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Abstract We construct classifiers for multivariate and functional data. Our approach
is based on a kind of distance between data points and classes. The distance measure
needs to be robust to outliers and invariant to linear transformations of the data. For
this purpose we can use the bagdistancewhich is based on halfspace depth. It satisfies
most of the properties of a norm but is able to reflect asymmetry when the class
is skewed. Alternatively we can compute a measure of outlyingness based on the
skew-adjusted projection depth. In either case we propose the DistSpace transform
which maps each data point to the vector of its distances to all classes, followed by k-
nearest neighbor (kNN) classification of the transformed data points. This combines
invariance and robustness with the simplicity and wide applicability of kNN. The
proposal is compared with other methods in experiments with real and simulated data.

Keywords Bagdistance · Projection depth · Skew-adjusted projection depth ·Nearest
neighbors
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1 Introduction

Supervised classification of multivariate data is a common statistical problem. One is
given a training set of observations and their membership to certain groups (classes).
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Basedon this information, onemust assignnewobservations to these groups.Examples
of classification rules include, but are not limited to, linear and quadratic discriminant
analysis, k-nearest neighbors (kNN), support vector machines, and decision trees. For
an overview see e.g. Hastie et al. (2009).

However, real data often contain outlying observations. Outliers can be caused
by recording errors or typing mistakes, but they may also be valid observations that
were sampled from a different population.Moreover, in supervised classification some
observations in the training set may have been mislabeled, i.e. attributed to the wrong
group. To reduce the potential effect of outliers on the data analysis and to detect them,
many robust methods have been developed, see e.g. Rousseeuw and Leroy (1987) and
Maronna et al. (2006).

Many of the classical and robust classification methods rely on distributional
assumptions such as multivariate normality or elliptical symmetry (Hubert and Van
Driessen 2004). Most robust approaches that can deal with more general data make
use of the concept of depth, which measures the centrality of a point relative to a
multivariate sample. The first type of depth was the halfspace depth of Tukey (1975),
followed by other depth functions such as simplicial depth (Liu 1990) and projection
depth (Zuo and Serfling 2000).

Several authors have used depth in the context of classification. Christmann and
Rousseeuw (2001) and Christmann et al. (2002) applied regression depth (Rousseeuw
and Hubert 1999). Jörnsten (2004) used L1 depth for classification and clustering,
whereas Müller and Sawitzki (1991) employed the notion of excess mass. The max-
imum depth classification rule of Liu (1990) was studied by Ghosh and Chaudhuri
(2005) and extended by Li et al. (2012). Dutta andGhosh (2011) used projection depth.

In this paper we present a novel technique called classification in distance space.
It aims to provide a fully non-parametric tool for the robust supervised classification
of possibly skewed multivariate data. In Sects. 2 and 3 we describe the key concepts
needed for our construction. Section 4 discusses some existing multivariate classifiers
and introduces our approach. A thorough simulation study for multivariate data is
performed in Sect. 5. From Sect. 6 onwards we focus our attention on the increasingly
important framework of functional data, the analysis of which is a rapidly growing
field. We start by a general description, and then extend our work on multivariate
classifiers to functional classifiers.

2 Multivariate depth and distance measures

2.1 Halfspace depth

If Y is a random variable on Rp with distribution PY , then the halfspace depth of any
point x ∈ R

p relative to PY is defined as the minimal probability mass contained in a
closed halfspace with boundary through x:

HD(x; PY ) = inf||v||=1
PY

{
v′Y � v′x

}
.
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Halfspace depth satisfies the requirements of a statistical depth function as formulated
by Zuo and Serfling (2000): it is affine invariant (i.e. invariant to translations and
nonsingular linear transformations), it attains its maximum value at the center of
symmetry if there is one, it is monotone decreasing along rays emanating from the
center, and it vanishes at infinity.

For any statistical depth function D and for any α ∈ [0, 1] the α-depth region Dα

is the set of points whose depth is at least α:

Dα = {x ∈ R
p ; D(x; PY ) � α} . (1)

The boundary of Dα is known as the α-depth contour. The halfspace depth regions
are closed, convex, and nested for increasing α. Several properties of the halfspace
depth function and its contours were studied in Massé and Theodorescu (1994) and
Rousseeuw and Ruts (1999). The halfspace median (or Tukey median) is defined as
the center of gravity of the smallest non-empty depth region, i.e. the region containing
the points with maximal halfspace depth.

The finite-sample definitions of the halfspace depth, the Tukeymedian and the depth
regions are obtainedby replacing PY by the empirical probability distribution Pn .Many
finite-sample properties, including the breakdown value of the Tukey median, were
derived in Donoho and Gasko (1992).

