset of h points is obtained by maximizing the trimmed
likelihood, keeping the multivariate observations that contribute most to the likelihood
function. For multivariate Gaussian data, the two approaches, the MCD method and
the trimmed likelihood method, lead to the same estimators of covariance (Hadi and
Luceño 1997).

In either case, the proportion of data points to be used needs to be specified a priori.
The choice h ≈ n/2, where n is the sample size, leads to the highest breakdown point
but to low efficiency, while a larger value for h reduces the breakdown point and
increases the efficiency; a trade-off is the choice h ≈ 0.75 · n (Hubert et al. 2008).
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While in classical statistics and multivariate data analysis the statistical units under
analysis are single individuals, each of which taking a single value for each (numerical
or categorical) variable, it often happens that the data under analysis do not correspond
to single observations, but rather to sets of values, either related to groups of units
gathered on the basis of some common properties, or observed repeatedly over time.
The classical data-array model is then somehow restricted to take into account the
variability inherent to such data. In those situations, data is commonly summarized
by central statistics, e.g., averages, medians or modes, and other relevant information
may be disregarded. This is the case when we are facing huge sets of data, recorded
in very large databases (often called nowadays “Big Data”), and elements of interest
are not the individual records but rather some second-level entities. For instance, in
a database of individual phone calls, we are surely more interested in describing the
behavior of some person (or some pre-defined class or group of persons) rather than
each call by itself. The analysis requires then that the calls data for each person (or
group) be somehow aggregated to obtain the information of interest, however data
can no longer be properly described by the usual numerical and categorical variables
without an unacceptable loss of information.

Defining appropriate variable types, which may assume new forms of realizations-
multiple, possibly weighted, values for each case - that take into account the data
intrinsic variability, SymbolicDataAnalysis (Billard andDiday 2003; Bock andDiday
2000; Brito 2014; Diday and Noirhomme-Fraiture 2008) provides a framework where
the variability observed is explicitly considered in the data representation.

We focus here on interval-valued data, i.e., where for each entity under analysis an
interval is observed. Many methods have to this day been developed for the analysis of
interval-valued data, ranging from univariate statistics to multivariate methods such
as Clustering [see, e.g., De Carvalho et al. (2006) and De Carvalho and Lecheval-
lier (2009)], Principal Component Analysis [see, e.g. Douzal-Chouakria et al. (2011)
and Le-Rademacher and Billard (2012)], Discriminant Analysis (Duarte Silva and
Brito 2015; Ramos-Guajardo and Grzegorzewski 2016), Regression Analysis (Dias
and Brito 2017; Lima Neto and De Carvalho 2008, 2010; Lima Neto et al. 2011), etc.
For a survey the reader may refer to Brito (2014) and Noirhomme-Fraiture and Brito
(2011). Most methodologies rely however on non-parametric exploratory approaches,
nevertheless recent approaches based on parametric models have been proposed-see
Brito and Duarte Silva (2012), Le-Rademacher and Billard (2011) and Lima Neto
et al. (2011).

In this paper we address the problem of outlier detection in interval data, using the
modeling proposed in Brito and Duarte Silva (2012). In the particular case of inter-
val data, outlyingness may be caused by different reasons. At the univariate level, an
observation may be considered as an outlier due to its MidPoint, to its Range or to
both, or still to a particular relation between them resulting in an outlying interval. Fur-
thermore, from a multivariate perspective, it may be important to distinguish outliers
that stand out by their MidPoints, by their Ranges, or both, or by the global relation
between all MidPoints and Ranges.

In Li et al. (2006) the authors present an algorithm for outlier detection in interval
data, using a distance-based approach.However, theirmethod fixes a priori the number
of data points to be flagged as outliers, and seems therefore unable to distinguish
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between outlier-free datasets and contaminated ones. Viattchenin (2012) proposes
a heuristic approach based on possibilistic clustering. This approach relies on an
exhaustive search over all possible partitions of the given dataset in k clusters, for
each fixed k, and therefore is only feasible for small datasets. To the best of our
knowledge, the methodology we present here is the first statistical approach to this
problem, rooted on classical robustness theory.

The remainder of the paper is organized as follows. Section 2 briefly introduces
interval data, and parametricmodels for interval-valued variables. In Sect. 3we address
the problem of robust parameter estimation and its application to robust outlier detec-
tion in interval data. Section 4 presents a simulation study comparing alternative
methods for outlier detection. An application is discussed in Sect. 5, where we illus-
trate the main issues arising in this context. Section 6 concludes the paper putting in
evidence its main contributions.

2 Models for interval data

Let S = {s1, . . . , sn} be the set of n entities under analysis.
We are in the presence of interval data when for each si ∈ S an interval of R is

recorded for each variable. Formally, an interval-valued variable [see Noirhomme-
Fraiture and Brito (2011)] is defined by an application

Y : S → T such that

si → Y (si ) = [li , ui ]

where T is the set of intervals of an underlying set O ⊆ R. Let I = [Ii j ] be an n × p
matrix containing the values of p interval variables on S. Each si ∈ S may then be
represented by a p-dimensional vector of intervals, Ii = (Ii1, . . . , Iip), i = 1, . . . , n,
with Ii j = [li j , ui j ], j = 1, . . . , p (see Table 1).

The value of each interval-valued variable Y j for each si ∈ S is usually defined by
the lower and upper bounds li j and ui j of Ii j = Y j (si ); alternatively Y j (si ) may also

be represented by the MidPoint ci j = li j + ui j
2

and Range ri j = ui j − li j of Ii j .

2.1 Parametric models for interval data

In Brito and Duarte Silva (2012), parametric models for interval data, relying on
Multivariate Normal or Skew-Normal distributions for theMidPoints and Log-Ranges

Table 1 Matrix I of interval
data

Y1 . . . Y j . . . Yp

s1 [l11, u11] . . . [l1 j , u1 j ] . . . [l1p, u1p]
. . . . . . . . . . . .

si [li1, ui1] . . . [li j , ui j ] . . . [li p, uip]
. . . . . . . . . . . .

sn [ln1, un1] . . . [ln j , unj ] . . . [lnp, unp]
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Table 2 Matrix of MidPoints
and Log-Ranges YC

1 . . . YC
j . . . YC

p Y R∗
1 . . . Y R∗

j . . . Y R∗
p

s1 c11 . . . c1 j . . . c1p r∗
11 . . . r∗

1 j . . . r∗
1p

. . . . . . . . . . . . . . . . . . . . .

si ci1 . . . ci j . . . cip r∗
i1 . . . r∗

i j . . . r∗
i p

. . . . . . . . . . . . . . . . . . . . .

sn cn1 . . . cnj . . . cnp r∗
n1 . . . r∗

nj . . . r∗
np

of the interval-valued variables have been proposed. The Gaussian model has the
advantage of allowing for the application of classical inference methods, and is the
model considered in this paper.

The model consists in assuming a joint multivariate Normal distribution for the
MidPoints C and the logs of the Ranges R, R∗ = ln(R), with μ = [

μt
C μt

R∗
]t and

Σ =
(

ΣCC ΣCR∗
ΣR∗C ΣR∗R∗

)
where μC and μR∗ are p-dimensional column vectors of the

mean values of, respectively, the MidPoints and Log-Ranges, and ΣCC ,ΣCR∗ ,ΣR∗C
and ΣR∗R∗ are p × p matrices with their variances and covariances.

With this parametrization, the data in matrix I in Table 1 is equivalently represented
by the matrix shown in Table 2:

We remark that the MidPoint ci j and the Range ri j of the value of an interval-
valued variable Ii j = Y j (si ) relate to the same variable, so that the link that might
exist between them should be appropriately taken into account. This is done by con-
sidering particular configurations of the global variance-covariance matrix (Table 3).
The following cases are of particular interest, and have been addressed:

1. Non-restricted case: allowing for non-zero correlations among all MidPoints and
Log-Ranges;

2. Interval-valued variables Y j are uncorrelated, but for each variable, the MidPoint
may be correlated with its Log-Range;

3. MidPoints (Log-Ranges) of different variables may be correlated, but no correla-
tion between MidPoints and Log-Ranges is allowed;

4. All MidPoints and Log-Ranges are uncorrelated, both among themselves and
between each other.

Table 3 summarizes the different cases considered in this paper.

Table 3 Different cases for the variance-covariance matrix

Case Characterization Σ

C1 Non-restricted Non-restricted

C2 Y j ’s non correlated ΣCC , ΣCR∗ = ΣR∗C ,
ΣR∗R∗ all diagonal

C3 C’s non-correlated with R∗’s ΣCR∗ = ΣR∗C = 0

C4 All C’s and R∗’s are non-correlated Σ diagonal
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It should be remarked that in Cases C2, C3 and C4, Σ can be written as a block
diagonal matrix, after a possible rearrangement of rows and columns; therefore maxi-
mum likelihood estimates under these cases can be obtained directly from the classical
non-restricted estimates. Testing for the different models/configurations can be done
in a straightforward manner, using the likelihood-ratio approach.

This modeling has been implemented in the R-packageMAINT. Data (Duarte Silva
and Brito 2017), available on CRAN. MAINT.Data introduces a data class for rep-
resenting interval data and includes functions for modeling and analysing these data.
In particular, maximum likelihood estimation and statistical tests for the considered
configurations are addressed. Methods for (M)ANOVA and Discriminant Analysis of
this data class are also provided.

3 Robust parameter estimation and outlier detection

The identification of outliers is based on robust Mahalanobis distances from each data
point to the mean. These values are then compared with the 97.5% quantile of an
appropriate distribution. Traditionally, the χ2

2p distribution (where p is the number
of interval variables and 2p the total number of MidPoints and Log-Ranges) is used.
However, and since the Chi-square approximation to the distribution of Mahalanobis
distances based on the MCD estimator may not work well, even for moderately large
samples, finite samples approximations have been proposed (Cerioli 2010). This will
be detailed below in Sect. 3.2.

