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Abstract In this contribution we present a novel constrained clustering method,
Constrained clustering with a complex cluster structure (C4s), which incorporates
equivalence constraints, both positive and negative, as the background information.
C4s is capable of discovering groups of arbitrary structure, e.g. with multi-modal dis-
tribution, since at the initial stage the equivalence classes of elements generated by the
positive constraints are split into smaller parts. This provides a detailed description of
elements, which are in positive equivalence relation. In order to enable an automatic
detection of the number of groups, the cross-entropy clustering is applied for each par-
titioning process. Experiments show that the proposed method achieves significantly
better results than previous constrained clustering approaches. The advantage of our
algorithm increases whenwe are focusing on finding partitions with complex structure
of clusters.
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1 Introduction

Clustering is one of the most important and efficient tools for processing massive
amounts of data (Xu and Wunsch 2005). For this reason, it is commonly used in
many fields of computer science including data mining, pattern recognition, machine
learning and data compression (Pavel 2002; Jain et al. 1999; Hruschka et al. 2009;
Śmieja and Tabor 2015a). Clustering does not have an access to class labels and its
results depend only on the values of features describing each object (Collingwood and
Lohwater 2004; Xu and Wunsch 2009). In real applications, groups that we want to
extract can be too complex to be discovered by strictly unsupervised algorithms (Bar-
Hillel et al. 2003). Therefore, in order to support analysis or visualization of data, the
user often provides additional information to indicate the crucial values, parts of a
graph, etc. Consequently, clustering process is supposed to take an advantage of such
background knowledge to provide better results.

Constrained clustering is a part of semi-supervised learning (Basu et al. 2002).
It incorporates equivalence constraints between some pairs of elements to enforce
which of them belong to the same group (positive constraints or must-link constraints)
and which do not (negative constraints or cannot-link constraints) (Wagstaff et al.
2001). It has been widely used in various real-world applications like GPS-based
map refinement (Wagstaff et al. 2001) or landscape detection from hyperspectral data
(Lu and Leen 2004). On the other hand, in semi-supervised classification, learning
involves the use of only a small amount of labeled data together with a large amount
of unlabeled elements (Bennett and Demiriz 1998). Basically, the pairwise constraints
used in clustering cannot be directly transformed into class labels, and it makes a
conceptual difference between semi-supervised clustering and classification.

Numerous clustering algorithms have been modified to aggregate additional infor-
mation from equivalence constraints. Most of adopted methods, including k-means
(Wagstaff et al. 2001), Gaussian mixture model (Shental et al. 2004; Melnykov et al.
2015), hierarchical algorithms (Klein et al. 2002), spectral methods (Li et al. 2009),
generate partitions, which are fully consistent with imposed restrictions (they define
hard-type of constraints). It is worth tomention that there are alsomethods inwhich the
constraints come in the form of suggestions that can occasionally be violated (Bilenko
et al. 2004; Lu and Leen 2004; Wang and Davidson 2010), however in this paper we
do not follow such an approach.

A version of the Gaussian mixture model (GMM) proposed by Shental et al. (2004)
is one of the most interesting clustering approaches which impose hard restrictions.
Equivalence constraints are used to gather points into chunklets, i.e. sets of elements
that are required to be included into the same clusters. Chunklets may be obtained by
applying the transitive closure to the set of positive constraints, which generate equiva-
lence classes. The algorithmfits amixture of Gaussians to unlabeled data together with
constructed chunklets by summing over assignments which comply with constraints.
Unfortunately, this method does not handle well a situation, presented in Fig. 1. The
equivalence constraints, Fig. 1b, enforce that “ears elements” of mouse-like set belong
to the same group. However, a direct application of constrained GMM assigns to them
one Gaussian model which ultimately groups “ears elements” together with some of
“head elements”, Fig. 1c.
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Constrained clustering with a complex cluster structure 495

Fig. 1 Clustering of mouse-like set (a). The equivalence constraints (positive and negative) specified on
10 % of the data elements determine that “ears elements” are included in one group and “head elements” in
the second (b). In contrast to the constrained version of GMM (c), our algorithm has discovered an expected
partition of this dataset (d)

In this paper we propose a general constrained clustering algorithm, called
Constrained clustering with a complex cluster structure (C4s), which incorporates
equivalence constraints, both positive and negative, and deals well with the aforemen-
tioned problem, Fig. 1d. The idea of C4s relies on the observation that every chunklet
can originate from complex model, e.g. a mixture of probability distributions. To find
a detailed description of each chunklet, we cluster their elements individually at the
initial stage of the algorithm, which yields small groups of data points. The obtained
groups are used as the atomic parts of data for final clustering process. To ensure that
none of negative constraints is violated during the clustering process, we formulate
two strict conditions, see Theorems 2 and 3.

Various clustering algorithms can be applied to implement the C4s approach. How-
ever, since the number of components for each chunklet is not specified a priori, it
is preferable to use an algorithm which detects the number of clusters automatically.
Therefore, we combine our method with cross-entropy clustering (CEC) (Tabor and
Spurek 2014; Spurek et al. 2013; Tabor and Misztal 2013; Śmieja and Tabor 2013,
2015b)which can be seen as amodel-based clustering (McLachlan andKrishnan 2008;
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496 M. Śmieja, M. Wiercioch

Morlini 2012; Subedi and McNicholas 2014; Baudry et al. 2015) and determines the
final number of groups.

In order to evaluate the performance of C4s, we applied it to a semi-supervised
image segmentation and compared it with competitive constrained methods on several
datasets. In particular, we used examples retrieved form UCI repository (Lichman
2013) aswell as a real dataset including chemical compounds acting on central nervous
system (Warszycki et al. 2013). Our experiments show that C4s gives comparable
results to other constrained methods when the chunklets are represented by simple
models. In the case of more complicated structure of restrictions, C4s significantly
outperforms the competitive techniques.

The paper is organized as follows. The next section introduces a general C4s pro-
cedure (a combinatorial approach to constrained clustering with a complex cluster
structure). In the third section, we show how to implement C4s algorithm with a use
of CEC approach. The experimental results are presented in fourth section. Finally, a
conclusion is given.

