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Abstract Finite mixture regression models are useful for modeling the relationship
between response and predictors arising from different subpopulations. In this article,
we study high-dimensional predictors and high-dimensional response and propose two
procedures to cluster observations according to the link between predictors and the
response. To reduce the dimension, we propose to use the Lasso estimator, which takes
into account the sparsity and a maximum likelihood estimator penalized by the rank,
to take into account the matrix structure. To choose the number of components and the
sparsity level, we construct a collection of models, varying those two parameters and
we select a model among this collection with a non-asymptotic criterion. We extend
these procedures to functional data, where predictors and responses are functions.
For this purpose, we use a wavelet-based approach. For each situation, we provide
algorithms and apply and evaluate our methods both on simulated and real datasets,
to understand how they work in practice.

Keywords Model-based clustering · Regression · High-dimension · Functional data
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1 Introduction

Owing to the increasing availability of high-dimensional datasets, regression models
for multivariate response and high-dimensional predictors have become important
tools.
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244 E. Devijver

In this article, we describe two procedures where a random target variable Y ∈ R
q

depends on explanatory variables within a cluster-specific regression model. Each
cluster is represented by a parametric distribution, the entire dataset beingmodeled by a
mixture of these distributions. Themodel assumes that each observation i ∈ {1, . . . , n}
originates from one of K disjoint classes and that the data (Y i , xi ) ∈ R

q × R
p are

independent and identically distributed such that if i belongs to class k ∈ {1, . . . , K },
the target variable Y i results from a regression model

Y i = Bkxi + εi (1)

with an unknown matrix of coefficients Bk ∈ R
q×p and independent errors εi ∼

Nq(0, �k) with an unknown diagonal covariance matrix �k of size q × q. Each
observation i ∈ {1, . . . , n} has a probabilityπk to belong to the cluster k ∈ {1, . . . , K }.

We work with high-dimensional data, in other words the number of parameters
to estimate K (qp + q + 1) − 1 is larger than the number of observed target values
q × n. Two ways are considered in this paper, coefficients sparsity and ranks sparsity.
The first approach consists in estimating the matrix Bk by a matrix with few nonzero
coefficients. The well-known Lasso estimator, introduced by Tibshirani (1996) for
linear models, is the solution chosen here. We refer to Bühlmann and van de Geer
(2011) for an overview of the Lasso estimator and to Meinshausen and Bühlmann
(2010) for stability selection results. In the second approach, we consider the rank
sparsity inBk . This idea dates back to the 1950’s and was initiated by Anderson (1951)
for the linear model. Izenman (1975) introduced the term of reduced-rank regression
for this class of models. For more recent works, we refer to Giraud (2011) and to
Bunea et al. (2012). Nevertheless, the linear model is appropriate for homogeneous
observations, which is a strong assumption. We extend in this paper those methods to
mixture regression models.

Remark that we estimate the number of components, model parameters and cluster
proportions. In the case of a large number of regressor variables, we use variable
selection tools in order to detect relevant regressors. Since the structure of interest
may often be contained into a subset of available variables and many attributes may
be useless or even harmful to detect a reasonable clustering structure, it is important
to select the relevant indices. Moreover, removing irrelevant indices enables us to get
an easier model and largely enhance comprehension.

An important extension of a high-dimensional dataset is a functional dataset. We
refer to Ramsay and Silverman (2005) for an overview.Moreover, a lot of recent works
have been done on regression models for functional data: for example, we refer to
Ciarleglio andOgden (2014) for a studywith scalar response and functional regressors.
In this paper, we focus on the projection of functions onto a well-suited wavelet
basis. Indeed, wavelets handle many types of functional data, because they represent
global and local attributes of functions and can deal for example with discontinuities.
Moreover, a large class of functions is well represented with few nonzero coefficients
for a suitable wavelet, which leads to a sparse matrix of coefficients and then to a
sparse regression matrix.

We propose here two procedures for clustering high-dimensional or functional data,
where the high-dimensional or functional random target variable Y ∈ R

q depends on
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high-dimensional or functional predictors x ∈ R
p with a cluster-specific regression

model.
Our two procedures are mainly based on three recent works. Firstly, we refer to

the article of Städler et al. (2010), which studies a finite mixture regression model.
Even if we work on a multivariate version of it, the model considered in the arti-
cle of Städler et al. (2010) is adopted here. The second, the article of Meynet and
Maugis-Rabusseau (2012), deals with model-based clustering in density estimation.
They propose a procedure, called the Lasso-MLE procedure, which determines the
number of clusters, the set of relevant indices for the clustering and a clustering of
the observations, with high-dimensional data. We extend this procedure to regres-
sion models. Finally, Giraud (2011) suggests a low rank estimator for the linear
model. To consider the matrix structure, we extend this last approach to mixture
models.

We consider a finitemixture of Gaussian regressionmodels. The two procedures we
propose follow the same steps. Firstly, a penalized likelihood approach is considered
to determine potential sets of relevant indices. Varying the regularization parameter,
a data-driven collection of models is constructed where each model has a reasonable
complexity. The second step of the procedures consists in refitting parameters by a
less biased estimator, restricting the model on selected indices. Then, we select a
model among the collection using the slope heuristic, which was introduced by Birgé
and Massart (2007). The difference between the two procedures is in the refitting
step. In the first procedure, later called Lasso-MLE procedure, the maximum likeli-
hood estimator is used. The second procedure, called Lasso-Rank procedure, deals
with low rank estimation. For each model in the collection, a subcollection of models
with means estimated by various low rank matrices is constructed. It leads to spar-
sity for the coefficients and for the rank, and it considers the mean within its matrix
structure.

The article is organized as follows. Section 2 dealswithGaussianmixture regression
models and the considered collection of models is described. In Sect. 3, the two
procedures that we propose to solve the problem of high-dimensional regression data
clustering are described. Section 4 presents an illustrative example, to highlight each
choice done in the two procedures. Section 5 states the functional data case, with a
description of the projection proposed to convert these functions into coefficients data.
We end this section by studying simulated and benchmark data. Finally, a conclusion
section ends this article.

2 Finite mixture of Gaussian regression models

The model used is a finite Gaussian mixture regression model. Städler et al. (2010)
describe this model when the deterministic predictors x ∈ R

p are multivariate and
the target variable Y ∈ R is a scalar. In this section, it is generalized to multivariate
response. Let us mention that this model has already been introduced, we refer for
example to Jones andMcLachlan (1992). In this paper, we deal with high-dimensional
data.
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2.1 The model

We observe n independent couples (( y1, x1), . . . , ( yn, xn)), where xi ∈ R
p are deter-

ministic predictors and yi ∈ R
q is a realization of a random variable Y i ∈ R

q

of unknown density s∗(.|xi ), for all i ∈ {1, . . . , n}. The random response variable
Y i ∈ R

q depends on a set of explanatory variables, written xi ∈ R
p, through a

regression-typemodel. If (Y i , xi ) originates from an individual i in class k, we assume
that

Y i = Bkxi + εi ;

where εi ∼ Nq(0,�k), Bk ∈ R
q×p is the matrix of class-specific regression coeffi-

cients and �k is q × q diagonal positive-definite matrix.
We assume the following Gaussian regression mixture model:

– (Y1, . . . ,Yn) are independent,
– Y i has the density sKξ (.|xi ), with

sKξ ( y|x) =
K∑

k=1

πk

(2π)q/2det(�k)1/2
exp

(
− ( y − Bkx)t�−1

k ( y − Bkx)

2

)
;

ξ = (π1, . . . , πK ,B1, . . . ,BK ,�1, . . . ,�K ) ∈ �K

�K =
(
�K × (Rq×p)K × (D++

q )K
)

;

�K =
{

(π1, . . . , πK );πk > 0 for k ∈ {1, . . . , K } and
K∑

k=1

πk = 1

}
;

D
++
q is the set of q × q diagonal and positive-definite matrices.

We have denoted by πk the proportion of the class k. For all k ∈ {1, . . . , K }, for all
m ∈ {1, . . . , q}, for x = (ξ1, . . . , ξp) ∈ R

p, [Bkx]m = ∑p
j=1[Bk]m, jξ j is the mth

component of the mean of the kth mixture component.
We prefer to work with a reparametrized version of this model whose penalized

maximum likelihood estimator is scale-invariant and easier to compute. Indeed, it is not
equivariant under scaling of the response. More precisely, consider the transformation

Y̌ = bY , B̌ = bB, �̌ = b2�,

for b > 0 which leaves the model invariant. A reasonable estimator based on trans-
formed data Y̌ should lead to an estimator which is related to the first one up to the
homothetic transformation. This is not the case for the maximum likelihood estimator
of B and�. Secondly, the optimization of the log-likelihood is non-convex and hence,
it leads to computational issues. Then, we reparametrize the model described above
by generalizing the reparametrization described by Städler et al. (2010).
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For all k ∈ {1, . . . , K }, we define the new parameters by

P t
k Pk = �−1

k ;
�k = PkBk;

where �k ∈ R
q×p, Pk is the Cholesky decomposition of the positive-definite matrix

�−1
k . Remark that Pk is a diagonal matrix of size q × q.
The model within its reparametrized form is then

– (Y1, . . . ,Yn) are independent,
– Y i has the density hKθ (.|xi ), with

hKθ ( y|x) =
K∑

k=1

πk det(Pk)

(2π)q/2 exp

(
− (Pk y − �kx)t (Pk y − �kx)

2

)

θ = (π1, . . . , πK ,�1, . . . ,�K , P1, . . . , PK ) ∈ �K

=
(
�K × (Rp×q)K × (D++

q )K
)

�K =
{

(π1, . . . , πK );πk > 0 for k ∈ {1, . . . , K } and
K∑

k=1

πk = 1

}

D
++
q is the set of diagonal and positive-definite matrices in Rq .

For the sample (( y1, x1), . . . , ( yn, xn)), the log-likelihood of this model equals

l(θ, y1, x1, . . . , yn, xn)

=
n∑

i=1

log

(
K∑

k=1

πk det(Pk)

(2π)q/2 exp

(
− (Pk yi − �kxi )t (Pk yi − �kxi )

2

))
;

and the maximum likelihood estimator (MLE) is

θ̂MLE := argmin
θ∈�K

{
−1

n
l(θ, y1, x1, . . . , yn, xn)

}
.