3.1 Trimmed maximum likelihood estimation

The Trimmed Log-Likelihood (lnTL) estimator is a special case of the weighted
trimmed likelihood estimator, defined in Hadi and Luceño (1997) and Vandev and
Neykov (1998). The lnTL estimator is defined as

θ̂lnT L := arg min
H ;θ∈Θq

∑

i∈H
(− logϕ(yi ; θ)), (1)

for an index set H ⊂ {1, . . . , n}of sizeh to bedetermined,with the unknownparameter
θ ∈ Θq ⊂ R

q , and where yi ∈ R
d for i = 1, . . . , n are i.i.d. observations with

probability density ϕ(y; θ). Here, h is the trimming parameter, and with the help of
trimming it is possible to remove those n − h observations whose values would be
highly unlikely to occur if the fitted model was true.

Problem (1) is infeasible to solve for larger data sets, with hundreds of observations
or even more. However, Neykov and Müller (2003) proposed a fast algorithm to find
an approximative solution.

3.2 Robust model estimation for interval data

The trimmedMaximum Likelihood principle can be readily adapted to the problem of
robust parameter estimation for the probabilistic models proposed in Brito and Duarte
Silva (2012). In particular, in the case of the Gaussian models to be discussed in this
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paper, the diagonal by blocks structure of the restricted covariance matrix always
implies that trimmed likelihood maximization is equivalent to the minimization of the
determinant of the restricted trimmed sample covariance matrix.

That can be seen by noting that for all configurations considered the trimmed log-
likelihood

ln T L(μ,Σ) = −h

2

(
2p ln(2π) + ln |Σ | + trΣ̃Σ−1 + (μ̃ − μ)t Σ−1 (μ̃ − μ)

)

(2)
where h is the number of observations kept in the trimmed sample, and μ̃ =
1
h

∑h
i=1 Xi , Σ̃ = 1

h

∑h
i=1(Xi − μ̃)(Xi − μ̃)t are respectively the trimmed mean

and trimmed sample covariance.
It follows [see Brito and Duarte Silva (2012)] that when Σ is block diagonal with

blocks Σ1,Σ2, . . . , Σb, ln T L is maximized by μ̂ = μ̃ and

Σ̂ =

⎛

⎜⎜
⎝

Σ̃1

Σ̃2 0
0 . . .

Σ̃b

⎞

⎟⎟
⎠

with Σ̃ j being the block of Σ̃ corresponding to Σ j . The maximal value of ln T L

reduces to − h
2

(
2p ln(2π) + ln|Σ̂ | + 2p

)
so that the trimmed maximum likelihood

and minimum trimmed covariance determinant principles remain equivalent in this
setting.

A consequence of this equivalence is that known refinements of the traditional
Minimal Covariance Determinant Estimator can be readily adapted. In particular,
following Hubert et al. (2008), we implemented a one-step re-weighted bias-corrected
estimate given by

μ̂1 =
∑n

i=1 wi xi
m

(3)

Σ̂1 = lm,2p c1m,h,n,2p,C f

∑n
i=1 wi (xi − μ̂1)(xi − μ̂1)

t

m
(4)

m =
n∑

i=1

wi wi =
{

1, if lh,2p ch,n,2p,C f D
μ̂,Σ̂

(i) ≤ √
Q0.975

0, otherwise

where Q0.975 is the 97.5% quantile of the D2
μ̂,Σ̂

distribution. The traditional approach

consists in using the Chi-square approximation, so that Q0.975 = χ2
2p,0.975, but Hardin

andRocke (2005) proposed using an F distributionwith better finite sample properties.
In expression (4), lα,2p = α/n

P(χ2
2p+2≤χ2

2p;α/n)
(α = m; h) are consistency correction

factors, C f = {C1, C2, C3, C4} are the alternative configurations of the covariance
matrix, and ch,n,2p,C f , c1m,h,n,2p,C f , are raw (ch,n,2p,C f ) and one-step re-weighted
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Table 4 Raw finite sample correction factors: ch,n,2p,C f

n h/n p=4 p=10

C1 C2 C3 C4 C1 C2 C3 C4

50 0.50 1.2640 1.1574 1.1597 1.1137 1.4446 1.1217 1.2329 1.0917

0.75 1.1473 1.0918 1.0947 1.0687 1.2732 1.0796 1.1517 1.0611

200 0.50 1.0657 1.0423 1.0426 1.0314 1.1031 1.0356 1.0628 1.0275

0.75 1.0361 1.0237 1.0236 1.0176 1.0631 1.0216 1.0385 1.0168

Table 5 Re-weighted finite sample correction factors: c1m,[0.75 n],n,2p,C f

n m/n p=4 p=10

C1 C2 C3 C4 C1 C2 C3 C4

50 0.750 1.1655 1.1019 1.1258 1.1196 1.2301 1.1154 1.1531 1.1341

0.975 1.0462 1.0488 1.0419 1.0472 1.0979 1.0610 1.0653 1.0598

200 0.750 1.1214 1.0598 1.0899 1.0747 1.1316 1.0649 1.0942 1.0790

0.975 1.0105 1.0106 1.0110 1.0078 1.0188 1.0153 1.0147 1.0115

(c1m,h,n,2p,C f ) finite-sample bias-correction factors, found by a simulation and inter-
polation procedure, along the lines proposed in Pison et al. (2002), and described in
the Appendix.

Illustrative values of finite sample correction factors are given in Table 4 (raw
correction factors) and Table 5 (re-weighted correction factors).

The final rule for outlier identification compares the robust Mahalanobis distances,
based on covariance estimates obtained as discussed above, with the 97.5% quantile
of either the χ2

2p distribution or using the approximations [see Cerioli (2010)]:

D2
μ̂1,Σ̂1

∼ (m − 1)2

m
Beta

(
p,

m − 2p − 1

2

)
, i f wi = 1 (5)

D2
μ̂1,Σ̂1

∼ m + 1

m

(m − 1)2p

m − 2p
F (2p,m − 2p) , i f wi = 0 (6)

3.3 Choice of the trimming parameter

The trimmed maximum likelihood estimation procedure, described in the previous
section, relies on the choice of the value of the trimming parameter h. There is no con-
sensus on how to choose this parameter. One has to consider the trade-off between the
potential outlier influence and the efficiency of the resulting estimators. One extreme
consists in maximizing the breakdown point, which leads to roughly half the sample.
The other extreme is the maximum likelihood estimation, which maximizes efficiency
but is also the most sensitive to outliers. Some authors (Hubert et al. 2008) suggest
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using 75% of the sample, which they argue, usually results in a reasonable compro-
mise. Ideally, one should use the true number of regular observations, this is however
unknown in practice.

These considerations lead us to proposing a two-step approach. In the first step,
the outlier detection procedure is run to get an estimate of the outlier proportion. The
second step repeats the procedure fixing the trimming parameter at the obtained value.

To assess the good founding of this proposal, a small simulation study has been con-
ducted, controlling for the sample size, the outlier proportion, the contamination level
and the data covariance structure. This simulation considered the following alterna-
tives:maximum likelihood,maximization of the breakdownpoint, setting the trimming
parameter to 75% of the sample, the two-step approach with 50% and 75% in the first
step, and the trimming parameter chosen by the Bayesian Information Criterion (BIC).
The performance measure used to compare these methods is the F-measure, defined
as the harmonic mean of Precision and Recall [see, for instance, Rijsbergen (1979)],
where Precision is the fraction of identified data points that are indeed outliers, while
Recall is the fraction of true outliers that are identified as outliers by the method. This
measure is computed as:

F = 2 × true positives

2 × true positives + false positives + false negatives
(7)

The higher the F-measure the better the method’s performance.
The results showed that depending on the data condition either the maximum like-

lihood, the method that maximizes the breakdown point, or the two step procedure
with 75% in the first step, provide the best results. These three methods will be further
compared in a more extensive simulation study to be described in Sect. 4.

Results of this preliminary study are available from the authors upon request.
Furthermore, we found that these procedures scale well and we were able to apply

them to problems with up to n = 1000 observations and p = 50 interval-valued
variables in less than 10 minutes of computer time.

4 Simulation studies

To better understand the factors affecting the relative performance of the methods
under comparison, we performed a controlled simulation experiment.

4.1 Experimental design

We considered a factorial design with the following six factors:

– Number of interval variables (NV - 2 levels): p = 4 and p = 10.
– Sample size (SS - 3 levels): Total number of sample observations, set at n =
50, n = 100, n = 200.

