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Abstract This paper introduces a principal component methodology for analysing
histogram-valued data under the symbolic data domain. Currently, no comparable
method exists for this type of data. The proposed method uses a symbolic covariance
matrix to determine the principal component space. The resulting observations on prin-
cipal component space are presented as polytopes for visualization. Numerical repre-
sentation of the resulting polytopes via histogram-valued output is also presented. The
necessary algorithms are included. The technique is illustrated on a weather data set.

Keywords Principal components · Histogram observations · Polytopes

Mathematics Subject Classification 62H25 · 60-08

1 Introduction

In an age of “big data”, we are faced with challenges to develop statistical methodol-
ogy that can analyse the data accurately. One approach is to aggregate the data in some
meaningful way even if only to reduce the size of the data set. There are a myriad of
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ways to effect this aggregation. Clearly, it is preferable to carry out any such aggre-
gation according to scientific questions driving the analysis. The resulting aggregated
data will perforce be in the form of so-called symbolic data, such as lists, intervals,
histograms, and the like. While the aggregation of data sets (small or large) will pro-
duce symbolic data, symbolic data can also arise naturally (e.g., species data, many
medical entities such as blood pressure, etc.). A detailed description of symbolic data
along with numerous examples can be found in Bock and Diday (2000) and Billard
and Diday (2003, 2006); Billard (2011) provides a non-technical illustrated introduc-
tion to symbolic data. It is important to note the distinction between symbolic data
and fuzzy data. In symbolic data, an observation contains multiple values either by
natural occurrence or by data aggregation. The values within a symbolic observation
follow a probability distribution. By contrast, the values in a fuzzy set are caused by
the imprecision or the fuzziness of the definition of the event. The values in a fuzzy set
have associated grades of membership. See Zadeh (1965, 1968) and Shapiro (2009)
for further information about fuzzy sets. The focus of this paper is on symbolic data
and not on fuzzy data.

Often-times, in the absence of knowing what else to do, analysts have taken the
average of the aggregated values, or some other seemingly suitably selected “repre-
sentative” value as a classical surrogate, for a given category. However, it is known
that this approach, while giving answers, give answers that are not necessarily cor-
rect, since some of the variations present in the data are ignored. For example, Billard
(2008) has shown that for a data set of interval or histogram-valued observations, the
total variation equals the sum of the within observation variation and the between
observation variation. The between observation variation is a measure of the variation
obtained when using the average as a classical surrogate to represent the aggregated
values of a category (though this can change slightly depending on varying underlying
assumptions, but the sense remains). The within observation variation is a measure
of the internal variation of each observation. It is this within observation variation
that is ignored when using classical surrogates only. To illustrate this further, suppose
we have two samples each of size n = 1; the first sample contains the observation
X(1) = [9, 11] and the second is X(2) = [0, 20]. Both have the same average value
(=10). Clearly, using the average as the basis for the analysis will give the same answer
for both samples, yet also clearly, the two samples have differing values and so should
produce differing answers. That is, symbolic data require symbolic methods which
use all the information contained in the data.

Our focus is on principal component analysis for histogram-valued observations.
The basic principles of principal component analyses are unchanged from those for
classically-valued observations. See any of the many texts, e.g., Jolliffe (2004) and
Johnson and Wichern (2002) for an applied approach, and Anderson (1984) for a
theoretical approach. Recently, Le-Rademacher andBillard (2012) developedmethod-
ology for interval data; this included obtaining representations of the projections of
the observed hyperrectangles inRp as polytopes in principal component space. These
contrast sharply from the point projections in principal component space obtained for
classical point data. Le-Rademacher and Billard (2012) also provided an illustrative
comparison of their method with previous attempts to analyse interval data, including,
e.g., Cazes et al. (1997), Chouakria (1998), Lauro and Palumbo (2000), Irpino et al.
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(2003), Palumbo and Lauro (2003), Lauro et al. (2008), and Douzal-Chouakria et al.
(2011). A brief non-illustrative description of these differences is given in Billard
and Le-Rademacher (2013). This comparison showed that these earlier efforts (while
advancing the science) had failed in different ways to meet the difficult challenge of
capturing all the variations inherent to the data. To extend the projected polytopes
beyond visualization, Le-Rademacher and Billard (2013) introduced an algorithm to
translate the resulting polytopes into histogram-valued output that can be used as
numerical input in further statistical analyses.

To date, no comparable methodology exists for handling histogram-valued data.
Note that, the histogram-valued data here are different from the modal categorical
data of Cazes (2002), Ichino (2011), and Makosso-Kallyth and Diday (2012). In this
work, we extend the interval PCAmethodology of Le-Rademacher and Billard (2012,
2013) to obtain principal components for histogram-valued observations. This method
uses all the variations contained in the data set by using the symbolic covariancematrix;
see Sect. 2. Also, in Sect. 2, a visualization of the resulting principal components and
computation of the histogram-valued output are suggested. Since hyperrectangles for
histogram data can be viewed as consisting of sets of weighted sub-hyperrectangles,
expansion of the polytope methods developed for interval data is proposed. How-
ever, the generalization of the methods from interval data to histogram data is not
trivial. Challenges encountered in the proposed expansion are addressed in Sect. 2.
The algorithms for constructing the polytopes and the histogram-valued output are
summarized in Sect. 3 (detailed algorithms are given in the Appendix). In Sect. 4, the
new methodology is illustrated on a real data set describing monthly temperatures at
weather stations in China. Conclusions are given in Sect. 5.

2 Basics and methodology

2.1 Histogram-valued data: basic statistics

Let X = (X1, . . . , X p) be a p-dimensional random variable taking values in Rp.
When a realization is a histogram-valued (or, simply, histogram) observation, it takes
the form, for each X j , j = 1, . . . , p,

Xi j = {[ai j1, bi j1), pi j1; . . . ; [ai jsi j , bi jsi j ], pi jsi j }, i = 1, . . . , n, (1)

with
∑si j

k j=1 pi jk j = 1. The disjoint histogram subintervals [ai jk j , bi jk j ) in Eq. (1),
with ai jk j ≤ bi jk j , can be open or closed at either end, and occur with probability or
relative frequency pi jk j , i = 1, . . . , n, j = 1, . . . , p, and k j = 1, . . . , si j . Typically,
the number of subintervals si j varies across different observations i and variables j .