Since we deal with the high-dimension case, this estimator has to be regularized to
get stable estimates. Therefore, we propose the 	1-norm penalized MLE

θ̂Lasso(λ) := argmin
θ∈�K

{
−1

n
lλ(θ, y1, x1, . . . , yn, xn)

}
; (2)

where

−1

n
lλ(θ, y1, x1, . . . , yn, xn) = −1

n
l(θ, y1, x1, . . . , yn, xn) + λ

K∑

k=1

πk ||�k ||1;

123



248 E. Devijver

where ||�k ||1 = ∑p
j=1

∑q
m=1 |[�k]m, j | and where λ > 0 has to be specified. Remark

that this estimator is not the usual 	1-estimator, called the Lasso estimator, introduced
by Tibshirani (1996). Indeed, the 	1-norm of the coefficients matrices �k and small
variances are penalized simultaneously, which has some close relations to theBayesian
Lasso (see Park and Casella (2008)). Moreover, the reparametrization allows us to
consider non-standardized data.

Notice thatwe restrict ourselves in this article to diagonal covariancematriceswhich
are dependent of the clusters.We assume that the coordinates of theY i are independent,
which is a strong assumption, but it allows us to reduce easily the dimension. We refer
to Celeux and Govaert (1995) for different parametrizations of the covariance matrix.
Nevertheless, because we work with high-dimensional data (p and q are high and n is
small) we prefer a parsimonious model from the diagonal family. We allow different
volume clusters because it leads to detect many clustering structures, as explained in
Celeux and Govaert (1995).

2.2 Clustering with finite mixture of Gaussian regression models

Suppose that there is a known number of clusters K and assume that we get, from
the observations, an estimator θ̂ such that hK

θ̂
well approximates the unknown density

s∗(.|xi ). We look at this problem as a missing data problem: if we denote by Z =
(Z1, . . . , Zn) the component membership, where Zi = ([Zi ]1, . . . , [Zi ]K ) for i ∈
{1, . . . , n} is defined by

[Zi ]k =
{
1 if i originates from mixture component k;
0 otherwise;

the complete data are (( y1, x1, z1), . . . , ( yn, xn, zn)). Remark that Zi follows a
multinomial distribution with parameters 1 and (π1, . . . , πK ).

Thanks to the estimator θ̂ , the Maximum A Posteriori principle (MAP principle)
is used to cluster data. Specifically, for all i ∈ {1, . . . , n}, for all k ∈ {1, . . . , K },
consider

τ̂ i,k(θ̂) =
π̂k det( P̂k) exp

(
− 1

2 ( P̂k yi − �̂kxi )t ( P̂k yi − �̂kxi )
)

∑K
r=1 π̂r det( P̂r ) exp

(
− 1

2 ( P̂r yi − �̂r xi )t ( P̂r yi − �̂r xi )
)

the posterior probability of yi with i coming from the component k, where θ =
(π,�, P). Then, data are partitioned by the following rule:

[Ẑi ]k =
{
1 if τ̂ i,k(θ̂) > τ̂ i,l(θ̂) for all l �= k ;
0 otherwise.
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2.3 Numerical optimization

First, we introduce a generalized EM algorithm to approximate θ̂Lasso(λ) defined in
(2) for λ > 0. Then, we discuss initialization and stopping rules in practice, before
studying theoretically the convergence of this algorithm.

2.3.1 Generalized EM algorithm for approximating the Lasso estimator

From an algorithmic point of view, we use a generalized EM algorithm to compute
the MLE and the 	1-norm penalized MLE. The EM algorithm was introduced by
Dempster et al. (1977) to approximate the MLE of mixture model parameters. It
is an iterative procedure based on the maximization of the expected value of the
log-likelihood function with respect to the conditional distribution of Z given the
observations, under the current estimation of the parameters. Using theKarush–Kuhn–
Tucker conditions, we extend the second step to compute the MLE, penalized or
not, under rank constraint or not, as it was done in the scalar case in Städler et al.
(2010). All those computations are available in Appendix “EM algorithms”. The next
updating formulae for the Lasso estimator defined by (2) are then obtained. Remark
that it includes MLE. In the following, we consider the real n-space Rn with the dot
product denoted by < ., . >, and with the associated norm denoted by ||.||2. For all
j ∈ {1, . . . , p}, for all k ∈ {1, . . . , K }, for all m ∈ {1, . . . , q}, for all i ∈ {1, . . . , n},
we denote

[ ỹ(ite)
i ]k,m =

√
τ

(ite)
i,k [ yi ]m;

[x̃(ite)
i ]k, j =

√
τ

(ite)
i,k [xi ] j ;

�k,m =
(
−n(ite)

k 〈[ ỹ(ite)
. ]k,m, [�k](ite)m,. [x̃(ite)

.]k,.〉
)2 − 4||[ ỹ(ite)

. ]k,m ||22; (3)

[Sk](ite)j,m = −
n∑

i=1

[x̃(ite)
i ]k, j [Pk](ite)m,m[ ỹ(ite)

i ]k,m +
p∑

j2=1
j2 �= j

[x̃(ite)
i ]k, j [x̃(ite)

i ]k, j2 [�k](ite)m, j2
;

nk =
n∑

i=1

τ
(ite)
i,k . (4)

Moreover, we consider t (ite) ∈ (0, 1] the largest value in {0.1l , l ∈ N} such that
the update of π defined in (7) leads to improving the expected complete penalized
log-likelihood function. Then, we update the parameters by

g(ite)
i,k = exp

(
−1

2

(
P (ite)
k yi − �

(ite)
k xi

)t (
P (ite)
k yi − �

(ite)
k xi

))
(5)

τ
(ite)
i,k = π

(ite)
k det P (ite)

k g(ite)
i,k

∑K
r=1 π

(ite)
r det P (ite)

r g(ite)
i,r

; (6)
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π
(ite+1)
k = π

(ite)
k + t (ite)

(
n(ite)
k

n
− π

(ite)
k

)
; (7)

[Pk](ite+1)m1,m2
=
⎧
⎨

⎩

n(ite)
k 〈[ ỹ(ite)

. ]k,m ,[�k ](ite)m,. [x̃(ite)
.]k,.〉+

√
�k,m

2n(ite)
k ||[ ỹ(ite)

. ]k,m ||22
if m1 = m2 = m;

0 elsewhere;
(8)

[�k](ite+1)m, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−[Sk ](ite)j,m +nλπ
(ite)
k

||[x̃(ite)
.]k, j ||22

if [Sk](ite)j,m > nλπ
(ite)
k ;

−[Sk ](ite)j,m +nλπ
(ite)
k

||[x̃(ite)
.]k, j ||22

if [Sk](ite)j,m < −nλπ
(ite)
k ;

0 else ;

(9)

In this case, the EM algorithm corresponds to alternating between the E-step [com-
putation of (6)] and the M-step [computation of (7), (8) and (9)].

Remark that to approximate the MLE under rank constraint, we use an easier EM
algorithmwhich is described in details in the Appendix. In the E-step, we compute the
a posteriori probability of each observation to belong to each cluster according to the
current estimations. In the M-step, we consider each observation within its estimated
cluster, and we consider the linear regression estimators under rank constraint by
keeping the biggest singular values.

2.3.2 Initialization and stopping rules

We initialize the clustering process with the k-means algorithm on couples ( yi , xi ) ∈
R
q × R

p, for all i ∈ {1, . . . , n}. According to this clustering, we compute the linear
regression estimators in each class. Then, we run a small number of times the EM-
algorithm, repeat this initialization many times and keep the one which corresponds
to the highest log-likelihood.

To stop the algorithm, we propose to run it a minimum number of times, and to
specify a maximum number of iterations to make sure that it will stop. Between these
two bounds, we stop the running if a relative criteria on the log-likelihood is small
enough and if a relative criteria on the parameters is small enough too. Those criteria
are adapted from Städler et al. (2010).

By those rules, we are trying to attain a local optimum as close as possible to a
global optimum of the likelihood function.

2.3.3 Numerical convergence of this algorithm

Weaddress here the convergence properties of the generalizedEMalgorithmdescribed
in Sect. 2.3.1. Although convergence to stationary points has been established for the
EM algorithm (seeWu 1983), it is not true without conditions which are hard to verify
for a generalized EM algorithm.

The results that we prove are quite similar to those provided by Städler et al.
(2010), because the algorithms are similar. We refer the interested reader to this article
for proofs of the following results when q = 1. The same ideas of proof are working
for any values of q.
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Proposition 1 The algorithm described in Sect. 2.3.1 has the descent property: for
ite ∈ N

∗,

−1

n
lλ(θ

(ite+1), y1, x1, . . . , yn, xn) ≤ −1

n
lλ(θ

(ite), y1, x1, . . . , yn, xn)

Proposition 1 is clear by construction of θ(ite+1), the M-step of the algorithm being a
coordinate-wise minimization.

Proposition 2 Assume that yi �= 0 for all i ∈ {1, . . . , n}. Then, for λ > 0, the
function θ 
→ lλ(θ, y1, x1, . . . , yn, xn) defined in (2) is bounded from above for all
values θ ∈ �K .

This is true because we penalize the log-likelihood by � = (�1, . . . ,�K ), where
�k = Pk Bk , and then small variances are penalized also. This is not the case for the
unpenalized criteria, which is unbounded if the variance of a coordinate of a variable
tends to 0 (see McLachlan and Peel 2004 for more details).

Corollary 1 For the algorithm described in Sect. 2.3.1,

−1

n
lλ(θ

(ite), y1, x1, . . . , yn, xn)

decreases monotonically to some value l̄ > −∞.

According to this corollary, we know that the algorithm converges to some finite
value, depending on initial values.

Theorem 1 For the algorithm described in Sect. 2.3.1, every cluster point θ̄ ∈ �K of
the sequence

{
θ(ite), ite = 0, 1, . . .

}
generated by the algorithm is a stationary point

of the function

θ 
→ lλ(θ, y1, x1, . . . , yn, xn).

This theorem proves that the algorithm converges to a stationary point. We refer to
Tseng (2001) for the definition of a stationary point for non-differentiable functions.