– Data Generating Process (DGP - 2 levels): MidPoints and Log-Ranges jointly
Normally distributed or generated from linear transformations of Gaussian and
Uniform variables.
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Table 6 Methods with the largest F-measure, for the considered data settings–p=4

Gaussian data Gaussian and Uniform data

Noise=0.05 Noise=0.1 Noise=0.2 Noise=0.05 Noise=0.1 Noise=0.2

n Contamination Level=3; Case=C1

50 TStp75n 0.50n 0.50n TStp75n 0.50n 0.50n

100 0.50n 0.50n 0.50n TStp75n 0.50n 0.50n

200 0.50n 0.50n 0.50n 0.50n 0.50n 0.50n

n Contamination Level=3; Case=C2

50 Fs0.50n 0.50n 0.50n 0.50n 0.50n 0.50n

100 0.50n 0.50n 0.50n 0.50n 0.50n 0.50n

200 0.50n 0.50n 0.50n 0.50n 0.50n 0.50n

n Contamination Level=3; Case=C3

50 TStp75n 0.50n 0.50n TStp75n 0.50n 0.50n

100 0.50n 0.50n 0.50n TStp75n 0.50n 0.50n

200 0.50n 0.50n 0.50n TStp75n 0.50n 0.50n

n Contamination Level=3; Case=C4

50 Fs0.50n 0.50n 0.50n Fs0.50n Fs0.50n 0.50n

100 TStp75n 0.50n 0.50n Fs0.50n 0.50n 0.50n

200 0.50n 0.50n 0.50n Fs0.50n 0.50n 0.50n

n Contamination Level=6; Case=C1

50 FsTStp75n TStp75n 0.50n FsTStp75n TStp75n 0.50n

100 FsTStp75n FsTStp75n 0.50n FsTStp75n TStp75n 0.50n

200 FsTStp75n FsTStp75n 0.50n FsTStp75n FsTStp75n 0.50n

n Contamination Level=6; Case=C2

50 Alln(MLE) TStp75n 0.50n Alln(MLE) TStp75n 0.50n

100 Alln(MLE) FsTStp75n 0.50n Alln(MLE) FsTStp75n 0.50n

200 FsTStp75n FsTStp75n 0.50n FsTStp75n Fs0.50n 0.50n

n Contamination Level=6; Case=C3

50 FsTStp75n TStp75n 0.50n FsTStp75n TStp75n 0.50n

100 FsTStp75n FsTStp75n 0.50n FsTStp75n FsTStp75n 0.50n

200 FsTStp75n FsTStp75n 0.50n FsTStp75n FsTStp75n 0.50n

n Contamination Level=6; Case=C4

50 Alln(MLE) TStp75n 0.50n Alln(MLE) TStp75n 0.50n

100 Alln(MLE) Fs0.50n TStp75n FsTStp75n Fs0.50n 0.50n

200 FsTStp75n FsTStp75n 0.50n FsTStp75n Fs0.50n 0.50n

n Contamination Level=12; Case=C1

50 Alln(MLE) FsTStp75n Fs0.50n Alln(MLE) FsTStp75n Fs0.50n

100 FsTStp75n FsTStp75n Fs0.50n FsTStp75n FsTStp75n FsTStp75n

200 FsTStp75n FsTStp75n FsTStp75n FsTStp75n FsTStp75n FsTStp75n
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Table 6 continued

Gaussian data Gaussian and Uniform data

Noise=0.05 Noise=0.1 Noise=0.2 Noise=0.05 Noise=0.1 Noise=0.2

n Contamination Level=12; Case=C2

50 Alln(MLE) FsTStp75n TStp75n Alln(MLE) FsTStp75n TStp75n

100 FsTStp75n FsTStp75n TStp75n FsTStp75n FsTStp75n TStp75n

200 FsTStp75n FsTStp75n Fs0.50n FsTStp75n FsTStp75n Fs0.50n

n Contamination Level=12; Case=C3

50 Alln(MLE) FsTStp75n TStp75n Alln(MLE) FsTStp75n TStp75n

100 FsTStp75n FsTStp75n FsTStp75n FsTStp75n FsTStp75n TStp75n

200 FsTStp75n FsTStp75n FsTStp75n FsTStp75n FsTStp75n FsTStp75n

n Contamination Level=12; Case=C4

50 Alln(MLE) FsTStp75n TStp75n Alln(MLE) FsTStp75n TStp75n

100 FsTStp75n FsTStp75n TStp75n FsTStp75n FsTStp75n TStp75n

200 FsTStp75n FsTStp75n Fs0.50n FsTStp75n FsTStp75n Fs0.50n

– True configuration (TConf - 4 levels): Case of true covariance of MidPoints and
Log-Ranges. Set at the levels C1 (unrestricted), C2 (Uncorrelated Interval Vari-
ables), C3 (MidPoints uncorrelated with Log-Ranges) and C4 (all MidPoints and
Log-Ranges uncorrelated with each other).

– Noise level (NL - 4 levels): Percentage of true outliers, set at Noise=0.0%, 5.0%,
10.0%, 20.0%.

– Contamination level (CL - 3 levels): Mahalanobis distance between the mean
vectors (2p-dimensional) of the regular and the outlying observations, set at
3.0, 6.0, 12.0.

– Method (M - 6 levels): Maximum likelihood (Alln (MLE)), maximum trimmed
likelihood with 50% trimming, with quantiles from the Chi-square (0.50n) or from
the F or Beta distributions (Fs0.50n), two-step maximum trimmed likelihood with
75% trimming in the first step, with quantiles from the Chi-square (TStp75n) or
from the F or Beta distributions (FsTStp75n), the distance-based approach by Li
et al. (2006), with four neighbors and the true number of outliers (LLLk4).

For each data condition with true outliers, defined by a combination of factors NV,
SS, DGP, TConf, NL and CL we generated 1000 independent samples, and applied
the six outlier detection methods. In each case, we computed the Precision, Recall and
F-measure (see (7)), as defined in Sect. 3.3. For the conditions with no outliers, the
distance-based approach by Li et al. (2006) was not applied; for all other methods we
computed the proportion of observations incorrectly flagged as outliers.
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Table 7 Methods with the largest F-measure, for the considered data settings–p=10

Gaussian data Gaussian and Uniform data

Noise=0.05 Noise=0.1 Noise=0.2 Noise=0.05 Noise=0.1 Noise=0.2

n Contamination Level=3; Case=C1

50 TStp75n 0.50n 0.50n TStp75n 0.50n 0.50n

100 TStp75n 0.50n 0.50n TStp75n 0.50n 0.50n

200 0.50n 0.50n 0.50n 0.50n 0.50n 0.50n

n Contamination Level=3; Case=C2

50 Fs0.50n Fs0.50n Fs0.50n FsTStp75n Fs0.50n Fs0.50n

100 Fs0.50n 0.50n 0.50n Fs0.50n Fs0.50n Fs0.50n

200 0.50n 0.50n 0.50n Fs0.50n 0.50n 0.50n

n Contamination Level=3; Case=C3

50 TStp75n 0.50n 0.50n TStp75n 0.50n 0.50n

100 0.50n 0.50n 0.50n 0.50n 0.50n 0.50n

200 0.50n 0.50n 0.50n 0.50n 0.50n 0.50n

n Contamination Level=3; Case=C4

50 Fs0.50n Fs0.50n Fs0.50n FsTStp75n Fs0.50n Fs0.50n

100 Fs0.50n Fs0.50n Fs0.50n Fs0.50n Fs0.50n Fs0.50n

200 Fs0.50n Fs0.50n Fs0.50n Fs0.50n Fs0.50n Fs0.50n

n Contamination Level=6; Case=C1

50 TStp75n TStp75n 0.50n TStp75n TStp75n 0.50n

100 Fs0.50n TStp75n 0.50n TStp75n TStp75n 0.50n

200 Fs0.50n 0.50n 0.50n Fs0.50n 0.50n 0.50n

n Contamination Level=6; Case=C2

50 Alln(MLE) TStp75n 0.50n TStp75n 0.50n 0.50n

100 TStp75n TStp75n 0.50n TStp75n 0.50n 0.50n

200 TStp75n TStp75n 0.50n TStp75n 0.50n 0.50n

n Contamination Level=6; Case=C3

50 Fs0.50n TStp75n 0.50n Fs0.50n TStp75n 0.50n

100 TStp75n TStp75n 0.50n TStp75n TStp75n 0.50n

200 FsTStp75n 0.50n 0.50n TStp75n 0.50n 0.50n

n Contamination Level=6; Case=C4

50 Alln(MLE) TStp75n 0.50n TStp75n 0.50n 0.50n

100 Alln(MLE) TStp75n 0.50n TStp75n 0.50n 0.50n

200 Alln(MLE) TStp75n 0.50n TStp75n TStp75n 0.50n

n Contamination Level=12; Case=C1

50 FsTStp75n TStp75n 0.50n FsTStp75n TStp75n 0.50n

100 FsTStp75n Fs0.50n Fs0.50n FsTStp75n Fs0.50n Fs0.50n

200 FsTStp75n FsTStp75n Fs0.50n FsTStp75n FsTStp75n Fs0.50n
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Table 7 continued

Gaussian data Gaussian and Uniform data

Noise=0.05 Noise=0.1 Noise=0.2 Noise=0.05 Noise=0.1 Noise=0.2

n Contamination Level=12; Case=C2

50 Alln(MLE) Alln(MLE) TStp75n Alln(MLE) Alln(MLE) TStp75n

100 Alln(MLE) TStp75n TStp75n Alln(MLE) TStp75n TStp75n

200 Alln(MLE) TStp75n TStp75n Alln(MLE) TStp75n TStp75n

n Contamination Level=12; Case=C3

50 Alln(MLE) TStp75n 0.50n Alln(MLE) TStp75n 0.50n

100 FsTStp75n FsTStp75n Fs0.50n FsTStp75n FsTStp75n Fs0.50n

200 FsTStp75n FsTStp75n TStp75n FsTStp75n FsTStp75n TStp75n

n Contamination Level=12; Case=C4

50 Alln(MLE) TStp75n 0.50n Alln(MLE) TStp75n 0.50n

100 Alln(MLE) TStp75n TStp75n Alln(MLE) TStp75n TStp75n

200 Alln(MLE) TStp75n TStp75n TStp75n TStp75n TStp75n

4.2 Data generation

Data were generated as follows:
For each observation si , i = 1, . . . , n, we first generated a 2p dimension random

vector, V = [V1V2], with independent components.
For Case 4, whereMidPoints and Log-Ranges are uncorrelated both between them-

selves and between each other, the V1 variables define the intervals’ MidPoints C , and
the V2 variables the Log-Ranges R∗.

In Case 3, MidPoints (Log-Ranges) of different variables may be correlated, but
no correlation between MidPoints and Log-Ranges is allowed. Then, the MidPoints
C are given by linear combinations of the V1 components, C = L1 V t

1 ; likewise, the
Log-Ranges R∗ are given by linear combinations of the V2 components, R∗ = L2 V t

2 .
The coefficients in matrices L1 and L2 are obtained from independently generated
Uniform values, which are then normalized to ensure that L1 and L2 are orthonormal.

