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Abstract This paper introduces a novel technique to track structures in time varying
graphs. The method uses a maximum a posteriori approach for adjusting a three-
dimensional co-clustering of the source vertices, the destination vertices and the time,
to the data under study, in a way that does not require any hyper-parameter tuning. The
three dimensions are simultaneously segmented in order to build clusters of source
vertices, destination vertices and time segments where the edge distributions across
clusters of vertices follow the same evolution over the time segments. Themain novelty
of this approach lies in that the time segments are directly inferred from the evolution
of the edge distribution between the vertices, thus not requiring the user to make
any a priori quantization. Experiments conducted on artificial data illustrate the good
behavior of the technique, and a study of a real-life data set shows the potential of the
proposed approach for exploratory data analysis.
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1 Introduction

In real world problems, interactions between entities are generally evolving through
time. This is the case for instance in transportation networks (roads, train, etc) or
communication networks (mobile phone, web, etc). Understanding the corresponding
time evolving interaction graphs implies both to discover structures in those graphs
and to track the evolution of those structures through time. In a subway network for
example, entities are the stations and interactions are the passenger journeys from
an origin to a destination station at a given start time. Understanding the evolving
distribution of journeys over time is of great help for network planners, for instance
to schedule trains efficiently.

Early works on the structure of the interactions in graphs dates back to the 1950s
in the context of social networks analysis: Nadel (1957) proposes to group the actors
that play similar roles within the network. The clustering of vertices—that models
the actors—has been extensively studied. The vast literature on graph partitioning is
surveyed in such as the one of Schaeffer (2007), Goldenberg et al. (2009) and Fortunato
(2010), among others.

The analysis of time-varying/time-evolving/dynamic graphs is quite recent
(Casteigts et al. 2012). Hopcroft et al (2004) have been first interested in the evo-
lution of the vertices clustering. In their approach, a time-varying graph is modeled by
a sequence of static graphs in which the clusters are retrieved using an agglomerative
hierarchical clustering, where the similarity between the clusters is a cosine (Li and
Jain 1998). Then, the evolution of the clusters across the snapshots is investigated.
In more recent works, Palla et al. (2007) adapt their own clique percolation method
(Palla et al. 2005) to time-evolving graphs by exploiting the overlap of the clusters at
t and t + 1 to study their evolution through time. Xing et al. (2010) use a probabilistic
approach to study the evolution of the membership of each vertex to the clusters. As
for Sun et al. (2007), they have introduced an information-theoretic based approach
named Graphscope. It is a two-stage method dedicated to simple bipartite graphs
that tracks structures within time-varying graphs. First, a partition of the snapshots
is retrieved and evaluated using a minimum description length (MDL) framework
(Grünwald 2007), then an agglomerative process is used to determine the temporal
segmentation. As discussed by Lang (2009), the partitioning results may be sensitive
to the coding schemes: in particular, coding schemes like those used by Sun et al.
(2007) have no guarantee of robustness w.r.t. random graphs.

The approaches introduced above focus on a specific way of introducing time evo-
lution into interaction analysis: they study a sequence of static interaction graphs. This
is generally done via a quantization of the time which turns temporal interaction with
possibly continuous time stamps into said sequence of graphs. The quantization is
mainly ad hoc, generally based on “expert” or “natural” discrete time scales (such
as hourly graphs or daily graphs) which lead to snapshots of the temporal interaction
structure. Then the clusters of vertices are detected separately from the time quantiza-
tion step hiding potential dependencies between those two aspects, as well as possible
intricate temporal patterns. Fortunato (2010) has raised these problems and consid-
ers more suitable the approaches that track the clusters of vertices and the temporal
structure in one unique step.
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Co-clustering is a way to address this requirement. This technique aims at simul-
taneously partitioning the variables describing the occurrences in a data set (Hartigan
1972). Co-clustering has been applied to gene expressions problems (Van Mechelen
et al. 2004) and has been widely used in documents classification (Dhillon et al. 2003),
among other applications. An example of the application of co-clustering to graphs
is given by Rege et al. (2006) in the case of static graphs. In this type of approaches,
the graph is represented by its adjacency matrix: the rows and the columns corre-
spond to the vertices and the values in the cells quantify the edge intensities between
two vertices. The simultaneous partitioning of rows and columns coincide with the
clusters of vertices. One advantage of co-clustering is that it is able to deal with nom-
inal and numerical variables (Bekkerman et al. 2005; Nadif and Govaert 2010). Thus,
co-clustering approaches for static graphs can be adapted to time-evolving graphs by
introducing a third variablewith temporal information. Such an approachwas explored
in Zhao and Zaki (2005) in order to study the temporal evolution of micro-array data.
While the algorithm defined in this paper, TriCluster, uses the three-mode represen-
tation idea it aims at finding patterns rather than at clustering the three dimensions
together. Therefore it shares only its data representation paradigm with the approach
presented in the present paper. A closer technique is presented by Schepers et al. (2006)
who introduce a three-mode partitioning approach. They define a three dimensional
block model, that is optimized by minimizing a least squares loss function. To that
end, the performances of several algorithms are investigated. The results shows that
partitioning simultaneously all the three dimension provides better results than dealing
with them independently. Moreover, Schepers et al. (2006) point out the difficulty of
optimizing their global criterion and discuss the benefits of a multistart procedure.
This is also treated in the present paper.

In this paper, we propose an approach for time-varying graphs built upon theMODL
approach of Boullé (2011). Our method groups vertices based on similarity between
connectivity patterns at the cluster level. In addition, it partitions the time interval into
time segments during which connectivity patterns between the clusters are stationary.
This corresponds to a triclustering structure which is optimized jointly in our method,
without introducing any user chosen hyper-parameter (in particular, the number of
clusters is chosen automatically). This approach is resilient to noise and reliable in
the sense that no co-clustering structure is detected in case of uniform random graphs
(e.g. Erdős and Rényi 1959) and that no time segmentation is retrieved in case of
stationary graphs. In addition, the true underlying distribution is asymptotically esti-
mated.

The rest of the paper is organized as follows. Section 2 introduces the type of
temporal interaction data our model can handle. A combinatorial generative model for
such data is described in Sect. 3. Section 4 presents our maximum a posteriori (MAP)
strategy for estimating the parameters of this model from a temporal data set. Section
5 investigates the behavior of the method using artificial data. Finally, the method is
applied on a real-life data set in order to show its effectiveness on a practical case in
Sect. 6. Finally, Sect. 7 gives a summary and suggests future work.

123



512 R. Guigourès et al.

2 Temporal interaction data and time-varying graph

In this paper, we study interactions between entities that take place during a certain
period of time. We assume given two finite sets S and D which are respectively the set
of sources (entities from which interactions start) and the set of destinations (entities
to which interactions are destined). Each interaction is a triple (s, d, t) ∈ S × D × R

where t is the instant at which the interaction takes place (in general t is called the
time stamp of the interaction). In this paper a temporal interaction data set is a finite
set E ⊂ S × D × R made of m interaction triples, (sn, dn, tn)1≤n≤m .

