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Abstract The Gaussian mixture model (GMM) is a popular tool for multivariate
analysis, in particular, cluster analysis. The expectation–maximization (EM) algorithm
is generally used to perform maximum likelihood (ML) estimation for GMMs due
to the M-step existing in closed form and its desirable numerical properties, such
as monotonicity. However, the EM algorithm has been criticized as being slow to
converge and thus computationally expensive in some situations. In this article, we
introduce the linear regression characterization (LRC) of the GMM.We show that the
parameters of an LRC of the GMM can be mapped back to the natural parameters, and
that a minorization–maximization (MM) algorithm can be constructed, which retains
the desirable numerical properties of the EM algorithm, without the use of matrix
operations. We prove that the ML estimators of the LRC parameters are consistent
and asymptotically normal, like their natural counterparts. Furthermore, we show
that the LRC allows for simple handling of singularities in the ML estimation of
GMMs. Using numerical simulations in the R programming environment, we then
demonstrate that the MM algorithm can be faster than the EM algorithm in various
large data situations, where sample sizes range in the tens to hundreds of thousands
and for estimating models with up to 16 mixture components on multivariate data with
up to 16 variables.
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1 Introduction

The Gaussian mixture model (GMM) is a ubiquitous tool in the domain of model-
based cluster analysis; for instance, see McLachlan and Basford (1988) and Chapter
3 of McLachlan and Peel (2000) for a statistical perspective, and Chapter 9 of Bishop
(2006) and Chapter 10 of Duda et al. (2001) for a machine learning point of view.
Furthermore, discussions of applications of GMMs and comparisons of GMMs to
other cluster analysis methods can be found in Chapter 8 of Clarke et al. (2009),
Section 14.3 of Hastie et al. (2009), and Section 9.3 of Ripley (1996), as well as
Hartigan (1985), Jain et al. (1999), and Jain (2010). The GMM framework can be
defined as follows.

Let Z ∈ {1, . . . , g} be a categorical random variable such that

P (Z = i) = πi > 0

for i = 1, . . . , g − 1 and P (Z = g) = 1 − ∑g−1
i=1 πi = πg , and let X ∈ R

d be such
that X|Z = i has density φd

(
x;μi ,Σ i

)
, where

φd (x;μ,Σ) = (2π)−
d
2 det (Σ)−

1
2 exp

[

−1

2
(x − μ)T Σ−1 (x − μ)

]

(1)

is a d-dimensional multivariate Gaussian density function with mean vector μ ∈ R
d

and positive-definite covariance matrix Σ ∈ R
d×d . Here, the superscript T represents

matrix/vector transposition.
If we suppose that Z is unobserved (i.e. Z is a latent variable), then the density of

X can be written as

f (x; θ) =
g∑

i=1

πiφd
(
x;μi ,Σ i

)
, (2)

where θ = (πT ,μT
1 , . . . ,μT

g , vechT (Σ1), . . . , vechT (Σg))
T is the model parameter

vector and π = (π1, . . . , πg−1)
T . Densities of form (2) are known as GMMs, and we

refer to each φd(x;μi ,Σ i ) as component densities.
Let X1, . . . , Xn be a random sample from a population characterized by density

f (x; θ0), where the parameter vector θ0 is unknown. In such cases, the estimation
of θ0 is required for further inference regarding the data. Given an observed sample
x1, . . . , xn , such estimation can be conducted via maximum likelihood (ML) estima-
tion to yield the ML estimator θ̂n , where θ̂n is an appropriate local maximizer of the
likelihood function Ln(θ) = ∏n

j=1 f (x j ; θ).

Due to the summation form of (2), the computation of θ̂n cannot be conducted
in closed form. However, since its introduction by Dempster et al. (1977), the
expectation–maximization (EM) algorithm has provided a stable and monotonic iter-
ative method for computing the ML estimator; see Section 3.2 of McLachlan and Peel
(2000) for details. Although effective, the EM algorithm for GMM is not without some
criticisms; for example, it is known that the convergence of EM algorithms can be very
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slow, and may be computationally expensive in some applications; see Chapters 3 and
4 of McLachlan and Krishnan (2008) for details regarding theses issues.

To remedy the aforementioned issues, there have been broad developments in
constructing modifications of the GMMEM algorithm, as well as suggestions of alter-
native methodologies for estimation. For example, Andrews and McNicholas (2013),
Botev and Kroese (2004), Ingrassia (1991), and Pernkopf and Bouchaffra (2005) con-
sidered the use of metaheuristic algorithms; and Andrews and McNicholas (2013),
Celeux and Govaert (1992), Ganesalingam and McLachlan (1980), and McLachlan
(1982) considered alternatives to the likelihood criterion [see Chapter 12 of McLach-
lan and Peel (2000) for a literature review of other developments in this direction].
Each of the aforementioned methods have been shown to improve upon the perfor-
mance of the EM algorithm via simulation studies, although there are no theoretical
results to show that any of the methods uniformly out performs the EM algorithm.
Furthermore, each of themethods either require randomization, which relinquishes the
monotonicity of the EM algorithm, or replacement of the likelihood criterion, which
abandons the statistical properties of the ML estimators.

In this article, we devise a new algorithm for the estimation of GMMs that retains
themonotonicity properties of the EMalgorithmwhilst not utilizingmatrix operations.
Our approach extends from the following characterization of themultivariate Gaussian
density function.

Consider the following decomposition of μ and Σ , from (1), in which

μ =
[

μ1:d−1
μd

]

and Σ =
[

Σ1:d−1,1:d−1 ΣT
d,1:d−1

Σd,1:d−1 Σd,d

]

, (3)

where μ1:k contains the first k elements of μ, Σ1:k,1:k is the submatrix made up of the
first k rows and columns of Σ , Σk,1:l contains the first l elements from row k of Σ ,
and Σk,l is the element from the kth row and lth column of Σ , for k, l = 1, . . . , d.
Furthermore, let X̃k = (1, X1:k−1)

T , where X1:k contains the first k elements of X ,
and letβk = (βk,0, . . . , βk,k−1)

T ∈ R
k andσ 2

k > 0 be parameters. Using this notation,
Ingrassia et al. (2012) showed that for every μ and Σ , there exists a parametrization
βd , σ

2
d , μ1:d−1, and Σ1:d−1,1:d−1 such that the density function

fCW (x;βd , σ
2
d ,μ1:d−1,Σ1:d−1,1:d−1) = φ1(xd ;βT

d x̃d , σ
2
d )

×φd−1(x1:d−1;μ1:d−1,Σ1:d−1,1:d−1) (4)

is equal to φd(x;μ,Σ), for all values of x. This alternative parametrization allows for
the d-variate Gaussian distribution to be considered in two parts: a linear regression
(LR) and density estimation component. In Ingrassia et al. (2012, 2014), this para-
metrization was used within the cluster-weighted modeling framework for clustering
data arising from LR processes.