2 General C4S algorithm

In this section, we present a general form of proposed clustering procedure with
equivalence constraints. We do not specify the clustering criterion here, e.g. cost
function, dissimilarity measure, etc., but focus on defining generic steps which can
be accomplished using any clustering method. In other words, we consider here the
clustering problem as a combinatorial one, in which the goal is to construct clusters
which comply with imposed restrictions. A specific implementation will be discussed
in the next section.

2.1 Problem formulation

Let X = {1, . . . , n} be an n-element dataset of objects augmented by equivalence
constraints between some pairs of its elements. Positive constraint enforces that two
elements belong to the same group while negative constraint states that they are
classified separately. The input restrictions are given in the form of a set of pairs
(x, y) ∈ X × X , where the following notation is used:

• x ∼ y denotes that a positive constraint is imposed on x and y (they have to be
included into the same class),

• x � y denotes that a negative constraint is imposed on x and y (they have to be
included into diverse classes).

Let us observe that the set of positive (or negative) constraints determines a relation
on X × X . For this reason, we sometimes say that two elements are in positive (or
negative) relation. In particular, the set of positive constraints defines an equivalence
relation. In consequence, the input set of restrictions generates the equivalence classes
(called chunklets by Shental et al. 2004). An equivalence class contains such elements
of dataset, which are in positive relation (directly or transitively) and finally must be
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grouped together. On the other hand, negative relation is not transitive, which makes
it usually harder to incorporate them into clustering algorithms.

We say that X1, . . . , Xk , for k ∈ N, is a partition of X if it is a family of pairwise
disjoint subsets of X such that X = ⋃k

i=1 Xi . Our goal is to construct such a partition
of X , which complies with assumed constraints (the cardinality of partition is not
specified). We assume that there exists at least one partition of X , which does not
violate any constraint. This is the case when there is no pair of elements that belong
to the same equivalence class, but have a negative relation.

In this paper we are interested in defining a flexible framework, which allows for
finding the most appropriate clusters models for particular dataset and constraints. To
illustrate this goal, we recall an example of the mouse-like set presented in Fig. 1.
The application of standard unconstrained GMM results in detecting three spherically
shaped clusters. However, after the specification of the equivalence relation the clus-
tering method is supposed to discover such clustering configuration, which comply
with the imposed restrictions and fits best to a dataset. In the case of model-based
clustering we want to be able to automatically select two Gaussian components for
describing the “ears of mouse” and one Gaussian for its “head”, see Fig. 1d.

We startwith a description of the clusteringprocess in the case of positive constraints
only (Sect. 2.2). The entire procedure can be divided into four main steps:

1. Aggregation of positive constraints The elements with positive constraints are
collected into equivalence classes, termed initial chunklets.

2. Inner clustering Every initial chunklet is clustered into smaller parts, called final
chunklets.

3. Global clustering The set of final chunklets is partitioned into clusters containing
similar final chunklets.

4. Merging Clusters (obtained in previous step) that contain elements in positive
relation, are merged together.

The incorporation of negative constraints, requires amodification of a global clustering
step, in which we have to create a grouping that is consistent with all constraints after
the merging operation. We formulate two conditions, which allow to verify if a given
partition constructed in global clustering can be merged into a partition which does
not violate any constraint, see Theorems 2 and 3.

2.2 Incorporating positive constrains

In this section, we assume that a dataset X is augmented by positive constraints only.
Proposed procedure relies on four steps, outlined in previous subsection and explained
in the following paragraphs.

Aggregation of positive constraints. In the first step, we follow the arguments intro-
duced by Shental et al. (2004) and consider the equivalence classes generated by the
set of positive constraints. More precisely, for x ∈ X , we construct a set:

[x] = {y ∈ X : x ∼ y}.
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One element equivalence classes are created for the elementswhichwere not concerned
in any positive constraint.

Since for every x, y ∈ X , it holds that [x] = [y] or [x] ∩ [y] = ∅, we have

X = C1 ∪ . . . ∪ Ck , for k ∈ N,

where (Ci )
k
i=1 is a family of all pairwise disjoint equivalence classes in X . For a further

use, each equivalence class Ci will hereafter be referred as initial chunklet.

Inner clustering Obviously, all elements associated with an initial chunklet should be
finally included into the same cluster. However, every group can have very complex
structure, e.g. its elements might not be generated from a single Gaussian probability
distribution, but from a mixture of Gaussian distributions, as presented in Fig. 1.
Roughly speaking, inner clustering attempts to discover atomic groups in X that are
described by simple models.

For this reason, we want to construct a separate partition of every initial chunklet.
As mentioned, we do not specify a type of clustering method here, but assume that its
choice is an independent task, which will be discussed in the next section. As a result
of inner clustering, every initial chunklet Ci , for i = 1, . . . , k, is split into

Ci = C (i)
1 ∪ . . . ∪ C (i)

ki
, for specific ki ∈ N.

We assume that the number of groups ki created for i-th initial chunklet is not greater
than its cardinality. In particular, for a set with only one element we obtain a trivial
partition containing just one singleton class.

Retrieved groups C (i)
j are referred as final chunklets. Moreover, we say that a final

chunklet C (i)
j is derived from an initial chunklet Ci if C

(i)
j ⊂ Ci . Observe that the set

of final chunklets

C = {C (i)
j : i = 1, . . . , k, j = 1, . . . , ki }

constitutes a partition of X .

Fig. 2 Presentation of the chunklets’ construction for the Banana-like set. The expected grouping of
Banana-like set, (a). After imposing the positive and negative constraints on 30 % of its elements two initial
chunklets are created, (b). The cross-entropy implementation of the introduced algorithm generates six final
chunklets, (c)
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In order to illustrate the inner clustering process, the cross-entropy implementation
of C4s (presented in the next section) was applied on Banana-like set, Fig. 2. This
is an example of data arranged around two parabolic manifolds. This kind of sets is
becoming increasingly popular due to the manifold hypothesis which states that real
world data embedded in high dimensional spaces are likely to concentrate in the vicin-
ity of nonlinear sub-manifolds of lower dimensionality, see Cayton (2005); Narayanan
and Mitter (2010). The clustering grants detection of manifolds. Interestingly, diverse
shapes, such as Banana-like, often appear in medical sciences, e.g. in muscle injury
determination system (Ding et al. 2011). In order to determine muscle injury from
ultrasonic image of a healthy and unhealthy muscle, a specific shape of fiber has to be
detected.