Time stamps are assumed to be measured with enough precision to ensure that
each of the tn is unique among the (t j )1≤ j≤m and thus the third variable of a temporal
interaction data set could be seen as a continuous variable. However, to avoid contrast
related effects and to simplify data modeling, we use a rank based transformation:
each tn is replaced by its rank in (t j )1≤ j≤m , leading to an integer valued variable.

As pointed about in the introduction, interaction data are frequently represented in
graph forms. Taking into account the temporal aspect of interactions has led to the
introduction of several notions of time-varying (or dynamic, or evolving) graphs. A
unifying framework is proposed in Casteigts et al. (2012) and can be specialized to
address different temporal notions. In this framework, a temporal interaction data set E
as defined above corresponds to a time-varyinggraphgivenby the tripleG = (V, F, ρ),
where V = S ∪ D is the set of vertices of the graph, F = {(s, d) ∈ S × D|∃t ∈
R, (s, d, t) ∈ E} is the projection of E on S × D (giving the edges of the graph) and
where the presence function ρ from F × R to {0, 1} is given by

ρ(s, d, t) =
{
1 if (s, d, t) ∈ E,

0 if (s, d, t) /∈ E .
(1)

Thus, E = (sn, dn, tn)1≤n≤m can be seen a particular case of time-varying graph, a
fact that will prove useful in order to define a generative model for such temporal
interaction data. In this context the pair of terms “entity” and “vertex”, as well as
the pair of terms “edge” and “interaction”, are interchangeable. Nevertheless, we will
standardize on the graph related terminology (vertex and edge) to avoid confusion.

Notice that the temporal interaction data notion used here is quite general as it can
lead to simple directed graphs (where S = D in general), but also to bipartite graphs
(when S ∩ D = ∅). In addition, temporal interaction data and thus time-varying
graphs are inherently multigraphs (using the graph theory term): provided they have
different time stamps, two edges can have exactly the same source and destination
vertices, allowing this way multiple interactions to take place between the same actors
at different moments. In addition, undirected graphs can also be studied under this
general paradigm.

Notice also that while we use interchangeably the terms “temporal graph”, “time-
evolving graph” and ”time-varying graph”, the first one ismore accurate than the others
in the sense that we are studying a (multi)graph with temporal information rather than
e.g. a time series of graphs. Indeed each time stamp is attached to one interaction rather
than to a full graph. However, we use also the terms “time-evolving graph” because we
look for time intervals in which the interaction pattern is stationary leading to a time
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Fig. 1 Sample of graphs for four time values. n = 50 vertices, m = 106 edges, k = 5 clusters, ε = 10−2

series of such fixed interaction patterns which can be seen as a time-evolving graph
(but at a coarser grain). By interaction pattern we mean here a high level structure in
a static graph, as seen in e.g. stochastic block models (Nowicki and Snijders 2001):
for instance, in some situations, one might partition the vertices into clusters such that
the graph contains a small number of edges between members of different clusters
and a high number of edges between members of the same cluster (this is a modular
structure as looked for by community detection algorithms see e.g. Fortunato 2010).
Figure 1 gives an example of four such patterns.

3 A generative model for temporal interaction data

We propose in this paper a probabilistic modeling (Murphy 2012) of temporal inter-
action data: we introduce a probabilistic model that can generate data that resemble
the observed data. The present section describes the model in details while Sect. 4
explains how to fit the model to a given data by estimating its parameters.

The model is inspired by the graph view of the data. As in a static graph data
analysis, we aim at producing a form of block model in which source entities/vertices
and destination entities/vertices are partitioned into homogeneous classes (in terms of
connectivity patterns). Therefore, the model is based on a partition of the source set S
and on a partition of the destination set D. Time is handled via a piecewise stationary
assumption. The model uses a partition of the time stamp ranks, {1, . . . ,m}, into
consecutive subsequences (which correspond to time intervals). Each subsequence is
associated to a specific block model.

The initial view of the data as a three dimensional data set allows one to interpret
the block models as a triclustering. Indeed, each source vertex, each destination vertex
and each time stamp belongs to a cluster of the corresponding set (respectively S, D
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and R). In addition, clusters of time stamps respect the natural ordering of time (as
they are consecutive subsequences).

As described below, the model is based on a combinatorial view of temporal inter-
action data rather than on the continuous parameter based model used in classical
block models. It is based on the MODL approach of Boullé (2011) which addresses
density estimation via this type of combinatorial model.

3.1 Notations and definitions

In order to define our generative model, we need first to introduce some notations and
vocabulary. Given a set A, |A| is the cardinality of A. As explained in Sect. 2, time
stamps are transformed into ranks. Thus the set of time stamps is {1, 2, . . . , ν}where ν

is the number of edges/interactions.1 A partition of {1, 2, . . . , ν} respects its ordering if
and only if given any pair of distinct classes of the partition, c1 and c2, all the elements
of ci are smaller than all the elements of c j either for i = 1 and j = 2 or for i = 2
and j = 1. Obviously, classes of a partition that respects the order of {1, 2, . . . , ν} are
consecutive subsequences of {1, 2, . . . , ν}. We call any such consecutive subsequence
an interval because it represents a time interval in the original data set. For instance the
subsequence {1, 2, 3} represents the time interval ranging from the oldest time stamp
in the data set (the first one) to the third one in the data set.

Given three sets A, B and C and three partitions PA, PB and PC of those sets, a
tricluster is the Cartesian product of a class of each partition, that is a × b × c with
a ∈ PA, b ∈ PB and c ∈ Pc. It is a subset of A × B × C by construction, and the set
of all triclusters generated by PA, PB and PC forms a partition of A × B × C , called
a triclustering.

For instance if A = {x, y, z}, B = {1, 2, 3, 4} and C = {α, β}, elements of
A × B × C are the triplets (x, 1, α), (z, 3, β), etc. A way to build a very structured
clustering, called a triclustering, of A × B × C consists in building three clusterings:
one for A, e.g. A = {x, z}∪ {y}, one for B, e.g. B = {1, 2}∪ {3, 4} and one for C , e.g.
C = {α}∪ {β}. Then the clustering of A× B×C if made of the Cartesian products of
the clusters of A, B and C . One of such cluster is {x, z}× {1, 2}× {α} which contains
the following triplet:

{(x, 1, α), (x, 2, α), (z, 1, α), (z, 2, α)}.

Other clusters of this clustering are {x, z} × {3, 4} × {β}, etc.

3.2 Model parameters

As explained above, our generative model is based on a triclustering. The partitions of
the source and destination vertices are considered as parameters of the model, together
with a series of other parameters described below. We list here all the parameters, but

1 To avoid confusion, we denote ν the number of edges as a parameter of the model and m the number of
edges in a given data set.

123



Discovering patterns in time-varying graphs… 515

consistency constraints on the model prevent those parameters to be chosen arbitrarily.
The constraints and our choice of free parameters are explained in the next subsection.