Corollary 1 is deduced from Proposition 1 and Proposition 2. Theorem 1 is more
difficult to prove, and we refer to Städler et al. (2010) for a proof when q = 1.

2.4 Variable selection and model collection

We deal with high-dimensional data where we observe a small number of target values
and we have to estimate many coefficients. Then, we have to focus on indices that are
relevant for the clustering. The notion of irrelevant indices has to be defined.

Definition 1 A couple ( ym, x j ) is said to be irrelevant for the clustering if [�1]m, j =
. . . = [�K ]m, j = 0, which means that the variable x j does not explain the variable
ym for the clustering process. We also say that the indices (m, j) are irrelevant if the
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couple ( ym, x j ) is irrelevant. A relevant couple is a couple which is not irrelevant: at
least in one cluster k, the coefficient [�k]m, j is not equal to zero. We denote by J the
set of indices (m, j) of relevant couples ( ym, x j ).

Remark that J ⊂ {1, . . . , q}×{1, . . . , p}. We denote by c J the complement of J in
{1, . . . , q} × {1, . . . , p}. For all k ∈ {1, . . . , K }, we denote by �

[J ]
k the matrix of size

q × p with 0 on the set c J . We also define by H(K ,J ) the model with K components
and where J is the set of relevant indices:

H(K ,J ) =
{
h(K ,J )

θ ( y|x) =
K∑

k=1

πk det(Pk)

(2π)q/2 exp

(
− (Pk y−�

[J ]
k x)t (Pk y−�

[J ]
k x)

2

)
,

θ = (π1, . . . , πK ,�
[J ]
1 , . . . ,�

[J ]
K , P1, . . . , PK ) ∈ �(K ,J )

= �K × (Rq×p)K ×
(
D

++
q

)K
}

. (10)

We construct a collection of models by varying the number of components K and
the indices set of relevant couples J .

The subset J is constructed with the Lasso estimator defined in (2). Nevertheless, to
be consistent with the definition of relevant couples, the Group-Lasso estimator could
be preferred, where coefficients {[�1]m, j , . . . , [�K ]m, j } are grouped. We focus here
on the Lasso estimator, but the Group-Lasso approach is described in the Appendix. It
gives mainly the same results, but the Lasso estimator permits to consider also isolated
irrelevant indices.

3 Two procedures

The goal of our procedures is, given a sample (( y1, x1), . . . , ( yn, xn)) ∈ (Rq ×R
p)n ,

to cluster individuals. Thus, we have to estimate, according toH(K ,J ) defined in (10),
the number of clusters K , the relevant indices set J , and the parameter θ . We want
to take advantage of the sparsity property of the 	1-penalization to perform automatic
index selection and to deduce J . Then, we compute another estimator restricted on
coordinates with relevant indices, which will work better because it is no longer an
high-dimensional issue. Thus,we avoid shrinkage problems due to theLasso estimator.
The first procedure takes advantage of the MLE, whereas the second one takes into
account the matrix structure of � through a low rank estimation.

3.1 Lasso-MLE procedure

This procedure is decomposed into three main steps: we construct a collection of
models, then in each model we compute the MLE and finally we select the best model
among the collection of models.

The first step consists in constructing a collection of models {H(K ,J )}(K ,J )∈M
in which H(K ,J ) is defined by Eq. (10), and the collection of models is indexed by
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M = K×J . We denote byK ⊂ N
∗ the admitted number of clusters. We assume that

we could bound K without loss of generality. We also denote J ⊂ P({1, . . . , q} ×
{1, . . . , p}) the set of admitted relevant indices set.

Fix K ∈ K. To detect the relevant indices and construct the set J ∈ J , we penalize
the log-likelihood by an 	1-penalty on the mean parameters proportional to ||�k ||1 =∑p

j=1

∑q
m=1 |[�k]m, j |. In 	1-procedures, the choice of the regularization parameter

is often difficult: fixing the number of components K ∈ K, we propose to construct
a data-driven grid GK of regularization parameters by using the updating formulae
[(6), (7), (8) and (9)] of the parameters in the EM algorithm. We give a formula for λ,
the regularization parameter, depending on which coefficients we want to estimate by
zero, for all k ∈ {1, . . . , K }, j ∈ {1, . . . , p}, z ∈ {1, . . . , q}:

[�k]m, j = 0 ⇔ [λk] j,m = |[Sk] j,m |
nπk

;

where [Sk] j,m is defined by (4). Then, we define the data-driven grid for the regular-
ization parameter by

GK = {[λk] j,m, k ∈ {1, . . . , K }, j ∈ {1, . . . , p},m ∈ {1, . . . , q}} . (11)

We approximate it by MLE.
Then, for each λ ∈ GK , we compute the Lasso estimator defined by

θ̂Lasso(λ) = argmin
θ∈�K

{
−1

n

n∑

i=1

log(hKθ ( yi |xi )) + λ

K∑

k=1

πk ||�k ||1
}

.

For a fixed number of mixture components K ∈ K and a regularization parameter
λ ∈ GK , we use an EM algorithm to approximate this estimator. Then, for each
K ∈ K and for each λ ∈ GK , we construct the relevant indices set JK ,λ. We denote
by J the collection of the relevant indices set JK ,λ by varying λ ∈ GK and K ∈ K:

J = ∪K∈K ∪λ∈GK JK ,λ.

The second step consists in approximating the MLE

ĥ(K ,J ) = argmin
h∈H(K ,J )

{
−1

n

n∑

i=1

log(h( yi |xi ))
}

;

using the EM algorithm for each model (K , J ) ∈ M.
The third step is devoted to model selection. Rather than selecting the regulariza-

tion parameter, we select the refitted model. Instead of using an asymptotic criterion,
as BIC or AIC, we use the slope heuristic introduced by Birgé and Massart (2007),
which is a non-asymptotic criterion for selecting a model among a collection of mod-
els. Let us explain briefly how it works. Firstly, models are grouped according to their
dimension D, to obtain a collection of models {HD}D∈D. The model dimension is the
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number of parameters estimated in this model. For each dimension D, let ĥD be the
estimator which maximizes the likelihood function among the estimators associated
to a model of dimension D. Also, the function D/n 
→ 1/n

∑n
i=1 log(ĥD( yi |xi ))

has a linear behavior for large dimensions. We estimate the slope, denoted by κ̂ ,
which will be used to calibrate the penalty. The minimizer D̂ of the penalized crite-
rion −1/n

∑n
i=1 log(ĥD( yi |xi )) + 2κ̂D/n is determined, and the model selected is

(KD̂, JD̂). Remark that DK ,J = K (|J | + q + 1) − 1 is the dimension associated to
the model H(K ,J ).

Note that the model is selected after refitting, which avoids issue of regularization
parameter selection. For an oracle inequality to justify the slope heuristic used here,
see Devijver (2015).

3.2 Lasso-Rank procedure

The previous procedure does not take into account the multivariate structure, and
therefore we propose a second procedure that takes into account this structure. For
each model belonging to the collectionH(K ,J ), a subcollection is constructed, varying
the rank of �. Let us describe this procedure.

As in the Lasso-MLE procedure, we first construct a collection of models through
varying the sparsity by varying the regularization parameter of the Lasso estimator.
Remark that we focus here on column sparsity to keep the matrix structure.

The second step consists in constructing a subcollection of models with rank spar-
sity, denoted by

{Ȟ(K ,J,R)}(K ,J,R)∈M̌.

The model Ȟ(K ,J,R) has K components, J is the set of relevant indices and R is the
vector of the ranks of regression coefficients in each group:

Ȟ(K ,J,R) =
{
h(K ,J,R)

θ ( y|x)
}

(12)

where

h(K ,J,R)
θ ( y|x) =

K∑

k=1

πk det(Pk)

(2π)q/2 exp

(
− (Pk y − (�

Rk
k )[J ]x)t (Pk y − (�

Rk
k )[J ]x)

2

)
;

θ = (π1, . . . , πK , (�
R1
1 )[J ], . . . , (�RK

K )[J ], P1, . . . , PK ) ∈ �(K ,J,R)

�(K ,J,R) = �K × 
(K ,J,R) × (Rq
+
)K ;


(K ,J,R) =
{(

(�
R1
1 )[J ], . . . , (�RK

K )[J ]) ∈ (Rq×p)K
∣∣∣Rank(�k)

= Rk for all k ∈ {1, . . . , K }
}

;
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and M̌ = K × J × R. We denote by K ⊂ N
∗ the admitted number of clusters,

J a random collection of subsets of {1, . . . , p} constructed by the Lasso estimator
and R the set of vectors of size K ∈ K with rank values for each regression matrix.
We compute the MLE under the rank constraint with an EM algorithm. Indeed, the
estimator of�k , for the cluster k, is constrained to have a rank equals to Rk , by keeping
only the Rk largest singular values. More details are given in the Appendix. It leads
to an estimator of the mean with row sparsity and low rank for each model. Then,
a model is selected using the slope heuristic. This step is justified theoretically in
Devijver (2015).

3.3 Some comments

Those two procedures have been implemented in Matlab, with Benjamin Auder and
the Matlab code is available. Note that we run the EM algorithm several times: once
to construct the regularization grid, twice for each regularization parameter for the
Lasso-MLE procedure (once to approximate the Lasso estimator, and once to refit it
with the MLE) and more times for the Lasso-Rank procedure (the ranks vector varies
also). If we look at every regularization parameter in the grid defined in (11), there
are K × p × q values and then we compute the EM algorithm 2 × K × p × q + 1
times, which could be large. Even if each EM algorithm is fast (implemented in C), it
should be repeated a lot of time, which is time-consuming. We propose to the user to
select relevant regularization parameters: either a regular subcollection of GK , to get
various sparsities, or focusing on the large values of regularization parameters, to get
sparse solutions.

4 Illustrative example

We illustrate our procedures on five different simulated datasets, adapted from Städler
et al. (2010). Firstly, we present the models used in these simulations. Then, we
validate numerically each step and we finally compare the results of our procedures
with other methods. Remark that we consider here some examples to illustrate our
methods, but not a complete analysis. We highlight some issues which seem to be
important. Moreover, we do not illustrate the one-component case, as we are focusing
on clustering. If, on some dataset, we are not convinced by the clustering, we add
to the collection of models some models with one component, more or less sparse,
using the same pattern (computing the Lasso estimator to get the relevant indices for
various regularization parameters and refitting parameters with the MLE, under rank
constraint or not) and then we select a model among this collection of linear and
mixture models.