We extend upon the regression decomposition of Ingrassia et al. (2012) to character-
ize themultivariate Gaussian distribution entirely in terms of LR components. In doing
so, we are able to apply a minorization–maximization (MM) algorithm presented in
Becker et al. (1997), for the estimation of LR models without matrix operations via
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an iterative scheme; see Hunter and Lange (2004) for further details regarding MM
algorithms. Furthermore, by leveraging its MM construction, the algorithm that we
present is proven to be monotonic in its iterations as well as convergent to a stationary
point of the log-likelihood function. We are able to show via simulations that our
algorithm compares favorably with the EM algorithm in various practical scenarios,
when implemented in the R programming environment R Core Team (2013).

Aside from the numerical properties that we derive, we also address the statistical
properties of our LR characterization (LRC). We are able to establish both the consis-
tency and asymptotic normality of the LRCML estimators, as well as devise a simple
procedure for the satisfactory handling of singularities, which can arise in the ML
estimation of GMMs.

The remainder of the article is organized as follows. Firstly, we describe the LRC of
the multivariate normal distribution in Sect. 2. In Sect. 3, we devise the MM algorithm
for ML estimation as well as establish its numerical properties. In Sect. 4, the statis-
tical properties of the ML estimators and the model are derived, and in Sect. 5, the
performance of the MM algorithm is demonstrated via numerical simulations. Lastly,
conclusions are drawn in Sect. 6.

2 Linear regression characterization

Using the same notation as in (3) and (4), the LRC of themultivariate Gaussian density
is

λ(x; γ , σ 2) =
d∏

k=1

φ1(xk;βT
k x̃k, σ

2
k ), (5)

where γ = (βT
1 , . . . ,βT

d )T and σ 2 = (σ 2
1 , . . . , σ 2

d ). Here, we define x̃1 = 1 and
β1 = β1,0. We now show that (5) is a d-dimensional multivariate Gaussian density
and that there is a one-to-one correspondence between the LRC parameters γ and σ 2

and the natural parameters μ and Σ of (2). To attain such a result, we require the
following lemma.

Lemma 1 Using the same notation as in (3) and (4), if X has density function (2),
then for each k, X1:k and Xk |X1:k−1 = x1:k−1 have density functions

φk(x1:k;μ1:k,Σ1:k,1:k) and φ1(xk;μk|1:k−1(x1:k−1),Σk|1:k−1),

respectively, where

μk|1:k−1(x1:k−1) = μk + Σk,1:k−1Σ
−1
1:k−1,1:k−1(x1:k−1 − μ1:k−1),

and

Σk|1:k−1 = Σk,k − Σk,1:k−1Σ
−1
1:k−1,1:k−1Σ

T
k,1:k−1.

Lemma 1 can be seen as a special case Theorems 2.4.1 and 2.5.1 from Anderson
(2003). We can apply Lemma 1 to derive the following result.
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Theorem 1 Every density function of form (2) can be expressed in form (5) via a
bijective mapping between the parameters μ and Σ, and γ and σ 2.

The proof of Theorem 1 and other major results can be found in the Appendix. As an
example application of Theorem 1, consider that the 3-dimensional Gaussian density
φ3 (x;μ,Σ) is equal to

λ(x; γ , σ 2) = φ1(x1;β1,0, σ
2
1 )φ1(x2;βT

2 x̃2, σ
2
2 )φ1(x3;βT

3 x̃3, σ
2
3 )

for all x ∈ R
3, where β1,0 = μ1, σ 2

1 = Σ1,1, β2,0 = μ2 − Σ2,1Σ
−1
1,1μ1, β2,1 =

Σ2,1Σ
−1
1,1 , σ

2
2 = Σ2,2 − Σ2

2,1Σ
−1
1,1 ,

β3,0 = μ3 − Σ3,1:2Σ−1
1:2,1:2μ1:2,

(β3,1, β3,2)
T = Σ3,1:2Σ−1

1:2,1:2,
and

σ 2
3 = Σ3,3 − Σ3,1:2Σ−1

1:2,1:2Σ
T
3,1:2.

2.1 Ordering of variables

As noted by a reviewer, the bijective mapping between μ and Σ , and γ and σ 2 only
holds for the unpermuted ordering of the elements of X = (X1, . . . , Xd)

T . That
is, if Π �= I is a permutation matrix, as defined in Section 8.2 of Seber (2008)
[i.e. ΠX permutes the ordering of the elements of X ; e.g. there exists a Π such
that Π(X1, X2, X3)

T = (X3, X1, X2)
T ], then there exist functions γ Π(μ,Σ) and

σ 2
Π(μ,Σ) such that

λ(x; γ , σ 2) = λ(Πx; γ Π(μ,Σ), σ 2
Π(μ,Σ))

= φd(x;μ,Σ)

for all x ∈ R
d , where it is possible that γ �= γ Π (μ,Σ) or σ 2 �= σ 2

Π (μ,Σ). Here,
I is an identity matrix of appropriate dimension. This implies that if we permute the
order of the elements in the data vector, then there exists an alternative LRC of any
Gaussian density that we wish to represent, which may not be the same as the original
LRC.

We note that although the explicit forms of γ Π(μ,Σ) and σ 2
Π(μ,Σ) are not pro-

vided, they can be constructed in the following way. Firstly, consider that for any
permutation matrix Π,

φd(x;μ,Σ) = φd(Πx;Πμ,ΠΣΠT )

for all x ∈ R
d . Secondly, Eqs. (22)–(25) can be used to map the elements of Πμ and

ΠΣΠT to the elements of γ Π(μ,Σ) and σ 2
Π(μ,Σ). Thus, the LRC parameters of

any permutation of the elements of X can be obtain via knowledge of the form of the
permutation, and the parameters of the underlying Gaussian density function of X .
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2.2 Gaussian mixture model

We now consider the LRC of the GMM density function

fR(x;ψ) =
g∑

i=1

πiλ(x; γ i , σ
2
i ), (6)

where ψ = (πT , γ T
1 , . . . , γ T

g , σ 2
1, . . . , σ

2
g)

T is the vector of model parameters. Here,

γ i = (βT
i,1, . . . ,β

T
i,d)

T , σ 2
i = (σ 2

i,1, . . . , σ
2
i,d), and β i,k = (βi,k,0, . . . , βi,k,k−1)

T , for
each i and k. Furthermore, π is restricted in the same way as in (2). Using Theorem 1,
the following result can be shown.