To compute the halfspace depth, several affine invariant algorithms have been devel-
oped. Rousseeuw and Ruts (1996) and Rousseeuw and Struyf (1998) provided exact
algorithms in two and three dimensions and an approximate algorithm in higher dimen-
sions. Recently Dyckerhoff and Mozharovskyi (2016) developed exact algorithms in
higher dimensions. Algorithms to compute the halfspace median have been developed
by Rousseeuw and Ruts (1998) and Struyf and Rousseeuw (2000). To compute the
depth contours the algorithm of Ruts and Rousseeuw (1996) can be used in the bivari-
ate setting, whereas the algorithms constructed by Hallin et al. (2010) and Paindaveine
and Šiman (2012) are applicable to at least p = 5.

2.2 The bagplot

The bagplot of Rousseeuw et al. (1999) generalizes the univariate boxplot to bivariate
data, as illustrated in Fig. 1. The dark-colored bag is the smallest depth region with at
least 50 % probability mass, i.e. B = Dα̃ such that PY (B) � 0.5 and PY (Dα) < 0.5
for all α > α̃. The white region inside the bag is the smallest depth region, which
contains the halfspace median (plotted as a red diamond). The fence, which itself is
rarely drawn, is obtained by inflating the bag by a factor 3 relative to the median, and
the data points outside of it are flagged as outliers and plotted as stars. The light-colored
loop is the convex hull of the data points inside the fence.

The bagplot exposes several features of the bivariate data distribution: its center
(by the Tukey median), its dispersion and shape (through the sizes and shape of the
bag and the loop) and the presence or absence of outliers. In Fig. 1 we see a moderate
deviation from symmetry as well as several observations that lie outside the fence.
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Fig. 1 Bagplot of a bivariate
dataset
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One could extend the notion of bagplot to higher dimensions as well, but a graphical
representation then becomes harder or impossible.

2.3 The bagdistance

Although the halfspace depth is small in outliers, it does not tell us how distant they
are from the center of the data. Also note that any point outside the convex hull of the
data has zero halfspace depth, which is not so informative. Based on the concept of
halfspace depth, we can however derive a statistical distance of a multivariate point
x ∈ R

p to PY as in Hubert et al. (2015). This distance uses both the center and the
dispersion of PY . To account for the dispersion it uses the bag B defined above. Next,
c(x) := cx is defined as the intersection of the boundary of B and the ray from the
halfspace median θ through x. The bagdistance of x to Y is then given by the ratio of
the Euclidean distance of x to θ and the Euclidean distance of cx to θ :

bd(x; PY ) =
{
0 if x = θ

‖x − θ‖ / ‖cx − θ‖ elsewhere.
(2)

The denominator in (2) accounts for the dispersion of PY in the direction of x. Note
that the bagdistance does not assume symmetry and is affine invariant. In p = 2
dimensions it is similar to the distance proposed by Riani and Zani (2000).

The finite-sample version of the bagdistance is illustrated in Fig. 2 for the data set
in Fig. 1. Now the bag is shown in gray. For two new points x1 and x2 their Euclidean
distance to the halfspacemedian is marked by dark blue lines, whereas the orange lines
correspond to the denominator of (2) and reflect how these distances will be scaled.
Here the lengths of the blue lines are the same (although they look different as the
scales of the coordinates axes are quite distinct). On the other hand the bagdistance of
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Fig. 2 Illustration of the
bagdistance between an arbitrary
point and a sample x1

x2
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x1 is 7.43 and that of x2 is only 0.62. These values reflect the position of the points
relative to the sample, one lying quite far from the most central half of the data and
the other one lying well within the central half.

Similarly we can compute the bagdistance of the outliers. For the uppermost right
outlier with coordinates (3855, 305) we obtain 4.21, whereas the bagdistance of the
lower outlier (3690, 146) is 3.18. Both distances are larger than 3, the bagdistance of
all points on the fence, but the bagdistance now reflects the fact that the lower outlier
is merely a boundary case. The upper outlier is more distant, but still not as remote as
x1.

We will now provide some properties of the bagdistance. We define a generalized
norm as a function g : Rp → [0,∞[ such that g(0) = 0 and g(x) �= 0 for x �= 0,
which satisfies g(γ x) = γ g(x) for all x and all γ > 0. In particular, for a positive
definite p × p matrix � it holds that

g(x) =
√
x′�−1x (3)

is a generalized norm (and even a norm).
Now suppose we have a compact set B which is star-shaped about zero, i.e. for all

x ∈ B and 0 � γ � 1 it holds that γ x ∈ B. For every x �= 0 we then construct the
point cx as the intersection between the boundary of B and the ray emanating from 0
in the direction of x. Let us assume that 0 is in the interior of B, that is, there exists
ε > 0 such that the ball B(0, ε) ⊂ B. Then ‖cx‖ > 0 whenever x �= 0. Now define

g(x) =
{
0 if x = 0
‖x‖
‖cx‖ otherwise.