Global clustering Let C be a family of all final chunklets discovered in the inner
clustering stage. As a global clustering, we understand the process of constructing a
partition P of C. In consequence, each cluster P ∈ P will be a family of some final
chunklets. If every final chunklet is described by one simple model, then we group
similar chunklets together and in consequence, obtain clusters, which could follow the
mixture models.

Let us observe that C is a family of subsets of X . Therefore, the clustering algorithm
has to be adapted to process a dataset that consists of some subsets of X . To facilitate
such a procedure one can represent every final chunklet as a single element of X and
apply a clustering algorithm in a classical way. The idea can be best illustrated with
an example: in the case of k-means one can represent a final chunklet by its mean
with a weight depending on the cardinality of chunklet. On the other hand, in the
Gaussian mixture model approach every set is naturally related to a probability model
characterized by its sample mean and covariance matrix. These adaptations allow to
apply weighted versions of classical clustering algorithms, without referring to C but
its transformed form of representants. For more details, we refer the reader to the next
section, in which CEC implementation is presented after such an adaptation.

Merging Let P be a partition of C created by a global clustering procedure, i.e., each
P ∈ P is a family of some final chunklets. This splitting might be inconsistent with
some of positive constraints, e.g. it is possible to assign C (i)

i1
to P and C (i)

i2
to P ′, for

P, P ′ ∈ P such that P 	= P ′, whereas C (i)
i1

and C (i)
i2

are derived from the same initial
chunklet Ci . In merging stage, we join two groups P, P ′ ∈ P if they contain final
chunklets, which are derived from the same initial chunklet.

For every P ∈ P , we want to encode the information of clusters, which must be
joined with P to ensure that none of positive constraints is violated. Let cl : P → 2P
be a function such that:

– P ′ ∈ cl(P), for P ′ ∈ P , if there exist two final chunklets C(i)
i1

∈ P and C (i)
i2

∈ P ′
that are derived from initial chunklet Ci .

A value cl(P) is a set of clusters P ′, such that P, P ′ both contain final chunklets
C (i)
i1

and C (i)
j2
, respectively, derived from the same Ci . In other words, P ′ is connected

directly with P by some initial chunklet.
Let us observe that, if P ′ ∈ cl(P) and P ′′ ∈ cl(P ′), for P, P ′, P ′′ ∈ P , then

P, P ′, P ′′ have to be finally included into the same cluster, even if P ′′ /∈ cl(P). To
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encode such a transitive relation a sequence of functions (cl(t))t∈N is defined recur-
sively by:

cl(t)(P) :=
{
cl(P) for t = 1,
⋃{cl(P ′) : P ′ ∈ cl(t−1)(P)} for t > 1,

for P ∈ P . We put

cl∞(P) :=
∞⋃

t=1

cl(t)(P), for P ∈ P

to denote all clusters that have to be joined together in the merge stage, see Fig. 3
for the illustration. One can interpret cl∞(P) as a closure of {P} with respect to the
positive relation.

The above construction of cl∞ provides that

either:
(
cl∞(P) = cl∞(P ′)

)
or

(
cl∞(P) ∩ cl∞(P ′) = ∅)

, for P, P ′ ∈ P.

In other words, cl∞ generates equivalence classes on P . If we denote byQ the family
of all different equivalence classes generated by cl∞, then Q is a partition of C. To
obtain a partition X = {XQ}Q∈Q of X , which corresponds to Q, we transform every
Q ∈ Q by:

XQ :=
⋃

C∈Q
C.

We see that X is consistent with all positive constraints, as outlined in the following
theorem:

Fig. 3 Partition of dataset into 8 clusters and final chunklets derived from 4 initial chunklets
C1,C2,C3,C4, {x}, {y}. Since cl∞(P1) = {P1, P2, P3, P6} and cl∞(P8) = {P4, P5, P7, P8} then
the merge operation will result in constructing 2 clusters. On the other hand, cl∞(P1 ∪ {C4

3 }) =
{P1, P2, P3, P4, P5, P6} and ∂(C4

3 ) = {P4, P5}. Therefore, we have ∂(C4
3 ) = {P1, P2, P3, P6}. If x � y

then the reassignment of C4
3 form P8 to P1 violates this constraints, see Theorems 2 and 3
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Fig. 4 Resulting groups of the global clustering (a) and merge process of Banana-like set (b) (constraints
and chunklets are shown in Fig. 2)

Theorem 1 LetP be a partition of the family of final chunklets C and letQ be a family
of all equivalence classes generated by cl∞(P), for P ∈ P . Then X = {XQ}Q∈Q
defined by:

XQ :=
⋃

C∈Q
C

is a partition of X which coincides with all positive constraints.

Figure 4 demonstrates the results of global clustering and merging for the Banana-
like set.

2.3 Incorporating negative constraints

In this section we assume that both positive and negative constraints are defined on
selected pairs of X . The procedure proposed in previous subsection does not use the
information contained in negative constraints. To apply this algorithm in the case
of negative constraints one has to modify a global clustering step. For this purpose,
we formulate two conditions, which allow to verify if a given partition obtained in
the global clustering stage can be merged to a partition which is consistent with the
negative constraints.

For a further convenience, we say that two initial chunklets Ci ,C j ⊂ X are in
negative relation, which we denote by Ci � C j , if there exist x ∈ Ci , y ∈ C j

such that x � y. In other words, since all the elements of any initial chunklet have
to be finally included into a single cluster (after the merge stage), then the negative
constraints can be propagated and verified on the set of initial chunklets. Moreover,
we say that a partition P of C is valid if in the merging stage it generates a partition
of X which is consistent with all negative constraints.

The following result shows how to verify the validity of a partition P of C based
on the equivalence classes generated by cl∞:
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Theorem 2 A partition P of C is not valid if and only if there exist P ∈ P and final
chunklets C (i)

i1
,C ( j)

j1
∈ ⋃{P ′ : P ′ ∈ cl∞(P)} derived from initial chunklets Ci ,C j ,

respectively, such that Ci � C j .

