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Abstract Random forests are a commonly used tool for classification and for rank-
ing candidate predictors based on the so-called variable importance measures. These
measures attribute scores to the variables reflecting their importance. A drawback of
variable importance measures is that there is no natural cutoff that can be used to
discriminate between important and non-important variables. Several approaches, for
example approaches based on hypothesis testing, were developed for addressing this
problem. The existing testing approaches require the repeated computation of random
forests. While for low-dimensional settings those approaches might be computation-
ally tractable, for high-dimensional settings typically including thousands of candidate
predictors, computing time is enormous. In this article a computationally fast heuris-
tic variable importance test is proposed that is appropriate for high-dimensional data
where many variables do not carry any information. The testing approach is based on
a modified version of the permutation variable importance, which is inspired by cross-
validation procedures. The new approach is tested and compared to the approach of
Altmann and colleagues using simulation studies, which are based on real data from
high-dimensional binary classification settings. The new approach controls the type I
error and has at least comparable power at a substantially smaller computation time
in the studies. Thus, it might be used as a computationally fast alternative to existing
procedures for high-dimensional data settings where many variables do not carry any
information. The new approach is implemented in the R package vita.
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1 Introduction

Since its introduction in 2001 random forests have evolved to a popular classification
and regression tool which is applied in many different domains. A random forest
consists of several hundreds to thousands of decision trees. The trees are usually
built from a bootstrap sample or a subsample of the original data (Breiman 2001).
Random forests are fully non-parametric and thus offer a great flexibility. Moreover,
they can even be applied in the statistically challenging setting in which the number of
variables, p, is higher than the number of observations, n. This makes random forests
especially attractive for complex high-dimensional molecular data applications and
fast implementations of random forests are already available (e.g., Wright and Ziegler
2016; Schwarz et al. 2010).

A further advantage of random forests is that they also offer so-called variable
importancemeasures, which can be used to rank variables according to their predictive
abilities. The random forests method and its implemented importance measures have
often been used for the identification of biomarkers (often genes) that can be used
to differentiate between diseased and non-diseased subjects (e.g., Reif et al. 2009;
Wang-Sattler et al. 2012; Yatsunenko et al. 2012). Identifying relevant genes is of
high interest, not only for diagnosis of certain disorders but also to gain valuable
insights into the functionality and mechanisms that lead to a specific disorder.

There are two commonly used variable importance measures, the Gini importance
and the permutation importance. Several articles have shown that the Gini importance
has undesirable properties (Strobl et al. 2007; Nicodemus and Malley 2009; Nicode-
mus 2011; Boulesteix et al. 2012). For example variables that offer many cutpoints
systematically obtain higher Gini importance scores (Strobl et al. 2007). Insofar the
permutation variable importance should be preferred. The permutation variable impor-
tance measure—also referred to as the mean decrease in accuracy—is computed as
the change in prediction accuracy (measured e.g. by the error rate) when the variable
of interest is not used for prediction. For non-relevant variables the change in accu-
racy is solely due to random variations. Thus, the importance scores of non-relevant
variables randomly varies around zero. For relevant variables, in contrast, a worsening
in prediction performance is expected, which is indicated by a positive importance
score.

However, the distributions of non-relevant and relevant variables overlap, and there
is no universally applicable threshold that can be used to determine which positive
importance scores are large enough so that it is unlikely that these have occurred by
chance. Therefore, approaches were proposed to determine the threshold based on
the observed data. Often, in applications, a certain percentage of the highest ranked
variables are selected (see, e.g., Díaz-Uriarte and De Andres 2006, and references
therein). Reif et al. (2009) for example filtered out the 10% of variables with the
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highest importance scores and used them for further considerations. However, one
should be careful when selecting a pre-specified number of highest ranked variables
and considering these as relevant because one would always identify some variables as
relevant even in the absence of any associations between the variables and the disorder.

An ad-hoc approach consists in using the absolute value of the smallest observed
importance score as a threshold for determining which variables are likely to be rel-
evant, because one can be sure that the smallest observed importance score must
have been occurred due purely to chance (Strobl et al. 2009). However, this approach
has several disadvantages, two of them being that the threshold depends on one sin-
gle observed importance score and that it becomes more extreme the more variables
there are. It is thus clear that more elaborated approaches are needed. Recently, a
variable selection strategy was proposed that uses the smallest observed importance
score as a threshold for successively excluding non-relevant variables (Szymczak et al.
2016).

Variable selection strategies like that of Szymczak et al. (2016) might be promising
for determining which variables are likely relevant. Other promising methods, which
are considered in this paper, are testing procedures (Huynh-Thu et al. 2012). If the
null importance distribution is known, p values for observed importance scores can
be easily derived. The distribution of the variable importance is, however, unknown
and it is difficult—if not impossible—to theoretically derive the null distribution
because it depends on several different factors, including factors related to the data,
such as correlations between the variables, the signal-to-noise ratio or the total num-
ber of variables, and including random forest specific factors, such as the choice
of the number of randomly drawn candidate predictor variables for each split. This
also explains the fact that there are hardly any theoretical results on the variable
importance, which was also noted by others (e.g., Ishwaran 2008; Louppe et al.
2013).

A statistical test based on the supposed normality of a scaled version of the permu-
tation variable importance was proposed by Breiman (2008). However, the procedure
of Breiman (2008) was shown to have alarming statistical properties, and should not
be used (Strobl and Zeileis 2008). Many testing approaches are based on permutation
strategies (Tang et al. 2009; Altmann et al. 2010; Hapfelmeier and Ulm 2013). The
advantage of such procedures is that no assumptions are made on the null distribution.
However, such procedures are computationally demanding. Recently Hapfelmeier and
Ulm (2013) published a comprehensive comparison study of different permutation-
based testing approaches. They concluded from their study that their novel approach
has higher statistical power than many of the existing approaches and controls the
type I error. Their approach works as follows: For each variable that is tested for its
association with the response, a large number of random forests (Hapfelmeier and
Ulm (2013) used 400 in their studies) has to be computed. Each random forest is con-
structed based on a different permuted version of the variable and the importance score
of the permuted version is computed. The p value for the variable is then computed
as the fraction of variable importance scores (obtained for the permuted versions),
that are greater than the variable importance of the original (i.e., unpermuted) version
of the variable. The computation of p values for all variables thus requires com-
puting as many random forests as predictor variables multiplied by the number of
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permutation runs. This approach was developed and investigated for the classical low-
dimensional setting which typically includes not more than a dozen covariates. It is
obvious that with high-dimensional data such permutation-based approaches become
computationally very demanding, and might even become practically infeasible. This
is also the reason why the approach of Hapfelmeier and Ulm (2013) is not consid-
ered as a competing method to the new testing procedure for high-dimensional data
that is proposed in this paper. The approach of Altmann et al. (2010) is considered
instead.

Note that, in a statistical test we aim to draw conclusions about the value of a
population parameter through the use of the observed sample. In the context of variable
importance it is often not clear what this population parameter refers to and if it even
exists. Thus, many testing approaches that were proposed for variable importance
measures in random forests, should rather be regarded as heuristic methods that enable
the selection of variables, instead of real statistical tests in the strict mathematical
sense. However, for simplicity and to be consistent with the literature, we refer to such
approaches as statistical tests in this paper, although it should be kept in mind that in
the strict mathematical sense these are not statistical tests.

In this paper, we present a heuristic variable importance test for high-dimensional
data that is computationally very fast because, in contrast to the existing approaches, the
new testing procedure is not based on permutations. The testing procedure is applica-
ble to permutation-based importance measures (note that here the term “permutation”
refers to the properties of the variable importance measure and not to the test for the
variable importancemeasure). The heuristic approach, which is proposed in this paper,
reconstructs the null distribution based on the importance scores of variables that are
likely non-relevant.Variables that are likely non-relevant are those forwhich prediction
accuracy does not change at all (indicated by importance scores of zero) or where ran-
dom variations lead to slightly better prediction accuracies when not using the variable
for prediction (indicated by negative importance scores). The non-positive variable
importance scores are then used to construct a distribution which is symmetric around
zero. This distribution is then used as a null distribution for computing the p values.