Corollary 1 For each natural parameter vector θ , there exists a mapping to an LRC
parameter vector ψ, and vice versa, such that f (x; θ) = fR(x;ψ) at every x ∈ R

d .

Corollary 1 can be seen as an extension of Proposition 1 from Ingrassia et al. (2012).
Unfortunately, unlike Theorem 1, the mapping between θ and ψ is not bijective, due
to the non-identifiability of GMMs; this issue is well documented in Section 3.1 of
Titterington et al. (1985). Nevertheless, Corollary 1 allows us to consider the density
estimation of data generated from a GMM using an LRC of the GMM instead. We
shall show that this representation permits the construction of a matrix-free algorithm
for ML estimation.

3 Maximum likelihood estimation

Upon observing data x1, . . . , xn , the likelihood and the log-likelihood that the data
arise from a LRC of the GMM are LR,n(ψ) = ∏n

j=1 fR(x j ;ψ) and

logLR,n(ψ) =
n∑

j=1

log fR(x;ψ)

=
n∑

j=1

log
g∑

i=1

πiλ(x; γ i , σ
2
i ), (7)

respectively.
As with the natural parametrization of the GMM, we generally assume that the

data were generated from a process with density function fR(x;ψ0), where ψ0 is
unknown. In such cases, ψ0 can be estimated via the ML estimator ψ̂n , where ψ̂n is
an appropriate local maximizer of (7).

Like θ̂n , ψ̂n cannot be computed in closed form. Thus, we must devise an iterative
computation scheme. We now present an MM algorithm for such a purpose.

3.1 Minorization–maximization algorithms

Suppose that we wish to maximize some objective function η(t), where t ∈ S for
some set S ⊂ R

r . If we cannot obtain the maximizer of η(t) directly, then we can seek
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a minorizer of η(t) over S, instead. A minorizer of η(t) is a function h(s; t) such that
η(t) = h(t; t) and η(s) ≥ h(s; t), whenever s �= t , and s ∈ S. Here, h(s; t) is said to
minorize η(t).

Upon finding an appropriate minorizer and denoting t(m) as themth iteration of the
algorithm, an MM algorithm can be defined using the update scheme

t(m+1) = argmax
s∈S h(s; t(m)). (8)

By the properties of the minorizer and by definition of (8), iterative applications of
the MM update scheme yields the inequalities,

η(t(m+1)) ≥ h(t(m+1); t(m)) ≥ h(t(m); t(m)) = η(t(m)).

This shows that the sequenceof objective function evaluationsη(t(m)) ismonotonically
increasing in each step. Furthermore, under some regularity conditions, it can also be
shown that the sequence of iterates t(m) converges to some stationary point t∗ of η(t).

In this article, we consider minorizers for the functions

η1(t) = log

(
r∑

i=1

ti

)

,

where S = {t : ti ≥ 0, i = 1, . . . , r}, and

η2(t) = −(a − tT b)2,

where a ∈ R, b ∈ R
r , and S = R

r . These objective functions [i.e. η1(t) and η2(t)]
can be minorized via the functions

h1 (s; t) =
r∑

i=1

ti
∑r

i ′=1 ti ′

[

log

(∑r
i ′=1 ti ′

ti

)

+ log (si )

]

, (9)

and

h2 (s; t) = −
r∑

i=1

αi

[

a − bi
αi

(si − ti ) − tT b
]2

, (10)

respectively, where αi = (|bi |p + δ)/
∑r

i ′=1(|bi ′ |p + δ), p > 0, and δ > 0 is a
small coefficient. The two minorizers were devised in Zhou and Lange (2010) and
Becker et al. (1997), respectively; the latter was applied to perform LR without matrix
operations. Here, we choose p = 2 in αi for use throughout the article, as per a
suggestion from Becker et al. (1997).

Let ψ (m) be the mth MM iterate. By setting si = πiλ(x j ; γ i , σ
2
i ) and ti =

π
(m)
i λ(x j ; γ

(m)
i , σ

(m)2
i ) in (9), for each i and j , we get the minorizer for (7),
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378 H. D. Nguyen, G. J. McLachlan

Q(ψ;ψ (m)) = C(ψ (m)) +
g∑

i=1

n∑

j=1

τi (x j ;ψ (m)) log[πiλ(x; γ i , σ
2
i )]

= C(ψ (m)) + Q1(ψ;ψ (m))

+
g∑

i=1

d∑

k=1

1

2σ 2
i,k

n∑

j=1

τi (x j ;ψ (m))Q2,i, j,k(β i,k;β
(m)
i,k ), (11)

where

Q1(ψ;ψ (m)) =
g∑

i=1

n∑

j=1

τi (x j ;ψ (m)) logπi − 1

2

g∑

i=1

d∑

k=1

log σ 2
i,k

n∑

j=1

τi (x j ;ψ (m)),

Q2,i, j,k(β i,k;β
(m)
i,k ) = −(x j,k − βT

i,k x̃ j,k)
2, (12)

and

τi (x;ψ) = πiλ(x; γ i , σ
2
i )∑g

i ′=1 πi ′λ(x; γ i ′ , σ
2
i ′)

. (13)

Here, x j = (x j,1, . . . , x j,d)T and x̃ j,k = (1, x j,1, . . . , x j,k−1)
T for each j and k, and

C(ψ (m)) is a constant that does not depend on ψ .
Now, by setting a = x j,k , b = x̃ j,k , s = β i,k , and t = β

(m)
i,k in (10), we obtain the

minorizer for (12),

Q′
2,i, j,k(β i,k;β

(m)
i,k ) = −

k−1∑

l=0

α j,l

[

x j,k − x j,l
α j,l

(βi,k,l − β
(m)
i,k,l) − β

(m)T
i,k x̃ j,k

]2
, (14)

where α j,l = (|x j,l |p + δ)/
∑k−1

l ′=0(|x j,l |p + δ) and x j,0 = 1 by definition, for j and
l = 0, . . . , k − 1.

