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Abstract This paper proposes, describes and evaluates T3C, a classification algorithm
that builds decision trees of depth at most three, and results in high accuracy whilst
keeping the size of the tree reasonably small. T3C is an improvement over algorithm
T3 in the way it performs splits on continuous attributes. When run against publicly
available data sets, T3C achieved lower generalisation error than T3 and the popular
C4.5, and competitive results compared to Random Forest and Rotation Forest.
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1 Introduction

Classification produces a function that maps a data item into one of several predefined
classes, by inputting a training data set and building amodel of the class attribute, based
on the rest of the attributes. Decision Trees is a classification method with intuitive
nature which matches the users’ conceptual model without loss of accuracy (Berry
and Linoff 2004). However, no clear winner exists (Tjortjis and Keane 2002) amongst
decision tree classifiers when taking into account tree size, classification and gener-
alisation accuracy. This work focuses on reducing generalisation error, which is the
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number of instances that have been misclassified in the test set. We focus on reducing
the generalization error because this allows for better prediction, i.e. classification of
unseen cases. We are more interested in generalization error because we want to see
how the algorithm performs in new, unseen, data, rather than improving classification
accuracy by overfitting the data (Murthy and Salzberg 1995).

This paper introduces T3C, which on average outperforms the popular algorithm
C4.5 (Quinlan 1993, 1996) as well as T3 (Tjortjis and Keane 2002; Tjortjis et al.
2007), whilst improving T3’s performance, even when compared with state-of-the-art
meta classifiers such as Rotation Forest (Rodriguez et al. 2006) or advanced decision
tree classifiers like Random Forest (Breiman 2001). T3C builds small decision trees
with depth at most 3. The main difference between T3C and T3 is that T3C splits
continuous attributes with four nodes instead of three.

In the remaining of the paper C4.5, T3, Rotation Forest and Random Forest are
briefly described in Sect. 2, including a comparison of their performance, as described
in the literature, enriched by new experiments. T3C is detailed in Sect. 3, along with
key concepts on howT3Cdiffers fromT3. Experimental results are presented in Sect. 4
and discussed/evaluated in Sect. 5. Finally conclusions and directions for future work
are given in Sect. 6.

2 Background

Classification is a method aiming at classifying records into one of the many classes
which are predefined (Hubert and Van der Veeken 2010; Mozharovskyi et al. 2015).
Given awell definednumber of classes and a set of pre-classified samples, classification
aims at creating a model that can be used for classifying future unknown data. More
precisely, classification can be described as a function of two steps (Witten et al. 2011):

– Step 1: Learning. In this step a model is built which describes a predefined set
of classified data. The training data are being used by a classification algorithm
in order to build the model. The records of the training set are selected using
the holdout method; given data are randomly partitioned into two independent
sets: the training set (normally 2/3 of the records) for model construction and the
test set (normally 1/3 of the records) for accuracy estimation. The model which is
determined is known as classifier and is represented by classification rules, decision
trees or mathematical formulae.

– Step 2: Classification. In this step, test data belonging to known in advance classes
are used in order to calculate the accuracy of the model. There are several meth-
ods to assess the accuracy of a classifier. Training data are chosen randomly and
independently. The model classifies each one of the training samples. Afterwards,
using the test data, the class that data belong to, is compared to the class predicted
by the model.
Note that the classification accuracy of the model is the percentage of the sample
data that were classified correctly by the classifier. Generalization accuracy is the
number of correct instances divided by the total number of instances in the test set.
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Generalization (and similarly classification) error is defined as follows:

generalization error = 1 − generalization accuracy

In addition to accuracy, other measures of goodness exist for classification (Han
et al. 2010). For instance, we can use sensitivity (i.e. True Positive recognition rate),
specificity (i.e. True Negative recognition rate), precision (i.e. what percentage of
records that the classifier labelled as positive are actually positive), recall (i.e. com-
pleteness what percentage of positive records did the classifier label as positive), F
measure or F1-score (i.e. the harmonic mean of precision and recall). For multiple
class datasets the F1-score can be found with the following formulae:

F1Score = 2 ∗ precision ∗ recall

precision + recall

precision = 1

|C |
C∑

i=1

tpi
tpi + f pi

recall = 1

|C |
C∑

i=1

tpi
tpi + f ni

where |C | is the number of classes, tpi are the true positives, f pi are the false positives
and f ni are the false negatives for class i .