4.1 The model

Let x ∈ (Rp)n be a sample of size n distributed according to p-multivariate standard
Gaussian with p = 10 or p = 30.We consider a mixture of two components. Besides,
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Table 1 Description of the different models for K = 2 classes

Model 1 Model 2 Model 3 Model 4 Model 5

n 2000 100 100 100 50

K 2 2 2 2 2

p 10 10 10 10 30

q 10 10 10 10 5

[B1]m, j for (m, j) ∈ J 3 3 3 5 3

[B2]m, j for (m, j) ∈ J −2 −2 −2 3 −2

σ 2 1 1 3 1 1

SNR 3.6 3.6 1.88 7.8 3.6

wefix the number of relevant indices to be4 in each cluster.More precisely, thefirst four
variables ofY are explained respectively by the first four variables of x. Fixπ = ( 1

2 ,
1
2

)

and Pk = σ Iq for all k ∈ {1, 2}, where Iq denotes the identity matrix of dimension
q. Take a sample of Y according to a q multivariate Gaussian mixture with q = 5 or
q = 10, with mean Bkx and with covariance matrix �k = (P t

k Pk)
−1 = σ 2 Iq , for the

cluster k.
The difficulty of the clustering is partially controlled by the signal-to-noise ratio

(denoted SNR). In this context, we extend the natural idea of the SNR with the fol-
lowing definition, where Tr(A) denotes the trace of the matrix A,

SNR = Tr(Var(Y))

Tr(Var(Y |Bk = 0 for all k ∈ {1, . . . , K })) .

Remark that it only controls the distance between the signal with or without the noise
and not the distance between signals across clusters.

We consider five different models, varying n, the SNR and the distance between
the clusters. Details are available in Table 1.

We run our procedures with the number of components varying inK = {2, . . . , 5}.
Model 1 serves for illustrating our procedures in low dimensional models. More-

over, it is chosen in the next section to illustrate each step of the procedure (variable
selection, construction of models andmodel selection). Model 5 is considered because
it is high-dimensional. Model 2 is easier than the others, because clusters are not so
close to each other according to the noise. Model 3 is similar to Models 1 and 2, but
n is small and the noise is more important. We will see that the clustering is more dif-
ficult in this case. Model 4 has a larger SNR, nevertheless, the problem of clustering
is difficult, because Bk’s are close to each other.

Our procedures are run20 times andwecompute statistics over those 20 simulations.
It is a small number of simulations, but the whole procedure is time-consuming and
results are convincing enough.

For the initialization step, we repeat 50 times the initialization and keep the one
which maximizes the log-likelihood function after 10 iterations. Those choices are
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size-dependent. We have done a numerical study which is not reported here to fit
them.

4.2 Sparsity and model selection

To illustrate both procedures, all analyses made in this section are done from Model
1, since the choice of each step is clear.

Firstly, we compute the grid of regularization parameters. More precisely, each
regularization parameter is computed from maximum likelihood estimations (using
EM algorithm) and gives an associated sparsity (computed by the Lasso estimator,
using again the EM algorithm). In Figs. 1 and 2, the collection of relevant indices
selected by this grid is plotted.

Firstly, note that the number of relevant indices selected by the Lasso decreases
when the regularization parameter increases. Moreover, we analyze which indices
are selected, that is to say if we select true relevant or false relevant indices. If the

Fig. 1 For one simulation, the
number of false relevant (in red
color) and true relevant (in blue
color) indices generated by the
Lasso, by varying the
regularization parameter λ in the
grid G2

Fig. 2 For one simulation,
zoom in on the number of false
relevant (in red color) and true
relevant (in blue color) indices
generated by the Lasso, by
varying the regularization
parameter λ around the
interesting values
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regularization parameter is not too large, the true relevant indices are selected. Even
more, if the regularization parameter is well-chosen, we select only the true relevant
indices. In our example, we remark that if λ = 0.09, we have selected exactly the
true relevant indices. This grid construction seems to be well-chosen according to our
simulations.

From this variable selection, each procedure (Lasso-MLE or Lasso-Rank) leads to
a collection of models, by varying the sparsity thanks to the grid of regularization
parameters and the number of components.

Within this collection of models, we select a model using the slope heuristic crite-
rion.

We want to select the best model by optimizing a penalized criterion. This
penalty is computed by performing a linear regression on the couples of points
{(D/n;−1/n

∑n
i=1 log(ĥD( yi |xi )))}. The slope κ̂ allows us to have access to the

best model, the one with dimension D̂ minimizing

−1

n

n∑

i=1

log(ĥD( yi |xi )) + 2κ̂
D

n
.

In practice, we have to look if couples of points have a linear behavior. For each
procedure, we construct a different collection of models and we have to justify this
behavior. Figures 3 and 4 represent the log-likelihood in function of the dimension
of the models, for collections of models constructed respectively by the Lasso-MLE
procedure and by the Lasso-Rank procedure.

The couples are plotted by points, whereas the estimated slope is specified by a
dotted line. We observe more than a line (4 for the Lasso-MLE procedure, more for
the Lasso-Rank procedure). This phenomenon is explained by a linear behavior for
each model subcollection, when we fix the number of classes and the rank. However,
the linear behavior is almost the same and leads to select the same penalty coefficient.
Nevertheless, slopes are almost the same and select the same model. In practice, we
estimate the slope with the Capushe package described in Baudry et al. (2012).

Fig. 3 For one simulation, slope
graph get by our Lasso-Rank
procedure. For large dimensions,
we observe a linear part
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Fig. 4 For one simulation, slope
graph get by our Lasso-MLE
procedure. For large dimensions,
we observe a linear part

4.3 Assessment

We compare our procedures to three other procedures on the simulated models.
Firstly, let us give some remarks about Model 1. For each procedure, we get a good

clustering and a very low Kullback–Leibler divergence. Indeed, the sample size is
large and estimations are good. That is the reason why, in this subsection, we focus
on Models 2, 3 and 4.

To compare our procedures with others, the Kullback–Leibler divergence of the
density selected from the true density and the ARI (the Adjusted Rand Index, mea-
suring the similarity between two data clusterings, knowing that the closer the ARI to
1, the more similar the two partitions) are computed, and we note which indices are
selected and how many clusters are selected. For more details on the ARI, see Hubert
and Arabie (1985).

From the Lasso-MLE collection of models, we consider two models, to compare
our procedures with. We compute the oracle model (the model which minimizes the
Kullback–Leibler divergence of it from the true density) and the model which is
selected by the BIC criterion instead of the slope heuristic. According to the oracle
model, we know how goodwe could get for this collection ofmodels for the Kullback–
Leibler divergence and how this model, is good for clustering data.

The third procedurewe comparewith is theMLE, assuming thatwe knowhowmany
clusters there are, fixed to 2. We use this procedure to show that variable selection is
needed.

In each case, we use the MAP principle to get the clustering.
We do not plot the Kullback–Leibler divergence for the MLE procedure, because

values are too high and make the boxplots unreadable.
From Figs. 5 and 6 we see that, for Model 2, the Kullback–Leibler divergence is

small and the ARI is close to 1, except for the MLE procedure. Boxplots are still
readable with those values, but it is important to highlight that variable selection is
needed, even in amodel with reasonable dimension. The collections ofmodels are then
well constructed. Model 3 is more difficult, because the noise is higher. That is why
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Fig. 5 Boxplots of the
Kullback–Leibler divergence of
the density selected from the
true density over the 20
simulations, for the Lasso-MLE
procedure (LMLE), the
Lasso-Rank procedure (LR), the
oracle (Oracle), the BIC
estimator (BIC) for Model 2

Fig. 6 Boxplots of the ARI over
the 20 simulations, for the
Lasso-MLE procedure (LMLE),
the Lasso-Rank procedure (LR),
the oracle (Oracle), the BIC
estimator (BIC) and the MLE
(MLE) for Model 2

Fig. 7 Boxplots of the
Kullback–Leibler divergence of
the density selected from the
true density over the 20
simulations, for the Lasso-MLE
procedure (LMLE), the
Lasso-Rank procedure (LR), the
oracle (Oracle), the BIC
estimator (BIC) for Model 3

results, summarized in Figs. 7 and 8, are not as good as for Model 2. Nevertheless, our
procedures lead to the best ARI and the Kullback–Leibler divergences are close to the
one of the oracle. Similar remarks are made for the results for Model 4. In this study,
means are closer, according to the noise. Results are summarized in Figs. 9 and 10.
Model 5 is a high-dimensional model. Models selected by the BIC criterion are bad, in
comparison with models selected by our procedures, or in comparison with the oracle
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Fig. 8 Boxplots of the ARI over
the 20 simulations, for the
Lasso-MLE procedure (LMLE),
the Lasso-Rank procedure (LR),
the oracle (Oracle), the BIC
estimator (BIC) and the MLE
(MLE) for Model 3

Fig. 9 Boxplots of the
Kullback–Leibler divergence of
the density selected from the
true density over the 20
simulations, for the Lasso-MLE
procedure (LMLE), the
Lasso-Rank procedure (LR), the
oracle (Oracle), the BIC
estimator (BIC) for Model 4

Fig. 10 Boxplots of the ARI
over the 20 simulations, for the
Lasso-MLE procedure (LMLE),
the Lasso-Rank procedure (LR),
the oracle (Oracle), the BIC
estimator (BIC) and the MLE
(MLE) for Model 4

models. They are bad for estimation, according to the Kullback–Leibler divergence
boxplots in Fig. 11, but also for clustering, according to Fig. 12. Our models are not
as well as constructed previously, due to the high-dimensional context. It explains the
high Kullback–Leibler divergence. However, our performances in clustering are good.