The new testing approach is based on an alternative computation of the permuta-
tion variable importance measure. This has the drawback that, in contrast to many
other testing approaches, the new approach cannot be used to derive p values from
importance scores that are obtained as a by-product of the existing random forest
implementations. Moreover, the testing approach is not suitable for all types of data—
the data must contain a relatively large number of variables without any effect such
that a large number of non-positive variables can be retrieved to sufficiently approx-
imate the null distribution. In practice, it is usually unknown whether there is a large
number of variables without any effect, but for some applications there might be pre-
vious knowledge on this. A high number of variables without any effect is for example
typically present with genetic data, such as microarray or SNP data, so that the test-
ing approach is primarily of practical relevance to high-dimensional genomic data
settings. However, the method is also applicable to other data and is not restricted to
genomic data.

This paper is structured as follows: in Sect. 2 the idea of random forests and their
integrated permutation variable importance measure is briefly reviewed. An alter-
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native computation of the permutation variable importance measure is subsequently
described. After briefly reviewing the approach of Altmann et al. (2010), the new
heuristic testing idea is outlined, which makes use of this alternative computation of
the variable importance. In Sect. 3 we describe the designs considered in the simula-
tion studies, which are conducted for investigating the new testing approach and for
the comparison to the approach of Altmann et al. (2010). Section 4 shows the results
of the studies and Sect. 5 gives a brief summary and discussion of the results.

2 Methods

2.1 Random forests

Random forests, developed by Breiman (2001), is an ensemble method that combines
several classification trees. It can be used for classification and regression tasks as well
as formore special analyses such as for survival analysis (Ishwaran et al. 2008;Hothorn
et al. 2006). In this paper, we focus on the use of random forests for classification tasks.
Each tree in random forests is built from a bootstrap sample or from a subsample of
the original data. The observations that are not used for the construction of a specific
tree are termed out-of-bag (OOB) observations. The OOB observations can be used
for estimating the error rate of a tree. Besides using only a random sample of the
observations in a tree, there is a second random component that increases diversity
among trees. This refers to the variables that are considered for a split. At each split
in a tree a subset of mtry predictor variables is drawn from all candidate predictors
and considered for the split. Among those variables, the one that provides the “best”
split according to a specific split criterion is selected.

There are different variants of random forests, which basically differ in their split-
ting criteria. The oldest and most popular variant is that of Breiman (2001), which
implements splits based on node impurity measures, such as the Gini index for clas-
sification trees. This version preferentially selects certain types of predictor variables
for a split; for example, variables that have many possible splits, such as categorical
variables with many categories, are preferentially selected, or variables with many
missing values (see, e.g., Kim and Loh 2001). Therefore, one should be careful when
using this version, especially if one wants to assess the importance of variables that
have different scales. Approaches based on testing procedures performed at each split
prevent these issues. A random forest version based on conditional inference tests was
proposed by Hothorn et al. (2006), and is the better method of choice if there are,
for example, variables of different scales or variables with missing values. However,
we chose the version of Breiman for implementing our studies because of its com-
putational speed. To be more precise, we used the R package randomForest (Liaw
and Wiener 2002). We chose only settings with continuous predictor variables so that
we do not expect that a preferential selection of certain types of variables for a split
occurs in our studies.Moreover, we used subsampling (i.e., sampling from the original
data without replacement) instead of bootstrapping in order to avoid undesired results
induced by the bootstrap (Strobl et al. 2007).
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2.2 Classical permutation variable importance

Let us consider a classification problem, where for an observation with covariates
X = (X1, . . . , X p)

� comprising p random variables from a feature space X , the
aim is to derive a prediction f (X) for the observation’s response Y , with both f (X)

and Y taking values in {1, . . . , k} and k denoting the number of classes. Moreover,
we introduce a variable X∗

j , which is an independent replication of X j and is also
independent of the response and of all other predictor variables (Gregorutti et al.
2013). According to previous work by Gregorutti et al. (2013) and Zhu et al. (2015),
the variable importance for a variable X j is defined by

V I j = P(Y �= f (X1, . . . , X
∗
j , . . . , X p)) − P(Y �= f (X1, . . . , X j , . . . , X p)).

(1)

From now on the variable X j is termed as relevant if V I j > 0, that is, if the probability
for an incorrect classification is larger when X∗

j , the independent replication of X j ,
is used for deriving predictions than when X j had been used. It is important to note
that this definition of relevant predictor variables may also include variables that do
not have their “own” effect on the response, but are associated with the response due
to their correlation with influential predictor variables.

Now let (xi , yi ), i = 1, . . . , n denote a set of n realizations of independent and
identically distributed (i.i.d.) replications of (X,Y ). If the design matrix is denoted
by

X =

⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦

and y = (y1, . . . , yn)� denotes the response vector, the whole data is represented by

Z =

⎡
⎢⎢⎢⎣

x1 y1
x2 y2
...

...

xn yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1p y1
x21 x22 . . . x2p y2
...

...
...

...

xn1 xn2 . . . xnp yn

⎤
⎥⎥⎥⎦ .

In order to estimate V I j within the random forest framework one tries to mimic the
independent replication X∗

j in Eq. (1) by permuting the values of the j-th column of
X (or Z) containing the covariate values for the variable X j . Then tree predictions
and the respective error rates are obtained based on Z and based on the modified data
Z̃( j) with permuted values for variable X j . The difference between these error rates
gives an estimate of the importance of the variable X j . The empirical counterpart of
V I j is thus obtained as
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V̂ I j = 1

ntree

ntree∑
t=1

1

|OOBt |
∑

i∈OOBt

{
I (yi �= ŷ∗

i t ) − I (yi �= ŷi t )
}
, (2)

with I (.) denoting the indicator function, OOBt denoting the set of indices for obser-
vations i ∈ {1, . . . , n} that are out-of-bag for tree t ∈ {1, . . . , ntree}, with ntree
denoting the number of trees in the random forest, and ŷi t and ŷ∗

i t denoting the pre-
dictions by the t-th tree before and after permuting the values of the variable X j ,
respectively. The V̂ I j defined in Eq. (2) is the importance measure that is used in the
available random forests software and is referred to as the classical permutation vari-
able importance from now on. Intuitively, if the variable X j is not associated with the
response, the trees’ error rates before and after the permutation will not significantly
differ because X j does not aid in correctly classifying patients, no matter if its original
values or the permuted values are used. In this case V̂ I j should fluctuate around zero.
In contrast to that, if X j is associated with the response, the error rate after permuting
the values of the variable X j is expected to be larger than the error rate before the
permutation. In this case V̂ I j is expected to fluctuate around a positive constant.

2.3 Alternative computation of permutation variable importance

The classical permutation variable importance is not appropriate for the use in the
new testing procedure as will be seen later in this paper. This is why an alternative
computation of the variable importance is introduced in the following.

2.3.1 Cross-validated variable importance

The alternative computation of the variable importance is not based on the OOB
observations, but uses a strategy that is inspired by the cross-validation procedure.
The idea is to split the data first into k sets of approximately equal size. Then k
random forests are constructed, where the l-th random forest is constructed based on
observations that are not part of the l-th set Sl . For the l-th random forest only the
observations from Sl are used for computing the variable importance.