2.1 Decision tree classifiers

Decision trees is one of the most effective and widespread methods for producing
classifiers from data (Tjortjis and Keane 2002; Quinlan 1986, 1993; Breiman 2001;
Breiman et al. 1984; Aba and Breslow 1998; Auer et al. 1995; Gehrke et al. 1998).
There are a large number of decision tree algorithms that have been studied in data
mining,machine learning and statistics. Like other classifiers, decision trees grow trees
from training data and then their accuracy is measured by using test data. Some of the
best known, high performance algorithms are: C4.5 (Quinlan 1993), T3 (Tjortjis and
Keane 2002), Rotation Forest (Rodriguez et al. 2006), and Random Forest (Breiman
2001). The following subsections summarise key concepts for these four algorithms.

2.1.1 Rotation Forest

In order to create the training data for a base classifier Rotation Forest does the fol-
lowing (Rodriguez et al. 2006):

1. It splits the feature set randomly in K subsets.
2. Principal Component Analysis (PCA) is applied to each subset.

In order to preserve the variability information in the data all principal components
are retained. That results in K axis rotations in order to form new features for a base
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classifier. Diversity is promoted through feature extraction for each base classifier.
Decision trees are chosen here because they are sensitive to rotation of the feature axes,
hence the name “forest”. Accuracy is sought by keeping all principal components and
also using the whole data set to train each base classifier.

2.1.2 Random Forest

Random Forest is a combination of decision trees, so that each tree can depend on the
values of a random vector that was selected independently from the distribution of a
random forest. According to Breiman (2001):

Definition 1 Arandom forest is a classifier consisting of a collection of tree-structured
classifiers h(x, k), k = 1, . . . , where the k are independent identically distributed
random vectors and each tree casts a unit vote for the most popular class at input x.

Generalization error of a forest depends on the strength of each tree in the forest
and the correlation between them. Choosing a random selection of features to split
each node results in comparable error rate of the algorithm AdaBoost (Freund and
Schapire 1995) and is more “powerful” when dealing with noise.

2.1.3 C4.5 and C5

C4.5 was introduced by Quinlan (1993), in order to evolve ID3 (Quinlan 1986). C4.5
tries to find small decision trees. In order to choose which attribute to split C4.5 uses
the maximum value of the GainRatio defined by:

GainRatio = Gain(A)

Spli t I n f o(A)
(1)

The Spli t I n f o(A) is given by the formula:

Spli t I n f o(A) = −
c∑

i=1

|Si |
|S| log2

|Si |
|S| (2)

where S1 through Sc are the c subsets of examples resulting from partitioning S by the
c-valued attribute A.

Gain(A) formula is:

Gain(A) = Entropy(S) −
∑

u∈Values(A)

|Su |
|S| Entropy(Su) (3)

where Values(A) is the set of all possible values for attribute A, Su is the subset of S
for which attribute A has value u and entropy is defined as follows

Entropy(S) = −
k∑

i=1

f req(Ci , S)

|S| log2
f req(Ci , S)

|S| (4)
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where f req(Ci , S) indicates the number of instances in S that belong to class Ci .
A modern implementation of Quinlan’s decision tree algorithm exists in C5.0,

which can be found at (RuleQuest 2013). The splitting of discrete attributes is different
between C4.5 and C5.0, resulting in C5.0 rulesets having noticeably lower error rates
on unseen cases for such datasets.

2.1.4 T2 and T3

T2 (Auer et al. 1995) is a classification algorithm which calculates optimal decision
trees up to depth two and uses two kinds of decision nodes:

1. Discrete splits on a discrete attribute, where the node has as many branches as
there are possible attribute values, and

2. Interval splits on continuous attributes. A node, which performs an interval split,
divides the real axis into intervals and has as many branches as there are intervals.
The number of intervals is restricted to be either at most as many as the user
specifies, if all the branches of the decision node lead to leaves, or to be at most
2 otherwise. The attribute value unknown is treated as a special attribute value.
Each decision node (discrete or continuous) has an additional branch, which takes
care of unknown attribute values. T2 builds the decision tree satisfying the above
constraints and minimizing the number of misclassifications of cases in the data.

T2 was compared with C4.5 (Tjortjis and Keane 2002). The results have shown
that T2 produces smaller trees with approximately the same classification and gener-
alization error as C4.5.