In the end, all parameters will have been estimated on the basis of the data.
Given a set of source vertices S, a set of destination vertices D, the model uses the

following parameters:

1. ν, the number of edges to generate;
2. CS = (cS1 , . . . , cSkS ), the partition of the source vertices into kS clusters;

3. CD = (cD1 , . . . , cDkD ), the partition of the destination vertices into kD clusters;

4. CT = (cT1 , . . . , cTkT ), the partition of the time stamp ranks {1, . . . , ν} into kT
clusters. This partition must respect the order of the ranks (clusters are inter-
vals/consecutive subsequences);

5. μ = {μi jl}1≤i≤kS ,1≤ j≤kD ,1≤l≤kT , the number of edges that will be generated by
the tricluster indexed by (i, j, l). More precisely, for each tricluster cSi × cDj × cTl
the model will generate μi jl edges with sources in cSi , destinations in c

D
j and time

stamps in cTl ;
6. δS = {δSs }s∈S , the out-degree of each source vertex s. In other words, δSs is the

number of edges generated by the model for which the source vertex is s;
7. δD = {δDd }d∈D , the in-degree of each destination vertex. In other words, δDd is the

number of edges generated by the model for which the destination vertex is d.

Notice that CS , CD and CT build a triclustering of the set S × D × {1, . . . , ν}. Each
tricluster consists here in a cluster of source vertices, a cluster of destination vertices
and an interval of time stamp ranks.

3.3 Constrained and free parameters

The parameters described in the previous subsection have to satisfy some constraints.
The most obvious one links μ to ν by

ν =
∑

1≤i≤kS ,1≤ j≤kD ,1≤l≤kT

μi jl . (2)

To introduce the other constraints, we will use classical marginal count notations
applied to the three dimensional array μ, that is

μi.. =
∑

1≤ j≤kD ,1≤l≤kT

μi jl , (3)

μ. j. =
∑

1≤i≤kS ,1≤l≤kT

μi jl , (4)

μ..l =
∑

1≤i≤kS ,1≤ j≤kD

μi jl . (5)

In theses notations, a dot . indicates that a sum is made over all possible values of the
corresponding index.

123



516 R. Guigourès et al.

Degrees must be consistent with edges produced by each cluster. We have therefore

∀i ∈ {1, . . . , kS},
∑
s∈cSi

δSs = μi.., (6)

and
∀ j ∈ {1, . . . , kD},

∑
d∈cDj

δDd = μ. j.. (7)

Indeed, all the edges that have a source in e.g. cSi must havebeengeneratedby triclusters
of the form cSi ×cD ×cT where cD and cT are arbitrary clusters of destination vertices
and time stamps, respectively. The left hand part of the equation counts those edges
by summing the degrees in cSi while the right hand part counts them by summing the
edge counts in the triclusters.

There is a much stronger link between CT andμ. As for the other clusters, marginal
consistency is needed and therefore we have

∀l ∈ {1, . . . , kT },
∣∣∣cTl

∣∣∣ = μ..l . (8)

The consistency equation is simpler than in the case of source/destination clusters
because the time stamp ranks are unique and there is no “degree” attached to them.

In addition, as CT respects the order of {1, . . . , ν}, its classes can be reordered such
that cT1 contains the smallest ranks, cT2 the second smallest ranks, etc. Then as the
classes are consecutive subsequences, the only possible partition is given by

CT =
(

{1, . . . , μ..1} , {μ..1 + 1, . . . , μ..1 + μ..2} , . . . ,

{kt−1∑
l=1

μ..l + 1, . . . , ν

})
.

(9)
In practical terms, thismeans that up to a renumbering of its classes, there is a unique

partition CT of the time stamp ranks that respects their order and that is compatible
with a given μ. Then CT can be seen as a bound parameter. Notice that we could
on the contrary leave CT free and then obtain constraints on μ. This would be more
complex to handle in terms of the prior distribution on the parameters.

In the rest of the paper, we denoteM a complete list of values for the free parameters
of the model, that is M = (ν, CS, CD,μ, δS, δD). We assume implicitly that M
fulfills the constraints outlined above. In addition, even when we use this choice of
free parameters, a value of M will be called a triclustering. In particular, CT will
always denote the time stamp partition uniquely defined by M. We will also always
denote kS , kD and kT the number of clusters in each of the three partitions.

An example: to illustrate the parameter space, a simple example is described below.
The source set is S = {1, . . . , 6} and the destination set is D = {a, b, . . . , h}. We
fix ν = 50 and thus the time stamp ranks form the set {1, . . . , 50}. We choose three
source clusters

CS = {{1, 2, 3}, {4, 5}, {6}},

123



Discovering patterns in time-varying graphs… 517

two destination clusters

CD = {{a, b, c, d, e}, { f, g, h}},

and three time clusters (unspecified yet as they will be consequences ofμ). A possible
choice for μ is given by the following tables

cD1 cD2
cS1 5 1
cS2 2 0
cS3 4 0

cT1

cD1 cD2
cS1 2 2
cS2 2 5
cS3 5 5

cT2

cD1 cD2
cS1 0 0
cS2 1 0
cS3 1 15

cT3

There is one table per time stamp interval and in each table the rows correspond to
the three source clusters while the columns correspond to the two destination clusters.
For instance μ111 = 5. Notice that the sum of all the numbers in the table cells equals
ν = 50, as imposed by the constraints.

Marginal counts induced by μ are then

i 1 2 3
μi.. 10 10 30

j 1 2
μ. j. 22 28

l 1 2 3
μ..l 12 21 17

They are compatible, for instance, with the following out degrees δS

s 1 2 3 4 5 6
δSs 3 6 1 2 8 30

and in degrees δD

d a b c d e f g h
δDd 3 6 2 6 5 13 8 7

As explained above, the only possible time stamp rank partition is then

CT = {{1, . . . , 12}, {13, . . . , 33}, {34, . . . , 50}}.

3.4 Data generating mechanism in the proposed model

Given the parametersM, a temporal data set E = (sn, dn, tn)1≤n≤ν is generated by a
hierarchical distribution build upon uniform distributions.

1. The ν edges are generated by first choosing which one of kS × kD × kT triclusters
is responsible for generating each of the edges. This is done by assigning each
of the ν edges to a tricluster under the constraints given by the assignment μ.
All compatible mappings from edges to triclusters are considered equiprobable.
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Then a given mapping Emap has a probability of one divided by the number of
compatible mappings, that is:

P(Emap|M) =
∏kS

i=1

∏kD
j=1

∏kT
l=1 μi jl !

ν! . (10)

2. In two independent second steps, edges are mapped to source vertices and destina-
tion vertices. Indeed, each source clusterCS

i is responsible for generatingμi.. edges
under the assignment constraints specified by the degrees of the source vertices
(and similarly for destination vertices). As in the previous step, all mappings from
the edges assigned to a cluster to its vertices that are compatible with the assign-
ment are considered equiprobable. In addition, mappings are independent from
cluster to cluster. Then a given source mapping Smap and a destination mapping
Dmap have the following probabilities:

P(Smap|M) =
∏

s∈S δSs !∏kS
i=1 μi..!

, P(Dmap|M) =
∏

d∈D δDd !∏kD
j=1 μ. j.!

. (11)

3. Based on the previous steps, each edge has now a source vertex and a destination
vertex. Its time stamp is obtained in a similar but simpler marginal procedure.
Indeed inside a time interval, we simply order the edges in an arbitrary way, using
a uniform probability on all possible orders. Orders are also independent from one
interval to another. Then a given time ordering of the edges Torder has a probability:

P(Torder |M) = 1∏kT
l=1 μ..l !