(4)
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Note that we do not really need the Euclidean norm, as we can equivalently define
g(x) as inf{γ > 0; γ −1x ∈ B}. We can verify that g(·) is a generalized norm, which
need not be a continuous function. The following result shows more.

Theorem 1 If the set B is convex and compact and 0 ∈ int(B) then the function g
defined in (4) is a convex function and hence continuous.

Proof We need to show that

g(λx + (1 − λ) y) � λg(x) + (1 − λ)g( y) (5)

for any x, y ∈ R
p and 0 � λ � 1. In case {0, x, y} are collinear the function g

restricted to this line is 0 in the origin and goes up linearly in both directions (possibly
with different slopes) so (5) is satisfied for those x and y. If {0, x, y} are not collinear
they form a triangle. Note that we can write x = g(x)cx and y = g( y)cy and we will
denote z := λx + (1 − λ) y. We can verify that z̃ := (λg(x) + (1 − λ)g( y))−1z is
a convex combination of cx and cy. By compactness of B we know that cx, cy ∈ B,
and from convexity of B it then follows that z̃ ∈ B. Therefore

‖cz‖ = ‖c̃z‖ � ‖̃z‖

so that finally

g(z) = ‖z‖
‖cz‖ � ‖z‖

‖̃z‖ = λg(x) + (1 − λ)g( y).

	

Note that this result generalizes Theorem 2 of Hubert et al. (2015) from halfspace
depth to general convex sets. It follows that g satisfies the triangle inequality since

g(x + y) = 2g

(
1

2
x + 1

2
y
)

� 2
1

2
g(x) + 2

1

2
g( y) = g(x) + g( y).

Therefore g (and thus the bagdistance) satisfies the conditions

(1) g(x) � 0 for all x ∈ R
p

(2) g(x) = 0 implies x = 0
(3) g(γ x) = γ g(x) for all x ∈ R

p and γ � 0
(4) g(x + y) � g(x) + g( y) for all x, y ∈ R

p.

This is almost a norm, in fact, it would become a norm if we were to add

g(−x) = g(x) for all x ∈ R
p.

The generalization makes it possible for g to reflect asymmetric dispersion. (We could
easily turn it into a norm by computing h(x) = (g(x)+ g(−x))/2 but then we would
lose that ability.)
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Also note that the function g defined in (4) does generalize the Mahalanobis dis-
tance in (3), as can be seen by taking B = {

x; x′�−1x � 1
}
which implies cx =

(x′�−1x)−1/2x for all x �= 0 so g(x) = ‖x‖ /((x′�−1x)−1/2 ‖x‖) =
√
x′�−1x.

Finally note that Theorem 1 holds whenever B is a convex set. Instead of halfspace
depth we could also use regions of projection depth or the depth function in Sect. 3.
On the other hand, if we wanted to describe nonconvex data regions we would have
to switch to a different star-shaped set B in (4).

In the univariate case, the compact convex set B in Theorem 1 becomes a closed
interval which we can denote by B = [− 1

b , 1
a ] with a, b > 0, so that

g(x) = ax+ + bx−.

In linear regression the minimization of
∑n

i=1 g(ri ) yields the a/(a + b) regression
quantile of Koenker and Bassett (1978).

It is straightforward to extend Theorem 1 to a nonzero center by subtracting the
center first.

To compute the bagdistance of a point x with respect to a p-variate sample we can
first compute the bag and then the intersection point cx . In low dimensions computing
the bag is feasible, and it is worth the effort if the bagdistance needs to be computed
for many points. In higher dimensions computing the bag is harder, and then a simpler
and faster algorithm is to search for the multivariate point c∗ on the ray from θ through
x such that

HD(c∗; Pn) = med
i

{HD( yi ; Pn)} (6)

where yi are the data points. Since HD is monotone decreasing on the ray this can be
done fairly fast, e.g. by means of the bisection algorithm.

Table 1 lists the computation time needed to calculate the bagdistance of m ∈
{1, 50, 100, 1000} points with respect to a sample of n = 100 points in dimensions
p ∈ {2, 3, 4, 5}. For p = 2 the algorithm of Ruts and Rousseeuw (1996) is used
and (6) otherwise. The times are averages over 1000 randomly generated data sets. In
each of the 1000 runs the points were generated from a centered multivariate normal
distributionwith a randomly generated covariancematrix. Note that the time form = 1
is essentially that of the right hand side of (6).