T3 improves T2 by:

1. Introducing the Maximum Acceptable Error (MAE), this allows some classifica-
tion error (the number of instances that have been misclassified in the training set)
at each node, thus reducing overfitting. T2 usesMAE of 0% as a stopping criterion
during tree building, whilst in T3 MAE ranges between 0 and 30 %, and is user
specified. If MAE is less than the specified at a given node, then tree building stops
and the node is returned.

2. Allowing trees to grow at a maximum depth of three. The user specifies the depth
of the tree: the deeper it is the more accurate the classification.

T3 improves T2 in both classification and generalization error. More precisely, in
9 out of 15 datasets T3 has lower generalization error. That is expected because T3
grows bigger trees with less overfitting. It is worth mentioning that T3 did not improve
T2 in datasets that contain only continuous attributes.

2.2 Performance comparison

In this section we present experimental results for T3, T3C, C4.5, Random Forest
(RaF) and Rotation Forest (RoF). We kept C4.5 as it was shown to produce accurate
results in the original paper (Tjortjis and Keane 2002) and included Random Forest
and Rotation Forest as these were shown to produce even better results in recent works
(Rodriguez et al. 2006; Breiman 2001; Tatsis et al. 2013). We used the same 23 data
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Table 1 Generalization error for 23 data sets

Data set T3 T3C C4.5 RaF RoF Type

Breast-cancer 27.95 27.95 2.8 32.6 27.4 D

Chess 6.51 6.51 0.5 1.8 0.7 D

Lenses 30.36 30.36 37.5 37.5 62.5 D

Monk1 0.0 0.0 23.4 50.0 50.0 D

Monk2 32.99 32.99 34.7 30.3 10.4 D

Monk3 0.0 0.0 2.8 50.0 50.0 D

Mushroom 0.0 0.0 0.0 0.0 0.0 D

Soybean-large 14.71 14.71 10.5 9.7 4.4 D

Vote 5.83 5.83 3.0 0.0 3.0 D

Lymphography 25.53 25.53 22.6 0.0 4.0 C/D

Hypotheroid 1.03 1.03 0.9 0.7 1.0 C/D

Hepatitis 17.92 17.92 19.4 19.0 6.5 C/D

Crx 14.24 14.24 15.3 14.8 15.2 C/D

Australian 14.65 12.92 14.6 26.7 15.8 C/D

Cleve 22.04 22.04 23.5 32.5 9.4 C/D

Med_123 0.75 0.75 33.4 17.3 15.4 C/D

Iris 4.75 4.75 6.1 6.0 4.0 C

Heart 29.32 29.32 19.3 18.9 16.7 C

Breast 5.34 5.34 5.9 4.3 3.9 C

Diabetes 27.04 26.24 27.4 28.5 26.6 C

Pima 24.8 24.8 25.5 20.3 19.9 C

Waveform-21 31.26 31.17 23.7 20.5 18.1 C

Waveform-40 30.38 30.38 24.4 22.1 19.0 C

sets; 22 publicly available from the UCI repository (Lichman 2013) and one medical
set (Tjortjis et al. 2007), as these are used in (Tjortjis and Keane 2002) to conduct
experiments.

Table 1 shows the generalization error (%) for each of these five algorithms. The
first group of nine data sets contains only discrete attributes. The second group of
seven data sets contains both discrete and continuous attributes, and the last group
of seven data sets contains only continuous attributes. In Table 1 the last column
indicates whether the dataset contains discrete (D), continuous (C) or both discrete
and continuous (C/D). These data sets are presented in more detail in Table 2. Table 1
depicts generalisation error for the five algorithms across 23 data sets. We use bold
to indicate the best performing algorithm for each data set. All in all, T3 was best in
six out of 23 cases, whilst T3C was best in eight out of 23, C4.5 in three, Random
Forest in five and Rotation Forest in ten out of 23 data sets, including five out of 7
data sets containing only continuous attributes. From these results we can conclude
that T3 performs comparably well against C4.5 as well as against newer classification
algorithms like Random Forest and Rotation Forest.
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Table 2 The data sets used for experimentation