For categorical response the fold-specific variable importance for predictor variable
X j is defined by

V̂ I
CV (l)
j = 1

ntree

ntree∑
t=1

1

|Sl |
∑
i∈Sl

{
I (yi �= ŷ∗

i t ) − I (yi �= ŷi t )
}
, (3)

with ntree denoting the number of trees in a random forest, I (.) denoting the indicator
function and ŷi t and ŷ∗

i t denoting the predictions by the t-th tree before and after
permuting the values of X j , respectively. Note that the predictions ŷi t and ŷ∗

i t , t =
1, . . . , ntree, are obtained from the random forest, which is constructed based on a
subset of the data Z, in which the lines for the observations i ∈ Sl are removed. Thus,
the observations i ∈ Sl are not used in tree construction.
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The cross-validated variable importance for predictor variable X j is then defined
by

V̂ I
CV
j = 1

k

k∑
l=1

V̂ I
CV (l)
j . (4)

2.3.2 Hold-out variable importance

The most simple version of cross-validation results for k = 2, so that each of the
two sets is once used for creating the random forest and once for deriving importance
scores. In general, this method is also known as 2-fold cross-validation or the hold-out
method. To differentiate it from cross-validation with k ≥ 3, from now on we will
refer to it as the hold-out method. The corresponding hold-out variable importance
for predictor variable X j is given by

V̂ I
HO
j = 1

2

2∑
l=1

V̂ I
CV (l)
j , (5)

and directly results from setting k to 2 in Eq. (4), Thus, it is a special case of the
cross-validated importance measure defined in Eq. (4).

2.3.3 Relatedness to the classical variable importance

In the following, the similarity between the classical variable importance defined in
Eq. (2) and the cross-validated variable importance is shown. More precisely, they are
approximately equal in the specific case with k = n.

If trees are constructed on bootstrap samples then lim
n→∞

(
1 − 1

n

)n = e−1 ≈ 0.368 of

the observations are not used for constructing a specific tree, thus |OOBt | ≈ 0.368n
(the same holds for subsamples of size 0.632n). The classical variable importance
defined in Eq. (2) can thus be approximated as

1

ntree
· 1

0.368n

ntree∑
t=1

∑
i∈OOBt

{
I (yi �= ŷ∗

i t ) − I (yi �= ŷi t )
}
, (6)

with predictions ŷi t and ŷ∗
i t obtained from trees t ∈ {1, . . . , ntree}. In this representa-

tion the differences in error rates are first summed over the OOB observations and then
over all trees. Under specific assumptions, which will be specified hereafter, the sum
could be computed first over the trees for which an observation is out-of-bag and then
over the observations. For this purpose, let us define the set SFi (from “Sub-random
Forest”) that includes the indices of all trees for which the i th observation is out-of-bag
and thus was not used to construct the trees. Following the argumentation above and
in light of the fact that the number of trees in a random forest is usually very large,
the number of trees that do not make use of a given observation can be asymptotically

123



A computationally fast variable importance test for random forests… 893

approximated by 0.368ntree. Thus, each sub-random forest contains approximately
0.368ntree trees. We can now rewrite Eq. (6) as follows:

1

n
· 1

0.368ntree

n∑
i=1

∑
t∈SFi

{
I (yi �= ŷ∗

i t ) − I (yi �= ŷi t )
}

≈ 1

n

n∑
i=1

1

|SFi |
∑
t∈SFi

{
I (yi �= ŷ∗

i t ) − I (yi �= ŷi t )
}

(7)

with ŷi t and ŷ∗
i t , t ∈ SFi , obtained from the sub-random forest which is constructed

based on a subset of the data Z, in which the line for the i th observation is removed.
The latter representation shows the close relationship to the cross-validated variable

importance defined in Eq. (4) (note that with k = n, the set Si includes only the
observation i , thus |Si | = 1).

It should be noted that the predictions ŷi t and ŷ∗
i t used to compute the classical

variable importance and the cross-validated variable importance are not exactly the
same. In the classical variable importance, there is only a single random forest and
the predictions for the i th observation are obtained from a part of this forest, namely
from all trees t ∈ {1, . . . , ntree} that were not constructed based on the data (xi , yi )
of the i th observation (i.e., from the sub-random forest SFi ). The sub-random forests
for two observations i and j are therefore partly constructed on the same trees. This
is in contrast to the cross-validated variable importance, in which k separate random
forests are constructed. In the specific setting with k = n, as many random forests are
constructed as observations exist. Accordingly, the predictions for the i th observation
are obtained from a random forest that was constructed only for the observation i .
Therefore, in contrast to the classical variable importance, the random forests used to
derive predictions for two observations i and j are not constructed on the same trees.

2.4 Permutation-based testing approach of Altmann et al. (2010)

The testing approach of Altmann et al. (2010) has originally been proposed as heuristic
for correcting importance measures which tend to favour certain types of predictors,
such as the Gini importance measure. However, it is applicable to all kinds of impor-
tance measures of random forests. Besides its ability to correct importance measures,
it outputs p values which are computed from importance scores. This feature enables
the user to select relevant variables based on the p values.

In the first step of the method of Altmann, the variable importance scores are
obtained for all variables. Any arbitrary importance measure may be used for com-
puting the importance scores. In the second step, importance scores for settings in
which the variable is not associated with the response are computed. Altmann et al.
(2010) generate these settings by randomly permuting the response variable to break
any associations between the response variable and all predictor variables. The data
generated in this way is then used to construct a new random forest and to com-
pute the importance scores for the predictor variables. The importance scores can be
regarded as realizations drawn from the unknown null distribution. The procedure,
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which involves the steps of randomly permuting the response vector, constructing a
random forest and computing the importance scores, is repeated S times. For each
variable there are S importance scores that can be regarded as realizations from the
unknown null distribution. Finally, in the last step of the method of Altmann, the S
importance scores are used to compute the p value for the variable. One possibility
for deriving the p value consists in computing the fraction of S importance scores
that are greater than the original importance score. This approach is referred to as
the non-parametric approach in this paper since we do not make any assumptions
on the distribution of importance scores of unrelated predictor variables. Alterna-
tively, one can assume a parametric distribution such as the Gaussian, Log-normal or
Gamma-distribution for the importance scores of unrelated predictor variables. The
parameters for the respective distribution are replaced by their maximum likelihood
estimates, which are computed based on the S importance scores of the considered
variable. Having defined a specific distribution for the variable’s null importance, the
p value is computed as the probability of observing an importance score that is higher
than the original importance score, given this distribution. We refer to this approach
as parametric approach.

2.5 Naive and new testing approaches

Using the notation introduced in Sect. 2.2, we first define the hypothesis being tested. If
X j is independent of the response, permuting its values will not have any effect so that
f (X1, . . . , X∗

j , . . . , X p) = f (X1, . . . , X j , . . . , X p) and V I j = 0 (Zhu et al. 2015).
If X j is associated with the response, in contrast, P(Y �= f (X1, . . . , X∗

j , . . . , X p))

is larger than P(Y �= f (X1, . . . , X j , . . . , X p)) and V I j > 0. We thus define the null
and alternative hypotheses as

H0 : V I j ≤ 0 and H1 : V I j > 0.

From the considerationsmade in Sect. 2.2, the classical permutation variable impor-
tance might be expected to randomly vary around the value zero if variables are not
associated with the response. In this paper, we investigate a new heuristic test approach
which consists in approximating the null distribution based on the observed impor-
tance scores of those variables that are likely to be non-relevant. Variables that are
likely non-relevant are those for which the error rate does not change at all (indicated
by importance scores of zero) or where random variations lead to slightly higher error
rates when not using the variable for prediction (indicated by negative importance
scores). The non-positive variable importance scores are then used to construct a dis-
tribution which is symmetric around zero. This is done by “mirroring” the empirical
distribution of the observed negative and zero importance scores on the y-axis. This
results in a distribution that is symmetric around zero (see Fig. 1). It will be shown
later that the classical permutation variable importance does not fulfil the assumption
of a symmetric null distribution, but the hold-out variable importance does.