The sample mean and sample variance for each X j , j = 1, . . . , p, were obtained
by Billard (2008), respectively, as

X̄ j = 1

2n

n∑

i=1

si j∑

k j=1

(ai jk j + bi jk j )pi jk j (2)
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and

S2j =
1

3n

n∑

i=1

si j∑

k j=1

(a2i jk j+ai jk j bi jk j+b2i jk j )pi jk j−
1

4n2

⎡

⎣
n∑

i=1

si j∑

k j=1

(ai jk j +bi jk j )pi jk j

⎤

⎦

2

.

(3)
The sample symbolic covariance (or, simply, sample covariance) between two vari-
ables X j1 and X j2 was obtained in Billard (2008) as

Cov(X j1 , X j2) = 1

6n

n∑

i=1

si j1∑

k1=1

si j2∑

k2=1

{[2(ai j1k1 − X̄ j1)(ai j2k2 − X̄ j2)

+ (ai j1k1 − X̄ j1)(bi j2k2 − X̄ j2)

+ (bi j1k1 − X̄ j1)(ai j2k2 − X̄ j2)

+ 2(bi j1k1 − X̄ j1)(bi j2k2 − X̄ j2)]pi j1k1 j2k2} (4)

where pi j1k1 j2k2 is the relative frequency of the rectangle formed by subinterval
[ai j1k1 , bi j1k1) of X j1 and subinterval [ai j2k2 , bi j2k2) of X j2 . For simplicity of nota-
tion in Eq. (4), k1 = k j1 and k2 = k j2 . When j1 = j2 = j , then Cov(X j1 , X j2) = S2j .
When si j = 1 and hence pi j1 = 1 for all i = 1, . . . , n, j = 1, . . . , p, the histogram
value of Eq. (1) reduces to interval data as a special case. In this case, the sample sta-
tistics X̄ , S2j and Cov(X j1 , X j2) of Eqs. (2)−(4) reduce to their respective formula for
interval-valued observations (obtained by Bertrand and Goupil (2000), Billard (2008);
likewise, when the data are classically valued, where now si j = 1, and bi j1 = ai j1 for
all i, j , these statistics reduce to their well known classical counterparts, as a second
special case. An underlying assumption in these formulae is that within a given subin-
terval, values for Xi j are uniformly distributed across those subintervals (even though
the random variable X j itself is not necessarily uniformly distributed; indeed, the X
is often assumed to follow a multivariate normal distribution, at least asymptotically).

Note that, although X j is symbolic-valued (a histogram in this case), the mean
and the (co)variance of X j are classically valued. Using conditional expectation and
an internal parameters approach, Le-Rademacher and Billard (2011) showed that the
variance of a symbolic-valued randomvariable is a sumof themean and the variance of
classically valued internal parameters. Similarly,Xu (2010) showed that the covariance
of interval-valued random variables is a sum of the mean and the covariance of classi-
cally valued internal parameters. These (co)variances are similar to the (co)variances
of classically-valued randomvariableswithmixture distribution. Hence, the properties
of the covariance matrix for classical data carry through to symbolic data, including
the fact that the values of the correlation are between (−1) and (+1). Furthermore, the
sample mean X̄ j of Eq. (2) and the sample variance of Eq. (3) are maximum likelihood
estimators (MLE) of the mean and the variance of histogram-valued random variable
X j Le-Rademacher and Billard (2011). The covariance Cov(X j1 , X j2) of Eq. (4) is a
histogram data generalization of the MLE of the covariance of interval data from Xu
(2010) and Billard et al. (2011). Since the symbolic sample covariance matrix, with
elements shown in Eq. (4), accounts for the total variation of histogram data, we pro-
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pose constructing the principal components using this covariance matrix as described
in the following sections.

2.2 Principal components

When the dimension p is large and some of the variables are correlated, principal com-
ponent analysis is often used to reduce the dimension and the collinearity in the data
by creating uncorrelated linear combinations of the p variables, called principal com-
ponents. In particular, the νth principal component, PCν , is the linear transformation
of an observation X satisfying

PCν = eν1X1 + · · · + eνp X p, ν = 1, . . . , p, (5)

where λν and eν = (eν1 , . . . , eνp ) are the νth eigenvalue and νth eigenvector, respec-
tively, of the covariance matrix � with λ1 ≥ · · · ≥ λp,

∑
j e

2
ν j

= 1, and where
Var(PCν) = λν , and Cov(PCν, PCν′) = 0, ν �= ν′. That is, the eigenvalue λν

represents the amount of variation explained by PCν . In practice, the first two or
three principal components account for most of the total variation in the data. Hence,
subsequent analyses using the first few principal components account for most of the
data variability.

Instead of using the covariances directly, the data can be normalized; in this case,
the covariance matrix � is replaced by the correlation matrix � with elements

� j1 j2 = Cov(X j1 , X j2)/[Cov(X j1 , X j1)Cov(X j2 , X j2)]1/2, j1, j2 = 1, . . . , p.
(6)

Anderson (1963, 1984), Mardia (1979), Johnson and Wichern (2002), and Jolliffe
(2004) provide comprehensive treatments of classical PCA.

Once the covariance matrix, or equivalently the correlation matrix, is obtained,
the derivation of the principal components through Eq. (5) is analogous to that for
classical data and for interval data. The difference across these data formats is in
the relevant formula to calculate the covariance/correlation matrix �. For histogram-
valued data, the elements of � are given in Eq. (4). Since the covariance matrix � is
classically valued, the eigenvalues and the eigenvectors of � have the same properties
and the same interpretation as those of classical data. Specifically, the eigenvectors
are orthogonal; hence the principal components are orthogonal linear transformations
of the original variables. Moreover, the eigenvector eν represents the direction with
the νth largest variation in the observed data. See Jolliffe (2004) for a discussion of
mathematical and statistical properties of PCs. Note that, in this work, we propose
using the symbolic sample covariance matrix to calculate the principal components.
Therefore, the principal component axes align in directions ofmaximum total variation
for histogram data.

Analogous to the classical case, the principal components of histogram-valued
variables are linear combinations of those variables. Whereas for classical data, these
linear combinations are linear transformations of single data points, for histogram
data, they are transformations of all the data points in the histograms. In other words,
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since the histogram observations are hyperrectangles which are convex sets, the linear
combinations of histogram observations are linear transformations of these convex
sets. Section 2.3 describes the construction of the transformed convex sets (polytopes)
for visualization.