Case 1 allows for non-zero correlations among all MidPoints and Log-Ranges.
Therefore, MidPoints C are defined as linear combinations of both V1 and V2 compo-
nents, C = [L1|L3] [V t

1V
t
2 ]t . Log-Ranges R∗ are then given by linear combinations

of the V2 components, R∗ = L2 V t
2 . L = [L1|L3] and L2 are orthonormal matrices

obtained as in Case 3.
Finally, in Case 2 interval-valued variables Y j are uncorrelated, but for each vari-

able, the MidPoint may be correlated with its Log-Range. Accordingly, C and R∗ are
generated in the same way as in Case 1, but placing all required zeros in matrices
L1, L2, L3 to ensure that MidPoints and Log-Ranges of different interval variables
have null correlations.

In the first setup, both V1 and V2 are Gaussian, whereas in the second setup V1 is
multivariate Normal and V2 is a vector of independent Uniform variables. In all cases,

123



798 A. P. Duarte Silva et al.

Ta
bl
e
8

F-
m
ea
su
re

ob
ta
in
ed

by
th
e
be
st
m
et
ho
ds

lis
te
d
in

Ta
bl
es

6
an
d
7,
fo
r
th
e
co
rr
es
po

nd
in
g
da
ta
se
tti
ng

s–
p
=
4:

m
ea
n
(s
ta
nd

ar
d
er
ro
r)

G
au
ss
ia
n
da
ta

G
au
ss
ia
n
an
d
U
ni
fo
rm

da
ta

N
oi
se
=
0.
05

N
oi
se
=
0.
1

N
oi
se
=
0.
2

N
oi
se
=
0.
05

N
oi
se
=
0.
1

N
oi
se
=
0.
2

n
C
on

ta
m
in
at
io
n
L
ev
el
=
3;

C
as
e
=
C
1

50
0.
29

01
(0
.0
07

9)
0.
33

30
(0
.0
06

8)
0.
33

80
(0
.0
06

4)
0.
34

27
(0
.0
09

2)
0.
33

73
(0
.0
06

6)
0.
33

67
(0
.0
06

3)

10
0

0.
34

13
(0
.0
06

7)
0.
32

89
(0
.0
06

1)
0.
20

83
(0
.0
04

6)
0.
40

19
(0
.0
08

0)
0.
35

81
(0
.0
06

5)
0.
20

58
(0
.0
04

9)

20
0

0.
35

35
(0
.0
05

0)
0.
31

43
(0
.0
04

5)
0.
15

95
(0
.0
03

0)
0.
41

07
(0
.0
05

8)
0.
32

63
(0
.0
04

9)
0.
13

82
(0
.0
02

9)

n
C
on

ta
m
in
at
io
n
L
ev
el
=
3;

C
as
e
=
C
2

50
0.
38

75
(0
.0
09

8)
0.
41

91
(0
.0
07

8)
0.
32

74
(0
.0
06

3)
0.
42

87
(0
.0
10

8)
0.
44

88
(0
.0
08

1)
0.
32

39
(0
.0
06

4)

10
0

0.
40

57
(0
.0
06

9)
0.
41

33
(0
.0
05

7)
0.
28

04
(0
.0
04

4)
0.
46

20
(0
.0
07

5)
0.
42

04
(0
.0
05

8)
0.
28

16
(0
.0
04

5)

20
0

0.
40

05
(0
.0
04

8)
0.
39

96
(0
.0
04

1)
0.
27

39
(0
.0
03

1)
0.
45

28
(0
.0
05

2)
0.
42

81
(0
.0
04

1)
0.
26

21
(0
.0
03

3)

n
C
on

ta
m
in
at
io
n
L
ev
el
=
3;

C
as
e
=
C
3

50
0.
36

64
(0
.0
09

7)
0.
40

12
(0
.0
07

8)
0.
31

18
(0
.0
06

6)
0.
40

81
(0
.0
10

7)
0.
41

49
(0
.0
07

9)
0.
30

44
(0
.0
06

8)

10
0

0.
37

19
(0
.0
06

6)
0.
37

47
(0
.0
05

8)
0.
24

81
(0
.0
04

5)
0.
42

07
(0
.0
07

7)
0.
38

07
(0
.0
06

1)
0.
22

03
(0
.0
04

5)

20
0

0.
39

32
(0
.0
05

2)
0.
37

43
(0
.0
04

3)
0.
21

27
(0
.0
03

1)
0.
42

51
(0
.0
05

5)
0.
36

89
(0
.0
04

4)
0.
18

21
(0
.0
03

0)

n
C
on

ta
m
in
at
io
n
L
ev
el
=
3;

C
as
e
=
C
4

50
0.
39

51
(0
.0
09

9)
0.
41

55
(0
.0
07

6)
0.
32

01
(0
.0
06

0)
0.
46

48
(0
.0
11

0)
0.
42

22
(0
.0
07

0)
0.
29

48
(0
.0
05

9)

10
0

0.
41

29
(0
.0
07

2)
0.
42

41
(0
.0
05

6)
0.
31

12
(0
.0
04

2)
0.
46

59
(0
.0
06

9)
0.
42

17
(0
.0
05

7)
0.
29

17
(0
.0
04

3)

20
0

0.
40

83
(0
.0
04

9)
0.
41

63
(0
.0
04

0)
0.
29

84
(0
.0
03

1)
0.
45

92
(0
.0
05

0)
0.
42

73
(0
.0
04

1)
0.
28

59
(0
.0
03

1)

n
C
on

ta
m
in
at
io
n
L
ev
el
=
6;

C
as
e
=
C
1

50
0.
83

76
(0
.0
06

3)
0.
82

86
(0
.0
04

7)
0.
79

74
(0
.0
06

4)
0.
89

55
(0
.0
05

7)
0.
88

64
(0
.0
03

7)
0.
83

53
(0
.0
05

7)

10
0

0.
88

20
(0
.0
03

3)
0.
92

93
(0
.0
04

0)
0.
93

23
(0
.0
03

0)
0.
93

90
(0
.0
02

6)
0.
94

23
(0
.0
02

0)
0.
95

20
(0
.0
02

2)

20
0

0.
88

16
(0
.0
02

0)
0.
94

70
(0
.0
01

4)
0.
96

16
(0
.0
01

3)
0.
93

70
(0
.0
01

6)
0.
96

77
(0
.0
01

2)
0.
96

81
(0
.0
01

2)

123



Outlier detection in interval data 799

Ta
bl
e
8

co
nt
in
ue
d

G
au
ss
ia
n
da
ta

G
au
ss
ia
n
an
d
U
ni
fo
rm

da
ta

N
oi
se
=
0.
05

N
oi
se
=
0.
1

N
oi
se
=
0.
2

N
oi
se
=
0.
05

N
oi
se
=
0.
1

N
oi
se
=
0.
2

n
C
on

ta
m
in
at
io
n
L
ev
el
=
6;

C
as
e
=
C
2

50
0.
89

16
(0
.0
04

4)
0.
93

64
(0
.0
02

1)
0.
96

06
(0
.0
01

4)
0.
94

35
(0
.0
03

6)
0.
96

02
(0
.0
01

9)
0.
96

94
(0
.0
01

5)

10
0

0.
89

07
(0
.0
03

0)
0.
94

85
(0
.0
01

5)
0.
97

08
(0
.0
00

9)
0.
94

39
(0
.0
02

2)
0.
97

14
(0
.0
01

2)
0.
98

07
(0
.0
00

7)

20
0

0.
87

90
(0
.0
01

9)
0.
95

10
(0
.0
01

0)
0.
97

52
(0
.0
00

6)
0.
94

07
(0
.0
01

5)
0.
97

42
(0
.0
00

8)
0.
98

15
(0
.0
00

5)

n
C
on

ta
m
in
at
io
n
L
ev
el
=
6;

C
as
e
=
C
3

50
0.
86

27
(0
.0
04

7)
0.
91

36
(0
.0
02

5)
0.
93

58
(0
.0
02

1)
0.
91

63
(0
.0
04

7)
0.
94

24
(0
.0
02

2)
0.
95

03
(0
.0
02

4)

10
0

0.
89

28
(0
.0
02

8)
0.
94

68
(0
.0
02

0)
0.
96

40
(0
.0
01

2)
0.
94

36
(0
.0
02

3)
0.
96

77
(0
.0
01

6)
0.
96

97
(0
.0
01

2)

20
0

0.
88

55
(0
.0
02

0)
0.
95

21
(0
.0
01

1)
0.
97

18
(0
.0
00

7)
0.
94

35
(0
.0
01

5)
0.
97

41
(0
.0
00

8)
0.
97

62
(0
.0
00

7)

n
C
on

ta
m
in
at
io
n
L
ev
el
=
6;

C
as
e
=
C
4

50
0.
90

68
(0
.0
03

9)
0.
94

59
(0
.0
02

0)
0.
96

75
(0
.0
01

4)
0.
95

16
(0
.0
03

4)
0.
96

58
(0
.0
01

8)
0.
97

57
(0
.0
01

3)

10
0

0.
89

59
(0
.0
03

0)
0.
94

84
(0
.0
01

3)
0.
97

46
(0
.0
00

9)
0.
93

66
(0
.0
02

2)
0.
97

14
(0
.0
01

2)
0.
97

82
(0
.0
00

8)

20
0

0.
87

24
(0
.0
01

9)
0.
95

22
(0
.0
01

0)
0.
97

53
(0
.0
00

6)
0.
93

59
(0
.0
01

6)
0.
97

42
(0
.0
00

8)
0.
97

91
(0
.0
00

6)

n
C
on
ta
m
in
at
io
n
L
ev
el
=
12
;C

as
e
=
C
1

50
0.
91

23
(0
.0
03

5)
0.
97

36
(0
.0
01

4)
0.
99

37
(0
.0
00

7)
0.
94

76
(0
.0
03

0)
0.
98

48
(0
.0
01

1)
0.
99

71
(0
.0
00

4)