Data set Records (training/test) Classes Attributes Total

Cont. Discrete

<5 ≥5

Breast-cancer 286 (257/29) 2 0 5 4 9

Chess 3196 (2876/320) 2 0 36 0 36

Lenses 24 (21/3) 3 0 4 0 4

Monk1 556 (500/56) 2 0 6 0 6

Monk2 601 (541/60) 2 0 6 0 6

Monk3 554 (499/55) 2 0 6 0 6

Mushroom 8124 (7312/812) 2 0 11 11 22

Soybean 683 (615/68) 19 0 33 2 35

Vote 435 (391/44) 2 0 16 0 16

Lymphography 148 (133/15) 4 3 14 1 18

Hypotheroid 3163 (2847/316) 2 7 18 0 25

Hepatitis 155 (139/16) 2 6 13 0 19

Crx 690 (621/69) 2 6 7 2 15

Australian 690 (621/69) 2 6 6 2 14

Cleve 303 (273/30) 2 6 7 0 13

Med_123 794 (715/79) 2 10 22 0 32

Iris 150 (135/15) 3 4 0 0 4

Heart 270 (243/27) 2 13 0 0 13

Breast 699 (629/70) 2 10 0 0 10

Diabetes 768 (691/77) 2 8 0 0 8

Pima 768 (691/77) 2 8 0 0 8

Waveform-21 5000 (4500/500) 3 21 0 0 21

Waveform-40 5000 (4500/500) 3 40 0 0 40

3 T3C, an improved version of T3

Despite its simplicity and its ability to produce reasonably accurate results, T3 has
one deficiency. It does not improve T2’s accuracy for datasets that contain only con-
tinuous attributes. That was expected because T3 does not interfere in the way T2
splits continuous attributes. This motivated us to change the way T3 splits continuous
attributes.

We use pseudo code to present the main functions of T3C. The first function is
BuildTree with signature:

Tree BuildTree (ItemNo Fp, ItemNo Lp, int Dep, ClassNo PreviousClass)
Algorithm 1 shows the pseudo code for this tree building function.
The second most important function is the function Build with signature:
Tree Build (ItemNo Fp, ItemNo Lp, int Dep, Tree Root)
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Algorithm 1 Tree BuildTree
1: if Fp..Lp is empty then
2: terminate and return a leaf node, which has PreviousClass as thewinning class, and relative frequency

and error rate as 0.
3: else(i.e. if there remain items for processing)
4: calculate the class distribution of this list of items, select the winning class and initialise the relative

frequency of this class, by dividing the number of occurrences of this class by the total number
of class occurrences in this set.

5: Create a new leaf called Node for this set, using this winning class, and the relative frequency and
error rate, which have been calculated before.

6: if error rate ≤ MAE or Dep=0 then
7: return this Node and terminate
8: else
9: build BestNode with Node, using the function Build described below.
10: Release the Node created
11: return BestNode, and terminate

Build constructs the optimal decision tree with depth at most Dep for the given list
of items.

Algorithm 2 shows the pseudo code.

Algorithm 2 Tree Build
1: Create a copy of the Root called BestNode
2: for all the attributes do
3: if Special Status of the attribute is IGNORE then
4: continue
5: if the attribute under examination is continuous then
6: build a Node using Build2Contin (builds a sub-tree based on a continuous attribute split) for that

attribute
7: elseit is discrete
8: build Node using Build2Discr (builds a sub-tree based on a discrete attribute split)
9: if the error of Node is less than the error of BestNode (i.e. the root) then
10: release BestNode
11: set BestNode := Node
12: return BestNode

The Special Status in line 3 is initialized when the attributes are read and determines
whether the status of an attribute is discrete or ignore, i.e. missing value.

Two sub-algorithms that are used above are the Build2Cont and Build2Discr .
The signature for the latter is the following:

Tree Build2Discr(ItemNo Fp, ItemNo Lp, Attribute Att, int Dep, Tree Root)
Algorithm 3 shows the pseudo code.
The signature for the Build2Cont algorithm is the following:
Tree Build2Cont(ItemNo Fp, ItemNo Lp, Attribute Att, int Dep, Tree Root)
Algorithm 4 shows the pseudo code. The function SecondSpli tContin finds the

best decision treewhen splitting a continuous attribute in the first level and a continuous
attribute in the second level. The function SecondSpli t Discr finds the best decision
tree when splitting a continuous attribute in the first level and a discrete attribute in
the second level.
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Algorithm 3 Tree Build2Discr
1: BestNode is a copy of Root
2: for each possible value V of attribute Att do
3: Group data (Fp...Lp) according to V and find Kp for the last of them
4: Create a branch for the value V using BuildTree(Fp, Kp, Dep − 1, Root− > BestClass)
5: Compute error for each branch and add it to the total error of Best Node
6: Fp = Kp + 1
7: return BestNode