Note that theKullback–Leibler divergence is smaller for the Lasso-MLEprocedure,
thanks to the maximum likelihood refitting. Moreover, the true model has no matrix
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Fig. 11 Boxplots of the Kullback–Leibler divergence of the density selected from the true density over
the 20 simulations, for the Lasso-MLE procedure (LMLE), the Lasso-Rank procedure (LR), the oracle
(Oracle), the BIC estimator (BIC) for Model 5
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Fig. 12 Boxplots of the ARI over the 20 simulations, for the Lasso-MLE procedure (LMLE), the Lasso-
Rank procedure (LR), the oracle (Oracle), the BIC estimator (BIC) and the MLE (MLE) for Model 5

Table 2 Mean number {TR, FR} of true relevant and false relevant indices over the 20 simulations for
each procedure, for models 2, 3 and 4

Model 2 Model 3 Model 4

Procedure TR FR TR FR TR FR

Lasso-MLE 8 (0) 2.2 (6.9) 8(0) 4.3 (28.8) 8(0) 2(13,5)

Lasso-Rank 8 (0) 24 (0) 8 (0) 24(0) 8(0) 24(0)

Oracle 8 (0) 1.5 (3.3) 7.8 (0.2) 2.2 (11.7) 8 (0) 0.8 (2.6)

BIC estimator 8 (0) 2.6 (15.8) 7.8 (0.2) 5.7 (64.8) 8 (0) 2.6 (11.8)

The standard deviations are put into parenthesis

structure. If we compare with the MLE, where we do not use the sparsity hypothesis,
we conclude that estimations are not satisfactory, due to the high-dimensional context.
TheLasso-MLEprocedure, the Lasso-Rank procedure and theBICmodelwork almost
as well as the oracle, which means that models are well selected.

In Table 2, we summarize results about indices selection. For each model and for
each procedure, we compute how many true relevant and false relevant indices are
selected.
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The true model has 4 relevant indices, which are always recognized. The Lasso-
MLE has less false relevant indices than the others, which means that the true structure
was found. The Lasso-Rank has 24 false relevant indices, because of the matrix struc-
ture: the true rank in each component was 4, then the estimator restricted on relevant
indices is a 4× 4 matrix and we get 12 false relevant indices in each component. Nev-
ertheless, it is the smallest matrix if select every relevant indices. The BIC estimator
and the oracle have a large variability for the false relevant indices.

Remark that all procedures have selected the true number of components.
Thanks to the MLE, the first procedure has good performance in estimation (better

than the second one). However, depending on the data, the second procedure could be
more attractive. If there is a matrix structure, for example if most of the variation of
the response Y is caught by a small number of linear combinations of the predictors,
the second procedure will work better.

5 Functional data

A main aspect of our methods is the fact that they can be applied to functional data as
well. Indeed, in different fields of applications, the considered data are functions. The
functional data analysis has been popularized first by Ramsay and Silverman (2005).
This book gives a description of the main tools to analyze functional data. We also
refer to Ferraty and Vieu (2006). In a density estimation framework, we refer to Gareth
and Sugar (2003), who used a model-based approach for clustering functional data.
About functional regression, however, themain part of the existing literature is focused
on Y scalar and x functional. For example, we refer to Zhao et al. (2012) for using
wavelet basis in linear model, Yao et al. (2011) for functional mixture regression, or
Ciarleglio and Ogden (2014) for using wavelet basis in functional mixture regression.
In this section, we focus on Y and x both functional. In this regression context, we are
interested in clustering: it leads to identifying individuals involved in the same relation
between Y and x. Denote that, with functional data, we have to denoise and to smooth
signals to remove the noise and capture only the important patterns in the data. Here,
we explain how our procedures are applied in this context. Note that we could apply
our procedures with scalar response and functional regressor, or, on the contrary, with
functional response and scalar regressor. We explain how our procedures work in the
more general case. Remark that we focus here on the wavelet basis, to take advantage
of the time-scale decomposition, but the same analysis is available on Fourier basis or
splines.

5.1 Functional regression model

We observe deterministic functional predictors ( fi )1≤i≤n defined on IF and a sample
(gi )1≤i≤n of functional response associated with the random variables Gi defined on
IG . If the observation i ∈ {1, . . . , n} originates from the cluster k, the model assumes
that there exists a function Bk : IF × IG → R such that, for t ∈ IG ,
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Gi (t) =
∫

IF
fi (u)Bk(u, t)du + εi (t), (13)

where εi is a residual function. This linear model, restricted on each cluster, is intro-
duced in Ramsay and Silverman (2005).

Unfortunately, we observe data on discretized time, and we have access to
(( fi (t j ))1≤ j≤p)1≤i≤n and ((gi (tm))1≤m≤q)1≤i≤n .

If we assume that, for all (tm)1≤m≤q , for all i ∈ {1, . . . , n}, εi (tm) ∼ N (0,�k),
Model (13) is an integrated version of Model (1). Depending on the cluster k, the
linear relation of Gi with respect to f i is described by the function Bk .

5.2 Two procedures to deal with functional data

5.2.1 Projection onto a wavelet basis

We project the functional data onto some basis, to get data as described in the Gaussian
mixture regression model (1). In this article, we deal with wavelet basis, because they
represent localized features of functions in a sparse way. If the coefficient matrices xi
and yi associated to function fi and gi are sparse, the regression matrix B has more
chance to be sparse. Moreover, if the basis is well-suited, we are able to represent
a signal with few coefficients, which reduces the dimension. For details about the
wavelet theory, see Mallat (1999).

We begin with an overview of some important aspects of wavelet basis.
Let ψ be a real wavelet function, satisfying for t ∈ R,

ψ ∈ L1 ∩ L2, tψ ∈ L1, and
∫

R

ψ(t)dt = 0.

We denote for (l, h) ∈ Z
2 by ψl,h the function defined from ψ by dyadic dilation and

translation:

ψl,h(t) = 2l/2ψ(2l t − h) for (l, h) ∈ Z
2, for t ∈ R.

We define the wavelet coefficients of a signal f by

dl,h( f ) =
∫

R

f (t)ψl,h(t)dt for (l, h) ∈ Z
2.

Let ϕ be a scaling function, related to ψ , and let ϕl,h be the dilatation and translation
of ϕ for (l, h) ∈ Z

2. We also define, for (l, h) ∈ Z
2, Bl,h( f ) = ∫

R
f (t)ϕl,h(t)dt .

Note that scaling functions serve to construct approximations of the function of
interest, while the wavelet functions serve to provide the details not captured by suc-
cessive approximations.
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We denote by Vl the space generated by {ϕl,h}h∈Z and by Wl the space generated
by {ψl,h}h∈Z for all l ∈ Z. Remark that

Vl−1 = Vl ⊕ Wl for all l ∈ Z;
L2 = ⊕l∈ZWl .

Let L ∈ N
∗. A signal f is decomposed by the approximation at the level L AL( f )

and by the details (dl,h)l<L , where

AL( f ) =
∑

l>L

∑

h∈Z
dl,h( f )ψl,h =

∑

h∈Z
BL ,h( f )ϕL ,h .

This decomposition emphasizes the local nature of the wavelets, which, through
the variable selection, highlights useful patterns for the clustering analysis.

We consider the sample ( fi , gi )1≤i≤n and introduce the wavelet expansion of fi
onto the basis B = ((ϕL ,h)h∈Z, (ψl,h)l≤L ,h∈Z): for all t ∈ [0, 1],

fi (t) =
∑

h∈Z
BL ,h( fi )ϕL ,h(t)

︸ ︷︷ ︸
AL ( f )(t)

+
∑

l≤L

∑

h∈Z
dl,h( fi )ψl,h(t).

The collection {BL ,h( fi ), dl,h( fi )}l≤L ,h∈Z is the Discrete Wavelet Transform (DWT)
of fi in the basis B.

We denote by (x1, . . . , xn) the wavelet coefficient decomposition vectors, and the
orthonormal characterization leads to

(( fi (t j ))1≤ j≤p) = Wxi ;

where xi the matrix of coefficients in the basis B, and W a matrix defined by ϕ and
ψ . The DWT is performed by a computationally fast pyramid algorithm (see Mallat
1989). In the same way, there exists W

′
such that ((gi (tm))1≤m≤q) = W

′
yi , with

( y1, . . . , yn) a sample ofwavelet coefficient decomposition vectors.As thematricesW
andW

′
are orthogonal, the mixture structure and Gaussian noise are kept.We consider

the wavelet coefficient dataset (( y1, x1), . . . , ( yn, xn)), which defines n observations
whose probability distribution is modeled by the finite Gaussian mixture regression
model (1).

5.2.2 Our procedures

We apply our both procedures to wavelet coefficient and obtain a clustering of the data.
Rather than considering discretized functions ((gi (tm))1≤m≤q , (( fi (t j ))1≤ j≤p))1≤i≤n ,
we run our procedures on the wavelet coefficients sample ( yi , xi )1≤i≤n . The notion
of relevant indices is quiet natural in this context: we are looking for patterns which
explain the response variable, to focus on those who discriminate for the clustering.
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5.3 Numerical experiments

We illustrate our procedures on functional data by using the Matlab wavelet tool-
box (see Misiti et al. 2004 for details). Firstly, we simulate functional datasets,
where the true model belongs to the collection of models. Then, we run our pro-
cedure on an electricity dataset, to cluster successive days. We have access to time
series on load consumption measured every half-hour during 70 days. We extract
the signal of each day and construct couples by each day and its eve and we aim
at clustering these couples. To finish, we test our procedures on the well-known
Tecator dataset. For each meat sample the data consists of a 100 channel spectrum
of absorbances and the fat contents. These experiments illustrate different aspects
of our procedures. Indeed, the simulated example illustrates that our procedures
work in a functional context. The second example demonstrates the use of them
for classification of real data already studied and in which we clearly understand
the clusters. The last example also illustrates the use of the clustering to perform
prediction.

5.3.1 Simulated functional data

Firstly, we simulate a mixture regression model. Let f be a sample of a noised cosine
function, discretized on a 15 points grid. Let g be, depending on the cluster, either f
or − f , computed by a white-noise. Then, there are two clusters.

We use the Daubechies-2 basis at level 2 to decompose the signal.
Our procedures are run 20 times. The number of clusters is known, K = K = 2.

We compare the models we get by our procedures with the oracle model among the
collection constructed by the Lasso-MLE procedure and with the model selected by
the BIC criterion among this collection (Fig. 13).