Proof Let us first assume that a partitionP is not valid, i.e. amerge operation generates
a partition X of X which is not consistent with at least one constraint. Therefore,
there exist a cluster Y ∈ X and x, y ∈ Y such that x � y. One can find two final
chunkletsC (i)

i1
,C ( j)

j1
⊂ Y derived from initial chunkletsCi ,C j , respectively, such that

x ∈ C (i)
i1

, y ∈ C ( j)
j1

and Ci � C j . Since both x and y belong to Y then there exists

P ∈ P such that C (i)
i1

,C ( j)
j1

∈ ⋃{P ′ : P ′ ∈ cl∞(P)}.
On the other hand, let us assume that there exist P ∈ P and final chunklets

C (i)
i1

,C ( j)
j1

∈ ⋃{P ′ : P ′ ∈ cl∞(P)} derived from Ci ,C j , respectively, such that

Ci � C j . Since C (i)
i1

,C ( j)
j1

∈ ⋃{P ′ : P ′ ∈ cl∞(P)} then Ci ∪ C j will be joined
together in the merge stage—it does not lead to a valid partition because Ci � C j . �


In many clustering algorithms such as k-means, we start with a fixed partition
and focus on its iterative refinement by switching the elements between clusters.
Clearly, one could use Theorem 2 to verify if a given reassignment leads to a valid
partition.Nevertheless, this operationmight be computationally inefficient for this type
of algorithms. Therefore, we formulate a condition that states when we are permitted
to change the membership of a final chunklet from one cluster to another to preserve
the validity of a partition.

Let P be a fixed partition of C and let C (i)
j ∈ P ′, for P ′ ∈ P , be a final chunklet

derived from an initial chunklet Ci . If we change the membership of C (i)
j from P ′ to a

cluster P ∈ P , then cl∞(P) will change if only cl∞(P ′) ∩ cl∞(P) = ∅. If cl∞(P) =
cl∞(P ′) then such a reassignment has no effect on cl∞(P). Therefore, at each attempt
of reassigning C (i)

j from P ′ to P , we have to verify if there is any pair of clusters held

in (cl∞(P ∪ {C (i)
j })\cl∞(P)) × cl∞(P) which breaks any negative constraint, i.e.

contain final chunklets derived from intial chunklets which are in negative relation.
The following lemmawill be useful to establish the formof cl∞(P∪{C (i)

j })\cl∞(P)

Lemma 1 LetP be a partition of a family of final chunklets C. We consider P, P ′ ∈ P
and a final chunklet C (i)

j ∈ P ′ derived from Ci . If cl∞(P ′) ∩ cl∞(P) = ∅ then

cl∞(P ∪ {C (i)
j })\cl∞(P) = ⋃{cl∞(P ′′) : P ′′ ∈ P,C (i)

l ∈ P ′′ and
C (i)
l is a final chunklet derived from Ci , where l 	= j}.

otherwise cl∞(P ∪ {C (i)
j })\cl∞(P) = ∅.

Proof If cl∞(P ′) ∩ cl∞(P) = ∅ then we consider all final chunkltes C (i)
l which

are derived from Ci such that C (i)
l 	= C (i)

j . If C (i)
l ∈ P ′′ then all clusters from

cl∞(P ′′) belong to cl∞(P ∪ {C (i)
j }) because both C (i)

j ,C (i)
l ⊂ Ci . Moreover,
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cl∞(P ′′) ∩ cl∞(P) = ∅ since cl∞(P ′) ∩ cl∞(P) = ∅. This proves the first part
of theorem.

If cl∞(P ′) = cl∞(P) then the reassignment of C (i)
j has no effect on cl∞(P) and

in consequence cl∞(P ∪ {C (i)
j })\cl∞(P) = ∅. �


We put:

∂(C (i)
j ) := ⋃{cl∞(P ′′) : P ′′ ∈ P,C (i)

l ∈ P ′′ and
C (i)
l is a final chunklet derived from Ci , where l 	= j},

which can be considered as a boundary ofC (i)
j . An illustrative explanation of the above

definitions is presented in Fig. 3.
The following result allows to check out if a given reassignment operation preserves

the validity of partition:

Theorem 3 Let P be a valid partition of C. We assume that P, P ′ ∈ P are fixed and
we consider a final chunklet C (i)

i1
∈ P ′. Let Q be a partition generated from P by

changing the membership of C (i)
i1

from P ′ to P, i.e.

Q = {P ∪ {C (i)
i1

}, P ′\{C (i)
i1

}} ∪
⋃

{P ′′ ∈ P : P ′′ 	= P, P ′′ 	= P ′}.

Partition Q is valid if one the following conditions is satisfied:

1. cl∞(P) = cl∞(P ′)
2. for all pairs of final chunklets (C ( j)

j1
,C (l)

l1
) such that C ( j)

j1
∈ ⋃{P ′′ : P ′′ ∈ cl∞(P)}

and C (l)
l1

∈ ⋃{P ′′ : P ′′ ∈ ∂(C (i1)
j1

)}, the intial chunklet C j is not in negative

relation with Cl , where C ( j)
j1

and C (l)
l1

are derived from initial chunklets C j ,Cl ,
respectively.

Proof Clearly, if cl∞(P) = cl∞(P ′) then Q is valid because P is valid.
Let us suppose indirectly that condition 3 holds and partitionQ is not valid. SinceP

is valid then for all P ∈ P neither
⋃{P ′′ : P ′′ ∈ cl∞(P)} nor⋃{P ′′ : P ′′ ∈ cl∞(P ′)}

contain final chunklets which were derived from initial chunklets that are in negative
relation. Therefore, there exist C ( j)

j1
∈ ⋃{P ′′ : P ′′ ∈ cl∞(P)} and C (l)

l1
∈ ⋃{P ′′ :

P ′′ ∈ ∂(C (i)
i1

)} derived from C j ,Cl , respectively, such that C j � Cl . However, it is a
contradiction to condition 3. �


If we perform a global clustering stage employing a clustering algorithm that iter-
atively switches elements of dataset between clusters, then Theorem 3 determines
all acceptable reassignments. We start with any valid partition. At each reassigning
step we verify if it leads to a valid partition and only then consider a possible change
of membership. One can use the following pseudocode to perform the reassigning
operation.
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1: INPUT:
2: P: partition of a family of all final chunklets C
3: P, P ′ ∈ P: clusters
4: C ∈ P ′: final chunklet
5: function reassign(C, P, P ′)
6: if cl∞(P) = cl∞(P ′) then
7: P = P ∪ {C}
8: P ′ = P ′\{C}
9: else
10: canBeChanged = TRUE
11: for all Q ∈ cl∞(P) do
12: for all C ( j)

j1
∈ Q do

13: for all Q′ ∈ ∂(C) do
14: for all C (l)

l1
∈ Q′ do

15: if C j � Cl then
16: canBeChanged = FALSE

go to 2.3 line
17: end if
18: end for
19: end for
20: end for
21: end for
22: if canBeChanged then
23: P = P ∪ {C}
24: P ′ = P ′\{C}
25: end if
26: end if

To reduce the complexity of the above algorithm it is enough to collect in each
cluster P ∈ P the family

L(P) = {C (i)
i1

∈ P : Ci has any negative constraint}

of all final chunklets which are derived from initial chunklets having any negative
constraint. The iterations given in lines 2.3 and 2.3 are then performed only through
final chunklets from L(P). In consequence the reassignment of C ∈ P ′ to P takes
(
∑

P ′′∈cl∞(P) |L(P ′′)|) · (
∑

P ′′∈∂(C) |L(P ′′)|) operations. Since the cardinalities of
c∞(P) and ∂(C) depend on the number of positive constraints while the cardinality of
L(·) is proportional the number of negative constraints, then one may say that the cost
of verification the reassignment operation can be approximated by the total number
of negative and positive constraints.

3 Implementation with use of model-based clustering and cross-entropy

In this section we present an implementation of proposed C4s procedure that employs
cross-entropy clustering method (CEC). This is an a technique based on information
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theoretical concepts, which has similar effects as classical model-based clustering.
Moreover, it automatically detects the final number of groups, which is extremely
important in our procedure due to the presence of inner and global clustering phases.

In this section we assume that X = {x1, . . . , xn} ⊂ R
N is a dataset of

N -dimensional real-valued vectors. We start by presenting CEC method and its com-
parison with classical model-based clustering. Then, we show how to implement the
C4s procedure with the help of CEC.

3.1 Mixture of Gaussian models

The idea of model-based clustering comes fromWolfe (1963) and has become increas-
ingly popular across diverse applications (Bellas et al. 2013; McNicholas andMurphy
2010; Xiong et al. 2002; Samuelsson 2004). Although a variety of finite mixture mod-
els has been extensively studied and developed in the literature (Baudry et al. 2015;
Subedi and McNicholas 2014; Lee and McLachlan 2013; Morris et al. 2013), the
Gaussian case has received a special attention (Morlini 2012; Nguyen andMcLachlan
2015; Hennig 2010; Scrucca and Raftery 2015).

Basically, model-based clustering focuses on a density estimation of a dataset X
by the mixture of simple densities. It aims to find

p1, . . . , pk ≥ 0 :
k∑

i=1

pi = 1, (1)

and f1, . . . , fk ∈ F , where k ∈ N is fixed and F is a parametric (usually Gaussian)
family of densities such that the convex combination

f = p1 f1 + . . . + pk fk

estimates unknown probability distribution on a dataset X (McLachlan and Krishnan
2008). This is a fuzzy-type clustering, where the probability of assigning x ∈ X to
i-th clusters equals pi fi (x). A locally optimal solution, which minimizes a negative
log-likelihood function:

EM( f, X) = − 1

|X |
n∑

j=1

log
(
p1 f1(x j ) + . . . + pk fk(x j )

)
, (2)

where |X | = n is a cardinality of X , can be found by applying the EM algorithm.
The goal of CEC is similar: it aims at finding numbers p1, . . . , pk that satisfy (1)

and densities f1, . . . , fk ∈ F , which minimize the following cost function:

CEC( f, X) = − 1

|X |
n∑

j=1

log
(
max(p1 f1(x j ), . . . , pk fk(x j ))

)
. (3)

IfF is a family of Gaussian densities, then f = max(p1 f1, . . . , pk fk) is not a density,
but a subdensity, i.e.

∫
RN f (x)dx ≤ 1.
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The formula (3) is known as the cross-entropy (Rubinstein and Kroese 2004) of
dataset X with respect to f . If we define a partition X1, . . . , Xk of X by

Xi := {x ∈ X : pi fi (x) > max
j 	=i

(p j f j (x))}

then (3) can be rewritten as:

CEC( f, X) =
k∑

i=1

|Xi |
|X | ·

⎛

⎝− log pi − 1

|Xi |
∑

x∈Xi

log fi (x)

⎞

⎠ .

One can understand the CEC formula as a mean cost of encoding a symbol from
a dataset X by a model consisting of k encoders: the term − log pi is a code-length
of encoder identifier while − log fi (x) determines a code-length of x when using i-th
coding algorithm. An immediate consequence of the above formula is that the clusters
do not “cooperate” one with each another to estimate a density of X (it is a hard-type
of clustering) and as a result it is enough to define an optimal description for each
cluster separately. Let us observe that, each cluster has set its individual cost given by
− log pi , which allows to regularize a clustering model. While the introduction of one
more group usually improves the likelihood function, it also increases the complexity
of the model. This is the reason why CEC tends to reduce unnecessary clusters.

We assume thatF is a family of Gaussian densitiesN (m, �). Let X1, . . . , Xk be a
fixed partition of X . By m̂i and �̂i we denote the sample mean and covariance matrix
calculated within a group Xi as:

m̂i = 1
|Xi |

∑
x∈Xi

x,

�̂i = 1
|Xi |

∑
x∈Xi

(x − m̂i )(x − m̂i )
T .

The infimum of CEC cost function (3) for a partition X1, . . . , Xk taken over all accept-
able pi and fi , for i = 1, . . . , k, equals:

k∑

i=1

pi ·
[
N

2
ln(2πε) − ln(pi ) + 1

2
ln det(�̂i )

]

, (4)

where pi = |Xi ||X | .
To find a partition, which minimizes (4), one can adopt an iterative Hartigan algo-

rithm, which is commonly used in the case of k-means (Jain 2010). The idea of the
Hartigan method is to proceed over all elements of X , switching the membership of
particular elements to those clusters which would maximally decrease the cost func-
tion (Telgarsky and Vattani 2010; Hartigan andWong 1979). It can be proven that this
algorithm refines a given partition and finally finds a locally optimal solution.