. (12)

An example (continued): using the parameter list given as an example in the previous
subsection, we can generate a temporal data set. As a first step, we assign the 50 edges
to the 18 triclusters (in fact only to the 13 triclusters with non zero values in μ). To
simplify the example, we choose the assignment in which edges are generated from 1
to 50 by the first available tricluster in the lexicographic order on the indexing triple
(i, j, l). This means that edges 1 to 5 are generated by the tricluster (1, 1, 1), that is
cS1 × cD1 × cT1 , then edges 6 and 7 are generated by tricluster c

S
1 × cD1 × cT2 , then edge

8 by tricluster cS1 × cD2 × cT1 (we skip cS1 × cD1 × cT3 because μ113 = 0), etc. This is
summarized in the following tables:

cD1 cD2
cS1 {1, . . . , 5} {8}
cS2 {11, 12} ∅
cS3 {21, . . . , 24} ∅

cT1

cD1 cD2
cS1 {6, 7} {9, 10}
cS2 {13, 14} {16, . . . , 20}
cS3 {25, . . . , 29} {31, . . . , 35}

cT2

cD1 cD2
cS1 ∅ ∅
cS2 {15} ∅
cS3 {30} {36, . . . , 50}

cT3
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The edges are assigned variable per variable. For instance vertices in cS1 are the source
vertex for the following edges

{1, . . . , 5} ∪ {8} ∪ {6, 7} ∪ {9, 10} = {1, . . . , 10}.

Using the degree constraints δS1 , δS2 and δS3 , one possible assignment is

edge 1 2 3 4 5 6 7 8 9 10
source 2 2 1 2 1 3 2 1 2 2

Similarly, vertices in cD1 are the destination vertex for the following edges

{1, . . . , 5} ∪ {6, 7} ∪ {11, 12} ∪ {13, 14} ∪ {15} ∪ {21, . . . , 24} ∪ {25, . . . , 29} ∪ {30},

which can be obtained using the following assignment

edge 1 2 3 4 5 6 7 11 12 13 14 15 21 22 23 24 25 26 27 28 29 30
destination d d e a b a b e d d b b b d a e c d e e b c

Finally, time stamp ranks are assigned in a similar way. For instance time stamp ranks
from {1, . . . , 12} are assigned to edges

{1, . . . , 5} ∪ {8} ∪ {11, 12} ∪ {21, . . . , 24},

for instance by

edge 1 2 3 4 5 8 11 12 21 22 23 24
time stamp rank 5 7 10 4 8 2 9 6 1 3 12 11

At the end of this process, a full temporal data set is generated. In ourworking example,
the first five edges are

edge source destination time stamp rank
1 2 d 5
2 2 d 7
3 1 e 10
4 2 a 4
5 1 b 8

3.5 Likelihood function

Because of the combinatorial nature of the proposed model, the likelihood function
has a peculiar form. Let E = (sn, dn, tn)1≤n≤m be a temporal data set. The likelihood
function L(M|E) takes a non zero value if and only if M and E are compatible
according to the following definition.
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Definition 1 A temporal data set E = (sn, dn, tn)1≤n≤m and a parameter list M =
(ν, CS, CD,μ, δS, δD) are compatible if and only if:

1. m = ν;
2. for all s ∈ S, δSs = |{n ∈ {1, . . . ,m}|sn = s}|;
3. for all d ∈ D, δDd = |{n ∈ {1, . . . ,m}|dn = d}|;
4. for all i ∈ {1, . . . , kS}, j ∈ {1, . . . , kD} and l ∈ {1, . . . , kT }.

μi jl =
∣∣∣{{n ∈ {1, . . . ,m}|sn ∈ cSi , dn ∈ cDj , tn ∈ cTl

}∣∣∣ . (13)

Based on this definition, the likelihood function is equal to zero when M and E
are not compatible and is given by the following formula when they are compatible

L(M|E) =
(∏kS

i=1

∏kD
j=1

∏kT
l=1 μi jl !

) (∏
s∈S δSs !) (∏

d∈D δDd !)
ν!

(∏kS
i=1 μi..!

) (∏kD
j=1 μ. j.!

) (∏kT
l=1 μ..l !

) . (14)

Notice that while the formula is expressed in terms of the parameters M only, it
depends obviously on the characteristics of the data set E , via the compatibility con-
straints between M and E .

One of the interesting properties of the likelihood function is that it increases when
the block structure associated to the triclustering “sharpens” in the following sense:
the likelihood increases when the number of empty triclusters (μi jl = 0) increases.

4 Parameter estimation

In order to adjust the parameters M of our model to a temporal data set E , we
use a MAP approach where the estimator for the parameters is given by M∗ =
argmaxMP(M)P(E |M). Together with a non informative prior distribution on the
parameters, this enables us to adjust all the parameters of themodelwithout introducing
any user chosen hyper-parameter. In addition, the chosen prior distribution penalizes
complex models to limit the risk of overfitting.

The model is designed in such a way that when the number of edges in M is ν,
then all temporal data sets generated have exactly ν edges. In an estimation context,
we fix therefore directly ν = m where m is the observed number of edges. This can
be seen as fixing ν to its MAP estimate as the likelihood of M given E is zero when
ν �= m. For the rest of the parameters, we specify a non informative prior distribution
as follows.

4.1 Prior distribution on the parameters

The prior is built hierarchically and uniformly at each stage in order to be uninforma-
tive. This is done as follows:

1. For source and destination partitions, a maximal number of clusters is drawn
uniformly at random between 1 and the cardinality of the set to cluster (for instance
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|S| for the set of source vertices). For the time stamps partition, the number of
clusters is drawn in the same way. We obtain this way kmax

S , kmax
D and kT with the

associated probability distribution:

p(kmax
S ) = 1

|S| , p(kmax
D ) = 1

|D| , p(kT ) = 1

m
. (15)

The case with one single cluster corresponds to the null triclustering, where there
is no significant pattern within the graph. The other extreme case corresponds to
the most refined triclustering where each vertex plays a role that is significantly
specific to be clustered alone: the triclustering has as many clusters as vertices (on
both source and destination). In social networks analysis, both extreme clustering
structures are consistent with the notion of regular equivalence introduced in the
works of White and Reitz (1983) and Borgatti (1988).
The case with one time segment corresponds to a stationary graph over time. The
onewith asmany time segments as edges is an extremely fine-grained quantization:
as time is a continuous variable, this case is allowed in our approach. It can appear
when the connectivity patterns are gradually changing over time in a very smooth
way, see Sect. 5 for an example.
Notice that this prior is given for the sake of mathematical soundness, but in
practice, it has no effect on the MAP criterion as it does not depend on the actual
values kmax

S , kmax
D and kT , but only on fixed quantities |S|, |D| and ν (the latter

been fixed in the MAP context).
2. Given the maximal number of clusters, partitions are equiprobable among the

partitions with at most the specified maximal number of clusters, that is

p(CS|kmax
S ) = 1

B(|S|, kmax
S )

, p(CD|kmax
D ) = 1

B(|D|, kmax
D )

, (16)

where B(|S|, kmax
S ) = ∑kmax

S
k=1 S(|S|, k) is the sumof Stirling numbers of the second

kind, i.e the number of ways of partitioning |S| elements into k non-empty subsets.
At this step, the prior does not favor any particular structure in the partition of
vertices beside their number of clusters (partitions will low number of clusters are
favored over partitions with a high number of clusters). It depends indeed only on
kmax
S and kmax

D not on the actual partitions.
This is quite different from e.g. Kemp and Tenenbaum (2006) where a Dirichlet
process is used as a prior on the number of clusters andon the distributionof vertices
on the clusters. Such a prior favors a structure with a few populated clusters and
several smaller clusters and penalizes balanced clustering models. Our approach
overcomes this issue owing to the choice of its prior (see also below).