In the following, a technical description of the construction of the null distribution
based on the observed non-positive variable importance scores is given. Let M1 =
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Variable importance

0

Empirical distribution
based on negative and
zero importance scores

Reflection

Fig. 1 Reconstruction of the null distribution based on variables that are likely non-relevant (i.e., with
negative or zero importance scores). The negative part of the null distribution (solid line) is approximated
based on the observed negative and zero importance scores. The positive part (dashed line) is obtained from
reflection about the y-axis

{V̂ I j |V̂ I j < 0; j = 1, . . . , p} denote the negative variable importance scores, and
M2 = {V̂ I j |V̂ I j = 0; j = 1, . . . , p} is the set of importance scores which are
zero. We define the hypothetical importance scores M3 = {−V̂ I j |V̂ I j < 0; j =
1, . . . , p} = −M1, which arise from multiplying the negative importance scores by
−1. The null distribution F̂0 is computed as the empirical cumulative distribution
function of M = M1 ∪ M2 ∪ M3. Based on F̂0 a p value for variable X j is derived as
1 − F̂0(V̂ I j ). We will term this procedure the “naive testing approach”.

Alternatively, one might use the hold-out variable importance (Eq. (5)) instead of
the classical out-of-bag based importance (Eq. (2)). Then the approach is referred to as
the “new testing approach”. The basic steps of the new testing approach are sketched
in the following.

A new variable importance test for high-dimensional data

Step 1 The data is randomly partitioned into two sets of equal size. Each set is
used to create a random forest. The two random forests are used to compute the

hold-out variable importance V̂ I
HO
j (see Eq. (5)) for variables X j , j = 1, . . . , p.

Step 2 The null distribution for the hold-out variable importance is approximated
based on the observed non-positive importance scores. For this purpose we define
the sets

M1 = {V̂ I
HO
j |V̂ I

HO
j < 0; j = 1, . . . , p} (i.e., all negative importance

scores),
M2 = {V̂ I

HO
j |V̂ I

HO
j = 0; j = 1, . . . , p} (i.e., all importance scores of zero)

and
M3 = {−V̂ I

HO
j |V̂ I

HO
j < 0; j = 1, . . . , p} = −M1 (i.e., all negative impor-

tance scores multiplied by −1),
and consider the empirical cumulative distribution function F̂0 of M = M1∪M2∪
M3.
Step 3 The p value corresponding to the variable importance of predictor variable

X j is computed as 1 − F̂0(V̂ I
HO
j ).
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Table 1 Overview over high-dimensional genomic data sets used for the studies

Data set No. predictor variables, p No. observations, n Source

Prostate cancer 6033 102 Singh et al. (2002)

Breast cancer 4869 77 van’t Veer et al. (2002)

Leukemia 7129 72 Golub et al. (1999)

Colon cancer 2000 62 Alon et al. (1999)

Embryonal tumor 7129 60 Pomeroy et al. (2002)

In this paper, we use the hold-out version of the classical permutation variable
importance which uses the difference in error rates before and after randomly per-
muting the values of the considered variable. The proposed testing procedure is very
general in the sense that hold-out versions of different permutation-based variable
importance measures might be used, such as the conditional permutation importance
of Strobl et al. (2008), the AUC-based importance of Janitza et al. (2013), or the
importance measures for ordinal responses considered in Janitza et al. (2016).

It is important to note that if onewants to use a differentmeasure, say, the conditional
importance of Strobl et al. (2008), the hold-out version of this measure should be
computed, that is, the variable importance should be computed using the splitting
procedure described in Sect. 2.3.

The new testing approach is implemented in the R package vita, which is based on
the R package randomForest (Liaw and Wiener 2002). Currently, only the hold-out
version of the classical variable importance measure is implemented. The R package
vita also contains an implementation of the testing approach of Altmann et al. (2010).

3 Simulation studies

Since the new testing approach is suitable for high-dimensional genomic data, we
only consider settings with large numbers of predictor variables and high signal-to-
noise ratios. There is common consensus in the literature that it is very difficult—if
not impossible—to simulate realistic complex data structures which capture all the
patterns and sources of variability that are generated by a real biological system.
Therefore we based our studies on five high-dimensional genomic data sets from real
world applications (see Table 1 for an overview). These data sets were often used by
various authors for binary classification purposes (e.g., Díaz-Uriarte and De Andres
2006; Dettling and Bühlmann 2003; Tan and Gilbert 2003). A brief description of the
data sets is given in the Online Resource of ADAC. Note that no pre-selection of data
sets based on the results was done, instead we report the results of all data sets that
we analyzed, as has been recommended by Boulesteix (2015).

To study the properties of our test, we have to know which of the variables are
relevant and which are not. In other words, we have to know the truth, which we can
never know from real world data. Therefore, in our studies we used the design matrix
of the real world data sets, but the response vector was generated anew according to a
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Table 2 Overview of performed studies which differ in the inclusion of predictor variables with effect and
in the presence of correlations between predictor variables

Predictor variables with effect Correlations between predictor variables

Study I No Yes

Study II Yes Yes

Study III Yes No

specified relation. Three different studies were performed. Table 2 gives an overview
of the three studies.

In Study I, none of the predictor variables of a data set has an effect and there are
correlations between predictor variables. In Studies II and III, some of the predictor
variables have an effect on the response. While Study II includes correlated variables,
in Study III all predictor variables are independent of each other.

We tested our new testing procedure and the naive testing procedure using Studies
I, II and III. To obtain stable results we performed the computations for 500 repeti-
tions of each study. Due to computational reasons, we performed only 200 repetitions
of each study for Altmann’s approach. We used the permutation importance defined
in Eq. (2) for computing p values according to Altmann’s approach. This enables
a fair comparison of our new approach, which is based on the permutation variable
importance measure, and Altmann’s approach.We always computed p values for both
approaches (non-parametric and parametric). Altmann et al. (2010) point out that a
Kolmogorov–Smirnov test might be used to choose the most appropriate distribution
for the parametric approach. In our studies we adhere to Algorithm 1 (outlined in the
Supplement to Altmann et al. 2010), which uses a Gaussian distribution with mean
and variance estimated by the arithmetic mean and sample variance, respectively. The
number of permutations, S, in the permutation-based approach of Altmann and his
colleagues should be chosen so that it is large enough. For the parametric approach the
recommendation of Altmann et al. (2010) is a value S between 50 and 100. No recom-
mendations were given for the non-parametric method. We always used a large value
S = 500 in the studies to exclude the possibility that the performance of Altmann’s
approach may be related to a suboptimal choice of the number of permutations, S.

Each study is described in more detail in the following. The R codes implemented
in our studies are available as Online Resource of ADAC.

3.1 Study I

The first study reflects scenarios where all predictor variables are pure noise. We used
the design matrix and the response vector of the real data applications and modified
this data. To destroy associations between the response vector and the design matrix
we permuted the elements of the response vector. In this modified data, associations
between predictor variables and the response are only due to chance. Note that the
design matrix was not modified and correlations between predictor variables were
preserved.
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3.2 Study II

In the second study we simulated a scenario in which some of the variables have an
effect on the response. We again used the design matrix of the real data applications
since these reflect realistic correlation patterns but we generated a new response vector.
This allows for a complex data scenario, but at the same time we have the information
which of the variables are relevant.

The binary response Y for an observation with covariate vector x� = (x1, x2, . . . ,
xp) was generated from a logistic regression model with success probability

P(Y = 1|x) = exp(x1β1 + x2β2 + · · · + xpβp)

1 + exp(x1β1 + x2β2 + · · · + xpβp)
,

with p denoting the total number of predictor variables in the considered data set
(see Table 1). The coefficients β1, β2, . . . , βp were chosen as follows: First we ran-
domly drew j1, j2, . . . , j100 without replacement from the set {1, 2, . . . , p} to define
which of the variables have an effect on the response and should therefore be selected
as relevant by a variable importance testing procedure. The corresponding coeffi-
cients β j1 , β j2 , . . . , β j100 were subsequently drawn from the set {−3,−2,−1,−0.5,
0.5, 1, 2, 3}, while ensuring that effects in the set were drawn equally often. All other
coefficients were set to zero. Thus, there are 100 variables with an effect and p − 100
variables without any effect.