Algorithm 4 Tree Build2Cont
1: if Dep = 1 then
2: Call SecondSplitContin(Fp, Lp, None, Att)
3: return IntervalTest
4: else
5: Sort instances according to Att
6: Find Kp, the first instance which has a known value for the attribute Att
7: if Kp > Lp then
8: return Root
9: else
10: for each attribute Att1 do
11: if Special Status of the Att1 is IGNORE then
12: Continue
13: if Att1 is continuous then
14: Call SecondSplitContin(Kp, Lp, Att, Att1)
15: if Att1 is discrete then
16: Call SecondSplitDiscr(Kp, Lp, Att, Att1)
17: Find the best split Best Spli t between Kp and Lp and
18: Split node Best Node according to Best Spli t
19: Create three nodes-children for the Best Node
20: return BestNode

As mentioned before, the main difference between T3 and T3C is the way T3C
splits continuous attributes. The following changes were applied to tree building:

1. T3 splits nodes for continuous variables into three nodes: two nodes that occur by
splitting the real axis in one point and a third node for unknown variables. T3C
splits nodes for continuous variables into four nodes: the node that corresponds
to unknown variables and three other nodes that occur by splitting the real axis in
two points.
As mentioned above the real axis is split in two points (assume k1 and k2). By
doing so, three intervals occur. That is (−∞, k1), [k1, k2) and [k2,+∞) The dis-
tance between k1 and k2 should be greater than 0.15 in order for the four nodes
to be created, otherwise the split becomes just as that of T3. This 0.15 value was
calculated empirically via experimental study. This constraint is vital to the algo-
rithm because in some datasets the algorithm would find that the next best split is
very close to the k1 value. This was observed in the training phase. In this case the
interval [k1, k2) may contain few or no instances and will not generalize very well.
While developing T3C we observed that the distance between k1 and k2 may be
as little as 10−4 resulting in trees with high generalization error. We tried different
values, including 0.05, 0.1, 0.2, 0.5, 1, and 1.5, for this distance and we selected
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a threshold of 0.15 as it produced the best results. If the split does not improve
accuracy then T3’s split is selected instead.

2. At the lowest level of the tree for continuous variables, T3 produces as many
nodes (leaves) as the number of classes plus one (for unknowns). T3C produces
for continuous variables as many nodes as the number of classes plus one at the
bottom two levels of the tree.

4 Experimental results

We compare T3C’s generalisation error to that of T3 as reported in the literature
(Tjortjis andKeane2002).Weused the same23data sets; 22publicly available from the
UCI repository (Lichman 2013) and one medical set (Tjortjis et al. 2007), as these are
used in (Tjortjis andKeane 2002) to conduct experiments. Table 2 lists these sets, along
with their number of records (and their split into training and test sets), their number of
classes and their number of attributes (and their split into continuous, discrete with less
than five distinct values and discrete attributes with five or more distinct values). Nine
out of the 23 sets contained only discrete attributes, so no difference in performance
was expected in comparison to T3, given that T3C affects performance on data sets
including continuous attributes. These datasets have the following characteristics:

1. Different number of attributes. It is important to test the tree size our algorithm
creates and how it is related to the number of attributes of the datasets.

2. There are datasets that contain only discrete attributes, only continuous attributes
and both continuous and discrete data. These different kinds of attributes will
provide us with insights into how our algorithm performs on these situations.

We performed 10 hold-out runs with initial random seed on each run and we report
the average Training/Generalization error, Tree size and F-measure along with the
standard deviation. Table 3 shows results for T3 and T3C when applied to the 14 out
of 23 data sets which include continuous attributes. For each data set, the table shows
respectively: tree size, classification and generalization error and F-measure for T3
and for T3C, along with the improvement on generalization error as a percentage:

Improv = 1 − T 3CGen.error

T 3Gen.Error
(5)

Numbers in bold indicate which algorithm performed better in terms of general-
ization error, which is the focus of this work. The bottom-line shows the average
improvement of T3C over T3: 1.08 %. We observe that T3C improves generalization
error for three out of the 14 data sets. The average improvement of T3C over T3 for
these three sets is 5 % in terms of generalization error (and 1.1 % in terms of gener-
alization accuracy). We observe that these data sets have either no discrete attributes
(Diabetes, Waveform-21), or at least two discrete attributes with five or more distinct
values (Australian).
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4.1 T3C vs. C4.5