3. For a triclustering with kS source, kD destination clusters and kT time segments,
assignments of the m edges on the kS × kD × kT triclusters are equiprobable. It
is known that the number of such assignments (i.e. the kS × kD × KT numbers μ

which sum to m) is
(m+kSkDkT −1

kSkDkT −1

)
, leading to
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p(μ|kS, kD, kT ) = 1(
m + kSkDkT − 1

kSkDkT − 1

) . (17)

Notice that this prior penalizes a high number of triclusters. As the numbers of
vertex clusters are already penalized before (via the number of partitions), this has
mostly an effect on the number of time intervals kT .

4. Similarly, for each source cluster cSi , the out-degrees of the vertices are chosen
uniformly at random among the degree lists that sums to μi.., as requested by the
constraints (this holds also for destination clusters), which leads to

p({δSs }s∈cSi |μ, CS) = 1(
μi.. + |cSi | − 1

|cSi | − 1

) , (18)

and similarly to

p({δDd }d∈cDj |μ, CD) = 1(
μ. j. + |cDj | − 1

|cDj | − 1

) . (19)

For a given assignment μ, this prior penalizes large clusters (in terms of degree,
i.e. high values of |cSi | or |cDj |), or in other words, it favors balanced partitions
(with clusters of the same sizes, again in terms of degree). For given partitions,
the prior penalizes high marginal counts, in particular in large (degree) clusters.

Overall, the prior is rather flat, as it is uniform at each level of the hierarchy of the
parameters. It does not make strong assumptions and let the data speak for themselves,
as the prior terms vanish rapidly compared to the likelihood terms. Notice that other
prior distribution could be considered, especially if expert knowledge is available.

4.2 The MODL criterion

The product of the prior distribution above and of likelihood term obtained in the
previous section results in a posterior probability, the negative log of which is used to
build the criterion presented in Definition 2.

Definition 2 (MODLCriterion) According to theMAP approach, the best adjustment
of themodel and the temporal data set E is obtainedwhen triclusteringM is compatible
with E (according to Definition 1) and minimizes the following criterion:

c(M) = log |S| + log |D| + logm + log B(|S|, kS) + log B(|D|, kD)

+ log

(
m + kSkDkT − 1

kSkDkT − 1

)
+

kS∑
i=1

log

(
μi.. + |cSi | − 1

|cSi | − 1

)
+

kD∑
j=1

log

(
μ. j. + |cDj | − 1

|cDj | − 1

)
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+ logm! −
kS∑
i=1

kD∑
j=1

kT∑
l=1

logμi jl ! +
kT∑
l=1

logμ..l !

+
kS∑
i=1

logμi..! −
∑
s∈S

log δSs ! +
kD∑
j=1

logμ. j.! −
∑
d∈D

log δDd !. (20)

It is important to note that the quality criterion is defined only for parameters that
are compatible with the data set E . This explains why only m appears directly in
the criterion: the actual characteristics of the data set influence indirectly the value
of the criterion (for a given set of parameters) via the compatibility equations from
Definition 1. In particular, the degrees δS and δD are fixed, and each triclustering CS ,
CD and CT leads to a unique compatibleμ. In this sense, theMODL criterion is really
a triclustering quality criterion.

In addition, the evaluation criterion of Definition 20 relies on counting the number
of possibilities for the model parameters and for the data given the model. As negative
log of probability amounts to a Shannon–Fano coding length (Shannon 1948), the
criterion can be interpreted in terms of description length. The two first lines of the
criterion correspond to the description length of the triclustering − log P(M) (prior
probability) and the two last lines to the description length of the data given the
triclustering − log P(E |M) (likelihood). Minimizing the sum of these two terms
therefore has a natural interpretation in terms of a crude MDL principle (Grünwald
2007). Triclustering fitting well the data get low negative log likelihood terms, but
too detailed triclusterings are penalized by the prior terms, mainly the partition terms
which grow with the size of the partitions and the assignment parameters terms which
grow with the number of triclusters.

4.3 Optimization strategy

The criterion c(M) provides an exact analytic formula for the posterior probability of
the parametersM, but the parameter space to explore is extremely large. That is why
the design of sophisticated optimization algorithms is both necessary and meaningful.
Such algorithms are described by Boullé (2011).

Interestingly while the assignment based representation allows one to define a
simple non informative prior on the parameters, it is not a realistic representation for
exploring the parameter space. Indeed there is no natural and simple operator to move
from one compatible assignment μ to another one. On the contrary, working directly
with the three partitions CS , CD and CT , and getting μ from the data (under the
compatibility constraints) is much more natural.

The criterion is indeed minimized using a greedy bottom-up merge heuristic. It
starts from the finest model, i.e the one with one cluster per vertex and one inter-
val per time stamp. Then merges of source clusters, of destination clusters and of
adjacent time intervals are evaluated and performed so that the criterion decreases.
This process is reiterated until there is no more improvement, as detailed in Algo-
rithm 1.
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Algorithm 1 Greedy Bottom Up Merge Heuristic
Require: M (initial solution)
Ensure: M∗ ; c(M∗) ≤ c(M)

M∗ ← M
while solution is improved do

M′ ← M∗
for all merge u between 2 source or destination clusters or adjacent time segments do

M+ ← M∗ + u
if c(M+) < c(M′) then

M′ ← M+
end if

end for
if c(M′) < c(M∗) then

M∗ ← M′ (improved solution)
end if

end while

The greedy heuristic may lead to computational issues and a naive straightforward
implementation would be barely usable because of a too high algorithmic complexity.
By exploiting both the sparseness of the temporal data set and the additive nature of the
criterion, one can reduce the memory complexity to O(m) and the time complexity to
O(m

√
m logm). The optimized version of the greedy heuristic is time efficient, but it

may fall into a local optimum. This problem is tackled using the variable neighborhood
search (VNS) meta-heuristic (Hansen and Mladenovic 2001), which mainly benefits
from multiple runs of the algorithms with different random initial solutions to better
explore the space of models. The optimized version of the greedy heuristic as well as
the meta-heuristics are described in details in Boullé (2011).

4.4 Simplifying the triclustering structure

When very large temporal data sets are studied, i.e. when m becomes large compared
to |S| and |D|, the number of clusters of vertices and of time stamps in the best
triclustering may be too large for an easy interpretation. This problem has been raised
byWhite et al. (1976),who suggest an agglomerativemethod as an exploratory analysis
tool in the context of social networks analysis. We describe in this section a greedy
aggregating procedure that reduces this complexity in a principled way, using only
one user chosen parameter.