2.3 Visualization

When the data are classical points inRp, the projections are points onto the principal
component space; see any text on multivariate statistics, e.g., Jolliffe (2004). When
the data are intervals so forming hyperrectangles in Rp, the projections onto prin-
cipal component space are polytopes; see Le-Rademacher and Billard (2012). They
further showed that these polytopes are convex sets with boundaries defined by the
transformed vertices of the hyperrectangles. The polytopes can be reconstructed in
the principal component space by connecting the transformed vertices of the observed
hyperrectangles. The vertices are used as the first step in the reconstruction of the
observations because they define the boundaries of the hyperrectangles. After the ver-
tices are transformed, the entire polytope representing a transformed interval-valued
observation can be reconstructed in the principal component space. This allows recon-
struction of the polytopeswithout having to transform each individual data pointwithin
the observations, which can be infinitely many. The vertices are part of the hyperrec-
tangle representing an observation. They are not by themselves the entire observation.
This same idea is extended to reconstructing histogram-valued observations in the
principal component space as described in the following.

To construct polytopes for histogram data, we first recognize that each histogram is
in effect aweighted set of sub-hyperrectangles inRp .Within each sub-hyperrectangle,
the density is assumed to be uniform, but that these densities vary across the sub-
hyperrectangles. For example, when the number of subintervals si j = 2 and p = 2,
we have the hyperrectangle as shown in Fig. 1a with the differing weights of the
sub-rectangles reflected by their differing colors. This is contrasted with the single
uniformly weighted rectangle for interval data in Fig. 1b. In general, there will be ri
sub-hyperrectangles for the histogram Xi where

ri =
p∏

j=1

si j . (7)

Since a histogram-valued observation can be represented by a hyperrectangle in the
sample space Rp, an observation Xi can be expressed in terms of the vertices of its
sub-hyperrectangles. Denote the set of subinterval endpoints byQi = (Qi1, . . . , Qip)

with Qi j = {ai j1, bi j1, . . . , ai jsi j , bi jsi j }, j = 1, . . . , p. Let Wv
i be the (2pri × p)

matrix whose rows consist of the vertex coordinates of all possible permutations of
the elements of Qi . From Eq. (7), it follows that Wv

i has 2
pri = 2p(

∏p
j=1 si j ) rows.

However, usually the upper endpoint of a subinterval equals the lower endpoint
of the next subinterval. Therefore, without loss of generality, for each Xi j , assume
bi j (k j−1) = ai jk j for k j = 2, . . . , si j and write bi jsi j = ai j (si j+1). Then, the set of end-
points Qi can be replaced by Ei = (Ei1, . . . , Eip) with Ei j = {ai j1, . . . , ai j (si j+1)},
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Fig. 1 a Histogram sub-rectangles. b Interval rectangle

j = 1, . . . , p, i = 1, . . . , n. Let Xv
i be the matrix whose rows include all possible

permutations of the elements of Ei . Then, Xv
i has Ni = ∏p

j=1 (si j + 1) rows. The

quantity
∏p

j=1 (si j + 1) is less than or equal to 2p(
∏p

j=1 si j ). The magnitude of the
difference between these two quantities depends on the number of subintervals for each
histogram Xi j and the number of variables, p. When si j = 1 for all j = 1, . . . , p, as
for interval data, ∏p

j=1 (si j + 1)

2p(
∏p

j=1 si j )
=

∏p
j=1 2

2p(
∏p

j=1 1)
= 2p

2p
= 1.

When si j is large for most Xi j , it is easily shown that

∏p
j=1 (si j + 1)

2p(
∏p

j=1 si j )
→ 1

2p
.

Hence, when p is large, it is more efficient to use the matrix of vertices Xv
i which is

given by

Xv
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ai11 ai21 . . . aip1
...

...
...

...

ai11 ai21 . . . aip(sip+1)
...

...
...

...
...

...
...

...

ai1(si1+1) ai2(si2+1) . . . aip1
...

...
...

...

ai1(si1+1) ai2(si2+1) . . . aip(sip+1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8)

Figure 2a shows these vertices when si j = 2 and p = 2 (see Fig. 1a) using the
endpoints of Ei ; and Fig. 2b gives the vertices for the interval data with si j = 1 and
p = 2 (see Fig. 1b) using the endpoints ofQi . The matrix of endpoints for Fig. 2a has
Ni = ∏2

j=1(2 + 1) = 9 rows and is given by, from Eq. (8),
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Fig. 2 a Vertices E for Histogram sub-rectangles. b Vertices Q for Interval rectangle

Xv
i =

[
ai11 ai11 ai11 ai12 ai12 ai12 ai13 ai13 ai13
ai21 ai22 ai23 ai21 ai22 ai23 ai21 ai22 ai23

]T

(9)

where T stands for the transpose function. Construction of Xv
i , and hence of Xh

i , is
given in “Constructing the matrix of vertices” in the Appendix.

Equation (5) can now be applied to the set of vertices in Xv
i transforming them into

points in the principal component space. Let Yv
i be the matrix of transformed vertices

of observation i . Then, from Eq. (5), we have

Yv
i = Xv

i e. (10)

Le-Rademacher and Billard (2012) proved that a hyperrectangle representing an
interval-valued observation when transformed into a principal components space
becomes a polytope. Similarly, each sub-hyperrectangle belonging to a histogram-
valued observation i becomes a polytope in principal component space. The vertices
of the polytope are the transformed vertices, throughEq. (10), of its corresponding sub-
hyperrectangle in the sample space. To construct the polytopes for a histogram-valued
observation i , we treat the ri sub-hyperrectangles that belong to histogram-valued
observation i as a set of ri interval-valued observations but with weights, i.e., with den-
sities dhi (say), h = 1, . . . , ri . Let the matrix of vertices for the hth sub-hyperrectangle
beXh

i . These sub-matrices are extracted fromXv
i . Consider the example of Fig. 2a and

its associatedmatrix of vertices in Eq. (9). For h = 1 (the lower left-hand sub-rectangle
of Fig. 2a), the matrix of vertices is

Xh=1
i =

[
ai11 ai11 ai12 ai12
ai21 ai22 ai21 ai22

]T

corresponding to the 1st, 2nd, 4th, 5th rows of Xv
i in Eq. (9); for h = 2 (the upper

left-hand sub-rectangle of Fig. 2a), we have
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Fig. 3 a Subintervals of PC Histogram for p = 2. b Subintervals of PC Histogram for p = 3

Xh=2
i =

[
ai11 ai11 ai12 ai12
ai22 ai23 ai22 ai23

]T

corresponding to the 2nd, 3rd, 5th, 6th rows ofXv
i in Eq. (9); and so on. Analogous to

Eq. (10), the matrix of vertices of the sub-polytope representing sub-hyperrectangle
h, h = 1, . . . , ri , is

Yh
i = Xh

i e. (11)

For computational purposes, let Yi be a three-dimensional array composed of the
collection of Yh

i of Eq. (11), i.e., Yi = (Y1
i , . . . ,Y

ri
i ). Construction of Yi is given

by the algorithm in the Appendix. The sub-polytope representing sub-hyperrectangle
h is then constructed by connecting corresponding vertices of Yh

i as described in
Le-Rademacher and Billard (2012). Figure 3a shows the polytope projection of a
two-dimensional hyperrectangle with four sub-rectangles onto a principal component
plane. Figure 3b shows the projection of a three-dimensional hyperrectangle.