Using (14), we can further minorize (11), and thus (7), by

Q′(ψ;ψ (m)) = C(ψ (m)) + Q1(ψ;ψ (m))

+
g∑

i=1

d∑

k=1

1

2σ 2
i,k

n∑

j=1

τi (x j ;ψ (m))Q′
2,i, j,k(β i,k;β

(m)
i,k ). (15)

We now consider the partition of ψ into ψ1 = (πT , γ T
1 , . . . , γ T

g )T and ψ2 =
(σ 2

1, . . . , σ
2
g)

T , whereψ = (ψT
1 ,ψT

2 )T . By fixingψ2 atψ
(m)
2 , Q′(ψ1,ψ

(m)
2 ;ψ (m)) is

additively separable in the subsets of ψ1; furthermore, for each i , the elements of γ i

are additively separable as well. Similarly, by fixing ψ1 at ψ
(m)
1 , Q(ψ

(m)
1 ,ψ2;ψ (m))

is additively separable in the elements of the subsets of ψ2. This result suggests the
following block successive MM update scheme.
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Let ψ (0) be an initial parameter vector. At the (m + 1)th iteration, the algorithm
proceeds in two steps: the min (minorization)-step and the max (maximization)-step.
In the min-step, we either construct (15) if m is odd, or (11) if m is even; in either
cases, the min-step requires the computation of τi (x j ;ψ (m)), for each j .

In the max-step, if m is odd, then we set ψ (m+1)
2 = ψ

(m)
2 and solve for the root of

∂Q′(ψ1,ψ
(m)
2 ;ψ (m))

∂ψ1
= 0,

to get the updates

π
(m+1)
i =

∑n
j=1 τi (x j ;ψ (m))

n
(16)

and

β
(m+1)
i,k,l = β

(m)
i,k,l +

∑n
j=1 x j,lτi (x j ;ψ (m))[x j,k − β

(m)T
i,k x̃ j,k]

∑n
j=1[x2j,lτi (x j ;ψ (m))/α j,l ]

(17)

for each i , k, and l = 0, . . . , k − 1. Here, 0 is a zero matrix/vector of appropriate
dimensionality.

Similarly, the max-step for evenm proceeds by settingψ
(m+1)
1 = ψ

(m)
1 and solving

for the root of

∂Q(ψ
(m)
1 ,ψ2;ψ (m))

∂ψ2
= 0

to obtain the updates

σ
(m+1)2
i,k =

∑n
j=1 τi (x j ;ψ (m))[x j,k − β

(m)T
i,k x̃ j,k]2

∑n
j=1 τi (x j ;ψ (m))

(18)

for each i and k. We now show that together, updates (16)–(18) generate a sequence
of monotonically increasing log-likelihood values.

Theorem 2 If m is odd and ψ
(m+1)
2 = ψ

(m)
2 , then updates (16) and (17) result in the

inequalities,

logLR,n(ψ
(m+1)) ≥ Q′(ψ (m+1)

1 ,ψ
(m)
2 ;ψ (m))

≥ Q′(ψ (m)
1 ,ψ

(m)
2 ;ψ (m)) ≥ logLR,n(ψ

(m)). (19)

If m is even and ψ
(m+1)
1 = ψ

(m)
1 , then update (18) results in the inequalities,

logLR,n(ψ
(m+1)) ≥ Q(ψ

(m)
1 ,ψ

(m+1)
2 ;ψ (m))

≥ Q(ψ
(m)
1 ,ψ

(m)
2 ;ψ (m)) ≥ logLR,n(ψ

(m)). (20)
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In general, the MM algorithm is iterated until some convergence criterion is met.
Usually, this is either the absolute convergence criterion

logLR,n(ψ
(m+1)) − logLR,n(ψ

(m)) ≤ ε,

or the relative convergence criterion

logLR,n(ψ
(m+1)) − logLR,n(ψ

(m))

| logLR,n(ψ
(m))| ≤ ε, (21)

for some small ε > 0. In either case, upon convergence, the final iterate of the algorithm
is declared the ML estimator ψ̂n . Let ψ

∗ be a limit point of the MM algorithm, such
that ψ̂n → ψ∗ as ε → 0 for some starting parameter ψ (0).

The algorithm that we have devised is an instance of the block successive lower-
bound maximization algorithms of Razaviyayn et al. (2013). As such, we can apply
Theorem 2 of Razaviyayn et al. (2013) to obtain the following result regarding its limit
points.

Theorem 3 If ψ∗ is a limit point of the algorithm conducted via the steps ψ
(m+1)
2 =

ψ
(m)
2 , (16), and (17), when m is odd; and ψ

(m+1)
1 = ψ

(m)
1 and (18), when m is even,

for some initial vector ψ (0); then ψ∗ is a stationary point of (7).

Theorem 3 shows that given suitable initial parameter vector ψ (0), the MM algorithm
generates a sequence ψ (m) that converges to a stationary point of (7); this is a good
result considering its multimodality.

3.2 Covariance constraints

We note that Theorem 3 requires that the limit points be finite values. This cannot
always be guaranteed since logLR,n(ψ

(m)) → ∞ if any of the sequences σ
(m)2
i,k → 0.

This is equivalent to the problem of component covariance matrices Σ i becoming
singular in the natural parametrization [i.e. in Ln(θ)]. In the natural parametrization,
the usual approach is to restrict the component covariance matrices to be positive
definite via conditioning on the eigenvalues of the matrices. Such approaches were
pioneered in Hathaway (1985); examples of recent developments include Greselin and
Ingrassia (2008), Ingrassia (2004), and Ingrassia and Rocci (2007, 2011). We proceed
to provide a simple alternative to the aforementioned approaches, based upon the LRC
parametrization.

In the LRC, ensuring finite limit points amounts to guaranteeing that for each i and
k, σ (m)2

i,k → ξi,k for some ξi,k > 0. This can be implemented by adding a small ξ > 0
to the right-hand side of update (18) at each iteration. Through doing this, we ensure
that each σ ∗2

i,k is positive, as well as retaining the monotonicity of the likelihood, for
each update. The following result is then applicable.