The method we propose in this paper consists in merging successively the clusters
and the time segments in the least costly way until the triclustering structure is simple
enough for an easy interpretation. Starting from a locally optimal set of parameters
according to the criterion detailed in Eq. (20), clusters of source vertices, of destination
vertices or time stamp ranks are merged sequentially (in such way that time stamp
partitions always respect the order of the time stamps). At each step, the two clusters
to merge are the ones that induce the smallest increase of the value of the criterion.
This post-treatment is equivalent to an agglomerative hierarchical clustering where
the dissimilarity measure between two clusters is the variation of the criterion due to
this merge, as in the following definition.
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Definition 3 Let M be a triclustering and let c1 and c2 be two clusters of M on the
samevariable (that is two source clusters, or twodestination clusters or two consecutive
time stamp clusters).

The MODL dissimilarity between c1 and c2 is given by

�MODL(c1, c2) = c(Mmerge c1 and c2) − c(M), (21)

whereMmerge c1 and c2 is the triclustering obtained fromM by merging c1 and c2 into
a single cluster.

Appendix 1 provides some interpretations of this dissimilarity.

To handle the coarsening of a triclustering in practice, a measure of informative-
ness of the triclustering is computed at each agglomerative step of Algorithm 1. It
corresponds to the percentage of informativity the triclustering has kept after a merge,
compared to a null model.

Definition 4 (Informativity of a triclustering) The null triclusteringM∅ has a single
cluster of source vertices and a single cluster of destination vertices and one time
segment. It corresponds to a stationary graph with no underlying structure. Given the
best triclusteringM∗ obtained by optimizing the criterion defined in Definition 1, the
informativity of a triclusteringM is:

τ(M) = c(M) − c(M∅)
c(M∗) − c(M∅)

. (22)

By definition, 0 ≤ τ(M) ≤ 1 for all triclusterings more probable than the null
triclustering. In addition, τ(M∅) = 0 and τ(M∗) = 1.

The informativity is chosen (or monitored) by the analyst in order to stop the
merging process. This is the only user chosen parameter of our method. Notice in
particular that the merging process chooses automatically which variable to coarsen:
the user do not need to decide whether to reduce the number of clusters on e.g. the
source vertices versus the time stamps.

In practice, the coarsening can be seen as a modification of Algorithm 1. Rather
than accepting a merge only if the quality criterion is increased, the algorithm selects
the best merge in term of the quality of the obtained triclustering (in the inner for
loop) and proceeds this way until the triclustering is reduced to only one cluster or the
informativity drops below a user chosen value (in the outer while loop).

5 Experiments on artificial data sets

Experiments have been conducted on artificial data in order to investigate the properties
of our approach. To that end, we generate artificial graphs with known underlying time
evolving structures [see Guigourès et al. (2012) for complementary experiments on a
graph with unbalanced clusters].
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5.1 Data sets

Experiments are conducted on temporal graphs in which the edge structure changes
through time from a quasi-co-clique pattern where edges are concentrated between
different clusters to a quasi-clique patternwhere edges are concentrated inside clusters.

More precisely, we consider given a source vertex set S and a target vertex set D,
both partitioned into k balanced clusters, respectively (AS

i )1≤i≤k and (AD
j )1≤ j≤k . The

time interval is arbitrarily fixed to [0, 1]. On this interval, a function Θ is defined with
values in the set of squared k × k matrices by:

Θ(t) =
⎧⎨
⎩

θi i (t) = 0.9t+0.1(1−t)
k ,

θi j (t) = 0.1t+0.9(1−t)
k(k−1) when i �= j.

(23)

The term θi j (t) can be seen as a connection probability between a source vertex in
cluster AS

i and a destination vertex in AD
j (this is slightly more complex, as explained

below). In particular, when t = 0, connections will seldom appear inside diagonal
clusters, while they will concentrate on the diagonal when t = 1 (see Fig. 1).

Given k and m a number of edges to generate, a temporal graph is obtained by
building each edge el = (sl , dl , tl) according to the following procedure:

1. tl is chosen uniformly at random in [0, 1];
2. the clusters indexes (ul , vl) are chosen according to the categorical distribution

on all the pairs (i, j)1≤i≤k,1≤ j≤k specified by Θ(tl) (that is P(ul = i, vl = j) =
θi j (tl));

3. sl is chosen uniformly at random in AS
ul and dl is chosen uniformly at random in

AD
vl
.

Notice that this procedure is different from what is done in stochastic block models
(Nowicki and Snijders 2001) and related models as it aims at mimicking repeated
interactions. Theprocedure is also quite different from thegenerative approachdetailed
in Sect. 3 and does not favor our model.

Two additional methods are also used to make the data more complex. The first one
consists in randomly reallocating the three variables (source vertex, destination vertex
and time stamp) for a randomly selected subset of edges. The reallocation is made
uniformly at random independently on each variable. The percentage of reallocated
edges measures the difficulty of the task. The second complexity increasing method
(applied independently) consists in shuffling the time stamps to remove the temporal
structure from the interaction graph. Finally, we use also Erdős–Rényi random graphs
with time stamps chosen uniformly at random in [0, 1] to study the robustness of the
method.

5.2 Results

We report results with k = 5 clusters, 50 source vertices and 50 destination vertices.
Edge number varies from 2 to 220 (considering all powers of 2). For a given number
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of edges, we generate 20 different graphs. On 10 of them, we applied the reallocation
procedure described above for 50 % of the edges.

5.2.1 Temporal graphs

The Fig. 2a, b display respectively the average number of clusters of vertices and the
average number of time segments selected by theMODL approach, in graphs in which
the structure is preserved either completely (no noise) or partly (50 % of reallocated
edges). Bars show the standard deviation of the number of clusters/segments. They
are generally non visible as the results are very stable excepted during the transition
between the low number of edges to the high number of edges.

For a small number of edges (below 210), themethod does not discover any structure
in the data in the sense that the (locally) optimal triclustering has only one cluster
for each variable. The number of edges is too small for the method to find reliable
patterns: the gain in likelihood does not compensate the reduction in a posteriori

Fig. 2 Results for graphs with a temporal structure and two levels of noise (no noise and 50%of reallocated
edges). Violin plots (Hintze and Nelson 1998) combine a box plot and a density estimator, leading here to a
better view of the variability of the results than e.g. standard deviation bars. The figure represents via violin
plots the number clusters (a) and time segmented (b) detected by the proposed approach as a function of
the number of edges (yellow no noise, violet 50 % noise) (color figure online)
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probability induced by the complexity of the triclustering itself. Between 211 and 212,
data are numerous enough to detect clusters but too few to support the detection of
the true underlying structure (the results are somewhat unstable at this point and the
actual number of clusters discovered by the method varies between each generated
graph). Finally, beyond 212 edges, we have enough edges to retrieve the true structure.
More precisely, the number of clusters of source and destination vertices reaches the
true number of clusters and their content agree, while the number of time segments
increases with the number of edges. This shows the good asymptotic behavior of the
method: it retrieves the true actor patterns and exploits the growing number of data to
better approximate the smooth temporal evolution of the connectivity structure. Indeed
Θ(t) is aC∞ functionwith bounded (constant) first derivatives and is therefore smooth,
with no brutal changes.