Although densities of the sub-hyperrectangles, equivalently densities of the sub-
polytopes, in observation i vary, illustrating this variability presents some challenges.
The first challenge is due to the fact that many of the sub-polytopes in an observation
are hidden behind other sub-polytopes. Therefore, only densities of the sub-polytopes
on the boundary can be visualized. The second challenge includes computational com-
plexity. If densities are specified by different colors, then all polytopes must be filled
with color associatedwith their density. Figure 3b illustrates that this complexity exists
even with a simple three-dimensional observation. Writing a program to automate this
process is a time-consuming and a challenging project. This can be a potential future
project.

With these challenges inmind, we propose separately constructing polytopes (with-
out densities) for visualization and constructing a matrix of densities associated with
the sub-polytopes as an alternative way to understand the variability in their densities.
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The resulting densities are further taken into account when computing the histogram-
valued output. Computation of the sub-polytope densities and the output histograms
are described in the following section.

2.4 Numerical output

Let di be an ri -vector of densities. Then, the hth element of di is the density of the
hth sub-hyperrectangle of observation i . For j = 1, . . . , p and k j = 1, . . . , si j ,

dhi =
p∏

j=1

pi jk j (12)

where

h =
p−1∑

j=1

⎡

⎣(k j − 1)
p−1∏

l= j+1

sil

⎤

⎦ + kp. (13)

That is, e.g., the first sub-hyperrectangle of observation i is formed by the first subin-
terval of histograms Xi j for all j = 1, . . . , p. Then, k j = 1 for all j . Thus, from
Eq. (13),

h =
p−1∑

j=1

⎡

⎣(k j − 1)
p−1∏

l= j+1

sil

⎤

⎦ + kp = 0 + 1 = 1.

Hence, the first element of di is, from Eq. (12),

d1i =
p∏

j=1

pi jk j =
p∏

j=1

pi j1.

Similarly, the second sub-hyperrectangle of observation i is formed by the first subin-
terval of histograms Xi j for all j = 1, . . . , p − 1 and the second subinterval of Xip.
Then, k j = 1 for j = 1, . . . , p − 1 and kp = 2. Therefore,

h =
p−1∑

j=1

⎡

⎣(k j − 1)
p−1∏

l= j+1

sil

⎤

⎦ + kp = 0 + 2 = 2.

Hence, the second element of di is

d2i =
p∏

j=1

pi jk j =
⎛

⎝
p−1∏

j=1

pi j1

⎞

⎠ pip2.

Other elements of di can be found the same way. The value of di is the density of the
sub-hyperrectangle whose vertices are expressed in matrix Xh

i . Equivalently, di is the
density of the sub-polytope whose vertices are expressed in matrix Yh

i of Eq. (11).
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Prior to incorporating the sub-polytope densities into the relative frequencies of the
histogram output, construct the principal component (PC) histogram corresponding to
each sub-polytope of observation i as detailed in Le-Rademacher and Billard (2013).
Let

Zh
iν = {[z1, z2), p1; . . . ; [zs−1, zs], ps} (14)

denote the resulting PCν histogram representing sub-polytope h of observation i
where s is the number of subintervals in Zh

iν and pk is the relative frequency of
subinterval [zk, zk+1) ignoring the sub-polytope density. Then, the relative frequency
of [zk, zk+1) is dhi pk after adjusting for the density. Now, the adjusted PCν histogram
for the sub-polytope h is Zh

iν = {[z1, z2), dhi p1; . . . ; [zs−1, zs], dhi ps}.
Next,wepropose combining the ri adjustedhistograms Zh

iν for allh = 1, . . . , ri into
one histogram representing PCν of observation i . For convenience, we propose creat-
ing a combined histogramof equal subintervalwidths.Due to the linear transformation,
each subinterval along the PCν axis may contain parts of several sub-polytopes. For
example, in Fig. 3a the first subinterval [z1, z2) includes part of polytopes 1 and 2;
whereas subinterval [z2, z3) includes part of all four sub-polytopes. The subinterval
relative frequencies for the combined histogrammust correctly account for the propor-
tion of various sub-polytopes that contribute to the subinterval. Figure 3b shows the
process ismore complexwith higher dimensional data. Steps to compute the combined
histograms are described in “Constructing the PC Histograms” in the Appendix.

3 Algorithm

The algorithm needed to carry out the proposed analysis can be divided into four main
components. For each observation, do the following:

A.1 Construct the matrix of vertices Xv
i of the observed sub-hyperrectangles.

A.2 Construct the polytopes by:
– computing the transformed vertices Yv

i (= Xv
i e) and then connect the appro-

priate vertices to build the polytopes and
– computing the density vector di .

A.3 Plot two- or three-dimensional projection of the polytopes from A.2 onto a prin-
cipal component space.

A.4 Compute principal component histograms by:
– computing the principal component histogram for each sub-polytope fromA.2
and then

– combining the sub-polytope histograms into one histogram using the densities
computed from A.2.

Details of the algorithm are given in the Appendix. An R-program and an example
data are given as supplemental materials.