Theorem 4 In (5), if σ 2
k > 0 for each k, then the corresponding covariance matrix

Σ, of the natural parametrization, is positive-definite.
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Theorem 4 implies that the covariance matrices in the natural parametrization will
always be positive-definite, if we apply the described process. As suggested by a
reviewer, it is practically important to choose a ξ such that it does not impede upon
the estimation of mixture components with small variances. If we assume that the
marginal variances of each marginal component do not exceed a proportion Ξ−1

(Ξ > 1) of the corresponding marginal variances of the overall distribution [i.e.
var(X1), . . . , var(Xd)], then we can choose

ξ = min

{ ˆvar (X1)

Ξ
, . . . ,

ˆvar (Xd)

Ξ

}

,

where ˆvar(Xk) is an estimate for the marginal variance of the kth dimension. We use
Ξ = 1010 for all numerical applications presented in this article.

4 Statistical properties

The consistency and asymptotic normality of ML estimators for GMM under the
natural parametrization have been proven in many instances; see for example, Redner
and Walker (1984), Hathaway (1985), and Atienza et al. (2007). We now seek the
consistency of the ML estimators of the LRC of the GMM. Such a result can be
obtained via Theorem 4.1.2 of Amemiya (1985).

Theorem 5 Let X1, . . . , Xn be independent and identically distributed random sam-
ples from a distribution with density fR(x;ψ0), and let Ψn be the set of roots of the
equation ∂(logLR,n(ψ))/∂ψ = 0, where Ψn = {0} if there are no roots. If ψ0 is a
strict local maximizer of E[log fR(X;ψ)], then for any ε > 0,

lim
n→∞P

[

inf
ψ∈Ψn

(ψ − ψ0)T (ψ − ψ0) > ε

]

= 0.

Theorem 5 is an adequate result, considering that the log-likelihoods of GMMs are
often multimodal and unbounded, and that the MM algorithm is able to locate local
maximizers when started from suitable values. We note that the result similarly holds
when a lower bound is enforced for each of the variance limit points σ ∗2

ik , as in Sect. 3.2.
We now seek to establish the asymptotic normality of the ML estimators. Upon

making some assumptions (see the proof in the Appendix), we are able to utilize
Theorem 4.2.4 of Amemiya (1985) to get the following result.

Theorem 6 Under Assumption B4, the ML estimator ψ̂n (as in Theorem 5) satisfies

√
n(ψ̂n − ψ0)

D→ N

⎛

⎝0,−E

[
∂2 log fR(x;ψ)

∂ψ∂ψT

∣
∣
∣
∣
ψ=ψ0

]−1
⎞

⎠ .

Theorems 5 and 6 allow for inferences to be drawn from the ML estimators and
their functions. For example, if x is an observation that arises from a distribution
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with density fR(x;ψ0), then we can compute the conditional probability of its latent
component variable Z = i given X = x, by τi (x;ψ0) via an application of Bayes

rule. Furthermore, if ψ̂n
P→ ψ0, then by continuous mapping, we have τi (x; ψ̂n)

P→
τi (x;ψ0), for each i . Thus, the estimated allocation rule that assigns x into component
ẑ ∈ {1, . . . , g},

ẑ = arg max
i∈{1,...,g}τi (x; ψ̂n),

is asymptotically correct (i.e. it asymptotically assigns x to the component which
maximizes the a posteriori probability).

5 Numerical simulations

To assess the performance of the MM algorithm proposed in Sect. 3.1, we conduct a
set of three numerical simulation studies: S1, S2, and S3. In S1, we investigate the
performance of the MM algorithm against the standard EM algorithm for estimating
GMMs in a setting where the simulated data arise from clusters of equal sample sizes.
In S2, the setup from S1 is repeated albeit with simulated data that arises from clusters
with differing sample sizes. Finally, in S3, we assess whether or not the ordering of
the variables (as discussed in Sect. 2.1) are influential in the performance of the MM
algorithm. We present the setups and results of the numerical simulations below.

5.1 Numerical simulation S1

In S1, we simulated 2N−G observations from each of 2G Gaussian distributions of
dimensionality 2D , where D = 1, . . . , 4, G = 1, . . . , 4, and N = 15, 16, 17. These
sample sizes were chosen since performance improvements are most relevant in large
data sets. A sample simulated via this design approximately corresponds to a sample
of 2N observations from a 2G component GMM, where π1 = · · · = π2G = 2−G .

In each scenario, each of the 2G distribution means is randomly sampled from a
Gaussian distribution with mean 0 and covariance matrix 20 × I . The covariance
matrices of the Gaussian distributions are each sampled from a Wishart distribution
with scale matrix I and 2D +2 degrees of freedom. An example of the D = 2, G = 3,
and N = 15 case is shown in Fig. 1.

For each D, G, and N , 100 trials are simulated. In each trial, the MM algorithm is
used to compute the ML estimates ψ̂n for the LRC parameters. Here, the algorithm is
terminated using criterion (21) with ε = 10−5, and the computational time is recorded.
The traditional EM algorithm (see Section 3.2 of McLachlan and Peel 2000) is then
used to compute the ML estimates θ̂n for the natural parameters, using the same
starting values as for the MM algorithm. The EM algorithm is terminated using the
criterion

logLR,n(ψ̂n) − logLn(θ
(m)
n ) < ε,

using ε = 10−5, and the computational time is recorded. The k-means algorithm was
used to initialize parameters, as per Section 2.12 of McLachlan and Peel (2000); see
MacQueen (1967) regarding the k-means algorithm.
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Fig. 1 Pairwise marginal plots of data generated from the D = 2, G = 3, and N = 15 case of the
simulations. The eight colors indicate the different origins of each of the generated data points

The algorithms were applied via implementations in the R programming environ-
ment (version 3.0.2) on an Intel Core i7-2600 CPU running at 3.40 GHz with 16 GB
internal RAM, and the timing was conducted using the proc.time function from said
environment. The computational times, in seconds, for both algorithms were then
averaged over the trials, for each scenario, and the results are reported in Table 1. In
Fig. 2, we also plot the average ratio of EM to MM algorithm computational times,
for each scenario.

Upon inspection, Table 1 suggests that both theMM and the EM algorithms behave
as expected,with regards to the increases in computation timeswith respect to increases
in D, G, and N . Furthermore, we notice that in each scenario, the MM algorithm
is faster than the EM algorithm on average. In the best case, the MM algorithm is
approximately 35 times faster than the EM (i.e. case D = 1, G = 2, and N = 15),
and in the worst case, the MM and EM are approximately at parity (i.e. case D = 4,
G = 1, and N = 17).