Although standardization is not necessary for the application of random forests in
general, we standardized the design matrix in order to make effects comparable across
variables of different scales.

3.3 Study III

This study includes only uncorrelated predictor variables.We used the designmatrix of
the real data sets and permuted the values within each predictor variable independently
to create uncorrelated predictor variables. As with Study II, 100 of the variables were
supposed to have an effect on the response. The approach for generating the response
and for deciding which variables have an effect is exactly the same as described for
Study II.

3.4 Parameter settings

We performed analyses under different parameter settings to see if the choice of
parameters affects the results. All studies (Studies I, II, III) were performed

– for two different values for the parameter mtry: mtry = √
p and mtry = p

5 ,
with p denoting the number of predictor variables;

– for twodifferent numbers of predictor variables.Weused either a very large number
of candidate predictors, namely that from the design matrices of the real data
applications (see Table 1), or a subset of p = 100 predictor variables randomly
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drawn from the design matrices. In the studies with large predictor numbers, 100
variables had an effect, and in the studies with a subset of p = 100 predictor
variables only 20 variables had an effect (only relevant to Study II and III);

– for two different sets from which the coefficients of relevant predictor variables
were randomly drawn. Therefore, these sets determine the effects of relevant
predictor variables (only relevant to Study II and III). The first set was chosen
as {−3,−2,−1,−0.5, 0.5, 1, 2, 3}, and the second set with smaller effects was
{−1,−0.8,−0.6, −0.4,−0.2, 0.2, 0.4, 0.6, 0.8, 1}. Since results were very sim-
ilar for the two sets, only those for the effect set {−3,−2,−1,−0.5, 0.5, 1, 2, 3}
are shown.

The number of trees in the random forest was always set to 5000. We used subsamples
of size 0.632n� to construct trees, with n denoting the number of total observations
(Strobl et al. 2007). All other parameters not mentioned here were set to the default
values so that trees were grown to maximal depth.

3.5 Evaluation criteria

One important aspect that was investigated in the studies is the statistical power of
the testing approaches. The statistical power is generally defined as the probability
of rejecting the null hypothesis, given that the null hypothesis is false. In this paper
the null hypothesis for a variable X j was defined as V I j ≤ 0 (cf. Sect. 2.5). If the
null hypothesis is rejected for X j , there is evidence that X j is relevant. The statistical
power of the testing approaches was explored by computing the fraction of variables
with p value below α = 0.05 of those that have an effect. Note that there are variables
with different effect strengths in Studies II and III; the absolute effect strengths are
0.5, 1, 2, 3, or 0.2, 0.4, 0.6, 0.8, 1 in the alternative setting. For power considerations
we computed the proportion of variables with p value below α = 0.05 within each
subset of variables with the same absolute effect.

The second important aspect concerns the validity of the testing approaches. The
type I error of a test is defined as the probability of rejecting the null hypothesis, given
that the null hypothesis is true. A test is valid if its type I error does not exceed the
significance level α. In our studies we investigated if the testing procedures control
the type I error by computing the fraction of variables with p value below α = 0.05
among those variables that are not relevant. For this purpose we had to know which
variables are not relevant. In Study I, none of the variables has an effect and thus none
is relevant. In Study III, exactly those variables whose regression coefficient is zero
are not relevant. In Study II, however, due to the correlation between the variables it is
difficult to assess which variables are not relevant: predictor variables that do not have
an “own” effect (i.e., those with coefficient of zero) but are correlated with variables
that have an effect,might significantly improve the trees’ predictive abilities. Therefore
in Study II, the regression coefficients cannot be used to judge which variables are not
relevant, because variables with coefficients of zero can also be relevant. Thus, only
Study I and III can be used for investigating the type I error.

In addition to type I error and power investigations, we inspected two further related
issues. The first issue concerns the assumption of the new and the naive testing proce-
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dures that under the null hypothesis the variable importance distribution is symmetric
around zero. We empirically assessed if this is the case for the variable importance
measures introduced in Sects. 2.2 and 2.3 by plotting the distribution of variable
importance scores observed in Study I, where none of the variables is relevant. If we
observe an asymmetric distribution or a distribution which is shifted along the x-axis,
we expect the testing procedure to have a systematically too high or too low type I
error.

The second issue concerns the discrimination between relevant and non-relevant
variables by their importance scores. A testing procedure will have low statistical
power if it is based on a variable importance measure that does not discriminate well
between relevant and non-relevant variables. Thus we inspected the discriminative
ability to see if the hold-out variable importance may be used in a testing procedure.
We considered the classical permutation importance as “gold standard” and compared
its discriminative ability to that of the hold-out importance. For these investigations we
used Study III because, in contrast to Study II, we know which variables are relevant
and which are not. The area under the curve was used as a measure for discriminative
ability. Let the set of predictor variable indices, B = {1, . . . , p}, be partitioned into
the disjoint sets B = B0 ∪ B1, where B0 represents the non-relevant variables and B1
represents the relevant variables. The area under the curve is defined by

AUC = 1

|B0| |B1|
∑
i∈B0

∑
j∈B1

{
I (V̂ I i < V̂ I j ) + 0.5I (V̂ I i = V̂ I j )

}
(8)

where |Bl | denotes the cardinality of Bl with l ∈ {0, 1}, and I (.) denotes the indi-
cator function (see, e.g., Pepe 2004). Note that the area under the curve is usually
used for evaluating the ability of a method (which may be for example a diagnostic
test or a prediction model) to correctly discriminate between observations with binary
outcomes (often diseased versus healthy). In our studies, in contrast, the area under
the curve is computed considering the predictor variables X1, . . . , X p as the units
to be predicted (as relevant or non-relevant variables) rather than the observations
i = 1, . . . , n. The area under the curve here corresponds to an estimate of the prob-
ability that a randomly drawn relevant variable has a higher importance score than a
randomly drawn non-relevant variable. An AUC value of 1 means that each of these
relevant variables receives a higher importance score than any non-relevant variable,
thus indicating perfect discrimination by the importance measure. An AUC value of
0.5 means that a randomly drawn relevant variable receives a higher importance score
than a randomly drawn non-relevant variable in only half of the cases, indicating no
discriminative ability by the importance measure.

4 Results

Before inspecting the type I error and the statistical power of the testing procedures, the
properties of the variable importance measures are studied in this section. The naive
and the new testing procedures rely on the assumption of a symmetric null distribution.
Thus, in the first part of this section we empirically assess if the VIMs described in
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Sects. 2.2 and 2.3 meet this assumption. Moreover, we explore whether the VIM based
on cross-validation strategies yields reliable predictor rankings and might be used as
an alternative to the classical out-of-bag based VIM. In the second part of this section,
the type I error of the three testing approaches is investigated based on the results of
Study I. Finally, in the last two parts of this section the statistical power is explored
using Studies II and III and information on the runtime is given.

4.1 Properties of the classical and the cross-validation based permutation
importance

4.1.1 Null distribution

Figure 2 shows the null variable importance distributions for the hold-out variable
importance (left panel) and the classical variable importance (right panel) for the
settings with large predictor space and mtry set to

√
p. Results are very similar

for mtry = p
5 , but there is a higher number of variables with importance score of

zero (Online Resource Figure 1). The higher number of zero importance scores for
higher values of mtry results from the fact that with large mtry the set of variables
considered for a split contains a large number of variables that compete with each
other and some of the variables are never selected and obtain importance scores of
zero. With a smaller number of trees the number of variables that are never selected
for a split further increases (results not shown).