Although the structure of histogram observations can be complex, especially with a
large number of variables, we carefully define thematrix of vertices in Eq. (8) to reduce
the size of the data matrix to increase the efficiency of the algorithm. Computation of
the polytopes and the principal histograms is straight forward. The algorithm involves
permutation of the vertices (part A.1) and direct matrix computations (parts A.2−A.4).
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Table 1 Covariance matrix for China weather variables

Variable X1 X2 X3 X4 X5
Nov–Mar Apr & Oct May & Sep Jun–Aug Elevation

X1 206.24 127.52 89.73 51.94 −15.88

X2 127.52 82.75 59.68 37.07 −40.18

X3 89.73 59.68 45.10 29.60 −50.68

X4 51.94 37.07 29.60 22.17 −59.71

X5 −15.88 −40.18 −50.69 −59.71 390.77

Table 2 Eigenvalues λν and eigenvectors eν = (eν1, . . . , eνp)

ν: 1 2 3 4 5
λν 3.877 1.078 0.028 0.010 0.008
Proportion of variance 0.775 0.215 0.006 0.002 0.002

eTν eT1 eT2 eT3 eT4 eT5
X1 0.465 0.378 0.430 0.617 0.276

X2 0.493 0.220 0.205 −0.310 −0.756

X3 0.505 0.057 −0.071 −0.628 0.585

X4 0.486 −0.248 −0.751 0.356 −0.105

X5 −0.223 0.863 −0.452 −0.047 0.003

Table 3 Correlation between
PCs and original variables

Variable X1 X2 X3 X4 X5

PC1 0.915 0.971 0.995 0.957 −0.439

PC2 0.392 0.228 0.060 −0.258 0.896

With current computing resources, these procedures are routinely done and do not take
much time. As a reference, it took 30 s to produce the results shown in Tables 1, 2, 3,
4 and Fig. 4 of Sect. 4 using a personal computer with a 3.00 GHz processor and 8
GB of RAM.

The efficiency of this algorithm follows the development of Le-Rademacher and
Billard (2012, 2013). First, the polytopes are constructed by connecting the vertices
of the polytopes for all observations in the same sequence; see Le-Rademacher and
Billard (2012) for a detailed exposition. This allows us to simply recreate the true
shape of the observations in the PC space without using a search procedure, e.g.,
the parallel edge connected shapes of Irpino et al. (2003), which is often much more
computationally intensive. Secondly, the output histograms are computed using a
two-dimensional projection of the polytopes onto the PC1 × PCν plane to ensure the
resulting histograms reflect the largest source of variation in the data while keeping the
computation manageable. Furthermore, the symmetry of the sub-polytopes means it is
only necessary to compute the subinterval endpoints and the subinterval frequencies
of the first half of each sub-histogram. The endpoints and the frequencies of the
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Fig. 4 Polytope projections onto PC1 × PC2 space

second half of each sub-histogram can be directly copied from the first half; see Le-
Rademacher and Billard (2013) for details. This further improves the efficiency of our
algorithm.

4 Illustration

The foregoing theory is illustrated on a data set consisting of temperatures at a subset of
15 weather stations in China available from the website<http://dss.ucar.edu/datasets/
ds578.1>. At each location, the averagemonthly temperatures from1951 to 2000were
aggregated into histograms with five subintervals. Months represented the variables;
however, since the temperatures for the months November–March were essentially the
same and so not useful as a distinguishing feature, these five months were combined
into one variable “Nov–Mar” (X1). Similarly, the temperatures for April and October
are combined into “Apr & Oct” (X2), May and September into “May & Sep” (X3),
and June through August into “Jun–Aug” (X4). Elevation for each station was also
added as a 5th variable (X5), with the single classical value expressed as an interval
z = [z, z]. Thus, we have p = 5 variables, n = 15 histogram-valued observations
with si j = 5 subintervals, for each i = 1, . . . , n, j = 1, . . . , 4, and si j = 1 when
j = 5. For illustrative purposes, we make the not-unreasonable assumption that all
variables and observations are equally weighted.

The sample covariance matrix can then be calculated from Eq. (4); see Table 1.
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Fig. 5 Latitude × longitude location of weather stations

Then, from Eq. (6), we can obtain the correlation matrix � as

� =

⎡

⎢
⎢
⎢
⎢
⎣

1.00 0.98 0.93 0.77 −0.06
0.98 1.00 0.98 0.87 −0.22
0.93 0.98 1.00 0.94 −0.38
0.77 0.87 0.94 1.00 −0.64

−0.06 −0.22 −0.38 −0.64 1.00

⎤

⎥
⎥
⎥
⎥
⎦

.

The eigenvalues of � are as shown in Table 2, along with the associated eigenvectors.
Hence, the principal components can be calculated through Eq. (5). Table 2 also shows
that together the first two principal components explain 99%of the total variance in the
data with PC1 accounting for 77.5 % and PC2 an additional 21.5 %. The correlation
between these two principal components and the original variables (Table 3) shows a
strong correlation between PC1 and monthly temperatures whereas PC2 is strongly
correlated with station elevation.

The algorithmof Sect. 3 can nowbe applied to produce the polytopes in the principal
component space corresponding to each observation. These are displayed in Fig. 4. The
latitude× longitude locations of these stations are shown in Fig. 5, where the differing
size of the circle reflects the differing station elevations. From Fig. 4, it is clear that
observations i = 1, . . . , 6 (i.e., stations 1 = Mudanjiang, 2 = Harbin, 3 = Qiqihar,
4 = Bugt, 5 = Nenjiang, and 6 = Hailar, respectively) form one cluster; observation
i = 7 (i.e., station 7 = Lasa) is a one-station cluster; observations i = 8, 9 (i.e., 8
= Baoshan, and 9 = Kunming, respectively) form a third cluster, and observations
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Fig. 6 Projections onto PC1 × PC2 space of classical surrogates

i = 10, . . . , 15 (i.e., 10 = Wuzhou, 11 = Guangzhou, 12 = Nanning, 13 = Shantou,
14 = Haikou, and 15 = Zhanjiang, respectively) comprise the fourth cluster.

When the locations of Fig. 5 are considered, it is evident that the first cluster
consists of stations all located in the north-east and so can be reasonably expected to
have somewhat similar weather (though the elevations, especially for Bugt and Hailar,
are not all comparable; but this difference is reflected in the polytopes for these two
stations being in the left side of the cluster of polytopes for this location). Likewise,
the stations in the fourth cluster are all located in the south-east part of the country (see
Fig. 5), all with the same low elevations. This similarity is reflected in the comparable
polytopes in the PC1 × PC2 space in Fig. 4.

The stations Baoshan and Kunming (#8–9), though located in the south, are further
west and at higher elevations; hence, the separate cluster matches their actual geogra-
phy. Here, the elevations as well as the temperature histograms are very similar, with
the result that the polytopes are almost identical. Lasa is situated even further west and
is much higher in elevation than any of the other 14 stations. Therefore, its temperature
patterns would be quite distinct. Thus, the polytope in this case is quite different and
quite isolated from those of other stations; see top-left of Fig. 4.