The entire procedure can be summarized in the following steps:

1. Let X1, . . . , Xk be an initial partition of X . In the simplest case it can be a random
grouping.
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2. Iterate over all x ∈ X and execute the following steps until no cluster membership
has been changed:
(a) Find a membership of x ∈ Xi to this cluster X j for which the decrease of

the cost function (4) is maximal. To evaluate the change of the cost function
after the reassignment from Xi to X j , we have to temporally recalculate the
probabilities, means and covariances of these clusters.

(b) If an optimal cluster membership X j 	= Xi , then switch x from Xi tp X j and
update the parameters of these clusters permanently. Otherwise, no reassign-
ment is performed.

(c) Reduce a cluster Xi , if pi < ε (for most application ε ≤ 2 % provides
satisfactory results) and assign its elements to different clusters according to
point (a);

Though it may seem that the recalculation of the cluster model in the above pro-
cedure involves high computational complexity, it does not. The following formulas
show that the time of these updates does not depend on the cardinality of data, but
only on the dimension of dataset. Every cluster has only to remember its actual sample
mean and covariance.

Observation 1 (Tabor andSpurek 2014,Theorem4.3)LetU, V be two subsets of X ⊂
R

N with sample means m̂U , m̂V , covariance matrices �̂U , �̂V and associated prior
probabilities p(U ), p(V ) ≥ 0 such that p(U ) + p(V ) ≤ 1 [the role of p(U ), p(V )

is the same as numbers pi in (3)].

• If we assume that U ∩ V = ∅ then the sample mean and the covariance of U ∪ V
equals:

– m̂U∪V = pU m̂U + pV m̂V ,

– �̂U∪V = pU �̂U + pV �̂V + pU pV (m̂U − m̂V )(m̂U − m̂V )T ,

where pU = p(U )
p(U )+p(V )

, pV = p(V )
p(U )+p(V )

.

• If we assume that V ⊂ U then the sample mean and covariance of U\V equals:
– m̂U\V = qU m̂U − qV m̂V ,

– �̂U\V = qU �̂U − qV �̂V − qUqV (m̂U − m̂V )(m̂U − m̂V )T ,

where qU = p(U )
p(U )−p(V )

, pV = p(V )
p(U )−p(V )

.

3.2 Cross-entropy C4S

Let X ⊂ R
N be a dataset augmented by the set of positive and negative equivalence

constraints.We discuss the application of CEC inC4s algorithm, in particular in realiz-
ing the inner and the global clustering stages. We consider a Gaussian version of CEC,
i.e. every cluster is modeled as Gaussian probability distribution. For a convenience,
we use a notation and a terminology introduced in Sect. 2.

Inner clustering In the inner clustering we extract atomic parts of every initial chun-
klet. In the case of CEC, we try to discover final chunklets represented by Gaussian
distributions. To run CEC, the maximum number of groups gr(i)max, for i = 1, . . . , k,
must be specified for each initial chunklet. Since the constraints usually cover a small
number of examples then gr(i)max should also be small.
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The application of CEC to every initial chunklet Ci , for i = 1, . . . , k, produces
a partition into final chunklets C = {C (i)

j : i = 1, . . . , k, j = 1, . . . , ki }. Each final

chunklet C (i)
j is represented by a Gaussian density function f (i)

j ∼ N (m̂(i)
j , �̂

(i)
j ),

with a sample mean and a covariance matrix calculated within this chunklet as well
as the associated weight p(i)

j .

Global clustering An input to global clustering is a family of final chunklets C and
the maximum number of groups grmax. To adapt a clustering method to process such
a dataset, we assume that each final chunklet is represented by a probability model
calculated during inner clustering stage. More precisely, every final chunklet C (i)

j is

identified by a Gaussian probability density f (i)
j ∼ N (m̂(i)

j , �̂
(i)
j ). Moreover, every

model has an attached weight p(i)
j = |C(i)

j |
|X | proportional to the cardinality of the

chunklet. For one element chunklet C (i)
j = {x}, we put m̂(i)

j = x , �̂
(i)
j = 0 and

p(i)
j = 1

|X | . This does not define a Gaussian model, but a Dirac measure condensed

at x . Nevertheless, we keep the symbol f (i)
j to denote such a probability model. In

consequence, we focus on clustering a set of probability models

M(C) = {(p(i)
j , f (i)

j ) : i = 1, . . . , k, j = 1, . . . , ki }.

To evaluate the CEC cost function (4) of a partition P of M(C) (which is now
interpreted as a set of probability models), one has to know the covariance and prob-
ability coefficient of each cluster. This can be calculated using Observation 1. More
precisely, the sample covariance matrix of a union of two final chunklets Ci1 ,Ci2 is
directly given by Observation 1. The sample covariance matrix of the union of l final
chunklets Ci1, . . . ,Cil is calculated with use of a recursive formula:

�̂P = �̂Ci1∪(
Ci2∪...∪Cil

)

= pi1�̂i1 + pi2,...,il �̂i2,...,il + pi1 pi2,...,il (m̂i1 − m̂i2,...,il )(m̂i1 − m̂i2,...,il )
T ,

where we assume that m̂i2,...,il and �̂i2,...,il are known.
If any negative constraint is introduced, then the global clustering must additionally

preserve the validity of partition. Since CEC relies on iterative switching the elements
between clusters, then it is sufficient to verify conditions given in Theorem 3 and
succeeding pseudocode. It is enough to incorporate this pseudocode to step 3.1 of the
CEC procedure described in previous subsection.

4 Experimental results

In this section the proposed C4s method is examined on the several datasets. First,
it will be applied in a semi-supervised image segmentation, then it will be compared
with other constrained clustering methods on selected examples retrieved from UCI
repository and one real dataset of chemical compounds.
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Fig. 5 Image of the dog (a) and unsupervised CEC clustering (b)

Fig. 6 Constraints specification (a) and the effect of our algorithm (b)—the dog was discovered properly

A demonstration version of the C4s is publicly available from the link: http://ww2.
ii.uj.edu.pl/~wiercioc/C4s/. Please contact the second author for further information.