Table 1 Computation times for
the bagdistance (n = 100), in
units of 0.001 seconds

p m

1 50 100 1000

2 15.6 16.2 17.4 17.1

3 34.8 67.8 84.1 310.2

4 45.3 88.3 107.9 377.3

5 56.4 106.3 128.2 432.8
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3 Skew-adjusted projection depth

Since the introduction of halfspace depth various other affine invariant depth functions
have been defined [for an overview see e.g. Mosler (2013)], among which projection
depth (Zuo 2003) which is essentially the inverse of the Stahel-Donoho outlyingness
(SDO). The population SDO (Stahel 1981; Donoho 1982) of an arbitrary point x with
respect to a random variable Y with distribution PY is defined as

SDO(x; PY ) = sup
||v||=1

| v′x − med(v′Y ) |
MAD(v′Y )

from which the projection depth is derived:

PD(x; PY ) = 1

1 + SDO(x; PY )
.

Since the SDO has an absolute deviation in the numerator and uses the MAD in its
denominator it is best suited for symmetric distributions. For asymmetric distributions
Brys et al. (2005) proposed the adjusted outlyingness (AO) in the context of robust
independent component analysis. It is defined as

AO(x; PY ) = sup
||v||=1

AO1(v
′x; Pv′Y )

where the univariate adjusted outlyingness AO1 is given by

AO1(z; PZ ) =
⎧
⎨

⎩

z−med(Z)
w2(Z)−med(Z)

if z > med(Z)

med(Z)−z
med(Z)−w1(z)

if z � med(Z).
(7)

Here

w1(Z) = Q1(Z) − 1.5 e−4MC(Z) IQR(Z)

w2(Z) = Q3(Z) + 1.5 e+3MC(Z) IQR(Z)

if MC(Z) � 0, where Q1(Z) and Q3(Z) denote the first and third quartile of Z ,
IQR(Z) = Q3(Z) − Q1(Z) and MC(Z) is robust measure of skewness (Brys et al.
2004). If MC(Z) < 0 we replace (z, Z) by (−z,−Z). The denominator of (7) cor-
responds to the fence of the univariate adjusted boxplot proposed by Hubert and
Vandervieren (2008).

The skew-adjusted projection depth (SPD) is then given by (Hubert et al. 2015):

SPD(x; PY ) = 1

1 + AO(x; PY )
.

To compute the finite-sample SPD we have to rely on approximate algorithms, as
it is infeasible to consider all directions v. A convenient affine invariant procedure
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Table 2 Computation times for
the AO (n = 100), in units of
0.001 s

p m

1 50 100 1000

2 15.0 15.3 15.6 20.9

3 23.2 23.9 23.5 31.3

4 30.5 30.9 31.6 41.7

5 38.4 39.1 40.0 52.2

is obtained by considering directions v which are orthogonal to an affine hyperplane
through p randomly drawn data points. In our implementation we use 250p directions.
Table 2 shows the time needed to compute the AO (or SPD) ofm ∈ {1, 50, 100, 1000}
points with respect to a sample of n = 100 points in dimensions p ∈ {2, 3, 4, 5}, as in
Table 1. Here the time for m = 1 is the fixed cost of computing those 250p directions
and projecting the original data on them.

We see that computing AO ismuch faster than computing the bagdistance (Table 1),
and that this difference becomes more pronounced at larger p and m. This is mainly
due to the fact that AO does not require to compute the deepest point in multivariate
space, unlike the bagdistance (2) which requires θ .

4 Multivariate classifiers

4.1 Existing methods

One of the oldest nonparametric classifiers is the k-nearest neighbor (kNN) method
introduced by Fix and Hodges (1951). For each new observation the method looks up
the k training data points closest to it (typically in Euclidean distance), and then assigns
it to themost prevalent group among those neighbors. The value of k is typically chosen
by cross-validation to minimize the misclassification rate.

Liu (1990) proposed to assign a new observation to the group in which it has the
highest depth. This MaxDepth rule is simple and can be applied to more than two
groups. On the other hand it often yields ties when the depth function is identically
zero on large domains, as is the case with halfspace depth and simplicial depth. Dutta
and Ghosh (2011) avoided this problem by using projection depth instead, whereas
Hubert and Van der Veeken (2010) employed the skew-adjusted projection depth.