The null distribution of the hold-out variable importance seems to be symmetric
around zero and thus seems to satisfy the presumption of a symmetric null distribution.
In contrast to that, the null distribution of the classical variable importance is not totally
symmetric. In the studieswith p = 100 this asymmetry ismuchmore apparent (Online
Resource Figure 9): All distributions are clearly positively skewed showing that a large
fraction of variables have small negative importance scores, while smaller fractions
of variables have large positive importance scores. The null distribution of the cross-
validated variable importance looks very similar for k ≥ 3 (see Online Resource
Figures 1, 9). In contrast, the null distribution of the fold-specific variable importance
is nearly symmetric around zero (results not shown). This seems to be contradictory
since the cross-validated variable importance is the average of fold-specific variable
importances. Further inspection of the simulation results reveals that this effect is
possibly due to the overlap of random forests. For k ≥ 3 the same observations are
used for creating the random forests of several folds. For example, if we had three sets,
S1, S2, S3, the first random forest is constructed using S2 and S3, the second random
forest is constructed using S1 and S3, and the third random forest is based on S1 and
S2. Each pair of random forests have some part of the observations in common. For
example, the first and the second random forests are both based on observations from
set S3. The variables have similar predictive abilities for the sets S2 ∪ S3 (on which
the first random forest is trained) and S1 ∪ S3 (on which the second random forest
is trained). If high values for a variable X j speak in favour of class 1 in the subset
S2 ∪ S3, then in the subset S1 ∪ S3 high values for X j will also speak in favour of class
1—even if there is, in reality, no association between X j and the class membership.
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Fig. 2 Variable importance null distribution when using the classical permutation variable importance
measure and the hold-out permutation variable importance measure and setting mtry to

√
p (default

value). Distributions are shown for all variables and 500 repetitions of Study I (no relevant variables)
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Fig. 3 Fold-specific variable importance for the first fold plotted against fold-specific variable importance
for the second fold for all variables X1, . . . , X2000 of Study I (no relevant variables; mtry = p

5 ) for the
colon cancer data with k = 2, k = 3, k = 5 and k = 10. Five-hundred repetitions of Study I were performed,
yielding a total of 2000 × 500 points shown in each plot

The two random forests then often select the same predictor variables for a split even
in settings without any associations.

Thus, for k ≥ 3 the same few variables will always obtain high fold-specific
importance scores as can also be seen from empirical studies. In Fig. 3 the fold-
specific variable importance scores for the first two folds (for the colon cancer data)
are plotted against each other for different values of k. The fold-specific variable
importance computed for 500 repetitions of Study I (no relevant variables) with mtry
set to p

5 are shown. Results for mtry = √
p are shown in Online Resource Figure 2.

Similar results are obtained for the other data sets and when using only a subset of
p = 100 predictor variables (not shown). For k ≥ 3 (2nd, 3rd and 4th plot) we clearly
observe the phenomenon just described: There are some variables which have large
positive fold-specific variable importance scores for both folds resulting in a large
cross-validated variable importance score. In contrast, there are not as many variables
with negative fold-specific variable importances for both folds. From that it is clear
that the cross-validated variable importance has a skewed null distribution.

Due to the relatedness of the classical variable importance and the cross-validated
variable importance for k = n, the classical variable importance is affected in the
same manner. In fact, the overlap between the sub-random forests which are used
by the classical variable importance measure to derive predictions, might be even
more pronounced. This is because the same trees are used in the sub-random forests
(cf. Sect. 2.3.3). In contrast to that, the cross-validated variable importance involves
the computation of k different random forests that are not based on the same trees,
although the trees across the k random forests are very similar.

The hold-out variable importance, in contrast, is not affected in the same manner.
Here the data is partitioned into the sets S1 and S2. Each set—and correspondingly
each observation within the set—is used for the construction of one random forest.
The first random forest uses S2 and the second random forest uses S1, resulting in
two random forests which are completely independent of each other. The selection
of variables for a split in the second random forest is thus independent of which
variables have been selected in the first random forest. Therefore the mechanisms
described for k ≥ 3 do not apply for k = 2. This is also supported by the empirical
results in Fig. 3 and Online Resource Figure 2 (first plot), where we observe an

123



904 S. Janitza et al.

a comparable number of variables with negative fold-specific variable importance
scores for both folds as variables with positive fold-specific importance scores for
both folds. Although, we note a substantially higher number of variables with both
negative or positive fold-specific importance scores than variables with one negative
and one positive fold-specific importance score. This might be explained by the fact
that the variable importance for the first random forest is computed using observations
from set S1, that have been used for the construction of the second random forest,
and vice versa. A positive correlation might therefore be expected between the fold-
specific importance scores. However, this has no effect on the symmetry of the null
distribution of the hold-out variable importance.

To conclude, it was shown that the hold-out variable importance has a symmet-
ric null distribution, while the classical importance and the cross-validated variable
importance do not have a symmetric distribution. From those results we would expect
that the new testing approach controls the type I error exactly, while the naive testing
approach does not.

4.1.2 Discriminative ability

Figure 4 shows the discriminative ability of the classical and the hold-out variable
importance for Study II (left) and Study III (right). Results are shown when using the
default mtry value. The discriminative ability is measured in terms of the area under
the curve (cf. Sect. 3.5). The hold-out variable importance and the classical variable
importance have very similar discrimination ability. For Study III the performance of
the hold-out importance is slightly better than the performance of the classical per-
mutation importance. The results with mtry = p

5 are very similar (Online Resource
Figure 3), and a slightly better performance of the hold-out importance can be observed
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Fig. 4 Discriminative ability of the hold-out permutation variable importance measure and the classical
permutation variable importance measure. Discriminative ability is measured by the area under the curve
for 500 repetitions of Studies II (with relevant variables and correlations) and III (with relevant variables
and without any correlations between predictor variables), and mtrywas always

√
p. Values of 0.5 indicate

no discriminative ability (horizontal dotted line)
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in both, Study II and III. The results for the predictor space reduced to p = 100 are in
linewith these findings and are shown inOnline Resource Figures 12 and 13.We there-
fore consider the hold-out variable importance a good measure to reflect the relevance
of variables. The cross-validated variable importances with k ≥ 3 have similar dis-
criminative ability, too (results not shown). As with the classical variable importance,
when computing the hold-out and cross-validated importance each observation is used
for tree construction and for variable importance computation. In contrast to that, the
fold-specific variable importance defined in Eq. (4) uses one part of the observations
only for tree construction and the other part for variable importance computation. By
building an average of fold-specific importances we make sure that all information is
used for tree construction and for variable importance computation.

To summarize, according to these studies the hold-out importance does not have
a worse discriminative ability than the classical variable importance and thus might
be used as reasonable alternative to the classical importance. The hold-out impor-
tance, in addition, is symmetric around zero for variables not associated with the
response—a criterion that is not fulfilled for the classical and the cross-validated
variable importance. This motivates the use of this measure in the proposed testing
procedure.

4.2 Type I error

The type I errors of all approaches are investigated using Study I and are depicted
in Fig. 5. The type I errors of the new testing procedure are always close to the
significance level α = 0.05, indicating that the test does not systematically reject the
null hypothesis too often or too rare. The studies with a subset of p = 100 give similar
results (Online Resource Figure 10). These findings are in line with the results in Sect.
4.1.1 where it was shown that the null distribution of the hold-out variable importance
is nearly symmetric around zero.

The results for the naive approach are also in line with the findings from Sect. 4.1.1.
As expected, the type I error of the naive approach is systematically different from
0.05. More precisely, in the studies with large predictor numbers the naive approach
always gives slightly too large type I errors if mtry is set to the default value and
too small type I errors if mtry is p

5 (Fig. 5). In the studies with a smaller predictor
number (p = 100), the type I errors are always close to 0.1 for both large and small
mtry values (Online Resource Figure 10). Therefore the naive approach should only
be used with caution.