We performed 10 hold-out runs with initial random seed on each run and we report
the average Training/Generalization error, Tree size and F-measure along with the
standard deviation. Table 4 shows results for T3 and C4.5 when applied to the 14 out
of 23 data sets which include continuous attributes, and has similar format to Table 4.
The bottom-line shows the average improvement of T3C over C4.5: 2.29 % in terms
of generalization error (and 4.52 % in terms of generalization accuracy). We observe
that T3C demonstrates better generalization error than C4.5 for nine data sets, and
worse error for five out 14 sets.

It is noted that the tree size of C4.5 is extremely large for the data cases Waveform-
21 and -40 (410 in comparison to 0–36 for the other data cases), but not for T3C.
These data sets were created using a Data-Generator and all their attributes include
noise. It appears that T3C is more resistant to noise than C4.5.

4.2 T3C vs. Rotation Forest

We performed 10 hold-out runs with initial random seed on each run and we report the
average Training/Generalization error and F-measure along with the standard devia-
tion. Table 5 shows results for T3 and Rotation Forest when applied to the 14 out of
23 data sets which include continuous attributes, and is formatted similar to Table 4.
Numbers in bold indicate which algorithm performed better in terms of generalization
error. The bottom-line shows the average deterioration of T3C over Rotation For-
est: 21.58 % (and 4.44 % in terms of generalization accuracy). We observe that T3C
demonstrates better generalization accuracy than Rotation Forest for four data sets,
worse accuracy for the remaining ten out 14 sets. Still T3C improves T3, which was
outperformed by Rotation Forest 10 out 14 times and an average deterioration over
Rotation Forest at 51.00 % in terms of generalization error (and 4.94 % in terms of
generalization accuracy). The results showed that Rotation Forest overwhelms T3C in
datasets that contain continuous attributes only. In contrast, T3C outperforms Rotation
Forest in four out of seven datasets that contain both discrete and continuous attributes.
From those results we can conclude that T3C splits discrete attributes more thriftily
than Rotation Forest. The opposite happened in datasets that contain only continuous
attributes as Rotation Forest wins T3C.

4.3 T3C vs. Random Forest

As mentioned before, Random Forest demonstrated better results than T3C. We per-
formed 10 hold-out runswith initial random seed on each run andwe report the average
Training/Generalization error andF-measure alongwith the standarddeviation.Table 6
shows results for T3 and Random Forest when applied to the 14 out of 23 data sets
which include continuous attributes, and the format is similar to Table 4. Numbers in
bold indicate which algorithm performed better in terms of generalization error. More
precisely, in ten out of 14 datasets Random Forest had lower generalization error than
T3C, and in four out of 14 T3C gave lower generalization error. T3C demonstrated an
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Table 7 Experimental results for datasets with only discrete attributes

Data set T3C C4.5 Random Forest Random Forest C5.0

Breast-cancer 27.95 28.15 32.17 28.67 28.16

Chess 6.51 0.94 1.06 0.88 0.94

Lenses 30.36 21.61 33.39 34.29 45.89

Monk1 0 6.21 0.89 8.59 0

Monk2 32.99 30.74 53.69 6.64 33.67

Monk3 0 0 0 0 0

Mushroom 0 0 0 0 0.25

Soybean-large 14.71 5.02 0.13 1.15 12.69

Vote 5.83 3.27 0 1.29 5.28

average deterioration over Random Forest at 19.16 % in terms of generalization error
(and an average deterioration of 1.49 % in terms of generalization accuracy).

It is also notable that in datasets that contain both discrete and continuous attributes
T3C gives lower generalization error in three out of seven datasets and Random Forest
gives lower generalization error in four out of seven datasets. That occurred due to the
high ability of T3C in splitting discrete attributes.

4.4 Discrete attributes

Observing the above results we conclude that T3C is doing well on data sets con-
taining discrete variables. For that reason, it is appropriate to compare T3C on data
sets containing only discrete variables to see the performance in these data sets. The
results of the comparison are shown in the Table 7. For each data set, the table shows
the generalization error for T3C, C4.5, Random Forest, Rotation Forest and for C5,
respectively.