To improve on the MaxDepth rule, Li et al. (2012) introduced the DepthDepth
classifier as follows. Assume that there are two groups, and denote the empirical
distributions of the training groups as P1 and P2. Then transform any data point
x ∈ R

p to the bivariate point

(depth(x; P1), depth(x; P2)) (8)

where depth is a statistical depth function. These bivariate points form the so-called
depth-depth plot, in which the two groups of training points are colored differently.
The classification is then performed on this plot. The MaxDepth rule corresponds to
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separating according to the 45 degree line through the origin, but in general Li et al.
(2012) calculate the best separating polynomial. Next, they assign a new observation to
group 1 if it lands above the polynomial, and to group 2 otherwise. Some disadvantages
of the depth-depth rule are the computational complexity of finding the best separating
polynomial and the need for majority voting when there are more than two groups.
Other authors carry out a depth transform followed by linear classification (Lange
et al. 2014) or kNN (Cuesta-Albertos et al. 2015) instead.

4.2 Classification in distance space

It has been our experience that distances can be very useful in classification, but we
prefer not to give up the affine invariance that depth enjoys. Therefore, we propose
to use the bagdistance of Sect. 2.3 for this purpose, or alternatively the adjusted out-
lyingness of Sect. 3. Both are affine invariant, robust against outliers in the training
data, and suitable also for skewed data.

Suppose that G groups (classes) are given, where G � 2. Let Pg represent the
empirical distribution of the training data from group g = 1, . . . ,G. Instead of the
depth transform (8) we now carry out a distance transform by mapping each point
x ∈ R

p to the G-variate point

(dist(x; P1), . . . , dist(x; PG)) (9)

where dist(x; Pg) is a generalized distance or an outlyingness measure of the point
x to the g-th training sample. This G-variate point will be called a representation of
x ∈ R

p in distance space. Note that the dimension G of the distance space may be
lower, equal, or higher than the original dimension p. After the distance transform any
multivariate classifiermay be applied, such as linear or quadratic discriminant analysis.
The simplest version is of course MinDist, which just assigns x to the group with
smallest coordinate in (9).Whenusing theStahel-Donohoor the adjusted outlyingness,
this is equivalent to the MaxDepth rule based on projection depth or skew-adjusted
projection depth. However, we prefer to apply kNN to the transformed points. This
combines the simplicity and robustness of kNN with the affine invariance offered by
the transformation. Also note that we never need to resort to majority voting. In the
simulations in Sect. 5 wewill see that the proposedDistSpacemethod (i.e. the distance
transform (9) followed by kNN) works quite well.

We now illustrate the distance transform on a real world example, available from the
UCI Machine Learning Repository (Bache and Lichman 2013). The data originated
from an authentication procedure of banknotes. Photographs of 762 genuine and 610
forged banknotes were processed using wavelet transformations, and four features
were extracted. These are the four coordinates shown in the scatterplot matrix in Fig.
3.

Note that G = 2. Using the bagdistance, the distance space of this data is Fig. 4. It
shows that forged and authentic banknotes are well-separated and that the authentic
banknotes form a tight cluster compared to that of the forged ones. Any new banknote
would yield a new point in this plot, allowing kNN to classify it.
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Fig. 3 Scatterplot matrix of the 4-dimensional banknote authentication data. The authentic banknotes are
shown in orange, the forged ones in blue

5 Computational results

To evaluate the various classifiers we apply them to simulated and real data. Their
performance is measured by their average misclassification percentage

∑G
g=1 egng/N

with eg the percentage of misclassified observations of group g in the test set, ng the
number of observations of group g in the training set, and N the total size of the
training set. This weights the misclassification percentages in the test set according to
the prior probabilities. In each scenario the test set consists of 500 observations per
group. This procedure is repeated 2000 times for each setting.

Setting 1: Trivariate normals (G = 3, p = 3). We generate data from three
different normal distributions. The first group C1 has parameters

μ1 =
⎛

⎝
0
0
0

⎞

⎠ and �1 =
⎛

⎝
5 3 1
3 2 1
1 1 3

⎞

⎠ .
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Fig. 4 Distance-distance plot of
the banknote authentication data
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The second group is generated like C1 but we flip the sign of the second coordinate.
The third group is again generated like C1 but then shifted by the vector (1,−2,−4).
The training data consist of 50 observations in each group.

Setting 2: Multivariate normal and skewed (G = 2, p = 6). We consider two 6-
variate distributions. The first groupC1 is drawn from the standard normal distribution.
The coordinates in the second group are independent draws from the exponential
distribution with rate parameter 1:

C1 ∼ N (0, I6) and C2 ∼ (Exp(1),Exp(1),Exp(1),Exp(1),Exp(1),Exp(1))′.