Notice finally that the behavior of the method is qualitatively similar on the noisy
patterns as on the noiseless ones, but that the convergence to the true structure and the
growth of the number of temporal clusters are slower in the noisy case, as expected.

5.2.2 Stationary graphs

When the temporal structure is destroyed by the time stamp shuffling, the method
does not partition the time stamps, leaving them in a unique cluster, regardless of the
number of edges. Given enough edges (213 without noise and 215 with 50 % noise),
vertex clusters are recovered perfectly. This shows the efficiency of the regularization
induced by the prior distribution on the parameters. As in the case of the temporal
graph, disturbing the structure via reallocating edges postpone the detection of the
clusters to a larger number of edges.

5.2.3 Random graphs

When applied to Erdős–Rényi random graphs with no structure (neither actor clus-
tering, nor temporal evolution), the method selects as the locally optimal triclustering
the one with only one cluster on each dimension, as expected for a non overfitting
method.

6 Experiments on a real-life data set

Experiments on a real-life data set have been conducted in order to illustrate the
usefulness of the method on a practical case.

6.1 The London cycles data set

The data set is a record of all the cycle hires in the Barclays cycle stations of London
between May 31, 2011 and February 4, 2012. The data are available on the website of
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TFL.2 The data set consists in 488 stations andm = 4.8million journeys. It ismodelled
as a graph with the departure stations as source vertices, the destination stations as
destination vertices and the journeys as edges, with time stamps corresponding to the
hire time with minute precision. In this data set S = D (with |S| = 488) as every
station is the departure station and the arrival station of some journeys.

6.2 Most refined triclustering

By applying the proposed method3 to this data set, we obtain 296 clusters of source
stations, 281 clusters of destination stations and 5 time stamp clusters. Most of the
clusters consist in a unique station, leading to a very fine-grained clustering on the
geographical/spatial point of view. This is not the result of some form of overfitting:
due to the very large number of bicycle hires compared to the number of stations, the
distributions of edges coming from/to the vertices are characteristic enough to distin-
guish the stations, in particular because many journeys are locally distributed around
a source station. On the contrary, and perhaps surprisingly, the temporal dynamic is
quite simple as only 5 time stamp clusters are identified. We label them as follows:
the morning (from 7.06 AM to 9.27 AM), the day (from 9.28 AM to 3.25 PM), the
evening (from 3.26 PM to 6.16 PM), the night (from 6.17 PM to 4.12 AM) and the
dawn (from 4.13 AM to 7.05 AM).

6.3 Simplified triclustering

We apply the exploratory post-processing described in Sect. 4.4 in order to study a
simplified triclustering. Clusters of stations are successively merged until obtaining
20 clusters of both departure and destination stations while the number of time stamp
clusters remains unchanged. By applying this post-processing technique, 70 % of the
informativity of the most refined triclustering is retained (see Definition 4). Notice
that the merging algorithm is not constrained to avoid merging time intervals and/or
to balance departure and destination clusters. On the contrary, each merging step
is chosen optimally between all the possible merges on each of the three variables
available at this stage. This shows that while the temporal structure is simple, it is very
significant on a statistical point of view.

While the data set does not contain explicit geographic information, a detailed
analysis of the clusters reveals that the clustered stations are in general geographically
correlated. This is a natural phenomenon in a bike share system where short journeys
are favored both by the pricing structure and because of the physical effort needed to
travel from one point to another. A notable exception is observed for the cycle stations
in front of Waterloo and King’s Cross train stations (white discs on Fig. 3) that have
been grouped together while they are quite distant. This specific pattern is detailed
and interpreted in Sect. 6.4, using an appropriate visualization method.

2 Transport for London, http://www.tfl.gov.uk.
3 On a standard desktop PC, this takes approximately 50 min, with a maximal memory occupation of 4.5
GB.

123

http://www.tfl.gov.uk


530 R. Guigourès et al.

Fig. 3 Clusters of source stations: each station is represented by a symbol whose shape and level of gray
is specific to the corresponding source cluster

Fig. 4 Destination cluster contributions to the mutual information between the source cluster ’Water-
loo/King’s Cross’ (stations drawn using stars) and all the destination clusters. Within a destination cluster,
all stations share the same color whose intensity is proportional to the contribution of the cluster to the
mutual information. Positive contributions are represented in red, negative in blue. The present figure shows
mainly positive or null contributions (no blue circles) (color figure online)

The triclusterings obtained by our method are not constrained to yield identical
results on S and D even if S = D (which is the case here). This would be an important
limitation as it would constraint an actor to have the same role as a source than as a
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destination. In the bike share data set, we obtain comparable but not identical clustering
structures on the set of source and destination vertices. The main notable difference
lies on the segmentation of the financial district of London: one single destination
cluster covers the area while it is split into two source clusters (the two types of gray
squares on Fig. 3 form the source clusters, while most red discs on the right hand side
of Fig. 4 form the destination cluster).

6.4 Detailed visualization

The triclustering obtained with our method can help understanding the corresponding
temporal data set, in particular when it is used to build specialized visual representa-
tions, as illustrate below.

In order to better understand the partition of the stations, we investigate the dis-
tribution of journeys originating from (resp. terminating to) the clusters. To that end,
we study the contribution to the mutual information of each pair of source/destination
stations. We first define more formally the distributions under study. We denote P

S
C

the probability distribution on {1, . . . , kS} given by

P
S
C ({i}) = μi..

m
. (24)

It corresponds to the empirical distribution of the clusters in the data set. Similarly,
we denote PD

C the probability distribution on {1, . . . , kD} given by

P
D
C ({ j}) = μ. j.

m
. (25)

Finally, the joint distribution PS,D
C on {1, . . . , kS} × {1, . . . , kd} is given by

P
S,D
C ({(i, j)}) =

∑kT
l=1 μi jl

m
. (26)

Tomeasure the dependencies between the source and destination vertices at the cluster
level, we use the mutual information (Cover and Thomas 2006) between the cluster
distribution, that is

MI S,D
C =

kS∑
i=1

kD∑
j=1

P
S,D
C ({(i, j)}) log P

S,D
C ({(i, j})

P
S
C ({i})PD

C ({ j}) . (27)

Mutual information is necessarily positive and its normalized version (NMI) is com-
monly used as a quality measure in the co-clustering problems (Strehl and Ghosh
2003). Here, we only focus on the contribution to mutual information of a pair of
source/destination clusters. This value can be either positive or negative according to
whether the observed joint probability of journeys PS,D

C ({(i, j}) is above or below
the expected probability P

S
C ({i})PD

C ({ j}) in case of independence. Such a measure
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quantifies whether there is a lack or an excess of journeys between two clusters of
stations in comparison with the expected number.