The ARIs are lower for models constructed by our procedures. This simulated
dataset shows that our procedures also perform clustering of functional data, consid-
ering the projection of the data onto a suitable wavelet basis.

Fig. 13 Boxplots of the ARI
over the 20 simulations, for the
Lasso-MLE procedure (LMLE),
the Lasso-Rank procedure (LR),
the oracle (Oracle), the BIC
estimator (Bic) and the MLE
(MLE)
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5.3.2 Electricity dataset

We study the clustering of the electricity dataset. This example is studied in Misiti
et al. (2007). We work on a sample of size n = 70 of couples of days, which is plotted
in Fig. 14. For each couple, we have access to the half-hour load consumption.

We want to cluster the relationship between two successive days. In Fig. 15, we
plot a week of load consumption.

In each couple, the first day corresponds to regressors and the second day corre-
sponds to the response. In our opinion, a linearmodel is not appropriate, as the behavior

Fig. 14 Plot of the 70-sample of half-hour load consumption, on 2 days

Fig. 15 Plot of a week of load consumption
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from the eve to the day depends onwhich daywe consider: there is a difference between
working days and weekend days, which are both involved in Fig. 15.

To apply our procedures, we project the functions onto a wavelet basis. The
symmlet-4 basis, at level 5, is used.

We run our procedures with the number of clusters varying from 2 to 6. Both
our procedures select a model with 4 components. The first one considers couples
of weekdays, the second Friday–Saturday, the third component is Saturday–Sunday
and the fourth considers Sunday–Monday. This result is faithful with the knowledge
we have about these data. Indeed, working days are similar, depending on the eve,
whereas days off are different from their eve. Moreover, Misiti et al. (2007) obtained
the same classification for this example.

5.3.3 Tecator dataset

This example deals with spectrometric data. More precisely, a food sample has been
considered, which contained finely chopped pure meat with different fat contents.
The data consist in a 100-channel spectrum of absorbances in the wavelength range
850 − 1050 nm and of the fat percentage. We observe a sample of size n = 215.
These data have been studied in a lot of articles, we refer for example to Ferraty and
Vieu (2006). They test prediction and classification, supervised (where the fat content
becomes a class, determined by whether the content is larger or smaller than 20 %),
or not (ignoring the response variable). In this work, we take a different approach:
we cluster data according to the relation between the fat content and the absorbance
spectrum. We do not predict the response variable, because we do not know the class
of a new observation. Estimate the class of a new observation is a difficult problem,
in which we are not involved in this article.

One advantage of our procedures is that we know which coefficients, in the wavelet
basis decomposition of the spectrum, are useful to describe the fat content.

The sample will be split into two subsamples, 165 observations for the learning set
and 50 observations for the test set. This split is such that there is the same marginal
distribution for the response in each sample.

The spectrum is a function, and we decompose it onto the Haar basis, at level 6.
Our model does not take into account a constant coefficient to describe the response.
Thereby, before running our procedure, we center the response according to the learn-
ing sample and each function xi for every observation in the whole sample. Then, we
estimate the mean of the response by the mean μ̂ over the learning sample.

We construct models on the training set using our procedure Lasso-MLE. Thanks
to the estimations, we have access to relevant indices and we reconstruct signals
by keeping only relevant indices. We also have access to the estimated a posteriori
probability, and hence know the estimated probability for every observation to belong
to each cluster. The procedure selects twomodels that we describe here. In Figs. 16 and
17, clusters performed on the training set are represented for the different models. The
graph on the left is a candidate for representing each cluster, constructed by themean of
the spectra with an a posteriori probability greater than 0.6. We plot the reconstruction
of the curve by keeping only variables corresponding to relevant indices in the wavelet
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Fig. 16 Summarized results for Model 1. The graph on the left is a candidate for representing each cluster,
constructed by the mean of reconstructed spectrum over an a posteriori probability greater than 0.6. On
the right side, we present the boxplot of the fat values in each class, for observations with an a posteriori
probability greater than 0.6

Fig. 17 Summarized results for Model 2. The graph on the left is a candidate for representing each cluster,
constructed by the mean of reconstructed spectrum over an a posteriori probability greater than 0.6. On
the right side, we present the boxplot of the fat values in each class, for observations with an a posteriori
probability greater than 0.6

decomposition. On the right side, we present the boxplot of the fat contents in each
class, for observations with an a posteriori probability greater than 0.6.

The first model has two classes, which are distinguished in the absorbance spectrum
by the bump on wavelength around 940 nm. The first cluster is dominating, with π̂1 =
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Table 3 Mean absolute
percentage of error of the
predicted value, for each model,
for the learning sample

Linear model in the class Mixing estimation
with higher probability

Model 1 0.200 0.198

Model 2 0.055 0.056

Table 4 Mean absolute
percentage of error of the
predicted value, for each model,
for the test sample

Linear model in the class Mixing estimation
with higher probability

Model 1 0.22196 0.21926

Model 2 0.20492 0.20662

0.95. The fat content is smaller in the first cluster than in the second cluster. According
to the signal reconstruction, we see that almost all indices have been selected. This
model seems consistent with the classification goal.

The second model has 3 classes and we remark several important wavelengths.
Around 940 nm, there is a difference between classes, corresponding to the bump
in Model 1. Around 970 nm, there is also a difference between classes, with higher
or smaller values. The first class is dominating, with π̂1 = 0.89. Just a few number
of indices have been selected and we are able to understand which coefficients are
discriminating.

The first model selects only two classes, but almost all indices, whereas the second
model has more classes and less indices: there is a trade-off between clusters and
variable selection for the dimension reduction.

Based on these classifications, we compute the response according to the linear
model. We use two ways to compute the fitted response ŷ: either considering the
linear model in the cluster selected by the MAP principle, or mixing estimations in
each cluster thanks to the a posteriori probabilities. We summarize the results via
the Mean Absolute Percentage Error, MAPE = 1

n

∑n
i=1 |( ŷi − yi )/ yi |, presented in

Table 3.
We next work with the test sample. We use the response and the regressors to know

the a posteriori of each observation. Then, using ourmodels, we compute the predicted
fat values from the spectrometric curve, as before according to two ways, mixing or
choosing the classes (Table 4).

Because the models are constructed on the learning sample, the MAPE for this
sample are lower than for the test sample. Nevertheless, results are similar, saying that
models are well constructed. This is particularly the case for Model 1, which is more
consistent over a new test sample.

To conclude this study, we highlight the advantages of our Lasso-MLE procedure
on these data. It provides a clustering of data, similar to the one done with supervised
clustering in Ferraty and Vieu (2006), but we explain how this clustering is done.

This work has been done with the Lasso-MLE procedure. However, the same kind
of results were obtained with the Lasso-Rank procedure.
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6 Conclusion

In this article, two procedures are proposed to cluster regression data. Detecting the rel-
evant clustering indices, the procedures are especially designed for high-dimensional
data.We use an 	1-regularization procedure to select indices and then deduce a reason-
able random collection of models. Thus, we recast estimations of parameters of these
models into a general model selection problem. These procedures are compared with
commonly-used criteria on simulated data: the BIC criterion used to select a model,
the maximum-likelihood estimator and the oracle model. In addition, we compare our
procedures to other methods on benchmark data. Our procedures are applicable to
functional data through projecting coefficients onto a wavelet basis.
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Appendix

In these appendices, we derive first the updating formulae in the EM algorithm in “EM
algorithms”. In “Group-Lasso MLE and Group-Lasso Rank procedures”, we extend
our procedures with the Group-Lasso estimator to select relevant indices, rather than
using the Lasso estimator.

EM algorithms

EM algorithm for the Lasso estimator

Introduced by Dempster et al. (1977), the EM (Expectation-Maximization) algorithm
is used to compute MLE, penalized or not.

The expected complete negative log-likelihood is denoted by

Q(θ |θ ′) = −1

n
Eθ ′(lc(θ,Y , x, Z)|Y)

in which

lc(θ,Y , x, Z) =
n∑

i=1

K∑

k=1

[Zi ]k log
(
det(Pk)

(2π)q/2 exp

(
−1

2
(PkY i −xi�k)

t (PkY i −xi�k)

))

+ [Zi ]k log(πk);

where [Zi ] are unobserved independent and identically distributed random variables
following a multinomial distribution with parameters 1 and (π1, . . . , πK ), describing
the component-membership of the i th observation in the finite mixture regression
model.
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The expected complete penalized negative log-likelihood is

Qpen(θ |θ ′) = Q(θ |θ ′) + λ

K∑

k=1

πk ||�k ||1.

Calculus for updating formulae

– E-step: compute Q(θ |θ(ite)), or, equivalently, compute for k ∈ {1, . . . , K }, i ∈
{1, . . . , n},

τ
(ite)
i,k = Eθ(ite) ([Zi ]k |Y i )

=
π

(ite)
k det P (ite)

k exp

(
− 1

2

(
P (ite)
k yi −xi�

(ite)
k

)t (
P (ite)
k yi −xi�

(ite)
k

))

∑K
r=1 π

(ite)
k det P (ite)

k exp

(
− 1

2

(
P (ite)
k yi −xi�

(ite)
k

)t (
P (ite)
k yi −xi�

(ite)
k

))

Thanks to the MAP principle, the clustering is updated.
– M-step: optimize Qpen(θ |θ(ite)) with respect to θ .
For this, rewrite the Karush–Kuhn–Tucker conditions. We have

Qpen(θ |θ(ite))

= − 1

n

n∑

i=1

K∑

k=1

Eθ(ite)

(
[Zi ]k log

(
det(Pk)

(2π)q/2 exp

(
−1

2
(Pk yi −xi�k)

t (Pk yi −xi�k)

))
|Y
)

− 1

n

n∑

i=1

K∑

k=1

Eθ(ite) ([Zi ]k logπk |Y) + λ

K∑

k=1

πk ||�k ||1

= − 1

n

n∑

i=1

K∑

k=1

−1

2
(Pk yi − xi�k)

t (Pk yi − xi�k)Eθ(ite) ([Zi ]k |Y)

− 1

n

n∑

i=1

K∑

k=1

q∑

m=1

log

( [Pk ]m,m√
2π

)
Eθ(ite) ([Zi ]k |Y)

− 1

n

n∑

i=1

K∑

k=1

Eθ(ite) ([Zi ]k |Y) logπk + λ

K∑

k=1

πk ||�k ||1. (14)

Firstly, we optimize this formula with respect to π : this is equivalent to optimizing

−1

n

n∑

i=1

K∑

k=1

τ
(ite)
i,k log(πk) + λ

K∑

k=1

πk ||�k ||1.