10
0

0.
90

20
(0
.0
02

5)
0.
96

99
(0
.0
01

1)
0.
99

41
(0
.0
00

4)
0.
95

03
(0
.0
02

0)
0.
98

39
(0
.0
00

8)
0.
99

92
(0
.0
00

1)

20
0

0.
89

36
(0
.0
01

8)
0.
96

63
(0
.0
00

8)
0.
99

60
(0
.0
00

2)
0.
94

50
(0
.0
01

4)
0.
98

57
(0
.0
00

6)
0.
99

85
(0
.0
00

1)

n
C
on
ta
m
in
at
io
n
L
ev
el
=
12
;C

as
e
=
C
2

50
0.
91

95
(0
.0
03

5)
0.
95

96
(0
.0
01

7)
0.
99

31
(0
.0
02

3)
0.
95

79
(0
.0
02

6)
0.
98

00
(0
.0
01

2)
0.
99

86
(0
.0
00

4)

10
0

0.
89

27
(0
.0
02

5)
0.
96

01
(0
.0
01

2)
0.
99

33
(0
.0
00

4)
0.
94

30
(0
.0
01

9)
0.
98

32
(0
.0
00

8)
0.
99

75
(0
.0
00

3)

20
0

0.
88

27
(0
.0
01

9)
0.
96

04
(0
.0
00

9)
0.
99

27
(0
.0
00

3)
0.
94

46
(0
.0
01

5)
0.
98

42
(0
.0
00

6)
0.
99

76
(0
.0
00

2)

123



800 A. P. Duarte Silva et al.

Ta
bl
e
8

co
nt
in
ue
d

G
au
ss
ia
n
da
ta

G
au
ss
ia
n
an
d
U
ni
fo
rm

da
ta

N
oi
se
=
0.
05

N
oi
se
=
0.
1

N
oi
se
=
0.
2

N
oi
se
=
0.
05

N
oi
se
=
0.
1

N
oi
se
=
0.
2

n
C
on
ta
m
in
at
io
n
L
ev
el
=
12
;C

as
e
=
C
3

50
0.
91

71
(0
.0
03

4)
0.
97

23
(0
.0
01

5)
0.
99

68
(0
.0
01

3)
0.
96

03
(0
.0
02

5)
0.
98

80
(0
.0
01

0)
0.
99

99
(0
.0
00

1)

10
0

0.
90

78
(0
.0
02

4)
0.
96

99
(0
.0
01

1)
0.
99

39
(0
.0
00

4)
0.
95

11
(0
.0
01

9)
0.
98

75
(0
.0
00

7)
0.
99

85
(0
.0
00

2)

20
0

0.
89

27
(0
.0
01

9)
0.
96

49
(0
.0
00

9)
0.
99

39
(0
.0
00

3)
0.
95

01
(0
.0
01

4)
0.
98

63
(0
.0
00

6)
0.
99

81
(0
.0
00

2)

n
C
on
ta
m
in
at
io
n
L
ev
el
=
12
;C

as
e
=
C
4

50
0.
92

35
(0
.0
03

2)
0.
95

74
(0
.0
01

7)
0.
99

36
(0
.0
01

8)
0.
95

89
(0
.0
02

6)
0.
98

07
(0
.0
01

2)
0.
99

83
(0
.0
00

8)

10
0

0.
88

10
(0
.0
02

5)
0.
96

29
(0
.0
01

1)
0.
99

29
(0
.0
00

4)
0.
94

47
(0
.0
02

0)
0.
98

25
(0
.0
00

8)
0.
99

80
(0
.0
00

2)

20
0

0.
88

22
(0
.0
01

9)
0.
96

00
(0
.0
00

9)
0.
99

29
(0
.0
00

3)
0.
94

24
(0
.0
01

4)
0.
98

36
(0
.0
00

6)
0.
99

78
(0
.0
00

2)

123



Outlier detection in interval data 801

Ta
bl
e
9

F-
m
ea
su
re

ob
ta
in
ed

by
th
e
be
st
m
et
ho
ds

lis
te
d
in

Ta
bl
es

6
an
d
7,
fo
r
th
e
co
rr
es
po

nd
in
g
da
ta
se
tti
ng

s–
p
=
10

:m
ea
n
(s
ta
nd

ar
d
er
ro
r)

G
au
ss
ia
n
da
ta

G
au
ss
ia
n
an
d
U
ni
fo
rm

da
ta

N
oi
se
=
0.
05

N
oi
se
=
0.
1

N
oi
se
=
0.
2

N
oi
se
=
0.
05

N
oi
se
=
0.
1

N
oi
se
=
0.
2

n
C
on

ta
m
in
at
io
n
L
ev
el
=
3;

C
as
e
=
C
1

50
0.
15

73
(0
.0
05

9)
0.
20

65
(0
.0
03

8)
0.
27

64
(0
.0
03

9)
0.
15

25
(0
.0
05

9)
0.
20

97
(0
.0
03

7)
0.
27

50
(0
.0
03

8)

10
0

0.
20

56
(0
.0
05

0)
0.
23

82
(0
.0
03

7)
0.
26

41
(0
.0
03

2)
0.
23

06
(0
.0
05

2)
0.
24

46
(0
.0
04

1)
0.
25

80
(0
.0
03

7)

20
0

0.
20

72
(0
.0
04

0)
0.
20

25
(0
.0
03

5)
0.
14

32
(0
.0
02

3)
0.
23

17
(0
.0
04

6)
0.
19

01
(0
.0
03

7)
0.
11

16
(0
.0
02

1)

n
C
on

ta
m
in
at
io
n
L
ev
el
=
3;

C
as
e
=
C
2

50
0.
25

91
(0
.0
08

0)
0.
29

80
(0
.0
06

4)
0.
25

19
(0
.0
04

6)
0.
30

55
(0
.0
09

4)
0.
32

76
(0
.0
06

8)
0.
23

61
(0
.0
04

5)

10
0

0.
26

50
(0
.0
05

9)
0.
27

73
(0
.0
05

1)
0.
20

11
(0
.0
03

7)
0.
30

76
(0
.0
06

4)
0.
27

62
(0
.0
04

9)
0.
16

88
(0
.0
03

1)

20
0

0.
26

30
(0
.0
04

7)
0.
25

84
(0
.0
03

6)
0.
18

68
(0
.0
02

5)
0.
28

52
(0
.0
05

0)
0.
25

84
(0
.0
03

9)
0.
15

15
(0
.0
02

4)

n
C
on

ta
m
in
at
io
n
L
ev
el
=
3;

C
as
e
=
C
3

50
0.
19

61
(0
.0
06

7)
0.
28

53
(0
.0
05

2)
0.
31

67
(0
.0
04

8)
0.
22

80
(0
.0
07

4)
0.
28

72
(0
.0
05

5)
0.
31

39
(0
.0
05

1)

10
0

0.
23

89
(0
.0
05

3)
0.
27

02
(0
.0
05

0)
0.
20

21
(0
.0
03

8)
0.
27

21
(0
.0
06

4)
0.
26

56
(0
.0
05

3)
0.
17

38
(0
.0
03

8)

20
0

0.
23

61
(0
.0
04

5)
0.
23

37
(0
.0
03

7)
0.
14

49
(0
.0
02

3)
0.
25

95
(0
.0
05

0)
0.
21

66
(0
.0
03

8)
0.
10

93
(0
.0
02

1)

n
C
on

ta
m
in
at
io
n
L
ev
el
=
3;

C
as
e
=
C
4

50
0.
26

15
(0
.0
07

5)
0.
33

38
(0
.0
06

2)
0.
28

65
(0
.0
04

8)
0.
31

75
(0
.0
09

3)
0.
36

61
(0
.0
06

8)
0.
28

06
(0
.0
04

6)

10
0

0.
27

47
(0
.0
05

7)
0.
29

26
(0
.0
04

6)
0.
21

69
(0
.0
03

1)
0.
31

44
(0
.0
06

7)
0.
29

58
(0
.0
05

2)
0.
19

78
(0
.0
03

2)

20
0

0.
27

00
(0
.0
04

3)
0.
27

52
(0
.0
03

4)
0.
19

71
(0
.0
02

3)
0.
30

23
(0
.0
04

8)
0.
27

36
(0
.0
03

5)
0.
17

02
(0
.0
02

2)

n
C
on

ta
m
in
at
io
n
L
ev
el
=
6;

C
as
e
=
C
1

50
0.
43

27
(0
.0
06

8)
0.
35

22
(0
.0
09

7)
0.
31

15
(0
.0
04

6)
0.
44

11
(0
.0
06

5)
0.
38

54
(0
.0
10

1)
0.
32

10
(0
.0
04

9)

10
0

0.
65

26
(0
.0
09

7)
0.
58

51
(0
.0
08

9)
0.
38

68
(0
.0
07

0)
0.
61

42
(0
.0
04

3)
0.
67

65
(0
.0
08

8)
0.
41

76
(0
.0
07

9)

20
0

0.
78

73
(0
.0
04

6)
0.
79

84
(0
.0
02

7)
0.
68

65
(0
.0
10

8)
0.
84

05
(0
.0
04

4)
0.
85

78
(0
.0
02

7)
0.
76

11
(0
.0
09

6)

123



802 A. P. Duarte Silva et al.

Ta
bl
e
9

co
nt
in
ue
d

G
au
ss
ia
n
da
ta

G
au
ss
ia
n
an
d
U
ni
fo
rm

da
ta

N
oi
se
=
0.
05

N
oi
se
=
0.
1

N
oi
se
=
0.
2

N
oi
se
=
0.
05

N
oi
se
=
0.
1

N
oi
se
=
0.
2

n
C
on

ta
m
in
at
io
n
L
ev
el
=
6;

C
as
e
=
C
2

50
0.
82

00
(0
.0
05

9)
0.
89

99
(0
.0
03

7)
0.
91

30
(0
.0
02

6)
0.
90

76
(0
.0
04

9)
0.
92

31
(0
.0
02

7)
0.
93

31
(0
.0
02

4)