In Fig. 2, the performance of the MM algorithm over the EM decreases due to
increases in D, G, and N , with D decreasing this gain more severely than the other
two variables. This pattern may be explained by some of the additional computation
overhead of theMMalgorithm. For instance, notice that theMMalgorithm requires the
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Fig. 2 Plots of the average ratio of EM to MM algorithm computational times in S1. The panels are
separated into the G values of each scenario, and the N values are indicated by the line colors. Here, red,
green, and blue indicate the values N = 15, 16, 17, respectively. The dotted line indicates a ratio of 1 (color
figure online)

computation and storage of α jl for each j , l, and k. The number of these computations
increase quadratically in D, but only linearly inG and N . Due to this effect, we cannot
recommend the MM algorithm in all situations. However, it is noticeable that in the
low D cases, the MM algorithm appears to be distinctly faster than the EM.

5.2 Numerical simulation S2

In S2, we repeat the simulation design of S1 except instead of simulated 2G equally
sized samples, we simulated 2G−1 samples of size (1/2) × 2N−G and 2G−1 samples
of size (3/2)× 2N−G . A sample simulated via this design approximately corresponds
to a sample of 2N observations from a 2G component GMM, where π1 = · · · =
π2G−1 = 1/2G+1 and π2G−1+1 =, . . . , π2G = 3/2G+1. Using the same comparison
method and termination criterion as applied in S1, we obtain the results presented in
Table 2. These results are further visualized in Fig. 3.

FromTable 2,we notice that both theMMandEMalgorithm average computational
times are greater than the times in each of the respective scenarios, in S1. This indicates
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Table 2 Results of numerical simulation S2 for assessing the performance of the MM and EM algorithms

N D G MM EM Ratio N D G MM EM Ratio N D G MM EM Ratio

15 1 1 0.08 1.71 22.02 16 1 1 0.18 3.38 19.39 17 1 1 0.31 6.26 20.12

15 1 2 0.18 4.65 25.60 16 1 2 0.37 7.14 19.88 17 1 2 0.81 13.74 18.94

15 1 3 0.70 15.66 22.42 16 1 3 1.86 42.40 20.66 17 1 3 3.47 69.80 19.23

15 1 4 1.83 33.61 18.32 16 1 4 5.98 74.41 16.98 17 1 4 8.07 145.67 17.25

15 2 1 0.20 1.73 9.28 16 2 1 0.44 2.93 6.88 17 2 1 0.85 6.18 7.33

15 2 2 0.39 3.53 9.73 16 2 2 0.80 5.71 7.30 17 2 2 1.48 11.94 7.99

15 2 3 1.21 7.94 6.96 16 2 3 2.47 15.50 6.43 17 2 3 4.46 30.75 6.99

15 2 4 2.84 14.94 5.24 16 2 4 5.48 32.96 5.91 17 2 4 10.68 62.21 5.88

15 3 1 0.60 1.66 2.81 16 3 1 0.99 3.13 3.17 17 3 1 1.92 6.24 3.26

15 3 2 0.96 3.27 3.44 16 3 2 1.73 6.22 3.61 17 3 2 3.32 12.44 3.78

15 3 3 2.18 6.47 3.07 16 3 3 3.97 13.28 3.42 17 3 3 7.21 25.07 3.60

15 3 4 4.39 12.43 2.94 16 3 4 8.40 25.29 3.13 17 3 4 16.34 50.65 3.23

15 4 1 1.58 1.74 1.10 16 4 1 3.02 3.47 1.15 17 4 1 6.15 7.00 1.15

15 4 2 2.46 3.44 1.40 16 4 2 4.71 6.87 1.46 17 4 2 10.23 13.85 1.36

15 4 3 4.33 6.83 1.58 16 4 3 8.39 13.69 1.64 17 4 3 19.44 27.61 1.43

15 4 4 8.18 13.63 1.70 16 4 4 15.81 27.33 1.74 17 4 4 38.03 55.38 1.46

The columns N , D, and G indicate the simulation scenario, and MM and EM column displays the average
computational time, in seconds, of the respective algorithms (over the 100 trials). The ratio column displays
the average ratio between the EM and the MM algorithm computation times

that the problem of having estimating GMMs with differing cluster sizes using either
algorithms may require more iterations to converge, on average. Like S1, it appears
that the MM algorithm is again faster than the EM in all tested scenarios. However,
we do note that the difference between the two algorithms is less in S2. For example,
in the best case, the MM algorithm is only 25.6, times faster than the EM (i.e. case
D = 1, G = 2, and N = 15).

Upon inspection of Fig. 3, we again see that the performance of the MM algorithm
over the EM decreases due to increases in D, G, and N , again with D decreasing
this gain more severely than the other two variables. Thus, we recognize that although
there is a decrease in computational gains as the tested variables increase, there is a
good case for the MM algorithm to be used instead of the EM when D is relatively
small.

5.3 Numerical simulation S3

Following the design of S1, we simulated 100 samples from the D = 2, G = 2,
and N = 15, 16, 17 cases. For each sample of each of the three cases, we perform
ML estimation using the MM algorithm on all 24 possible permutations of the four
variables. The computation time and the log-likelihood value of each permutation is
then recorded, and a mean, range and relative range (as a ratio to the absolute value of
the mean) is then computed over the 24 permutations, for both the computation time

123



Maximum likelihood estimation of Gaussian mixture models… 387

G=1

D

R
at
io

1.0 1.5 2.0 2.5 3.0 3.5 4.01.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

G=2

D

R
at
io

G=3

D

R
at
io

5
10

15
20

25

5
10

15
20

25
5

10
15

20
25

5
10

15
20

25

G=4

D

R
at
io

Fig. 3 Plots of the average ratio of EM to MM algorithm computational times in S2. The panels are
separated into the G values of each scenario, and the N values are indicated by the line colors. Here, red,
green, and blue indicate the values N = 15, 16, 17, respectively. The dotted line indicates a ratio of 1 (color
figure online)

Table 3 Results of numerical simulation S3 for assessing the effects of variable ordering

N Computation time Log-likelihood

Mean Range RR Mean Range RR

15 0.48 0.25 0.52 −2.71 × 105 5.80 × 103 2.11 × 10−2

16 0.87 0.45 0.50 −5.42 × 105 1.56 × 104 2.88 × 10−2

17 1.68 0.67 0.38 −1.09 × 106 2.84 × 104 2.63 × 10−2

The column N indicate the scenarios, and the columns mean, range, and RR display the average means,
ranges, and relative ranges of the computational time and the log-likelihood values

and the log-likelihood value. The average mean values, ranges and relative ranges over
the 100 samples for all three scenarios are presented in Table 3.