If instead of keeping the variations in the temperatures across years (as in the
histogram observations), overall averages were used as classical surrogates, then the
resulting projections of these surrogates gave the point projections on PC1 × PC2
space of Fig. 6. The clusters are again clear, and match those obtained from the
histogram values, thus validating the methodology proposed herein.
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Fig. 7 a March histogram for Hailar (#6). bMarch histogram for Kunming (#9)

Finally, relative sizes of polytopes provide an additional interpretation. For example,
consider the stations Hailar (#6) and Kunming (#9). The polytope for Hailar is larger
in size than is that for Kunming on PC1 × PC2 space. This difference is explained
by the fact that the range of temperatures and the internal variations of the histograms
for Hailar are larger than those for Kunming. (This difference in variations is evident
in Fig. 7 which shows the relevant histograms for these two stations for the March
temperatures; likewise for othermonths). In contrast, the classical principal component
values for these two stations are but points on PC1 × PC2, reflecting that classical
observations themselves have no internal variation. Note that although Kunming is at
a higher elevation than is Hailar, the elevation variable is classically valued and so has
no internal variation. That is, the elevation variable value here is not a factor in the size
of the polytope (only in its position on PC1 × PC2 space); it is the different internal
values of the histograms that are reflected in the different sizes of the polytopes. This
additional interpretation from an histogram-valued principal component analysis is
not possible from classically valued analyses.

We further computed the PC histograms for each weather station. The histograms
for the first principal component with five subintervals of equal width are shown in
Table 4. Note that the purpose of the PC histograms is to provide numerical output for
the resulting principal components. Figure 8 provides a graphical depiction of the PC1
histograms to illustrate the internal distribution of the output histograms. The polytopes
of Fig. 4 are a better visualization tool. In addition to the clustering pattern seen in
Fig. 4, the resulting PC histograms indicate similarity in the distribution of the PC1
histograms within each cluster. The distribution of PC1 values for observations i =
1, . . . , 6 have larger spread and are slightly skewed to the right with more than 90% of
the values spreadbetween the second and third subintervals. In contrast, the distribution
for observations i = 10, . . . , 15 are more narrow and somewhat more symmetric with
50–60 % of values located near the center of the histograms. Distributions for the
observations, i = 8, 9 are again similar. When these PC histograms are input into
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Fig. 8 Graphical depiction of PC1 histogram output of Table 4

models for further analysis, they reflect the varying distributions within observations
along the PC axes.

5 Conclusions

In this paper, we propose a principal component analysis methodology for histogram-
valued data by expanding the symbolic covariance method that Le-Rademacher and
Billard (2012, 2013) proposed for interval-valued data. Currently, there is no compa-
rable PCA methodology for histogram-valued observations under the symbolic data
domain.

The principal components in this method are computed from the symbolic covari-
ance matrix to account for the total variance of histogram data. The polytopes of
Le-Rademacher and Billard (2012) are adapted to represent the observations in
the principal component space by treating the observed histograms as collections
of weighted sub-hyperrectangles. We further propose computing a density matrix
associated with the sub-hyperrectangles to reflect the varying densities of the sub-
hyperrectangles within each observation. The density matrix is also used when
computing the numerical output to ensure the relative frequencies of the output his-
tograms, adapted from Le-Rademacher and Billard (2013), correctly accounting for
the sub-hyperrectangle densities.

By basing our method on the polytopes of Le-Rademacher and Billard (2012) and
the histogram output of Le-Rademacher and Billard (2013), our method inherits the
computational efficiency of their methods by using routine matrix computation and
avoiding search algorithms.However, generalizing the polytopes and histogramoutput
to histogram-valued observations is not a trivial process as described in Sect. 2 and as
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illustrated by the detailed algorithm of the Appendix. By carefully defining the matrix
of vertices, our method requires little additional power and retains computational
efficiency.

Supplemental materials

R program: The R program to compute the principal components, the polytopes, and
the output histograms as proposed in the article.
Example data: The temperature data used for illustration in the article.

Appendix: Algorithm

The algorithm to construct the polytope representation of the observations on principal
component space has essentially two parts. The first part (“Constructing the matrix of
vertices” in theAppendix) constructs thematrices of vertices needed to build the actual
polytopes. Then (“Constructing the polytopes” in the Appendix) the construction of
the polytopes per se is described. Extensions to two- and three-dimensional polytope
plots are given in “Constructing Two and Three Dimensional Plots” in the Appendix.
The algorithm to compute the histograms from the resulting polytopes is given in
“Constructing the PC histograms” in the Appendix. The indexing notation used in
these algorithms is similar to that of the R language. Therefore, the position for an
element of a vector, a matrix or an array is specified in a pair of square brackets, [ ].
The index for an element of a vector is enclosed in the brackets. An element of a matrix
is specified by a pair of numbers separated by a comma. The first number specifies the
row and the second number specifies the column. The position of an array is specified
by three numbers separated by commas corresponding to row, column, and matrix,
respectively. Also, we use the lower case to represent an observed data matrix [e.g.,
xv
i to distinguish it from the random data matrix Xv

i of Eq. (8)].

Constructing the matrix of vertices

First, assume that the observed data vector xi has been separated into a vector of
subinterval endpoints and a vector of the relative frequencies. That is, let xep be the
vector of subinterval endpoints andxr f be the vector of subinterval relative frequencies.
Then, xep has

∑p
j=1 (si j + 1) elements and has the form

xep = [
ai11 . . . ai1(si1+1) . . . aip1 . . . aip(sip+1)

]

where ai jk , for k = 1, . . . , si j + 1 and j = 1, . . . , p, are elements of the set Ei j . The
vector xr f has

∑p
j=1 si j elements and has the form

xr f = [
pi11 . . . pi1si1 . . . pip1 . . . pipsip

]

123



346 J. Le-Rademacher, L. Billard

where pi jk is the relative frequency of the kth subinterval of the observed histogram
xi j . Before creating thematrix of vertices for observation i , a p-vector whose elements
are the number of subintervals for Xi j is also needed. Let ns denote the vector of
number of subintervals of Xi j . Then,

ns = [
si1 . . . sip

]
.

With the information in xep, xr f , and ns, we can proceed with constructing the
matrix of vertices xv

i using the following five steps: Step 1 : Create a (p + 1)-vector

nr whose ( j + 1)th element, for j = 1, . . . , p, is the number of times that points ai jk ,
for k = 1, . . . , si j + 1, must be repeated in Step 5 below. The first element of nr is
the number of rows of the matrix of observed vertices, xv

i .