10
0

0.
83

63
(0
.0
03

5)
0.
90

30
(0
.0
02

5)
0.
91

90
(0
.0
01

8)
0.
91

26
(0
.0
02

9)
0.
93

84
(0
.0
01

8)
0.
93

63
(0
.0
01

6)

20
0

0.
83

51
(0
.0
02

4)
0.
91

34
(0
.0
01

5)
0.
92

14
(0
.0
01

2)
0.
91

52
(0
.0
02

1)
0.
94

29
(0
.0
01

3)
0.
93

29
(0
.0
01

2)

n
C
on

ta
m
in
at
io
n
L
ev
el
=
6;

C
as
e
=
C
3

50
0.
63

62
(0
.0
08

5)
0.
74

81
(0
.0
08

6)
0.
65

16
(0
.0
08

3)
0.
70

92
(0
.0
08

6)
0.
80

95
(0
.0
07

4)
0.
71

07
(0
.0
08

3)

10
0

0.
72

78
(0
.0
03

7)
0.
82

35
(0
.0
04

8)
0.
85

46
(0
.0
04

8)
0.
82

75
(0
.0
03

8)
0.
86

93
(0
.0
04

0)
0.
88

15
(0
.0
04

2)

20
0

0.
83

14
(0
.0
03

3)
0.
87

36
(0
.0
01

9)
0.
88

20
(0
.0
02

9)
0.
88

16
(0
.0
02

5)
0.
91

02
(0
.0
01

7)
0.
89

55
(0
.0
02

6)

n
C
on

ta
m
in
at
io
n
L
ev
el
=
6;

C
as
e
=
C
4

50
0.
83

75
(0
.0
05

8)
0.
91

12
(0
.0
03

4)
0.
91

79
(0
.0
02

5)
0.
89

67
(0
.0
05

1)
0.
92

90
(0
.0
02

7)
0.
93

15
(0
.0
02

4)

10
0

0.
84

80
(0
.0
03

6)
0.
91

10
(0
.0
02

3)
0.
92

01
(0
.0
01

7)
0.
91

26
(0
.0
02

7)
0.
94

11
(0
.0
01

8)
0.
92

94
(0
.0
01

6)

20
0

0.
84

64
(0
.0
02

5)
0.
91

24
(0
.0
01

4)
0.
92

31
(0
.0
01

2)
0.
91

07
(0
.0
02

0)
0.
94

44
(0
.0
01

2)
0.
93

10
(0
.0
01

2)

n
C
on
ta
m
in
at
io
n
L
ev
el
=
12
;C

as
e
=
C
1

50
0.
98

66
(0
.0
02

0)
0.
92

80
(0
.0
07

7)
0.
48

29
(0
.0
08

7)
0.
99

38
(0
.0
01

4)
0.
95

67
(0
.0
05

9)
0.
53

74
(0
.0
09

0)

10
0

0.
96

86
(0
.0
01

6)
0.
97

83
(0
.0
01

5)
0.
97

60
(0
.0
05

9)
0.
98

82
(0
.0
00

9)
0.
98

77
(0
.0
01

8)
0.
98

73
(0
.0
04

4)

20
0

0.
92

89
(0
.0
01

6)
0.
98

27
(0
.0
00

6)
0.
99

46
(0
.0
00

2)
0.
97

17
(0
.0
01

1)
0.
99

41
(0
.0
00

4)
0.
99

83
(0
.0
00

1)

n
C
on
ta
m
in
at
io
n
L
ev
el
=
12
;C

as
e
=
C
2

50
0.
96

08
(0
.0
02

4)
0.
99

44
(0
.0
00

7)
0.
99

69
(0
.0
00

4)
0.
99

35
(0
.0
01

0)
0.
99

86
(0
.0
01

0)
0.
99

95
(0
.0
00

2)

10
0

0.
97

12
(0
.0
01

5)
0.
96

25
(0
.0
01

3)
0.
99

56
(0
.0
00

3)
0.
99

66
(0
.0
00

5)
0.
98

77
(0
.0
00

8)
0.
99

87
(0
.0
00

2)

20
0

0.
97

27
(0
.0
01

2)
0.
95

56
(0
.0
01

0)
0.
99

27
(0
.0
00

3)
0.
99

43
(0
.0
00

8)
0.
98

45
(0
.0
00

6)
0.
99

80
(0
.0
00

2)

123



Outlier detection in interval data 803

Ta
bl
e
9

co
nt
in
ue
d

G
au
ss
ia
n
da
ta

G
au
ss
ia
n
an
d
U
ni
fo
rm

da
ta

N
oi
se
=
0.
05

N
oi
se
=
0.
1

N
oi
se
=
0.
2

N
oi
se
=
0.
05

N
oi
se
=
0.
1

N
oi
se
=
0.
2

n
C
on
ta
m
in
at
io
n
L
ev
el
=
12
;C

as
e
=
C
3

50
0.
92

53
(0
.0
03

3)
0.
99

91
(0
.0
00

4)
0.
84

60
(0
.0
01

5)
0.
96

98
(0
.0
02

2)
0.
99

92
(0
.0
00

5)
0.
86

79
(0
.0
01

7)

10
0

0.
91

11
(0
.0
02

2)
0.
96

92
(0
.0
01

1)
0.
99

48
(0
.0
00

3)
0.
95

87
(0
.0
01

7)
0.
98

86
(0
.0
00

7)
0.
99

83
(0
.0
00

2)

20
0

0.
89

98
(0
.0
01

7)
0.
96

57
(0
.0
00

8)
0.
99

54
(0
.0
00

2)
0.
95

36
(0
.0
01

3)
0.
98

56
(0
.0
00

5)
0.
99

89
(0
.0
00

1)

n
C
on
ta
m
in
at
io
n
L
ev
el
=
12
;C

as
e
=
C
4

50
0.
97

16
(0
.0
02

1)
0.
97

49
(0
.0
01

4)
0.
97

75
(0
.0
01

0)
0.
99

33
(0
.0
01

0)
0.
99

41
(0
.0
00

7)
0.
99

32
(0
.0
00

5)

10
0

0.
97

05
(0
.0
01

6)
0.
96

46
(0
.0
01

3)
0.
99

49
(0
.0
00

3)
0.
98

74
(0
.0
01

0)
0.
98

75
(0
.0
00

8)
0.
99

88
(0
.0
00

2)

20
0

0.
88

43
(0
.0
02

1)
0.
95

34
(0
.0
01

0)
0.
99

31
(0
.0
00

3)
0.
94

12
(0
.0
01

5)
0.
98

35
(0
.0
00

6)
0.
99

82
(0
.0
00

2)

123



804 A. P. Duarte Silva et al.
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Fig. 1 Performance (F-measure) as a function of the proportion of outlying observations (Noise), covariance
configuration (C1, C2, C3, C4) and number of observations (n), for Mahalanobis distance=3, with p=4
interval variables, generated from Gaussian distributions

variances are set to unity. For the regular observations, all components of V1 and
V2 are generated from distributions with null expected value, while for the outlying
observations the expected values are set to ensure the desired level of Mahalanobis
distance.

4.3 Results

Tables 6 and 7 present the method resulting in the largest F-measure (see (7)) among
all consideredmethods (except the distance-based approach by Li et al. (2006)), for the
data settings with true outliers and Tables 8 and 9 gather the corresponding F values,
for all methods except the distance-based approach by Li et al. (2006). In each case the
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Fig. 2 Performance (F-measure) as a function of the proportion of outlying observations (Noise), covariance
configuration (C1, C2, C3, C4) and number of observations (n), for Mahalanobis distance=3, with p=10
interval variables, generated from Gaussian distributions

mean F value of the 1000 replications is given, along with the corresponding standard
error. Our experiments showed that Li et al. (2006) method (denoted as LLLK4 in
Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9) which requires the knowledge of the true number of
outliers, works the best when the contamination level is either low or highest, but not
in intermediate situations–see Figs. 1, 2, 3, 4, 5 and 6. As the number of outliers is
never known in practice, and its discovery is one of the challenges, comparisons with
this method are not fair and its performance may only be understood as a theoretical
benchmark.

The results are very similar for data generated only fromGaussian or fromGaussian
and Uniform distributions, so that we present graphical representations only for the
former case, in Figs. 1, 2, 3, 4, 5 and 6.
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Fig. 3 Performance (F-measure) as a function of the proportion of outlying observations (Noise), covariance
configuration (C1, C2, C3, C4) and number of observations (n), for Mahalanobis distance=6, with p=4
interval variables, generated from Gaussian distributions

Contamination level =3
With four interval-valued variables, the distance-based approach by Li et al. (2006) is
by far the best, except in some cases with non-restricted covariances with 5% outliers.
Among themethods not using the knowledge of the true number of outliers, themethod
that uses 50% of the sample with quantiles from the Chi-square distribution (denoted
as 0.50n method) is often the best one, sometimes tied with the two-step procedure
with Chi-square quantiles. When the number of interval variables is set to 10 the
pattern is similar, but for unrestricted covariance matrix (C1), with either 5% or 10%
outliers, both the 0.50n method and the two-step approach with Chi-square quantiles
may perform better than the distance-based one.
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Fig. 4 Performance (F-measure) as a function of the proportion of outlying observations (Noise), covariance
configuration (C1, C2, C3, C4) and number of observations (n), for Mahalanobis distance=6, with p=10
interval variables, generated from Gaussian distributions