Upon inspection of Table 3, we notice that the range of computation times across the
three scenarios can be 40 to 50 % of the average computational times. Thus, selecting
an advantageous permutation of the variables can lead to significant improvements in
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algorithm performance. Unfortunately, the most advantageous permutation was not
predictable in our simulations, and even in the D = 2 case with four variables, the
number of permutations can be very large. Fortunately, the range of log-likelihood
values is only two to three percent of that of the mean log-likelihood values in each
scenario. As such, there appears to be little variation of the optimal outcome, once the
algorithm has converged. This implies that regardless of performance, the algorithm
is converging as expected according to Theorem 3.

We finally note that the results from all three numerical simulation studies are
dependent on the specific performances of the subroutines, algorithms, and hardware.
Thus, the resultsmay varywhen conducting performance tests under different settings.
As such, we believe that this simulation study serves to demonstrate the potential
computational performance in R, rather than the performance in all settings.

6 Conclusions

In this article, we introduced the LRC of the GMM, and show that there is a mapping
between the LRC parameters and the natural parameters of a GMM. Using the LRC,
we devised an MM algorithm for ML estimation, which does not depend on matrix
operations. We then proved that the MM algorithm monotonically increases the log-
likelihood in ML estimation, and that the sequence of estimators obtained from the
algorithm is convergent to a stationary point of the log-likelihood function, under
regularity conditions. Through simulations, we were able to demonstrate that the
computational speed of theMM algorithm for the LRC parameter estimates was faster
than the traditional EM algorithm for estimating GMMs in some large data situations,
when both algorithms are implemented in the R programming environment. We also
show that although the ordering of the variables may have a significant effect on the
computational times of theMMalgorithm, there appears to be little effect on the ability
of the algorithm to converge to an appropriate limit point.

We also proved that the ML estimators of the LRC parameters, like those of the
natural parameters, are also consistent and asymptotically normal. This allows for
asymptotically valid statistical inference, such as using the LRC of the GMM for
clustering data. Furthermore, we showed that the LRC allows for a simple method for
handling singularities in the ML estimation of GMM parameters.

To the best of our knowledge, we are the first to apply the LRC for constructing a
matrix operation-free algorithm for estimatingGMMs. In the future, we hope to extend
ourmatrix operation-free approach to theML estimation ofmixtures of t-distributions,
as well as skew variants of the GMM.

Appendix

Proof of Theorem 1

We shall show the result by construction. Firstly, set

β0,1 = μ1 and σ 2
1 = Σ1,1, (22)
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followed by

βk,0 = μk − Σk,1:k−1Σ
−1
1:k−1,1:k−1μ1:k−1, (23)

(βk,1, . . . , βk,k−1) = Σk,1:k−1Σ
−1
1:k−1,1:k−1, (24)

and

σ 2
k = Σk,k − Σk,1:k−1Σ

−1
1:k−1,1:k−1Σ

T
k,1:k−1, (25)

for each k = 2, . . . , d, in order, to get

βT
k x̃k = βk,0 + (βk,1, . . . , βk,k−1)x1

= μk + Σk,1:k−1Σ
−1
1:k−1,1:k−1(x1:k−1 − μ1:k−1)

= μk|1:k−1(x1:k−1),

and σ 2
k = Σk|1:k−1.

Now, by Lemma 1, and by definition of conditional densities,

φ1(x1;μ1,Σ1,1)

d∏

k=2

φ1(xk;μk|1:k−1(x1:k−1),Σk|1:k−1) = φd(x;μ,Σ),

for all x ∈ R
d , which implies λ(x; γ , σ 2) = φd(x;μ,Σ) by application of the

mappings (22)–(25). Note that μ and vech(Σ), and γ and σ 2 have equal numbers
of elements, and (22)–(25) are unique for each k. Thus, there is an injective map-
ping between the LRC and the natural parameters. The inverse mapping can also be
constructed by setting

μ1 = β0,1 and Σ1,1 = σ 2
1 , (26)

followed by

Σk,1:k−1 = (βk,1, . . . , βk,k−1)Σ
−1
1:k−1,1:k−1, (27)

Σk,k = σ 2
k + Σk,1:k−1Σ

−1
1:k−1,1:k−1Σ

T
k,1:k−1, (28)

and

μk = βk,0 + Σk,1:k−1Σ
−1
1:k−1,1:k−1μ1:k−1, (29)

for each k = 2, . . . , d, in order. The mappings (26)–(29) are also unique for each k,
and thus constitutes a surjective mapping.

Proof of Theorem 2

The first and last inequalities of (19) and (20) are due to the definition of minorization
[i.e. (11) and (14) are of forms (9) and (10), respectively]. The middle inequality of
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(19) is due to the concavity of Q′(ψ1,ψ
(m)
2 ;ψ (m)). This can be shown by firstly noting

that

g−1∑

i=1

n∑

j=1

τi (x j ;ψ (m)) log(πi ) +
n∑

j=1

τg(x j ;ψ (m)) log

⎛

⎝1 −
g−1∑

i=1

exp[log(πi )]
⎞

⎠

is concave in log(πi ) since 1−∑g−1
i=1 exp[log(πi )] is concave and log is an increasing

concave function. Secondly, note that

∂2Q′(ψ1,ψ
(m)
2 ;ψ (m))

∂β2
i,k,l

= − 1

2σ (m)2
i,k

n∑

j=1

x2j,lτi (x j ;ψ (m))

α j,l

is negative, and thus Q′(ψ1,ψ
(m)
2 ;ψ (m)) is concave with respect to each βi,k,l for

each i , k and l = 0, . . . , k − 1. Thus, Q′(ψ1,ψ
(m)
2 ;ψ (m)) is the additive composi-

tion of concave functions and is therefore concave with respect to a bijection of ψ1.
Furthermore, the system of equations

∂Q′(ψ1,ψ
(m)
2 ;ψ (m))

∂ log(πi )
= 0,

for i = 1, . . . , g− 1, has a unique root that is equivalent to update (16), which always
satisfies the positivity restrictions on each πi .