1. For j = 1, . . . , p, set nr[p − j + 1] = ∏p
l=p− j+1 (sil + 1).

2. Set nr[p + 1] = 1.

Step 2 : Create a (p + 1)-vector nrp whose ( j + 1)th element, for j = 1, . . . , p, is
the number of sub-hyperrectangles present in observation i when all variables up to j
are excluded.

1. For j = 1, . . . , p, set nrp[p − j + 1] = ∏p
l=p− j+1 sil .

2. Set nrp[p + 1] = 1.

Step 3 : Create a p-vector sp whose j th element is the position of the element of xep
which is the first subinterval endpoint for variable j .

1. Set sp[1] = 1.
2. For j = 1, . . . , p − 1, set sp[ j + 1] = ∑ j

l=1 (sil + j + 1).

Step 4 : Initialize thematrix of observed vertices xv
i by letting x

v
i be an (Ni × p) matrix

of zeros where Ni = ∏p
j=1 (si j + 1).

Step 5 : Update the elements of xv
i by

1. For j = 1, . . . , p, do
(a) Let nj = ns[ j].
(b) Let r j = nr[ j + 1].
(c) Let s j = sp[ j].
(d) For l = 0, . . . , nj ,

– For k = 1, . . . , r j ,
– set xv

i [l(r j) + k, j] = xep[s j + l].
2. For j = 2, . . . , p, do

(a) Let t j = nr[1]
nr[ j] − 1.

(b) Let r j = nr[ j].
(c) For l = 1, . . . , t j ,

– For k = 1, . . . , r j ,
– set xv

i [l(r j) + k, j] = xv
i [k, j].

End of Step 5. At the end of Step 5, we obtain the matrix xv
i whose rows are the

coordinates of the vertices of observation i .
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Constructing the polytopes

The following algorithm includes seven steps:
Step 1 : First, compute the matrix of transformed vertices, yv

i (= xv
i e), for the polytope

representing observation i in a principal components space.
Step 2 :Next, create a three-dimensional array yi to store the transformed vertices that

belong to a sub-polytope together. The array yi is a result of combining ri = ∏p
j=1 si j

matrices yhi where h = 1, . . . , ri . Each matrix yhi of dimension (2p × p) contains
coordinates of all vertices that belong to sub-polytope h.

1. Initialize array yi by letting yi be an array of zeros with dimension (2p × p × ri ).
2. Update the elements of yi by running the following nested loop,

(a) Set kr0 = 0 and ni0 = 0.
(b) For j = 1, . . . , p − 1,

– For l j = 0, . . . , si j ,
i. Let kr j = kr j−1 + (nr[ j + 1])l j .
ii. Let ni j = ni j−1 + (nrp[ j + 1])l j .
iii. For k = 1, . . . ,ns[p],
A. Set kr = krp−1 + k.
B. Set ni = ni p−1 + k.
C. Set yi [1, , ni] = yv

i [kr, ]
D. For o = 1, . . . , p, do

For r = 1, . . . , 2(o−1),
set yi [2(o−1) + r, , ni] = yv

i [kr [r ] + nr[p − o + 2], ] and
set kr = (kr, kr [r ] + nr[p − o + 2]).

Step 3 : Next, reconstruct polytopes corresponding to sub-hyperrectangles of obser-
vation i by following the next two sub-steps.
Step 3 − A.Construct thematrix of connected verticesC associatedwithyv

i as follows:

1. Initialize C as a 2p × p matrix of zeros.
2. Update C by doing the following step for j = 1, . . . , p,

– For j1 = 0, . . . , 2( j−1) − 1, do
– For j2 = ((2(p− j+1)) j1+1), . . . , ((2(p− j+1)) j1+2(p− j)), setC[ j2, j] =

j2 + 2(p− j).
– For j2 = ((2(p− j+1)) j1 + 2(p− j) + 1), . . . , ((2(p− j+1)) j1 + 2(p− j+1)),
– set C[ j2, j] = j2 − 2(p− j).

Step 3 − BA p-dimensional plot of the polytopes is constructed in the principal com-
ponent space by the following two steps:

1. Make a scatter plot of yv
i .

2. Construct the vertices of each sub-polytope as follows, for each h = 1, . . . , ri ,
For v1 = 1, . . . , 2p, do
for j1 = 2, . . . , p + 1,
set v2 = C[v1, j1], and
connect the points yi [v1, h] and yi [v2, h] with a line.

End of Step 3. We now have a plot of the ri polytopes representing of observation xi ,
i = 1, . . . , n, in PC space. This step is an adaptation of Steps 3–4 for obtaining the
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polytope for interval-valued data; see Le-Rademacher (2008) and (Le-Rademacher
and Billard (2012), Supplemental Material)

At the end of Step 3, polytopes representing observation i in a principal component
space are plotted. While these polytopes are now constructed, we recall that the den-
sities of a histogram observation vary across the hyperrectangles. To create the vector
of densities for these polytopes, follow the next 4 steps.
Step 4 : Create a p-vector spp whose j th element is the position of the element of xr f
which is the first subinterval relative frequency for variable j .

1. Set spp[1] = 1.
2. For j = 1, . . . , p − 1,

set spp[ j + 1] = ∑ j
l=1 sil + 1.

Step 5 : Let xv
p be an (ri × p) matrix of relative frequencies. The row h of xv

p contains
the relative frequencies of subintervals making up sub-hyperrectangle h. Initialize xv

p
by setting all elements of xv

p to zeros.
Step 6 : Update the elements of xv

p by

1. For j = 1, . . . , p, do
– Let nj = ns[ j].
– Let r j = nrp[ j + 1].
– Let s j = spp[ j].
– For l = 0, . . . , nj − 1,

– For k = 1, . . . , r j ,
– set xv

p[l(r j) + k, j] = xr f [s j + l].
2. For j = 2, . . . , p, do

– Let t j = nrp[1]
nrp[ j] − 1.

– Let r j = nrp[ j].
– For l = 1, . . . , t j ,

– For k = 1, . . . , r j ,
set xv

p[l(r j) + k, j] = xv
p[k, j].

Step 7 :Let di be an ri -vector whose elements are densities of the sub-hyperrectangles
belonging to observation i . The density for each sub-hyperrectangle is the product of
relative frequencies of the p subintervals making up that sub-hyperrectangle. That is,
for h = 1, . . . , ri , di [h] = ∏p

j=1 x
v
p[h, j].

At the end of Step 7, we obtain a vector of densities di whose hth element is the
density of sub-hyperrectangle h of observation i .