We obtain

π
(ite+1)
k = π

(ite)
k + t (ite)

(∑n
i=1 τ

(ite)
i,k

n
− π

(ite)
k

)
; (15)
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where t (ite) ∈ (0, 1] is the largest value in {0.1l , l ∈ N} such that the update of π

defined in (15) leads to improving the expected complete penalized log-likelihood
function.
To optimize (14) with respect to (�,P), we rewrite the expression: it is similar to
the optimization of

−1

n

n∑

i=1

(
τ

(ite)
i,k

q∑

m=1

log([Pk]m,m)− 1

2
(Pk ỹ

(ite)
i − x̃(ite)

i �k)
t (Pk ỹ

(ite)
i − x̃(ite)

i �k)

)

+λπk ||�k ||1
for all k ∈ {1, . . . , K }, with for all j ∈ {1, . . . , p} for all i ∈ {1, . . . , n}, for all
k ∈ {1, . . . , K },

([ ỹ(ite)
i ]k,., [x̃(ite)

i ]k,.) =
√

τ
(ite)
i,k ( yi , xi ).

Remark that this is equivalent to optimizing

− 1

n
n(ite)
k

q∑

m=1

log([Pk]m,m)+ 1

2n

n∑

i=1

q∑

m=1

(
[Pk]m,m[ ỹ(ite)

i ]k,m−[�k]m,.[x̃(ite)
i ]k,.

)2

+ λπk ||�k ||1; (16)

with n(ite)
k = ∑n

i=1 τ
(ite)
i,k . With respect to [Pk]m,m , the optimization of (16) is the

solution of

−n(ite)
k

n

1

[Pk]m,m
+ 1

2n

n∑

i=1

2[ ỹ(ite)
i ]k,m

(
[Pk]m,m[ ỹ(ite)

i ]k,m−[�k]m,.[x̃(ite)
i ]k,.

)
=0

for all k ∈ {1, . . . , K }, for all m ∈ {1, . . . , q}, which is equivalent to

−1 + 1

n(ite)
k

[Pk ]2m,m

n∑

i=1

[ ỹ(ite)
i ]2k,m − 1

n(ite)
k

[Pk ]m,m

n∑

i=1

[ ỹ(ite)
i ]k,m [�k ]m,.[x̃(ite)

i ]k,. = 0

⇔ −1 + [Pk ]2m,m
1

n(ite)
k

||[ ỹ(ite)]k,m ||22 − [Pk ]m,m
1

n(ite)
k

〈[̃ y(ite)]k,m , [�k ]m,. [̃x(ite)]k,.〉 = 0.

The discriminant is

�k,m =
(

− 1

n(ite)
k

〈[̃ y(ite)]k,m, [�k]m,. [̃x(ite)]k,.〉
)2

− 4

n(ite)
k

||[ ỹ(ite)]k,m ||22.

Then, for all k ∈ {1, . . . , K }, for all m ∈ {1, . . . , q},

[Pk]m,m = n(ite)
k 〈[̃ y(ite)]k,m, [�k]m,. [̃x(ite)]k,.〉 +√�k,m

2n(ite)
k ||[ ỹ(ite)]k,m ||22

.
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We also look at Eq. (14) as a function of the variable �: according to the partial
derivative with respect to [�k]m, j , we obtain for all m ∈ {1, . . . , q}, for all k ∈
{1, . . . , K }, for all j ∈ {1, . . . , p},

n∑

i=1

[x̃(ite)
i ]k, j

⎛

⎝[Pk]m,m[ ỹ(ite)
i ]k,m −

p∑

j2=1

[x̃(ite)
i ]k, j2 [�k]m, j2

⎞

⎠

−nλπksgn([�k]m, j ) = 0,

where sgn is the sign function. Then, for all k ∈ {1, . . . , K }, j ∈ {1, . . . , p},m ∈
{1, . . . , q},

[�k ]m, j =
∑n

i=1[x̃(ite)
i ]k, j [Pk ]m,m [ ỹ(ite)

i ]k,m −∑p
j2=1
j2 �= j

[x̃(ite)
i ]k, j [x̃(ite)

i ]k, j2 [�k ]m, j2 − nλπksgn([�k ] j,m)

||[x̃(ite)]k, j ||22
.

Let, for all k ∈ {1, . . . , K }, j ∈ {1, . . . , p},m ∈ {1, . . . , q},

[Sk] j,m = −
n∑

i=1

[x̃(ite)
i ]k, j [Pk]m,m[ ỹ(ite)

i ]k,m +
p∑

j2=1
j2 �= j

[x̃(ite)
i ]k, j [x̃(ite)

i ]k, j2 [�k]m, j2 .

Then

[�k]m, j = −[Sk] j,m − nλπksgn([�k]m, j )

||[x̃(ite)]k, j ||22
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−[Sk ] j,m+nλπk

||[x̃(ite)]k, j ||22
if [Sk] j,m > nλπk

−[Sk ] j,m+nλπk

||[x̃(ite)]k, j ||22
if [Sk] j,m < −nλπk

0 elsewhere.

From these equalities, we write the updating formulae.

π
(ite+1)
k = π

(ite)
k + t (ite)

(
n(ite)
k

n
− π

(ite)
k

)
;

[Pk](ite+1)m1,m2
=
⎧
⎨

⎩

n(ite)
k 〈[ ỹ(ite)

. ]k,m ,[�k ](ite)m,. [x̃(ite)
.]k,.〉+

√
�k,m

2n(ite)
k ||[ ỹ(ite)

. ]k,m ||22
if m1 = m2 = m;

0 elsewhere;

[�k](ite+1)j,m =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−[S(ite)
k ] j,m+nλ(π

(ite)
k )

||[x̃(ite)]k, j ||22
if [S(ite)

k ] j,m > nλ(π
(ite)
k );

−[S(ite)
k ] j,m+nλ(π

(ite)
k )

||[x̃(ite)]k, j ||22
if [S(ite)

k ] j,m < −nλ(π
(ite)
k );

0 else.
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EM algorithm for the rank procedure

To take into account the matrix structure, we want to make a dimension reduction on
the rank of the regression matrix. If we know the clustering, we compute the low rank
estimator for a linear model in each cluster.

Indeed, an estimator of fixed rank r is known in the linear regression case: denot-
ing A+ the Moore-Penrose pseudo-inverse of A and [A]r = UDrV t in which Dr is
obtained from D by setting (Dr )i,i = 0 for i ≥ r+1, withUDV t the singular decom-
position of A, if Y = Bx + �, an estimator of B with rank r is B̂r = [(xt x)+xt y]r .

However, we do not know the clustering of the observations,. We will use an EM
algorithm, where the E-step computes the a posteriori probability .

We suppose in this case that �k and πk are known, for all k ∈ {1, . . . , K }. We
use this algorithm to determine �k , for all k ∈ {1, . . . , K }, with ranks fixed to R =
(R1, . . . , RK ).

– E-step: compute for k ∈ {1, . . . , K }, i ∈ {1, . . . , n},

τ
(ite)
i,k = Eθ(ite) ([Zi ]k |Y )

=
π

(ite)
k det P (ite)

k exp

(
− 1

2

(
P (ite)
k yi − xi�

(ite)
k

)t (
P (ite)
k yi − xi�

(ite)
k

))

∑K
r=1 π

(ite)
k det P (ite)

k exp

(
− 1

2

(
P (ite)
k yi − xi�

(ite)
k

)t (
P (ite)
k yi − xi�

(ite)
k

)) .

– M-step: assign each observation to its estimated cluster, by the MAP principle
applied thanks to the E-step. We say that i originates from component num-
ber argmaxk∈{1,...,K }τ

(ite)
i,k . Then, for all k ∈ {1, . . . , K }, we define B̃(ite)

k =
(xt|kx|k)−1xt|k y|k , in which x|k and y|k correspond to the observations belong-

ing to the cluster k. For all k ∈ {1, . . . , K }, we decompose B̃(ite)
k in singular value:

B̃(ite)
k = USV t . Then, we estimate the regression matrix by B̂(ite)

k = U [S]R(k)V t

in the cluster k ∈ {1, . . . , K }.

Group-Lasso MLE and Group-Lasso Rank procedures

One way to perform these procedures is to consider the Group-Lasso estimator rather
than theLasso estimator to select relevant indices. Indeed, this estimator ismore natural
according to the relevant indices definition. Nevertheless, results are very similar,
because we select grouped indices by the Lasso estimator or by the Group-Lasso
estimator. In this section, we describe our procedures with the Group-Lasso estimator.

Context-definitions

Both our procedures take advantage of the Lasso estimator to select relevant indices
and to reduce the dimension in case of high-dimensional data. First, recall what is
meant by relevant indices.
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Definition 2 A couple ( ym, x j ) is said to be irrelevant for the clustering if [�1]m, j =
. . . = [�K ]m, j = 0, which means that the variable x j does not explain the variable
ym for the clustering process. We also say that the indices (m, j) are irrelevant if the
couple ( ym, x j ) is irrelevant. A relevant couple is a couple which is not irrelevant: at
least in one cluster k, the coefficient [�k]m, j is not equal to zero. We denote by J the
set of indices (m, j) of relevant couples ( ym, x j ).

According to this definition, we introduce the Group-Lasso estimator.

Definition 3 TheGroup-Lasso estimator for mixture regression models with regular-
ization parameter λ ≥ 0 is defined by

θ̂
Group-Lasso
λ := argmin

θ∈�K

{
−1

n
l̃λ(θ)

}
;

where

−1

n
l̃λ(θ) = −1

n
l(θ) + λ

p∑

j=1

q∑

m=1

√
k||[�]m, j ||2;

where ||[�]m, j ||22 = ∑K
k=1 |[�k]m, j |2 and with λ to specify.