Contamination level =6
Maximum likelihood (denoted Alln(MLE)) is almost always (with a few exceptions
when p=10) the worse method when the proportion of outliers is equal or higher than
10%, with a remarkable bad performance in configurations involving a large number
of parameters. For p=4, and small samples relatively to the number of parameters,
the performance of the methods using quantiles from the F or the Beta distributions
deteriorates as the true proportion of outliers increases. When we increase the number
of interval variables to 10, for large outlier proportions the 0.50nmethod (using half the
sample with Chi-square quantiles) performs better than the other parametric methods.
When there are only 5% outliers, the FS0.50n method and the two-step approach
with using quantiles from the Chi-square distribution are usually the most competitive
methods.
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Fig. 5 Performance (F-measure) as a function of the proportion of outlying observations (Noise), covariance
configuration (C1, C2, C3, C4) and number of observations (n), for Mahalanobis distance=12, with p=4
interval variables, generated from Gaussian distributions

Contamination level =12
When p=4, maximum likelihood always performs badly when the proportion of out-
liers is equal or higher than 10%. For small samples (n=50), both the 0.50n and the
two-step methods (using quantiles from the Chi-square distribution) do not perform
well. For a larger dimension (p=10), and for medium or large samples, all methods
perform well for the most restricted covariance configurations (C2 and C4), except
maximum likelihood in most cases. With these configurations, when there are only
5% outliers the maximum likelihood method performs the best, for larger outlier pro-
portions the two-step using Chi-square quantiles is overall the most competitive. For
configurations with more parameters (C1 and C3), depending on the particular condi-
tion, either the FS0.50n method or the two-step approach using Chi-square quantiles
provide the best results.
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Fig. 6 Performance (F-measure) as a function of the proportion of outlying observations (Noise), covariance
configuration (C1, C2, C3, C4) and number of observations (n), for Mahalanobis distance=12, with p=10
interval variables, generated from Gaussian distributions

Non-contaminated case
In the situations where there are no outliers, either maximum likelihood (Alln(MLE))
or the two-step approach with quantiles from the F or Beta distributions (FsTStp75n)
are those that flag the lowest number of observations-see Table 10. We note that
maximum likelihood performs better in relative terms for lower sample sizes and
larger number of parameters to be estimated. This general pattern is valid both for data
generated from Gaussian or from Gaussian and Uniform distributions. Furthermore,
in all situations, the proportion of wrongly flagged observations is below the nominal
significance level of 2.5%-see Table 11; Figs. 8 and 9.

General conclusions
We notice that no method is uniformly best across data conditions. Maximum likeli-
hood is competitive with very low numbers of true outliers, but quickly deteriorates as
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Fig. 7 Performance (F-measure) of the considered methods for the different covariance configurations
(C1, C2, C3, C4), with Mahalanobis distance=6, 10% outliers, n=50, p=10, data generated from Gaussian
distributions

the proportion of outliers increases; the method that uses 50% of the sample provides
the best results with high proportions of outliers and low or moderate contamina-
tion levels; the two-step method using Chi-square quantiles (TStp75n) is usually the
best with moderate or large proportions of outliers and moderate or large contamina-
tion levels-see Figs. 1, 2, 3, 4, 5 and 6; this same approach with F or Beta quantiles
(FsTStp75n) works best for small proportions of outliers but requires relatively large
samples, particularly when there are many parameters to be estimated. This aspect
may be relevant for interval data, where the number of parameters grows faster than it
is the case for standard real data, unless highly restricted configurations are assumed.

As concerns the different covariance cases, we note that maximum likelihood and
the methods using F or Beta quantiles perform better in Cases C2 and C4, where
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Fig. 8 Percentage of false outliers Err for all methods, for the different covariance configurations (C1, C2,
C3, C4) and number of observations (n), with p=4

there are less parameters to estimate, specially when the training samples are small.
The two-step methods provide a more stable performance across covariance cases-see
Fig. 7.

In practical cases, a preliminary inspection of the data may provide some insights
as concerns the proportion and severity of outliers; this information together with the
number of variables and the size of the dataset allows identifying appropriate setups
to be considered and therefore the corresponding adequate methods.

5 Application

In this section we analyse a set of 27 car models described by four interval-valued
variables–lnPrice, Engine Capacity, Top Speed, Acceleration (see Table 12). We use
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Fig. 9 Percentage of false outliers for all methods, for the different covariance configurations (C1, C2, C3,
C4) and number of observations (n), with p=10

the natural logarithm of the Price, since the MidPoints of the original Price variable
have a strong positive skewness. The dataset is available in the package MAINT.Data.

We proceed to outlier detection, based on Mahalanobis distances (from each car
model to the mean estimate) and considering the 97.5% quantiles of the relevant dis-
tributions. Preliminary likelihood ratio tests reject all restricted configurations against
the full model at 1% significance level. BIC values obtained by our robust procedure
also point to the unrestricted configuration. To decide on themethod to apply, wemade
a preliminary inspection of the data using classical Mahalanobis distances. Even with
this non-robust procedure, it became clear that the dataset had at least 10% severe
outliers. Therefore, the most appropriate simulation conditions for this data are the
cases with a low number of variables (p=4), small training sample, high proportion
of outliers and a large contamination level. For these cases, the conclusions from the
simulation study suggest the use of the method based on half of the sample using F and
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Table 10 Best methods by data condition (no outliers data)

Gaussian data Gaussian and Uniform data

n=50 n=100 n=200 n=50 n=100 n=200

Case p=4

C1 Alln(MLE) Alln(MLE) FsTStp75n Alln(MLE) Alln(MLE) FsTStp75n

C2 Alln(MLE) FsTStp75n FsTStp75n Alln(MLE) FsTStp75n FsTStp75n

C3 Alln(MLE) FsTStp75n FsTStp75n Alln(MLE) FsTStp75n FsTStp75n

C4 Alln(MLE) FsTStp75n FsTStp75n Alln(MLE) Alln(MLE) FsTStp75n

Case p=10

C1 Alln(MLE) Alln(MLE) FsTStp75n Alln(MLE) Alln(MLE) FsTStp75n

C2 Alln(MLE) Alln(MLE) Alln(MLE) Alln(MLE) Alln(MLE) Alln(MLE)

C3 Alln(MLE) FsTStp75n FsTStp75n Alln(MLE) Alln(MLE) FsTStp75n

C4 Alln(MLE) Alln(MLE) Alln(MLE) Alln(MLE) Alln(MLE) Alln(MLE)

Beta quantiles-see Fig. 5 and Table 6. Maximum likelihood, for which the Chi-square
quantiles are used, is also applied for comparison purposes. We also identify outliers
using the non-parametric approach of Li et al. (2006), with the authors’ recommen-
dation of four neighbors.

For theproposedparametricmethods, the results are displayed inFigs. 10, 11, 12, 13,
14, 15 and 16. In these figures, cutoffs from the F distribution are indicated with a
dashed line whereas those from the Beta distribution are indicated with a solid line.
In Fig. 10 we note that whereas classical distances only identify Skoda Octavia and
Honda NSK as outliers, using robust distances three other car models are recognized
as outliers, but the Honda NSK is no longer flagged.

Figure 11 shows which car models are identified as outliers when we consider only
the MidPoints (respectively, only the Log-Ranges). We observe that three of the car
models identified as outliers in the global analysis are also identified as outliers in the
separate analysis of MidPoints (Ferrari, Mercedes Class S, Porsche), of which Ferrari
is also flagged as an outlier for the Log-Ranges; Skoda Octavia is identified as an
outlier for the Log-Ranges but not for the MidPoints.

We then proceed to a variable by variable analysis, again considering MidPoints
and Log-Ranges separately or jointly-see Figs. 12, 13, 14, 15 and 16.

Table 13 summarizes the results, and indicates which car models are identified as
outliers, when the full (allMidPoints and Log-Ranges) or partial (onlyMidPoints, only
Log-Ranges, individual variables) descriptions are considered. We note that the car
models indicated as outliers vary according to the analysis performed, which provide
different insights. Interval outliers may not stand out when MidPoints or Log-Ranges
are analysed separately, putting in evidence the need for their joint analysis–thismay be
seen, for instance, with variable Engine Capacity, for which no car model was flagged
as outlier either for the MidPoints or the Log-Ranges (see Fig. 13a), but Porsche is
flagged in the joint analysis (see Fig. 13b), because for this model the relation between
MidPoints and Log-Ranges deviates from the usual pattern. This can be seen in Fig. 14,
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Table 12 ‘Car’ data set with four interval-valued variables

lnPrice Engine Capacity Top Speed Acceleration

Alfa 145 [10.23, 10.42] [1370, 1910] [185, 211] [8.3, 11.2]
Alfa 156 [10.65, 11.04] [1598, 2492] [200, 227] [8.5, 10.5]
. . . . . . . . . . . . . . .

Porsche [11.90, 12.41] [3387, 3600] [280, 305] [4.2, 5.2]
Rover 25 [9.98, 10.41] [1119, 1994] [160, 185] [10.7, 15.0]
Passat [10.59, 11.06] [1595, 2496] [192, 220] [9.6, 12.7]
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Fig. 10 ‘Car’ dataset: Classical vs robust Mahalanobis distances
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Fig. 11 ‘Car’ dataset: Robust Mahalanobis distances on MidPoints vs Robust Mahalanobis distances on
Log-Ranges
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Fig. 12 ‘Car’ dataset: Robust Mahalanobis distances on variable lnPrice: a Robust Mahalanobis distances
on lnPrice MidPoints vs Robust Mahalanobis distances on lnPrice Log-Ranges; b Robust Mahalanobis
distances on lnPrice using both MidPoints and Log-Ranges
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Fig. 13 ‘Car’ dataset: Robust Mahalanobis distances on variable Engine Capacity: a Robust Mahalanobis
distances on Eng. Cap. MidPoints vs Robust Mahalanobis distances on Eng. Cap. Log-Ranges; b Robust
Mahalanobis distances on Eng. Cap. using both MidPoints and Log-Ranges
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Fig. 14 MidPoints vs. Log-Ranges for Engine Capacity

Honda NSK also deviates from the main pattern but not enough to be flagged using a
97.5% quantile (it would indeed be flagged if we would use the corresponding 95%
quantile).
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Fig. 15 ‘Car’ dataset: Robust Mahalanobis distances on variable Top Speed: a Robust Mahalanobis dis-
tances on Top Speed MidPoints vs Robust Mahalanobis distances on Top Speed Log-Ranges; b Robust
Mahalanobis distances on Top Speed using both MidPoints and Log-Ranges
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Fig. 16 ‘Car’ dataset: Robust Mahalanobis distances on variable Acceleration: a Robust Mahalanobis
distances on Acceleration MidPoints versus Robust Mahalanobis distances on Acceleration Log-Ranges;
b Robust Mahalanobis distances on Acceleration using both MidPoints and Log-Ranges

After removing all six car models identified as possible outliers, the MidPoints and
Log-Ranges of the four interval-valued variables pass the Mardia’s, Henze-Zirkler’s
and Royston’s tests (Korkmaz et al. 2014) for joint multivariate normality, at the 1%
significance level.