For instance, Fig. 4 shows an excess of journeys from the Waterloo and King’s
Cross train stations to the central areas of London. Both train stations being major
intercity railroad stations, we can assume that people there have the same behavior
and all converge to the same points in London: the business districts. This convergence
pattern explains why distant cycle stations can be grouped in the same cluster.

In this first analysis, the time variable is not taken into account. It can be integrated
into a visualization by considering for instance the dependency between the time stamp
clusters on one hand and pairs of source and destination clusters on the other hand.
We first define PT

C the probability distribution on {1, . . . , kT } by

P
T
C ({l}) = μ..l

m
. (28)

The full joint distribution on the clusters is given by the probability distributionPS,D,T
C

on {1, . . . , kS} × {1, . . . , kD} × {1, . . . , kT } given by

P
S,D,T
C ({(i, j, l)}) = μi jl

m
. (29)

Then we display the individual contributions to the mutual information between pairs
of source/destination clusters and time clusters:

MI (S,D),T
C =

kS∑
i=1

kD∑
j=1

kT∑
l=1

P
S,D,T
C ({(i, j, l)}) log P

S,D,T
C ({(i, j, l})

P
S,D
C ({(i, j)})PT

C ({l}) . (30)

Similarly to the previous measure, this one aims at showing the pairs of clusters
between which there is an excess of traffic compared to the usual daily traffic between
these stations and the usual traffic at this period in London. For example, for the source
cluster Waterloo/King’s Cross, the traffic is higher than expected on mornings to the
destination clusters located in the center of London (see Fig. 5). By contrast there is a
lack of evening journeys (see Fig. 6). These results are not really surprising because
we can assume that in the mornings, people use the cycles as a mean of transport to
their office rather than as a leisure activity.

7 Conclusion

This paper introduces a new approach for discovering patterns in time evolving graphs,
a type of data in which interactions between actors are time stamped. The proposed
approach, based on the MODL methodology, operates by grouping in clusters source
vertices, destination vertices and time stamps in the same procedure. Time stamps
clusters are constrained to respect their ordering, leading to the construction of time
intervals. The proposedmethod is related to co-clustering in that we consider the graph
as a set of edges described by three variables: source vertices, destination vertices and
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Fig. 5 Each station is colored according to the contribution of its destination cluster and of the source cluster
Waterloo/King’sCross (stations drawnusing stars) to themutual information between the source/destination
pairs and the time segments. As in Fig. 4, color intensity measures the absolute value of the contribution,
while the sign is encoded by the hue (red for positive and blue for negative). In the present figure, the time
segment is the morning one, with mainly positive or null contributions (no blue circles) (color figure online)

Fig. 6 Mutual information contribution for the evening time segment. See Fig. 5 for details. The present
figure shows mainly negative or null contributions (no red circles) (color figure online)

time.All of themare simultaneously partitioned in order to build time interval onwhich
the interactions between actors can be summarized at the cluster level. This approach
is particularly interesting because it does not require any data preprocessing, such
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as an aggregation of time stamps or a selection of significant edges. Moreover the
evolving structure of the graph is tracked in one unique step, making the approach
more reliable to study the temporal graphs. Its good properties have been assessedwith
experiments on artificial data sets. Themethod is reliable because it is resilient to noise
and asymptotically finds the true underlying distribution. It is also suitable in practical
cases as illustratedby the studyon the cycles renting systemofLondon. In futureworks,
such a method could be extended to co-clustering in k-dimensions, adding labels to
the vertices or another temporal feature, such as the day of week or the duration of an
interaction for example. This would allow us for instance to model the cycles renting
system in more details by taking into account both the departure time and the arrival
time of a bike ride. A more ambitious goal would be to allowmore complex clustering
structures. Indeed in this paper, vertex clusters are time independent, while it would
make sense to allow some time dependencies to the clustering. In our framework, a
possibilitywould be to retainmore clusters during a some time intervals and less during
others, when the structure is simplified. In other words, two clusters of vertices could
be merged on interval [t1, t2] but kept separated during interval [t2, t3]. This would
allow tracking the complexity of interaction patterns in a non uniform way through
time, rather in the implicitly uniform way we handle them in the current method.

Acknowledgements The authors thank the anonymous reviewers and the associate editor for their valuable
comments that helped improving this paper.

Appendix 1: Interpretations of the dissimilarity between two clusters

Interestingly, the dissimilarity given in Definition 3 receives several interpretations. It
corresponds to a loss of coding length (when the MODL criterion is interpreted as a
description length), a loss of posterior probability of the triclustering given the data (see
Proposition 1), and asymptotically to a divergence between probability distributions
associated to the clusters (see Proposition 2).

Proposition 1 The exponential of the dissimilarity between two clusters, c1 and c2,
gives the inverse ratio between the probability of the simplified triclustering given the
data set and the probability of the original triclustering given the data set:

P(M|E) = e�MODL(c1,c2)P(Mmerge c1 and c2 |E). (31)

Asymptotically—i.e when the number of edges tends to infinity - the dissimilarity
between two clusters is proportional to a generalized Jensen–Shannon divergence
between two distributions that characterize the clusters in the triclustering structure.
To simplify the discussion, we give only the definition and result for the case of source
clusters, but this can be generalized to the two other cases.

Definition 5 Let M be a triclustering. For all i ∈ {1, . . . , kS} we denote

P
S
i =

(
μi jl

μi..

)
1≤ j≤kD,1≤l≤kT

. (32)
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The matrix P
S
i can be interpreted as a probability distribution over {1, . . . , kD} ×

{1, . . . , kT }. It characterizes cSi as a cluster of source vertices as seen from clusters of
destination vertices and of time stamps.

We denote PS the associated marginal probability distribution obtained by

P
S =

(∑kS
i=1 μi jl∑kS
i=1 μi..

)
1≤ j≤kD,1≤l≤kT

. (33)

Obviously, we have

P
S =

kS∑
i=1

πiP
S
i , (34)

where
πi = μi..∑kS

k=1 μk..

. (35)

Proposition 2 Let M be a triclustering and let cSi and cSk be two source clusters.
Then

�MODL(cSi , cSk )

ν
−→

ν→+∞ (πi + πk)J S
αi ,αk (PS

i ,P
S
k ), (36)

with

J Sαi ,αk (PS
i ,P

S
k ) = αi K L(PS

i ||αiP
S
i + αkP

S
k ) + αk K L(PS

k ||αiP
S
i + αkP

S
k ), (37)

and where αi and αk are the normalized mixture coefficients such as αi = πi
πi+πk

and
αk = πk

πi+πk
.

Proof J S is the generalized Jensen–Shannon Divergence (Lin 1991) and K L , the
Kullback–Leibler Divergence. The full proof is left out for brevity and relies on the
Stirling approximation: log n! = n log(n)−n+O(log n), when the difference between
the criterion value after and before the merge is computed. ��

The Jensen–Shannon divergence has some interesting properties: it is a symmetric
and non-negative divergence measure between two probability distributions. In addi-
tion, the Jensen–Shannon divergence of two identical distributions is equal to zero.
While this divergence is not a metric, as it is not sub-additive, it has nevertheless the
minimal properties needed to be used as a dissimilarity measure within an agglomer-
ative process in the context of co-clustering (Slonim and Tishby 1999).
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