The training data has 150 observations drawn from group C1 and 100 from C2.
Setting 3: Concentric distributions (G = 2, p = 7). This consists of two groups

of data. The first group is drawn from the standard normal distribution. The second
group is obtained by generating points on the unit sphere in R

p and multiplying
them by lengths which are generated uniformly on [12, 13]. The training data has 150
observations from group C1 and 250 from C2.

Setting 4: Banknote authentication data (G = 2, p = 4). We first standardize
the data by the columnwise median and MAD. The training sets are random subsets
of 500 points from the original data set, with the test sets each time consisting of the
remaining 872 observations.

Among the depth-based classification rules, halfspace depth (HD) is com-
pared to projection depth (PD) and skew-adjusted projection depth (SPD). We run
the MaxDepth rule, DepthDepth followed by the best separating polynomial and
DepthDepth followed by kNN. The degree of the polynomial and the number of
neighbors k are selected based on leave-one-out cross-validation.
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Fig. 5 Misclassification percentages in 2000 runs of setting 1 (trivariate normals). The results for clean
data are shown in gray, for 5 % mislabeled data in orange, and for 10 % mislabeled data in blue
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Fig. 6 Misclassification percentages in 2000 runs of setting 2 (6-variate normal and skewed) using the
same color code

Among thedistance-based classifiers, the bagdistancebasedonhalfspacedepth (bd )
is compared to the Stahel-Donoho outlyingness (SDO) and the adjusted outlyingness
(AO). Here theMinDist and DistSpace classifiers are considered.

We evaluate all classifiers on the uncontaminated data, and on datawhere 5 and 10%
of the observations in eachgroup aremislabeled by assigning them randomly to another
group. Figures 5, 6, 7, 8 summarize the results with boxplots of the misclassification
percentages.

In setting 1, most of the depth- and distance-based methods did better than kNN.
The halfspace depth HD did not perform well in MaxDepth and DepthDepth + kNN,
and in fact mislabeling improved the classification because it yielded fewer points with
depth zero in both groups. Halfspace depth appeared to work better in DepthDepth
+ polynomial but this is due to the fact that whenever a point has depth zero in both
groups, Li et al. (2012) fall back on kNN in the original data space. Also note that
DepthDepth + polynomial by construction improves the MaxDepth rule on training
data, but it does not always perform better on test data.

In setting 2 we note the same things about HD in the depth-based methods. The
best results are obtained by DepthDepth + poly and DistSpace, where we note that
the methods that are able to reflect skewness (HD, SPD, bd, AO) did a lot better than
those that aren’t (PD, SDO). This is because the data contains a skewed group.
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Fig. 7 Misclassification percentages in 2000 runs of setting 3 (concentric groups)
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Fig. 8 Misclassification percentages in 2000 runs of setting 4 (banknote data)

In the third setting one of the groups is not convex at all, and the MaxDepth and
MinDist boxplots lie entirely above the figure. On the other hand the DepthDepth and
DistSpacemethods still see structure in the data, and yield better results than kNN on
the original data.

In the banknote authentication example (setting 4), all methods except HD work
well. For clean data, the two methods using the bagdistance outperform all others.

6 Functional data

The analysis of functional data is a booming research area of statistics, see e.g. the
books of Ramsay and Silverman (2005) and Ferraty and Vieu (2006). A functional
data set typically consists of n curves observed at time points t1, . . . , tT . The value of a
curve at a given time point is a p-variate vector ofmeasurements.We call the functional
dataset univariate or multivariate depending on p. For instance, the multi-lead ECG
data set analyzed by Pigoli and Sangalli (2012) is multivariate with p = 8.

When faced with classification of functional data, one approach is to consider it
as multivariate data in which the measurement(s) at different time points are separate
variables. This yields high-dimensional data with typically many highly correlated
variables, which can be dealt with by penalization (Hastie et al. 1995). Another
approach is to project such data onto a lower-dimensional subspace and to continue
with the projected data, e.g. by means of support vector machines (Rossi and Villa
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2006; Martin-Barragan et al. 2014). Li and Yu (2008) proposed to use F-statistics
to select small subintervals in the domain and to restrict the analysis to those. Other
techniques include the weighted distance method of Alonso et al. (2012) and the
componentwise approach of Delaigle et al. (2012).

To reflect the dynamic behavior of functional data one can add their derivatives or
integrals to the analysis, and/or add some preprocessing functions (warping functions,
baseline corrections,…) as illustrated in Claeskens et al. (2014). This augments the
data dimension and may add valuable information that can be beneficial in obtaining
a better classification. We will illustrate this on a real data set in Sect. 7.3.