The results obtained with the non-parametric approach of Li et al. (2006), using
four neighbors, are displayed in Table 14, for different values of the k fixed number of
outliers to be identified. We note that while the method identified Ferrari, Porsche and
Honda NSK as first outliers, when the fixed number of outliers is increased to k = 4
this method indicates the Mercedes Class E, which the applied parametric approach
did not flag, Mercedes Class S appears for k = 5; for k = 6 this method includes
Audi A8, also not flagged by the parametric approach.

Summing up, we observe that six car models are identified as possible outliers and
would deserve further attention before proceeding to data analysis. They stand out
in different complementary analysis. At the univariate level, an observation may be
considered as an outlier due to its MidPoint–Ferrari and Porsche are in this case, to its
Range, as it is the case for Alfa 166, or to both, or still to a particular relation between
them resulting in an outlying interval–as it happens for Porsche or even maybe Honda
NSK for EngineCapacity. Furthermore, from amultivariate perspective, it is important
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Table 13 Outliers in ‘Car’ data set

MidPoints
and
Log-Ranges

MidPoints Log-Ranges lnPrice Engine
Capacity

Top Speed Acceleration

Alfa 166 X

Ferrari X X X X

Honda NSK X

Mercedes Class S X X

Porsche X X X X

Skoda Octavia X X X

Table 14 Outliers identified by the distance-based method (Li et al. 2006) in the ‘Car’ data set

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Ferrari X X X X X X

Porsche X X X X X

Honda NSK X X X X

Mercedes Class E X X X

Mercedes Class S X X

Audi A8 X

to distinguish outliers that stand out by their MidPoints–see Mercedes Class S–by
their Log-Ranges–as Skoda Octavia–or both-as Ferrari-or still by the global relation
between all MidPoints and Log-Ranges.

6 Summary and conclusions

A multivariate outlier detection method has been introduced for interval data, which
makes use of parametric modeling of the interval-valued variables according to Brito
and Duarte Silva (2012). A joint Multivariate Normal distribution of the MidPoints
and Log-Ranges was assumed, with different types of restrictions for the parameters.
Maximum likelihood estimation of the parameters, as proposed in Brito and Duarte
Silva (2012), leads to non-robust estimates which would not be useful for the purpose
of outlier detection, since the estimates themselves are affected by the outliers. This
is circumvented by using the weighted trimmed likelihood principle for parameter
estimation (Hadi and Luceño 1997). A fast algorithm along the lines of Neykov and
Müller (2003) has been implemented in the R packageMAINT.Data (Duarte Silva and
Brito 2017) which makes parameter estimation for real data sets feasible. Multivariate
outlier detection is done by computingMahalanobis distances for the observations, by
plugging in the robust estimates of location and covariance for MidPoints and Log-
Ranges. Cutoff values from relevant distributions inform about the outlyingness of the
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observations. These distributions may be the traditional Chi-square or finite sample
approximations following recent proposals (Cerioli 2010; Hardin and Rocke 2005).

The performance of the outlier detection procedure was evaluated by a simulation
study, using various different data conditions. In presence of contamination, the advan-
tages of the robust estimators over the non-robustmaximum likelihood estimators have
been clearly demonstrated. Also in an application it turned out that robust estimation
provides interesting new insights, and that diagnostic plots help understanding the
outlyingness behavior.

To the best of our knowledge, this is the first statistical outlier investigation for
interval data. Further steps may consist in applying multivariate techniques, such as
principal component analysis or discriminant analysis. It is straightforward to robus-
tify such methods by plugging in the robust parameter estimates proposed in this
paper.
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Appendix

Determination of correction factors

The finite-sample bias-correction factors c1m,h,n,2p,C f and ch,n,2p,C f used in expres-
sion (4), are obtained in the following way:

First, based on 1000 independent replications of independently generated standard-
ized Gaussian values, for each combination of h = {[0.5n], [0.75n], [0.875n]}, n =
{30, 50, 75, 100, 150, 200, 300, 500}, q = 2p with p = {1, 2, 3, 4, 5, 7, 10, 15}
and covariance configurations C f = {C1, C2, C3, C4} we found the average of
τ = |Σ̂ |1/q , i.e., the 2pth root of the rawconsistent-adjustedMCDdeterminant,which
we denote by avg(τ ). Then, for the values of h, n and q included in these simulations
c∗
h,n,q,C f = 1

avg(τ )
are our first approximations to ch,n,q,C f . In order to find approxi-

mations for the remaining parameter values, for each q,C f and h = {0.5, 0.875} we
fitted the models

ĉ∗
h,n,q,C f (n) = 1 + γh,q,C f

nβh,q,C f
(8)

and then for each C f = {C1, C2, C3, C4}, h = {0.5, 0.875}, r = {3, 5}, q = 2p
with p = {1, 2, 3, 4, 5, 7, 10, 15} and n = rq2 we fitted

ĉ∗
h,n,q,C f (q) = 1 + ηh,r,C f

qκh,r,C f
(9)

Note that ĉ∗
h,n,q,C f (n) tends to 1 when n and/or q tend to infinity.
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Table 15 Auxiliary model parameters-raw MCD

r h/n η κ

C1 C2 C3 C4 C1 C2 C3 C4

3 0.5 −1.307 −1.978 −0.905 −1.402 1.297 1.906 1.332 1.864

0.875 −0.548 −0.956 −0.452 −0.753 1.288 1.990 1.414 1.995

5 0.5 −0.821 −1.224 −0.561 −0.865 1.286 1.881 1.311 1.838

0.875 −0.319 −0.558 −0.252 −0.424 1.274 1.973 1.381 1.964

The final approximation for any n and q is found by first solving the system

ηh,3,C f

qκh,3,C f
= γh,q,C f

(3q2)βh,q,C f

ηh,5,C f

qκh,5,C f
= γh,q,C f

(5q2)βh,q,C f
(10)

in order to γh,q,C f and βh,q,C f , and then setting ch,n,q,C f = 1 + γh,q,C f

nβh,q,C f
.

We did not include h = 0.75 or any other h in these models because, as in Pison
et al. (2002), we found c∗

h,n,q,C f to be roughly proportional to h so that ch,n,q,C f for
different h values could be found by linear interpolation.

We note that this procedure is identical to the one described in Pison et al. (2002)
with the only exception that we have one additional set of model parameters and
correction factors for each covariance configuration C f . In fact, we have found all the
auxiliary models for c∗

h,n,q,C f to be well adjusted, but with different parameter values
for each configuration C f , as it can be seen in Table 15.

The authors in Pison et al. (2002) briefly mention that they replicated the same
procedure with one step re-weighted instead of raw MCD estimates, in order to find
the c1 one-step re-weighted finite-sample bias-correction factors. We followed their
steps but foundout that in this case the corresponding c1∗h,n,q,C f approximationswere no
longer roughly proportional on h, and could have coefficients of determination below
0.05 when regressed on h. This is not that much surprising since the re-weightedMCD
uses m instead of h observations to build its final estimate. Therefore, we performed
the same simulations as before, but in each replication saved the value of m, and
adjusted the following linear regression models (one for each configuration C f ):

τ = β∗
0,n,q,C f + β∗

1,C f
m

n
+ β∗

2,C f
h

n
(11)

where the intercepts β∗
0,n,q,C f were found by including dummy variables with all their

interactions for all the n and q values used in the simulations.
Then, we adjusted the following models

β̂∗
0,n,q,C f (n) = 1 − β∗

1,C f − β∗
2,C f + γq,C f

nβq,C f
(12)
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Table 16 Auxiliary model
parameters–re-weighted MCD

η κ β∗
1 β∗

2

r=3 r=5 r=3 r=5

C1 −0.280 −0.220 1.191 1.295 0.435 −0.075

C2 −0.516 −0.274 1.703 1.642 0.204 −0.021

C3 −0.321 −0.234 1.417 1.485 0.318 −0.045

C4 −1.283 −0.477 2.420 2.287 0.275 −0.015

β̂∗
0,n,q,C f (q) = 1 − β∗

1,C f − β∗
2,C f + ηr,C f

qκr,C f
(13)

ensuring that when n and q tend to infinity β̂∗
0,n,q,C f (n) + β∗

1,C f + β∗
2,C f and

β̂∗
0,n,q,C f (q) + β∗

1,C f + β∗
2,C f tend to 1.

We then proceeded as before and found again that all auxiliary models were well
adjusted. The estimated values for ηr,C f , κr,C f , β∗

1,C f and β∗
2,C f and given in Table 16.

We note that them coefficient, β∗
1,C f , is indeed themost important one and is always

positive, however the h coefficient, β∗
2,C f , always negative, is also highly significant.

Furthermore, the values in both tables vary considerably according to the covariance
configuration, in particular regarding parameter κ which measures the impact of the
number of variables in the bias correction factor.

The final c1m,h,n,q,C f correction factors are defined by equation

c1m,h,n,q,C f = 1

τ̂
= 1

β̂∗
0,n,q,C f (n) + β∗

1,C f
m
n + β∗

2,C f
h
n

(14)
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