From Table 7, we conclude that T3C gave better results in three out of nine cases,
which demonstrates the strength of the algorithm in relation to the others. C4.5 gave
better results in four out of nine cases, Random Forest gave better results in four out of
nine cases, Rotation Forest in three out of nine cases and C5 in only two cases. From
this, we can conclude that T3C gave good results compared to the other algorithms.
In particular, on dataset Monk1, T3C has a much smaller generalization error than the
other algorithms, apart from C5.

On these nine data sets Rotation Forest gives an average generalization error of
6.50 %. C4.5 comes second with 8.36 %, whilst Random Forest and T3C follow with
average generalization error of 11.01 and 11.03 %, respectively. Finally C5 appears
to be slightly over-fitting the data with an average generalization error of 12.34 %.

5 Performance evaluation

From the comparison of T3 and T3C we can conclude that T3C performed better than
T3. In particular, T3C improved T3 on generalization error by 1.08 % on average
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for all datasets including continuous attributes. This was expected because T3C has
a greedier approach when the tree decides to split continuous attributes. As it was
discussed in Sect. 3, one more node is used when a continuous attribute is being split.
Despite this T3C does not produce much bigger trees because of the other two changes
we introduced. Actually for 14 data sets it produced an average 0.55 nodes more than
T3.

If we combine findings presented in Tables 4, 5, 6 and 7 we can conclude that T3C
performs well regarding generalization error.

For instance, T3C also improves T3 by 0.71 % on average for all datasets (Tables 3,
7), and 1.05 % better generalization error on data sets including continuous attributes.
It should be also noted that T3C improves T3 also in terms of classification error
by 0.74 % on average for all datasets (Tables 3, 7), and 1.16 % better classification
error on data sets including continuous attributes (and 0,42 % better F measure). Also,
regarding generalization error, T3C is better than C4.5 by 5.87 % on average for all
datasets including continuous attributes (Table 4), and produces trees with an average
65.28 nodes less than C4.5. It is worth mentioning that T3C improved C4.5 in datasets
that contain both discrete and continuous attributes (better in 5 out of 7 sets), whilst
achieving better generalization error in 4 out of 7 data sets with only continuous
attributes. On the other hand, C4.5 achieved better generalization accuracy in 5 out
of 9 data sets with only discrete attributes. T3C had also comparable performance
to Random Forest. More specifically, T3C improved Random Forest for datasets that
contain both discrete and continuous attributes by17.96%, butwasworse thanRandom
Forest by 43.78 % for datasets that contain only continuous attributes as well as worse
by 1.39 % for datasets that contain only discrete attributes(Tables 6, 7).

As for the comparison between T3C and Rotation Forest, T3C demonstrated an
average 31.78 % worse performance than Random Forest in terms of generalization
accuracy, for all data sets (Tables 5, 7). Aswith Rotation Forest results, T3C performed
better in datasets that contain both discrete and continuous attributes. More precisely,
in four out of seven datasets T3C had lower generalization error than Random Forest.
That did not occur in datasets that contain only continuous attributes, as Random
Forest performed better in these datasets.

As we can see T3C performed better than T3, C4.5, comparably to Random Forest
and worse than Rotation Forest, in terms of generalization error.

6 Conclusions and future work

Experimental results have shown that T3C improves T3 in terms of generaliza-
tion accuracy without producing big trees and without overfitting. Specifically, T3C
improved T3 on datasets that contain continuous attributes. Moreover, T3C improves
C4.5 in terms of generalization error (and tree size). When comparing T3C with Ran-
dom Forest, T3C yields comparable generalization error, and worse generalization
error compared to Rotation Forest. T3C has the advantage of producing small trees
and performs well when only discrete attributes are present (best performer in 4 out of
9 such data sets, better even than C5). Concluding, although T3C improves on T3, and
C4.5, further improvements can be made. For instance, T3C can further improve the
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way it splits continuous attributes. It would be challenging to consider a split on contin-
uous attributes with more than five nodes and with trees of depth more than three. Also
T3C can be parameterized it terms of which goodness measure we require to improve
on. Increasing depth improves classification accuracy; reducing splits could improve
generalization accuracy. Moreover, further work can be done focusing on area under
ROC curve, sensitivity/specificity or precision/recall improvements. Finally, further
experiments involving other decision tree classification algorithms could help estab-
lish guideline on algorithm selection depending on the nature and the characteristics
of the dataset at hand.
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