The study of robust methods for functional data started only recently. So far, efforts
to construct robust classification rules for functional data havemainly used the concept
of depth: López-Pintado and Romo (2006) used the modified band depth, Cuesta-
Albertos and Nieto-Reyes (2010) made use of random Tukey depth, and Hlubinka
et al. (2015) compared several depth functions in this context.

6.1 Functional depths and distances

Claeskens et al. (2014) proposed a type of multivariate functional depth (MFD) as
follows. Consider a p-variate stochastic process Y = {Y (t), t ∈ U }, a statistical depth
function D(·, ·) on Rp, and a weight function w onU integrating to 1. Then the MFD
of a curve X on U with respect to the distribution PY is defined as

MFD(X; PY ) =
∫

U
D(X (t); PY (t)) w(t) dt (10)

where PY (t) is the distribution of Y at time t . The weight function w(t) allows to
emphasize or downweight certain time regions, but in this paper will be assumed
constant. The functional median �(t) is defined as the curve with maximal MFD.
Properties of the MFD may be found in (Claeskens et al. 2014), with emphasis on the
case where D(·, ·) is the halfspace depth. Several consistency results are derived in
Nagy et al. (2016).

For ease of notation and to draw quick parallels to the multivariate non-functional
case, we will denote the MFD based on halfspace depth by fHD, and the MFD based
on projection depth and skew-adjusted projection depth by fPD and fSPD.

Analogously, we can define the functional bagdistance (fbd) of a curve X to (the
distribution of) a stochastic process Y as

fbd(X; PY ) =
∫

U
bd(X (t); PY (t)) dt . (11)

Similar extensions of the Stahel-Donoho outlyingness SDO and the adjusted outly-
ingness AO to the functional context are given by

fSDO(X; PY ) =
∫

U
SDO(X (t); PY (t)) dt (12)
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fAO(X; PY ) =
∫

U
AO(X (t); PY (t)) dt . (13)

6.2 Functional classifiers

The classifiers discussed in Sect. 4 are readily adapted to functional data. By simply
plugging in the functional versions of the distances and depths all procedures can be
carried over. For the k-nearest neighbor method one typically uses the L2-distance:

d2(X1, X2) =
(∫

U
‖X1(t) − X2(t)‖2 dt

)1/2

.

The functional kNN method will be denoted as fkNN. It is simple but not affine
invariant. Analogously we use the MaxDepth and DepthDepth rules based on fHD,
fPD, and fSPD, as well as the MinDist and DistSpace rules based on fbd, fSDO,
and fAO. Note that Mosler and Mozharovskyi (2016) already studied DepthDepth on
functional data after applying a dimension reduction technique.

7 Functional data examples

7.1 Fighter plane dataset

The fighter plane dataset of Thakoor and Gao (2005) describes seven shapes: of the
Mirage, Eurofighter, F-14 with wings closed, F-14 with wings opened, Harrier, F-
22 and F-15. Each class contains 30 shape samples obtained from digital pictures,
which Thakoor and Gao (2005) then reduced to the univariate functions in Fig. 9. We
obtained the data from the UCRTime Series Classification Archive (Chen et al. 2015).

In all, the plane data set consists of 210 observations divided among seven groups.
For the training data we randomly drew 15 observations from each group, and the
test data were the remaining 105 observations. Repeating this 200 times yielded the
misclassification percentages in Fig. 10.

In this data set theDistSpacemethod performed best, followed by kNNwhich how-
ever suffered under 10 % of mislabeling. Figure 10 contains no panel for DepthDepth
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Fig. 9 Functions describing the shapes of fighter planes
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Fig. 10 Misclassification percentages in 200 runs of the fighter plane data
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Fig. 11 Curves computed from MRI intensities

+ poly because the computation time of this method was infeasible due to the compu-
tation of the separating polynomials combined with majority voting for G = 7.

7.2 MRI dataset

Felipe et al. (2005) obtained intensities of MRI images of 9 different parts of the
human body (plus a group consisting of all remaining body regions, which was of
course very heterogeneous). They then transformed their data to curves. This data set
was also downloaded from (Chen et al. 2015). TheG = 9 classes together contain 547
observations and are of unequal size. For example n1 = 112, n2 = 65, n3 = 75, ....
The curves for 4 of these classes are shown in Fig. 11 (if we plot all nine groups
together, some become invisible).

For the training data we drew unequally sized random subsets from these groups.
The misclassification rates of 200 experiments of this type are shown in Fig. 12.