This Group-Lasso estimator has the advantage to shrink to zero grouped indices rather
than indices one by one. It is consistent with the relevant indices definition.

However, depending on the data, it is interesting to look for which indices are
equal to zero first. One way is to extend this work with Lasso-Group-Lasso estimator,
described for the example for the linear model in Simon et al. (2013).

Let us describe two additional procedures, which use the Group-Lasso estimator
rather than the Lasso estimator to detect relevant indices.

Group-Lasso-MLE procedure

This procedure is decomposed into three main steps: we construct a collection of
models, then in each model we compute the MLE and we select the best one among
all the models.

The first step consists in constructing a collection of models {H(K , J̃ )}(K , J̃ )∈M in
which H(K , J̃ ) is defined by

H(K , J̃ ) = {hθ (.|x)} ; (17)

where

hθ (y|x) =
K∑

k=1

πk det(Pk)

(2π)q/2 exp

(
− (Pk y − �

[ J̃ ]
k x)t (Pk y − �

[ J̃ ]
k x)

2

)
,
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and

θ = (π1, . . . , πK ,�1, . . . ,�K , P1, . . . , PK ) ∈ �K × (Rq×p)K ×
(
D

++
q

)K
.

The collection of models is indexed by M = K × J̃ . We denote by K ⊂ N
∗ the

admitted number of classes. We bound K without loss of generality. Denote also J̃
a collection of subsets of {1, . . . , q} × {1, . . . , p}, constructed by the Group-Lasso
estimator.

To detect the relevant indices and construct the set J̃ ∈ J̃ , we will use the Group-
Lasso estimator defined by (3). For K ∈ K, we propose to construct a data-driven
grid GK of regularization parameters by using the updating formulae of the mixture
parameters in the EM algorithm.

Then, for each λ ∈ GK , we compute the Group-Lasso estimator defined by

θ̂
Group-Lasso
λ = argmin

θ∈�K

⎧
⎨

⎩−1

n

n∑

i=1

log(hθ ( yi |xi )) + λ

p∑

j=1

q∑

m=1

√
K ||[�]m, j ||2

⎫
⎬

⎭ .

For a fixed number of mixture components K ∈ K and a regularization parameter
λ, we use a generalized EM algorithm to approximate this estimator. Then, for each
K ∈ K and for each λ ∈ GK , we construct the set of relevant indices J̃λ. We denote
by J̃ the collection of all these sets.

The second step consists in approximating the MLE

ĥ(K , J̃ ) = argmin
t∈H(K , J̃ )

{
−1

n

n∑

i=1

log(t ( yi |xi ))
}

;

using the EM algorithm for each model (K , J̃ ) ∈ M.
The third step is devoted to model selection, for which we use the slope heuristic

described in Birgé and Massart (2007).

Group-Lasso-Rank procedure

We propose a second procedure to take into account the matrix structure. For each
model belonging to the collection H(K , J̃ ), a subcollection is constructed, varying the
rank of �. We describe this procedure in more details.

As in the Group-Lasso-MLE procedure, we first construct a collection of models,
thanks to the 	1-approach. We obtain an estimator for θ , denoted by θ̂

Group-Lasso
λ , for

each model belonging to the collection. We deduce the set of relevant indices, denoted
by J̃ and this for all K ∈ K: we deduce J̃ the collection of set of relevant indices.

The second step consists in constructing a subcollection of models with rank spar-
sity, denoted by

{Ȟ(K , J̃ ,R)}(K , J̃ ,R)∈M̃.

123



278 E. Devijver

The model {Ȟ(K , J̃ ,R)} has K components, the set J̃ for relevant indices and R is the
vector of the ranks of the matrix of regression coefficients in each group:

Ȟ(K , J̃ ,R) =
{
h(K , J̃ ,R)

θ ( y|x)
}

(18)

where

h(K , J̃ ,R)
θ ( y|x) =

K∑

k=1

πk det(Pk)

(2π)q/2 exp

(
− (Pk y − (�

Rk
k )[ J̃ ]x)t (Pk y − (�

Rk
k )[ J̃ ]x)

2

)
;

θ = (π1, . . . , πK ,�
R1
1 , . . . , �

RK
K , P1, . . . , PK ) ∈ �K × 
R

K ×
(
R
q
+
)K ;


R
K =

{
(�

R1
1 , . . . , �

RK
K ) ∈ (Rq×p)K |Rank(�1) = R1, . . . ,Rank(�K ) = RK

}
;

and M̃R = K × J̃ × R. Denote by K ⊂ N
∗ the possible number of components,

J̃ a collection of subsets of {1, . . . , q} × {1, . . . , p} and R the set of vectors of size
K ∈ K with rank values for each mean matrix. We compute the MLE under the rank
constraint thanks to an EM algorithm. Indeed, we constrain the estimation of �k , for
all k, to have a rank equal to Rk , in keeping only the Rk th largest singular values. More
details are given in “EM algorithm for the rank procedure”. This finally leads to an
estimator of the mean with row sparsity and low rank for each model.

References

Anderson TW (1951) Estimating linear restrictions on regression coefficients for multivariate normal dis-
tributions. Ann Math Stat 22(3):327–351

Baudry J-P, Maugis C, Michel B (2012) Slope heuristics: overview and implementation. Stat Comput
22(2):455–470

Birgé L, Massart P (2007) Minimal penalties for Gaussian model selection. Probab Theory Relat Fields
138(1–2):33–73

Bühlmann P, van de Geer S (2011) Statistics for high-dimensional data: methods, theory and applications,
Springer Series in Statistics. Springer, Berlin

Bunea F, She Y, Wegkamp M (2012) Joint variable and rank selection for parsimonious estimation of
high-dimensional matrices. Ann Stat 40(5):2359–2388

Celeux G, Govaert G (1995) Gaussian parsimonious clustering models. Pattern Recognit 28(5):781–793
Ciarleglio A, Ogden T (2014) Wavelet-based scalar-on-function finite mixture regression models. Comput

Stat Data Anal 93:86–96
DempsterAP,LairdNM,RubinDB (1977)Maximum likelihood from incomplete data via theEMalgorithm.

Discussion. J R Stat Soc Ser B 39:1–38
Devijver E (2015) Finite mixture regression: a sparse variable selection by model selection for clustering.

Electron J Stat 9(2):2642–2674
Devijver E (2015) Joint rank and variable selection for parsimonious estimation in high-dimension finite

mixture regression model. arXiv:1501.00442
Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice, Springer series in

statistics. Springer, New York
Gareth J, Sugar C (2003) Clustering for sparsely sampled functional data. J AmStat Assoc 98(462):397–408
Giraud C (2011) Low rank multivariate regression. Electron J Stat 5:775–799
Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218
IzenmanA (1975) Reduced-rank regression for the multivariate linear model. JMultivar Anal 5(2):248–264
Jones PN,McLachlanGJ (1992) Fitting finitemixturemodels in a regression context.Aust J Stat 34:233–240

123

http://arxiv.org/abs/1501.00442


Model-based regression clustering for high-dimensional data… 279

Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans
Pattern Anal Mach Intell 11:674–693

Mallat S (1999) A wavelet tour of signal processing. Academic Press, Dublin
McLachlan G, Peel D (2004) Finite Mixture Models, Wiley series in probability and statistics. Wiley,

New York
Meinshausen N, Bühlmann P (2010) Stability selection. J R Stat Soc Ser B Stat Methodol 72(4):417–473
Meynet C, Maugis-Rabusseau C (2012) A sparse variable selection procedure in model-based clustering.

Research report, September
Misiti M, Misiti Y, Oppenheim G, Poggi J-M (2004) Matlab Wavelet Toolbox User’s Guide. Version 3. The

Mathworks Inc, Natick, MA
Misiti M, Misiti Y, Oppenheim G, Poggi J-M (2007) Clustering signals using wavelets. In: Sandoval Fran-

cisco, Prieto Alberto, Cabestany Joan, Graña Manuel (eds) Computational and Ambient Intelligence,
vol 4507, Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp 514–521

Park T, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 103(482):681–686
Ramsay JO, Silverman BW (2005) Functional data analysis, Springer series in statistics. Springer, New

York
Simon N, Friedman J, Hastie T, Tibshirani R (2013) A sparse-group lasso. J Comput Graph Stat

22:231–245
Städler N, Bühlmann P, Van de Geer S (2010) 	1-penalization for mixture regression models. Test 19(2):

209–256
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58(1):267–288
Tseng P (2001) Convergence of a block coordinate descent method for nondifferentiable minimization. J

Optim Theory Appl 109:475–494
Wu J (1983) On the convergence properties of the EM algorithm. Ann Stat 1:95–103
Yao F, Fu Y, Lee T (2011) Functional mixture regression. Biostatistics 2:341–353
Zhao Y, Ogden T, Reiss P (2012) Wavelet-based LASSO in functional linear regression. J Comput Graph

Stat 21(3):600–617

123


	Model-based regression clustering for high-dimensional data: application to functional data
	Abstract
	1 Introduction
	2 Finite mixture of Gaussian regression models
	2.1 The model
	2.2 Clustering with finite mixture of Gaussian regression models
	2.3 Numerical optimization
	2.3.1 Generalized EM algorithm for approximating the Lasso estimator
	2.3.2 Initialization and stopping rules
	2.3.3 Numerical convergence of this algorithm

	2.4 Variable selection and model collection

	3 Two procedures
	3.1 Lasso-MLE procedure
	3.2 Lasso-Rank procedure
	3.3 Some comments

	4 Illustrative example
	4.1 The model
	4.2 Sparsity and model selection
	4.3 Assessment

	5 Functional data
	5.1 Functional regression model
	5.2 Two procedures to deal with functional data
	5.2.1 Projection onto a wavelet basis
	5.2.2 Our procedures

	5.3 Numerical experiments
	5.3.1 Simulated functional data
	5.3.2 Electricity dataset
	5.3.3 Tecator dataset


	6 Conclusion
	Acknowledgements
	Appendix
	EM algorithms
	EM algorithm for the Lasso estimator
	EM algorithm for the rank procedure

	Group-Lasso MLE and Group-Lasso Rank procedures
	Context-definitions
	Group-Lasso-MLE procedure
	Group-Lasso-Rank procedure


	References