The middle inequality of (20) is due to the concavity of Q(ψ
(m)
1 ,ψ2;ψ (m)). This

can be shown by noting that

−1

2
log σ 2

i,k

n∑

j=1

τ(x j ;ψ (m)) − 1

2 exp[log σ 2
i,k]

n∑

j=1

τi (x j ;ψ (m))Q2,i, j,k(β i,k;β
(m)
i,k )

is concave in log σ 2
i,k for each i and k, since the inverse of exp(x) is convex. Thus,

Q(ψ
(m)
1 ,ψ2;ψ (m)) is concave with respect to a bijection of ψ2. Furthermore, the

system of equations

∂Q(ψ
(m)
1 ,ψ2;ψ (m))

∂ log σ 2
i,k

= 0

has a unique root that is equivalent to update (18).

Proof of Theorem 3

This result follows from part (a) of Theorem 2 from Razaviyayn et al. (2013), which
assumes that Q′(ψ1,ψ

(m)
2 ;ψ (m)) and Q(ψ

(m)
1 ,ψ2;ψ (m)) both satisfy the definition
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of a minorizer, and are quasi-concave and have unique critical points, with respect to
the parameters ψ1 and ψ2, respectively.

Firstly, the definition of a minorizer is satisfied via construction [i.e. (11) and (14)
are of forms (9) and (10), respectively]. Secondly, from the proof of Theorem 2,
both functions are concave with respect to some bijective mappings, and are therefore
quasi-concave under saidmappings [see Section 3.4 ofBoyd andVandenberghe (2004)
regarding quasi-concavity]. Finally, since both functions are concave with respect to
some bijective mapping, the critical points obtained must be unique.

Proof of Theorem 4

We show this result via induction. Firstly, using (26), we see that σ 2
1 = det(Σ1,1) > 0

is the first leading principal minor of Σ , and is positive. Now, by definition of (23),
σ 2
2 is the Schur complement of Σ1:k,1:k , for k = 2, where

Σ1:k,1:k =
[

Σ1:k−1,1:k−1 ΣT
k,1:k−1

Σk,1:k−1 Σk,k

]

. (30)

Since σ 2
2 is positive and Σ1,1 is positive definite, we have the result that

det(Σ1:2,1:2) = det(Σ1,1)σ
2
2 > 0

via the partitioning of the determinant. Thus, Σ1:2,1:2 is also positive definite because
both the first and second leading principal minors are positive.

Now, for each k = 3, . . . , d, we assume thatΣ1:k−1,1:k−1 is positive-definite. Since
σ 2
k > 0 is the Schur complement of the partitioning (30), we have the result that

det(Σ1:k,1:k) = det(Σ1:k−1,1:k−1)σ
2
k > 0.

Thus, the kth leading principal minor is positive, for all k. The result follows by the
property of positive-definite matrices; see Chapters 10 and 14 of Seber (2008) for all
relevant matrix results.

Proof of Theorem 5

Theorem 5 can be established fromTheorem 4.1.2 of Amemiya (1985), which requires
the validation of the assumptions,

A1 The parameter space Ψ is an open subset of some Euclidean space.
A2 The log-likelihood logLR,n(ψ) is a measurable function for all ψ ∈ Ψ ,

∂(logLR,n(ψ))/∂ψ exist and is continuous in an open neighborhood N1(ψ
0)

of ψ0.
A3 There exists an open neighborhood N2(ψ

0) of ψ0, where n−1 logLR,n(ψ) con-
verges to E[log fR(X;ψ)] in probability uniformly in ψ in any compact subset
of N2(ψ

0).
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Assumptions A1, and A2 are fulfilled by noting that the parameter space Ψ =
(0, 1)g−1 × R

g(d2+d)/2+gd is an open subset of R
(g−1)+g(d2+d)/2+gd , and that

logLR,n(ψ) is smooth with respect to the parametersψ . Using Theorem 2 of Jennrich
(1969), we can show that A3 holds by verifying that

E sup
ψ∈N̄

| log fR(X;ψ)| < ∞, (31)

where N̄ is a compact subset of N2(ψ
0). Since fR(X;ψ) is smooth, this is equivalent

to showing that E| fR(X;ψ)| < ∞, for any fixed ψ ∈ N̄ . This is achieved by noting
that

E| log fR(X;ψ)| = E| log fR(X;ψ)|

= E

∣
∣
∣
∣
∣
log

g∑

i=1

πiλ(x; γ i , σ
2
i )

∣
∣
∣
∣
∣

≤
g∑

i=1

E| log λ(x; γ i , σ
2
i )|

=
g∑

i=1

E

∣
∣
∣
∣
∣

d∑

k=1

logφ1(xk;βT
k x̃k, σ

2
k )

∣
∣
∣
∣
∣

≤
g∑

i=1

d∑

k=1

E| logφ1(xk;βT
i,k x̃k, σ

2
i,k)|. (32)

The inequality on line 3 of (32) is due to Lemma 1 ofAtienza et al. (2007). Considering
that logφ1(xk;βT

i,k x̃k, σ
2
i,k) is a polynomial function of Gaussian random variables,

we have E| logφ1(xk;βT
i,k x̃k, σ

2
i,k)| < ∞ for each i and k. The result then follows.

Proof of Theorem 6

Theorem 6 can be established fromTheorem 4.2.4 of Amemiya (1985), which requires
the validation of the assumptions,

B1 The Hessian ∂2(logLR,n(ψ))/∂ψ∂ψT exists and is continuous in an open neigh-
borhood of ψ0.

B2 The equations

∫
∂ log fR(ψ)

∂ψ
dx = 0,

and

∫
∂2 log fR(ψ)

∂ψ∂ψT
dx = 0,
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hold, for any ψ ∈ Ψ .
B3 The averaged Hessian satisfies

1

n

∂2 logLR,n(ψ)

∂ψ∂ψT
P→ E

[
∂2 log fR(X;ψ)

∂ψ∂ψT

]

,

uniformly in ψ , in all compact subsets of an open neighborhood of ψ0.
B4 The Fisher information

−E

[
∂2 log fR(x;ψ)

∂ψ∂ψT

∣
∣
∣
∣
ψ=ψ0

]−1

,

is positive-definite.

Assumption B1 is validated via the smoothness of logLR,n(ψ), and it is mechanical
to check the validity of B2. Assumption B3 can be shown via Theorem 2 of Jennrich
(1969). Unlike the others, B4 must be taken as given.
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