Constructing two and three dimensional plots

Usually, visualization of the projections of observations onto the principal component
space is limited to two dimensions, PCν1 × PCν2 . This is achieved by replacing the
substeps 1 and 2 in Step 3-B of the polytope algorithm of Sect. 1, by the following
three substeps:

1. Let y(2)
i be the ri2p × 2 matrix whose first and second columns are, respectively,

columns ν1 and ν2 of yv
i .
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2. Make a scatter plot of y(2)
i .

3. Connect corresponding points of y(2)
i by using substep 2 of Step 3-B of Sect. 1,

with yv
i replaced by y(2)

i ; now p = 2.

To construct a three-dimensional plot of PCν1 × PCν2 × PCν3 , follow the same
three steps as here for constructing two-dimensional plots except that y(2)

i is replaced

by y(3)
i where now, in substep 1, y(3)

i is an (ri2p × 3) matrix with columns ν1, ν2, and
ν3 of yv

i . In substep 3, p = 3.

Constructing the PC histograms

The following algorithm constructs a histogram representing the νth principal com-
ponent for observation i by first computing the PC histograms corresponding to the
sub-polytopes of observation i , then combine the ri histograms into one PCν his-
togram representing observation i .
Step 1 : Follow the algorithm of Le-Rademacher and Billard (2013) to create the
(ri × 3s) matrix ziν whose hth row contains the subinterval endpoints and the
relative frequencies for sub-polytope h as specified in Eq. (14). Here, elements
3k, k = 1 . . . , s, of ziν[h, ] are the unadjusted relative frequencies of the histogram
representing sub-polytope h.
Step 2 : Update the relative frequencies from Step 1 by setting ziν[h, 3k] =
di [h]ziν[h, 3k].
Step 3 : This next step combines the s histograms in ziν into one histogram with
subintervals of equal width.

1. Let lo and hi be the lowest and the highest endpoints of the ri histograms of
observation i . Then, lo = min(ziν[, 1]) and hi = max(ziν[, 3s − 1]).

2. Let sn denote the desired number of subintervals for the combined histogram.
Then, the widths of the subintervals are sw = (hi − lo)/sn.

3. Let hm be an (sn× 3) transition matrix whose columns 1 and 2 contain the subin-
terval endpoints and column 3 contains the relative frequencies of the combined
PCν histogram for observation i . Initialize hm by setting its elements to zero.

4. Update hm as follows, For t = 1, . . . , ns, do
(a) Set the endpoints of subinterval t by letting hm[t, 1] = lo + (sw)(t − 1) and

hm[t, 2] = lo + (sw)t .
(b) Let fr be an (ri ×s) matrix whose (h, q) element corresponds to the proportion

of subinterval q of sub-polytope h that falls within the subinterval t . Initialize
fr by setting its elements to zero.
– For h = 1, . . . , ri , do
– For q = 1, . . . , s, do
Case a : If (ziν[h, 3q − 2] ≥ hm[s, 1]) and (ziν[h, 3q − 1] ≤ hm[s, 2]),
set fr[h, q] = ziν[h, 3q].
Case b : If (ziν[h, 3q−2] ≥ hm[s, 1]) and (ziν[h, 3q−2] < hm[s, 2]) and
ziν[h, 3q − 1] > hm[s, 2], set fr[h, q] = (ziν [h,3q])(hm[s,2]−ziν [h,3q−2])

ziν [h,3q−1]−ziν [h,3q−2] .
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Case c : If (ziν[h, 3q−2] < hm[s, 1]) and (ziν[h, 3q−1] > hm[s, 1]) and
(ziν[h, 3q − 1] ≤ hm[s, 2]), set fr[h, q] = (ziν [h,3q])(ziν [h,3q−1]−hm[s,1])

ziν [h,3q−1]−ziν [h,3q−2] .
Case d : If (ziν[h, 3q − 2] < hm[s, 1]) and (ziν[h, 3q − 1] > hm[s, 2]),
set fr[h, q] = (ziν [h,3q])(hm[s,2]−hm[s,1])

ziν [h,3q−1]−ziν [h,3q−2] .

(c) Let hm[t, 3] = ∑ri
h=1

∑s
q=1 fr[h, q].

5. Let sh = ∑ns
t=1 hm[t, 3].

6. Update hm[t, 3] = hm[t, 3]/sh.
At the end of this step, we have the subinterval endpoints and the relative frequencies
for the combined histogram. Let pcν be the (n × ns) matrix whose i th row contains
the PCν histogram for observation i . Then, for t = 1, . . . , ns, do

1. Let pcν[i, 3t − 2] = hm[t, 1].
2. Let pcν[i, 3t − 1] = hm[t, 2].
3. Let pcν[i, 3t] = hm[t, 3].
This step concludes the histogram algorithm. Repeat these steps for all observations.

References

Anderson TW (1963) Asymptotic theory for principal components analysis. Ann Math Stat 34:122–148
Anderson TW (1984) An introduction to multivariate statistical analysis, 2nd edn. John Wiley, New York
Bertrand P and Goupil F (2000) Descriptive statistics for symbolic data. In: Bock H-H, Diday E (eds)

Analysis of symbolic data: exploratory methods for extracting statistical information from complex
data. Springer, Berlin, pp 103–124

Billard L (2008) Sample covariance functions for complex quantitative data. In: Mizuta M, Nakano J (eds)
Proceedings World Congress, International Association of Statistical Computing. Japanese Society of
Computational Statistics, Japan, pp 157–163

Billard L (2011) Brief overview of symbolic data and analytic issues. Stat Anal Data Min 4:149–156
Billard L, Diday E (2003) From the statistics of data to the statistics of knowledge: symbolic data analysis.

J Am Stat Assoc 98:470–487
Billard L, Diday E (2006) Symbolic data analysis: conceptual statistics and data mining. John Wiley,

Chichester
Billard L, Guo JH, Xu W (2011) Maximum Likelihood Estimators for Bivariate Interval-Valued Data.

Technical Report, University of Georgia, Athens, GA, under revision
Billard L, Le-Rademacher J (2013) Symbolic principal components for interval-valued data. Revue des

Nouvelles Technologies de l’Information 25:31–40
Bock HH, Diday E (2000) Analysis of symbolic data: exploratory methods for extracting statistical infor-

mation from complex data. Springer, Berlin
Cazes P (2002) Analyse Factorielle d’un Tableau de Lois de Probabilité. Rev Stat Appl 50:5–24
Cazes P, Chouakria A, Diday E, Schecktman Y (1997) Extension de l’analyse en composantes principales
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