The non-parametric approach of Altmann et al. (2010) always gives type I errors
close to 0.05 for both the studies with large and smaller (p = 100) predictor numbers.
The type I error for the parametric approach is always considerably smaller than 0.05
in the studies with large predictor numbers, indicating that the parametric approach is
too conservative in settings with large predictor numbers. In the studies with p = 100,
in contrast, the type I error is much closer to 0.05. The variability in type I errors was
smaller for Altmann’s approach than for the new and the naive testing procedures.
The variability increased for all testing approaches in settings with the predictor space
reduced to p = 100.
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Fig. 5 Type I error in Study I for the new testing approach (which uses the hold-out permutation variable
importance measure), the naive testing approach (which uses the classical permutation variable importance
measure), the non-parametric Altmann approach and the parametric Altmann approach assuming a normal
distribution. Hypothesis tests were performed at significance level α = 0.05 (dotted horizontal line)

4.3 Statistical power

4.3.1 Study III

Figure 6 shows the proportion of variables with p value below 0.05 averaged over 500
(200 for Altmann’s approach, resp.) repetitions of Study III when the full predictor
space is used. The proportions are computed among variables with the same absolute
effect size of 0.5, 1, 2 and 3, respectively. In addition, the proportion of variables
with p value below 0.05 among variables without effect (i.e., those variables X j for
which β j = 0) are shown. For all testing procedures the proportion of variables
with p value below 0.05 increases with increasing absolute effect size. This shows
that variables with larger absolute effects are more easily identified. The parametric
approach of Altmann et al. (2010) consistently has the smallest power. The non-
parametric approach of Altmann and the new and the naive testing approaches have
similar performance. However, the new approach has slightly higher statistical power
than the non-parametric approach of Altmann, especially in settings with mtry = p

5 .
For mtry = √

p the naive approach has a slightly higher number of variables with p
value below 0.05 than the other two approaches for both, non-relevant (i.e., β j = 0)
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Fig. 6 Proportion of rejected null hypotheses among predictor variables X j with specified absolute effect
size |β j | ∈ {0, 0.5, 1, 2, 3}. The mean proportions over 500 (200 for Altmann’s approach, resp.) repetitions
of Study III (with relevant variables and without any correlations between predictor variables) are shown
when using our new approach, the naive approach, the non-parametric Altmann approach and the parametric
Altmann approach assuming a normal distribution, withmtry set to

√
p (upper panel) and p

5 (lower panel).
The horizontal line represents the 5% significance level

and relevant (i.e., β j �= 0) variables. In contrast, for mtry = p
5 the naive approach

has fewer variables with p value below 0.05.
The results are in line with the results in Sect. 4.2, where it was shown that the type

I error is smallest for the non-parametric approach of Altmann, and is higher (lower)
for the naive approach than for the new approach if mtrywas set to the default value,√
p (a large value, p

5 ). We conclude from the results that the new testing approach has
the best performance in the settings with large numbers of predictor variables because
it consistently has the highest power while preserving the type I error. However, the
statistical power of all testing procedures was low.

In the studieswith a subset of p = 100predictor variables,weobservedmuchhigher
statistical power for all approaches (Fig. 7). The naive approach does not preserve
the type I error in the settings with reduced predictor space. This can be seen when
inspecting the proportion of rejections among predictor variables X j with β j = 0 in
Fig. 7. The same can be seen from the results of Study I (Online Resource Figure 10).
In contrast to that, the new testing approach preserves the type I error and has similar—
and on average even slightly higher—statistical power than the non-parametric and
parametric approaches of Altmann.

The results presented so far show the mean performance over all repetitions of
Study III. Thus, there is no information on the variability in the selected number of
variables with effect. Further inspection reveals, however, that the variabilities for the
naive approach, the new approach and the non-parametric approach of Altmann are
similar (see Online Resource Figures 4–8, 14–18). The variability for the parametric
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Fig. 7 Proportion of rejected null hypotheses among predictor variables X j with specified absolute effect
size |β j | ∈ {0, 0.5, 1, 2, 3}. The mean proportions over 500 (200 for Altmann’s approach, resp.) repetitions
of Study III with reduced predictor space (with relevant variables and without any correlations between
predictor variables) are shown when using the new approach, the naive approach, the non-parametric
Altmann approach and the parametric Altmann approach assuming a normal distribution, with mtry set to√
100 (upper panel) and 100

5 (lower panel). The horizontal line represents the 5% significance level

approach of Altmann, in contrast, is smaller, which is due to the fact that the approach
is very conservative and selects only few variables.

4.3.2 Study II

The results for Study II are shown in Fig. 8. The proportion of variables with p value
below 0.05 is largest when using the new testing approach. Thereafter, the proportion
decreases bit by bit for the naive testing approach, the non-parametric approach of
Altmann and the parametric approach ofAltmann. The approaches ofAltmann identify
far less variables as relevant than the naive and the new testing procedures. With the
parametric approach, the proportion of variables with p value below 0.05 is very low,
especially ifmtry is set to

√
p. It is even lower than 0.05, indicating that the parametric

approach of Altmann is too conservative. This is not the case for the non-parametric
approach of Altmann.

In many settings the proportion of identified variables X j with β j = 0 is very
large and greatly exceeds 0.05. This is attributable to the correlations between the
variables. From the construction of the naive and the new testing approach, variables
which do not have an “own” effect, but are correlated to variables with effect, may
be considered as relevant as long as they improve the trees’ prediction accuracy.
Therefore, even variables that do not have a direct influence on the response are very
often identified by the two procedures—but still not as often as variables with direct
influence. In contrast to that, it is not clear if Altmann’s approach is also supposed
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Fig. 8 Proportion of rejected null hypotheses among predictor variables X j with specified absolute effect
size |β j | ∈ {0, 0.5, 1, 2, 3}. The mean proportions over 500 (200 for Altmann’s approach, resp.) repetitions
of Study II (with relevant variables andwith correlations between predictor variables) are shownwhen using
our new approach, the naive approach, the non-parametric Altmann approach and the parametric Altmann
approach assuming a normal distribution, with mtry set to

√
p (upper panel) and p

5 (lower panel). The
horizontal line represents the 5% significance level

to select variables that do not have a direct influence but correlate with variables that
have an effect. Therefore, it is not possible to evaluate which testing approach has
better performance in settings with correlated predictor variables.

When based on the conditional importance of Strobl et al. (2008), we expect the
testing procedures to not as often select variables that are only associated with the
response through their correlation to influential variables.

4.4 Runtime

We have seen from our studies that the approach of Altmann et al. (2010) and the novel
approach are both valid testingprocedures that preserve the type I error andhave similar
statistical power. The motivation for the development of a new testing procedure was
that the existing approaches, like the approach of Altmann and his colleagues, are
based on permutation testing strategies and thus involve the computation of many
random forests. The novel testing approach, in contrast, involves the computations of
variable importance scores from only two random forests. These two random forests
are grown on samples of size n/2, which takes less time than if they were grown
on samples of size n. Table 3 shows the runtimes for deriving the hold-out variable
importance scores using the function CVPVI of the R package vita. The runtimes
are an average of the runtimes for 20 repetitions of Studies I, II and III, in which
each random forest consists of 5000 trees that were grown to full size. Note that,
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Table 3 Runtimes (in minutes) for computing variable importance scores through the hold-out variable
importancemeasure (functionCVPVI) and the classical permutation variable importancemeasure (function
randomForest)

mtry= √
p mtry= p

5

Study I Study II Study III Study I Study II Study III

Prostate cancer

Hold-out 6.90 6.25 6.49 6.56 6.00 6.37

Classical 1.62 1.38 1.66 1.86 1.53 1.86

Breast cancer

Hold-out 3.86 3.79 3.84 3.78 3.79 3.82

Classical 0.94 0.89 0.93 1.01 0.99 0.98

Leukemia

Hold-out 5.47 5.45 5.45 5.17 5.29 5.30

Classical 1.22 1.13 1.23 1.32 1.29 1.35

Colon cancer

Hold-out 1.37 1.41 1.35 1.38 1.31 1.31

Classical 0.28 0.26 0.28 0.29 0.28 0.30

Embryonal tumor

Hold-out 4.74 4.61 4.59 4.64 4.50 4.62

Classical 0.93 0.94 0.96 1.03 1.02 1.04

The average runtime over 20 replications of Study I, Study II and Study III are shown

in contrast to random forest construction and variable importance computation, the
operations performed to derive null distributions and p values are very fast and were
thus neglected.