4.1 Image segmentation

Let us consider a dog’s image (Arbelaez et al. 2011) presented in the Fig. 5a. A natural
question of the image segmentation is to discover dog’s shape. As it can be seen in the
Fig. 5b, the adaptation of classical CEC to images (Śmieja and Tabor 2013) produces
five parts—two of them form the dog’s shape.

Since it is difficult to perform an unsupervised segmentation which detects only two
parts—the dog’s shape and the background, we ask for examples of elements which
should be grouped together. Figure 6a presents graphically the imposed constraints—
pixels marked by hand in one color are restricted to be in the same group.

C4s reads these restrictions and in the first stage clusters individually elements with
the same constraint. As a result, two groups from the first initial chunklet (elements
marked in black) and three groups from the second initial chunklet (elementsmarked in
white)were obtained. Then, the algorithm takes these fivefinal chunklets and the rest of
a dataset and performs the global clustering. Figure 6b shows the effect—the dog was
discovered verywell. All the clustering procedures were startedwith ten initial groups.

This semi-supervised scenario, in which a user indicates examples of objects to
be extracted, often appears in real situations. In medical sciences a video capsule

123

http://ww2.ii.uj.edu.pl/~wiercioc/C4s/
http://ww2.ii.uj.edu.pl/~wiercioc/C4s/
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Table 1 Datasets used in the experiments

Dataset Attributes Instances Classes

Ionoshere—original 34 351 {1}, {2}

B-C-W—original 10 699 {1}, {2}

E. coli—original 7 336 {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}

E. coli—1st modification 7 336 {1}, {2}, {3, 7}, {4}, {5}, {6, 8}∗
E. coli—2nd modification 7 336 {1}, {2, 3}, {4}, {5, 7}, {6}, {8}∗
Segment—original 19 2310 {1}, {2}, {3}, {4}, {5}, {6}, {7}

Segment—1st modification 19 2310 {1, 3}, {2, 4}, {5}, {6}, {7}∗
Segment—2nd modification 19 2310 {1}, {2, 6}, {3, 4}, {5}, {6}∗
Glass—original 9 214 {1}, {2}, {3}, {4}, {5}, {6}, {7}

Glass—1st modification 9 214 {1, 3}, {2}, {4}, {5, 7}, {6}∗
Glass—2nd modification 9 214 {1}, {2, 3, 6}, {4}, {5}, {7}∗
Wine—original 13 178 {1}, {2}, {3}

Wine—1st modification 13 178 {1, 3}, {2}∗
Wine—2nd modification 13 178 {1}, {2, 3}∗
Yeast—original 8 1484 {1}, {2}, {3}, {4}, {5},

{6}, {7}, {8}, {9}, {10}

Yeast—1st modification 8 1484 {1}, {2, 6}, {3}, {4}, {5, 8},

{7}, {9}, {10}∗
Yeast—2nd modification 8 1484 {1}, {2}, {3, 9}, {4, 6},

{5}, {7}, {8}, {10}∗

For each example from UCI repository we consider three variants of reference membership—original
membership and two modified ones. Fourth column contains the reference classes. The classes marked with
∗ are constructed from the original ones

endoscopy is an examination where thousands of pictures are taken from inside of a
gastrointestinal tract (Vyas et al. 2014). A doctor is not able to check manually an
entire video of all patients in a search of lesions. In consequence, it might be more
preferably to mark only a few interesting examples from pictures and then let the an
application to discover the rest of them. On the other hand, biologists must analyze a
great amount of microscopic images of cells which might be impossible in practice
(Wu et al. 2008). They often use computer tools, like ilastic (Sommer et al. 2011),
which can perform automated semi-supervised image segmentation. Finally, pairwise
equivalence constraints facilitate the detection of a personwalking or trackingmissiles
as they are carried on a moving vehicle (in the army).

4.2 UCI repository

To compare the performance of C4s with the constrained versions of GMM and
hierarchical clustering (HC) (Shental et al. 2004; Klein et al. 2002), we have tested
it on several examples of datasets selected from the UCI repository (Lichman 2013).
The results were evaluated with a use of adjusted Rand index (ARI) (Hubert and
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Fig. 7 AdjustedRand index of C4s, constrainedGMMandHCover seven datasets from theUCI repository:
Ionosphere, Breast Cancer Wisconsin, E. coli, Segment, Glass, Wine, Yeast for three types of reference
partitions for each set (except the first two sets). The results are shown for four cases: using 15 % of the
data points in positive constraints (15 % p), using 15 % of the data points in both positive and negative
constraints (15 % p & n), using 30 % of the data points in positive constraints (30 % p), using 30 % of the
data points in both positive and negative constraints (30 % p & n)

Arabie 1985) which is a well-known measure of agreement between two partitions.
ARI assumes its maximum value 1 in the case of ideal agreement while for completely
independent partitions it gives value 0.

In order to obtain side information, a teacher was employed. A teacher is given a
random selection of M elements from a dataset and is then asked to partition this set of
retrieved points into equivalence classes which are used as equivalence constraints.We
carried out experiments with two criteria—when approximately 15 % of data points
are constrained, and when approximately 30 % of data points are constrained.
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Fig. 8 Exemplary topological
fingerprint of chemical
compounds. Value 1 means
presence, whereas value 0 means
absence of predefined structural
patterns

We tested all methods in two modes:

• using only positive equivalence constraints;
• using both positive and negative equivalence constraints.

Since GMMandC4s are nondeterministic we ran each of them 10 times and choose
a result with the lowest value of cost function.

As mentioned in the previous section, our algorithm is intended to perform a clus-
tering which discovers groups that are possibly generated from the mixture of models.
In the present experiment, we consider three variants of the reference membership
of each dataset: the first one is the original membership (defined by UCI) while the
other two are modified by merging selected groups (except Ionosphere and B-C-W,
where the partitions contain only two groups). In the second case some of the original
groups are joined in order to obtain a reference partition where clusters are described
by complex probability distributions. Table 1 provides detailed information connected
with datasets and their modifications used in the simulations.