Here DistSpace performs a bit better than fkNN under contamination, and much
better than MaxDepth and MinDist. Also in this example the DepthDepth + poly
method took too long to compute.

7.3 Writing dataset

The writing dataset consists of 2858 character samples corresponding to the speed
profile of the tip of a pen writing different letters, as captured on a WACOM tablet.
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Fig. 12 Misclassification percentages in 200 runs of the MRI data
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Fig. 13 Coordinates (upper) and speed (lower) of the writing data. Each group has a different color

Thedata came from theUCIMachineLearningRepository (Bache andLichman2013).
We added the x- and y-coordinates of the pen tip (obtained by integration) to the data,
yielding p = 4 overall unlike both previous examples which had p = 1. We further
processed the data by removing the first and last time points and by interpolating to
give all curves the same time domain. Samples corresponding to the letters ‘a’, ‘c’, ‘e’,
‘h’ and ‘m’ were retained. This yields a five-group supervised classification problem
of four-dimensional functional data. Figure 13 plots the curves, with the 5 groups
shown in different colors.

For each letter the training set was a random subset of 80 multivariate curves. The
outcome is in Fig. 14. There is no panel for the DepthDepth + poly classifier with
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Fig. 14 Misclassification percentages in 200 runs of the writing data

separating polynomials and majority voting as its computation time was infeasible.
MaxDepth and DepthDepth combined with kNN perform well except for fHD, again
due to the fact that HD is zero outside the convex hull.DistSpace outperformsMinDist,
and works well with all three distances. The best result was obtained by DistSpace
with fbd.

Finally we applied fkNN and DistSpace to the original two-dimensional velocity
data only. This resulted in larger median misclassification errors for all methods and
all 3 data settings (0, 5 and 10 %mislabeling). For example,DistSpacewith fbd on the
two-dimensional data yielded a median misclassification error of 0.35 %, whereas the
median error was zero on the 4-dimensional augmented data. This shows that adding
appropriate data-based functional information can be very useful to better separate
groups.

8 Conclusions

Existing classification rules for multivariate or functional data, like kNN, often work
well but can fail when the dispersion of the data depends strongly on the direction in
which it is measured. TheMaxDepth rule of Liu (1990) and itsDepthDepth extension
(Li et al. 2012) resolve this by their affine invariance, but performpoorly in combination
with depth functions that become zero outside the convex hull of the data, like halfspace
depth (HD).

This is why we prefer to use the bagdistance bd, which is based on HD and has
properties very close to those of a norm but is able to reflect skewness (while still
assuming some convexity). Rather than transforming the data to their depths we pro-
pose the distance transform, based on bd or a measure of outlyingness such as SDO
or AO.

After applying the depth or distance transforms there are many possible ways to
classify the transformed data.We found that the original separating polynomialmethod
did not perform the best. Therefore we prefer to apply kNN to the transformed data.

In our experiments with real and simulated data we found that the best performing
methods overall wereDepthDepth + kNN (except with halfspace depth) andDistSpace
+ kNN. The latter approach combines affine invariance with the computation of a
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distance and the simplicity, lack of assumptions, and robustness of kNN, and works
well for both multivariate and functional data.

In the multivariate classification setting the depth and distance transforms per-
form about equally well, and in particular MinDist on SDO and AO is equivalent to
MaxDepth on the corresponding depths PD and SPD. But the bagdistance bd beats the
halfspace depth HD in this respect because the latter is zero outside the convex hull
of a group.

One of the most interesting results of our simulations is that the approaches based
on the depth and distance transforms behave more differently in the functional setting.
Indeed, throughout Sect. 7 classification based on the distance transform outperformed
classification using the depth transform. This is because distances are more additive
than depths, which matters because of the integrals in the definitions of functional
depth MFD (10) to functional AO (13). For the sake of simplicity, let us focus on the
empirical versions where the integrals in (10)–(13) become sums over a finite number
of observed time points. These sums are L1 norms (we could also use L2 norms by
taking the square root of the sum of squares). In the context of classification, we are
measuring how different a new curve X is from a process Y or a finite sample from it.
When X differs strongly from Y in a few time points, the integrated depth (10) will
have a few terms equal to zero or close to zero, which will not lead to an extremely
small sum, so X would appear quite similar to Y . On the other hand, a functional
distance measure like (11)–(13) will contain a few very large terms, which will have
a large effect on the sum, thereby revealing that X is quite far from Y . In other words,
functional distance adds up information about how distinct X is from Y . The main
difference between the two approaches is that the depth terms are bounded from below
(by zero), whereas distance terms are unbounded from above and thus better able to
reflect discrepancies.
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