The runtime of the approach of Altmann is linearly related to the number of per-
mutations performed: with S permutations, one has to construct S + 1 random forests
(one additional random forest for the original unpermuted data), and variable impor-
tance scores have to be obtained for each random forest. The runtime of Altmann’s
approach can therefore be approximated by multiplying the runtime for one single
random forest construction and variable importance computation with S + 1. Table 3
shows the runtime for the construction of a single random forest (based on n observa-
tions and 5000 trees) and the derivation of the variable importance scores. Multiplying
this number by 50 gives a lower bound for the runtime of Altmann’s approach. This
is according to the recommendation of Altmann et al. (2010) who propose using a
value for S between 50 and 100. However, if one wants to derive the p values in a
non-parametric way much more than 100 permutations are needed. Large numbers
of permutations are needed in this case, especially if multiple testing adjustments are
planned (Phipson and Smyth 2010).

The runtime of Altmann’s approach is about S/4 to S/5 times as large as the runtime
of our novel approach. In the studies presented in this paper, we set S to 500, yielding a
125 to 100 times faster computation when using the novel approach. In the considered
settings, the number of candidate predictors ranges from 2000 to 7000 and the sample

123



A computationally fast variable importance test for random forests… 911

sizes lie below 100. The difference in runtimes is expected to be far larger with large
datasets including several thousands of observations and predictors. Growing a single
random forest might last several days in such settings (Wright and Ziegler 2016),
and permutation test procedures might become impractical. Note that both testing
approaches were implemented based on the R package randomForest, and different
runtimes are obtained when using a different package.

5 Discussion

During the last years, several approaches have been developed for hypothesis testing
based on the variable importance implemented in random forests (see Hapfelmeier
and Ulm 2013, and references therein). The existing approaches are computationally
demanding and require the repeated computation of random forests. In this paper, we
presented a fast implementation of a variable importance test that tests if a predictor
variable significantly improves the trees’ predictive ability. In all our studies the new
testing procedure preserved the type I error and successfully identified at least as
many relevant predictor variables as the testing approach of Altmann et al. (2010).
However, our studies were restricted to classification tasks. Further studies are needed
to assess if the new variable importance test can also be applied to settings with
numeric response. This also involves theoretical investigations on the properties of
the variable importance measure, which is of utmost importance to both classification
and regression settings. There is a lack of theoretical results, which may be explained
by the fact that “the permutation method [...] is complex and proved too difficult to
analyse theoretically in any detail” (Ishwaran 2008). Future studies might aim to fill
this gap.

Our testing procedure is based on a slightly modified version of the permutation
variable importance, whose null distribution was empirically shown to be symmet-
ric around zero. We gave an intuitive explanation of why this importance measure,
contrary to the classical out-of-bag based version, follows a symmetric distribution.
Further studies could address this issue from a more theoretical perspective. The clas-
sical permutation variable importance, in contrast, has a skewed null distribution and
thus seems inappropriate for the application of our testing procedure. In our stud-
ies the testing approach based on the classical permutation importance worked quite
well for settings with huge predictor numbers, but did not preserve the type I error
in settings with fewer (p = 100) predictor variables. Thus it should be used with
caution. We therefore strongly recommend the use of our testing procedure which is
based on a modified version of the permutation variable importance. This approach
has consistently been shown to precisely preserve the type I error in our studies.

The new testing approach is, however, not applicable to any high-dimensional data
set. We expect that it may perform poorly if only a few non-positive importance
scores are observed. If there are only a few variables with negative importance score
or importance score of zero, the approximation of the variable importance null dis-
tribution might be too imprecise and might lead to inaccurate p values. In the most
extreme setting (100 predictor variables in total and correlations between predictor
variables), we observed on average about 70 non-positive importance scores (for the
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prostate cancer data even only 40). However, our approach still worked surprisingly
well.Nevertheless, in settings (1)with small predictor numbers (below200), or (2)with
very strong correlations between predictor variables, or (3) with high expected signal-
to-noise ratio, we recommend that users look closely at the number of non-positive
importance scores. If this number is small, we recommend that users be careful when
using our testing approach because it is not clear if a small number of non-positive
importance scores is sufficient to derive p values. In such cases one should consider
the computationally more demanding alternatives, such as the approach by Altmann
et al. (2010).

When deriving p values in a non-parametric way, that is without making any dis-
tributional assumptions, the testing approach of Altmann et al. (2010) showed almost
the same statistical power as the new approach. In contrast, if a parametric distribution
for the variable importance of unrelated variables was used, the permutation-based
approach of Altmann and his colleagues was very conservative in our studies and had
much smaller statistical power than our approach. This suggests that the poor per-
formance is related to the assumed parametric distribution for the importance scores
of unrelated variables. In our studies, we used the normal distribution for modelling
the variable importance distribution of unrelated variables. Studies indicate that the
assumption of a normal distribution is not reasonable due to the skewness of the
distribution of null importance scores (data not shown). Researchers who apply the
approach of Altmann et al. (2010) to high-dimensional data should therefore consider
alternative distributions or approximate the null distribution in a non-parametric way.

Our new testing procedure focuses on the identification of predictor variables which
significantly improve the random forest’s predictive ability. The permutation variable
importance measure, by its definition, reflects the improvement in predictive ability
if a variable is used for making the prediction. Thus, there is a monotone relationship
between the value of the variable importance and the p value derived from our testing
approach: predictor variables with higher importance scores obtain smaller p values.
This must not necessarily be the case with permutation-based approaches. This is
obvious as Altmann et al. (2010) state that their approach corrects for the bias in the
Gini importance measure which ranks, for example, variables with many categories
higher than variables with fewer categories. In this case a re-sorting of variables occurs
when computing p values from theGini importance based on the proposed permutation
procedure.

The detection of relevant variables through a testing procedure or variable selection
strategy relies on the adequacy of the importance score of reflecting the relevance of a
variable. Recent studies have shown that there is high instability of variable importance
scores, especially in typical high-dimensional data settings with small numbers of
observations and huge numbers of variables, and that this instability can greatly be
reduced by increasing the number of trees (Wang et al. 2016). Thus, a sufficiently
high number of trees is needed for the novel testing approach, and the default value
for the number of trees in the existing random forests software (usually ntree =
500) is not appropriate for high-dimensional data and should by no means be used
for high-dimensional settings. So far there are no general recommendations on the
number of trees, but studies like that of Wang et al. (2016) might be a good starting
point for the choice. Often the number of trees is chosen as a compromise between
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computational burden and precision. Very fast implementations of random forests,
which are available nowadays, such as that of Wright and Ziegler (2016), allow the
user to construct reasonably large numbers of trees so that we recommend using
several thousands of trees when using random forests or their importance measures in
high-dimensional settings.

Overall, the statistical power of all testing procedures was low in our studies with
huge predictor numbers. The power of the variable importance measure to discrim-
inate between relevant and non-relevant variables was poor, too. The approach of
Altmann et al. (2010) which showed high power in other studies (Molinaro et al.
2011; Hapfelmeier and Ulm 2013) also had very low statistical power in our studies.
This discrepancy is possibly related to the fact that the existing studies included only a
few variables while our studies are based on several thousands of variables. Molinaro
et al. (2011) for example focused on candidate-gene studies and considered only a
few dozens of variables. When repeating our studies with a subset of 100 variables the
statistical power substantially increased, and the variable importance discriminated
much better between relevant and non-relevant variables. This suggests that the issue
of detecting relevant features by variable importance measures is much more difficult
for genome-wide association studies including hundreds of thousands to millions of
features than for candidate-gene studies that include only a few hundreds of features.
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