The following values were assumed as CEC parameters: gr = 3 ∗ k, where k is
a correct number of clusters, gri = 4, ε = εi = 1 %. It should be noted that GMM
and HC algorithms do not detect the correct number of clusters. For this reason, the
number of clusters for these methods in certain mode equaled the number of clusters
returned by C4s. Several observations follow from the results reported in Fig. 7:

• According to Fig. 7a–c, f, i, l, o the performance of all algorithms checked on the
original reference partitions is almost identical.

• The advantage of C4s method is evident in the case of modified reference mem-
berships (see Fig. 7d, e, g, h, j, k, m, n, p, q). The internal structure of each group
becomes too complex after joining the clusters to be described just by one model.
In consequence, C4s provides significantly higher ARI than constrained GMM
and HC.

• After incorporating 30 % of random constraints, C4s gives the best value of
agreement. Furthermore, in most cases adding negative constraints makes an
improvement over results received when using only positive constraints.
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Fig. 9 Hierarchical structure of reference partition (Warszycki et al. 2013)

• Apart from that, the proposed algorithm detects quite precisely the right number
of regions.

4.3 Chemical compounds

This experiment relies on grouping the selected set of chemical compounds with
respect to their structural features. The set of compounds acting on central nervous
system CNS (5-HT1A receptor ligands) was chosen for this example (Olivier et al.
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Table 2 Four cases of reference grouping

Dataset Attributes Instances Merged classes

Klekota Roth—original 4860 3696 –

Klekota Roth—1st modification 4860 3696 {3-aminochromanas,

Methyleneaminochromans,

Aminotetralines,Benzodioxanes},

{Aporhines,Benzoazepanes}

Klekota Roth—2nd modification 4860 3696 {Serotonin-like,Four carbon linker,

Three carbon linker,

Tetrahydropyridinoindoles},

{Aporphines,Benzoazepanes},

{3-aminochromanas,

Methyleneaminochromans,

Aminotetralines,

Benzodioxanes},

{Tricycles,Ergolines}

Klekota Roth—3rd modification 4860 3696 {Four atom linker,

Three atom linker,

Two carbon linker,

One carbon linker},

{Sulfona(i)mides,Imides,

Terminal amides,Classical

amides,Other amides,

N4-alkyl and N4-unsubstituted,

Other arylpiperazines,

Beznzylpiperazines},

{Serotonin-like,

Four carbon linker,

Three carbon linker,

Tetrahydropyridinoindoles},

{Serotonin-like,

Four carbon linker,

Three carbon linker,

Tetrahydropyridinoindoles}

Fourth column shows which groups of the lowest level of the hierarchy (Fig. 9) are merged to obtain
reference partitions

1999; Śmieja andWarszycki 2016). The results were compared to the partition created
manually by the experts (Warszycki et al. 2013).

Chemical compounds are usually represented by binary strings called fingerprints.
The bit “1” means the presence of particular feature of compound while “0” denotes
its absence (see Fig. 8). There are a lot of fingerprint representations since various
features can be taken into account (Willett 2005). Our experiment uses Klekota–Roth
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Fig. 10 Adjusted Rand index of C4s, GMM and HC over dataset of chemical compounds acting on central
nervous system. The results are shown for four cases: using 15 % of the data points in positive constraints
(15 % p), using 15% of the data points in both positive and negative constraints (15 % p& n), using 30% of
the data points in positive constraints (30 % p), using 30 % of the data points in both positive and negative
constraints (30 % p & n)

fingerprint which provides reasonably good description of compound (it contains 4860
bits) (Klekota and Roth 2008).

The reference partition has a hierarchical structure (Fig. 9). One can decide how
many groups should be taken into account. In the experiment, four different levels
of the hierarchy were chosen and therefore four different reference groupings were
obtained. In consequence, partitions into 28, 24, 18 and 12 groups were considered.
Table 2 shows which groups from the lowest level of the reference hierarchy were
merged in order to create a reference partition.

As in the example of UCI, the cases of 15 and 30 % of constrained points (both
positive as negative) were examined and similar values of parameters for C4s were
used. Moreover, the number of groups returned by C4s was assumed as the input to
constrained GMM and HC.

The results shown in Fig. 10 clearly indicate that the advantage of proposed method
increases when a reference partition contains more complex groups. When a reference
clustering into 28 groups is assumed, all three examined methods provide similar
values of ARI (Fig. 10a). The more groups were combined into larger clusters, the
higher differences between C4s and the two other ones were observed (Fig. 10b–d).
Moreover, introduced method gives significantly better results for a greater number of
elements with constraints. It follows from the fact that the inner clustering processes
are performed on sets of elements with the same positive constraints; i.e. the more
elements are taken for the inner clustering, the more accurate results are obtained.

5 Conclusion and future work

In this paper we proposed a novel semi-supervised clustering technique, C4s, which
incorporates equivalence constraints. The idea of introduced method was indebted to

123
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work of Shental et al. (2004) who applied Gaussian mixture model to a clustering with
strict pairwise constraints. The conceptual difference between these two algorithms
lies in the number of components used to describe a cluster.C4s enables to understand
a cluster as a complex structure which elements are generated by a mixture of simple
models which is a novel concept in constrained clustering.

This reasoning is motivated by real-life examples where data is often classified
in a hierarchical structure. Groups defined at the lowest level of hierarchy represent
simple models, while their mixtures are used to describe clusters at higher levels. As
an example one can consider an expert classification of chemical compounds (see
Fig. 9).

The numerical results were consistent with an assumed theoretical model and con-
firmed that the proposed method is more suitable for data clustering when pairwise
constraints suggest a complex structures of groups. It outperformed constrained GMM
(Shental et al. 2004) as well as hierarchical clustering with equivalence constraints
(Klein et al. 2002).

As mentioned in the paper, the introduced general algorithm can be implemented
in combination with various clustering methods. This study assumed the existence
of clusters described by Gaussian mixtures and applied CEC method. In the future,
we plan to consider different techniques which are suited for particular form of data.
Moreover, it would be also a challenge to modify this procedure to the case of soft
constraints which can be occasionally violated during grouping (Bilenko et al. 2004;
Lu and Leen 2004; Wang and Davidson 2010).
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Śmieja M, Tabor J (2015b) Spherical Wards clustering and generalized Voronoi diagrams. In: Data Science
and Advanced Analytics (DSAA), 2015. 36678 2015. IEEE International Conference on, IEEE, pp
1–10
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