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Abstract Within the educational context, a key goal is to assess students’ acquired
skills and to cluster students according to their ability level. In this regard, a relevant
element to be accounted for is the possible effect of the school students come from.
For this aim, we provide a methodological tool which takes into account the multilevel
structure of the data (i.e., students in schools) and allows us to cluster both students
and schools into homogeneous classes of ability and effectiveness, and to assess the
effect of certain students’ and school characteristics on the probability to belong to
such classes. The proposed approach relies on an extended class of multidimensional
latent class IRT models characterised by: (i) latent traits defined at student and school
level, (ii) latent traits represented through random vectors with a discrete distribution,
(iii) the inclusion of covariates at student and school level, and (iv) a two-parameter
logistic parametrisation for the conditional probability of a correct response given the
ability. The approach is applied for the analysis of data collected by two national tests
administered in Italy to middle school students in June 2009: the INVALSI Language
Test and the Mathematics Test.
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1 Introduction

According to the assumption of unidimensionality, which characterises classical Item
Response Theory (IRT) models, responses to a set of items only depend on a single
latent trait which, in the educational setting, can be interpreted as the students ability.
If unidimensionality is not met, summarising students ability through a single score
may be misleading as test items indeed measure more than one ability, and the proper
evaluation of a student’s ability requires the development of multidimensional meth-
ods. The present article is focused on these methods, in particular when the sample has
a multilevel structure and the interest is in clustering subjects in homogenous classes
according to the latent trait measured by the test items.

Clustering individuals in homogenous classes is possible relying on the Latent
Class (LC) analysis (Lazarsfeld and Henry 1968; Goodman 1974), which is based on
the idea that the population under study is formed by a finite number of latent (i.e.,
unobservable) classes of subjects with homogeneous ability levels. In this regard, finite
mixture IRTmodels represent a combination of IRT and LC analysis based on the idea
that the same IRT model holds for the subjects in the same class, whereas possibly
different IRT models hold among different classes. Thus, finite mixture (or LC) IRT
models allow for the discreteness of the ability distribution with a number of support
points equal to the number of latent classes. We consider, in particular, the class of
LC-IRTmodels for binary items and ordinal polytomous items proposed in Bartolucci
(2007) and Bacci et al. (2014), which assume fixed (rather than class-specific) item
parameters among latent classes. Moreover, these models take into account multidi-
mensional latent traits (Reckase 2009) and more general item parameterisations than
those of Rasch-type models (Rasch 1961), such as the Two-Parameter Logistic (2PL)
model introduced by Birnbaum (1968).

An approach related to that of Bartolucci (2007) is due to von Davier (2008), who
proposed a diagnostic model based on fixed rather than free abilities. For further
examples of LC versions of IRT models we also recall Lindsay et al. (1991), Formann
(1992, 1995), Hoijtink and Molenaar (1997), Vermunt (2001), and Smit et al. (2003).
See also Masters (1985), Langheine and Rost (1988), Heinen (1996), Christensen
et al. (2002), and Formann (2007a), which outline the greater flexibility of IRTmodels
based on the assumption that the latent traits follow a discrete rather than a continuous
distribution. Among others, one of the most known variants of IRT models based
on a discrete ability distribution is given by the mixed Rasch model for binary and
ordinal polytomous data (Rost 1990, 1991; von Davier and Rost 1995), built as a
mixture of separate Rasch models characterised by class-specific person and item
parameters. Besides, from an applied point of view, mixture IRT models have been
used to set proficiency standards (Jiao et al. 2012), identify solution strategies (Mislevy
and Verhelst 1990), study the effects of test speediness (Bolt et al. 2002), and identify
latent classes which differ with regards to the use of response scales (see, for example,
Maij-de Meij et al. 2008).

Another relevant element, which is ignored by classical IRT models, concerns that
part of unobserved heterogeneity of item responses is due to multilevel structures of
data, where individuals are nested in groups, such as students within schools. In this
case, it is reasonable to assume that students sharing the same school context are more
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similar than their colleagues belonging to different schools in terms of latent trait
levels and, consequently, the corresponding item responses cannot be assumed to be
independent. A wide class of models which accounts for the group effect and also
encloses the discreteness and multidimensionality of the latent traits is represented by
multilevel finite mixture models and its variants for longitudinal data (Vermunt 2003;
Skrondal and Rabe-Hesketh 2004; Vermunt 2008; Grilli and Rampichini 2007; Cho
and Cohen 2010; Bartolucci et al. 2011); see also Kamata (2001), Maier (2001), and
Fox (2005) for multilevel IRT models under the assumption of normality of latent
traits. Overall, these types of model are based on specifying different latent traits
at each hierarchical level. Latent traits at individual level (first level) affect the test
item responses and, in turn, are affected by one or more latent variables at group
level (second level) that allow us to represent unobserved group effects. Besides, as a
consequence of the discreteness assumption, a multilevel finite mixture model allows
us to cluster both individuals and groups in classes, which are homogeneous with
respect to the corresponding latent traits and variables.

A further element which is of interest, other than the measurement of the latent
traits, is represented by the possible effect of covariates on the level of these traits.
In principle, a simple procedure to account for the effect of such covariates involves
three consecutive steps: (i) building a mixture IRT model for a set of response vari-
ables, (ii) assigning subjects to the latent classes based on their posterior probabilities,
and (iii) evaluating the association between class membership and external variables
of interest (i.e., gender, age, etc.) using cross-tabulations or a multinomial logistic
regression analysis (Vermunt 2010). However, it has been demonstrated (Bolck et al.
2004) that this procedure substantially underestimates the association between class
membership and covariates. Subsequent studies introduced correction methods that
involve modifying the third step (Vermunt 2010). Moreover, a number of studies (see,
for instance, Smit et al. 1999, 2000) showed that incorporating collateral information
into various mixture IRT models considerably reduces the standard errors in the item
parameter estimates. These authors also demonstrated through simulation studies that
latent class assignment can benefit substantially from incorporating external variables
associated with the latent classes, especially when the sample size is large. More
recently, within a differential item functioning (DIF) framework, further studies (see,
for instance, Tay et al. 2011, 2013) proposed to overcome such a three step procedure
through an Item Response Theory with Covariates (IRT-C) procedure which allows us
to evaluate the effect of class membership and external variables simultaneously. In
multilevel settings, covariates may express examinees’ characteristics (e.g., gender)
as well as schools’ characteristics (e.g., geographic area), so that we are dealing with
first and second level covariates, respectively.

Motivated by an application in education, in this paper we introduce a multilevel
extension of the class of LC-IRT models developed by Bartolucci (2007) to include
the group effect due to the aggregation of examinees in different schools, other than
the effect of covariates. Specifically, we assume the presence of a single latent trait
at school level which affects the abilities at student level. Such individual abilities
are then measured through a multidimensional version of LC-IRT models based on
a 2PL parameterisation for the conditional probability of a certain response given
the underlying ability, in the case of binary items. The proposed model is estimated
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through the maximum marginal likelihood method making use of the Expectation–
Maximisation (EM) algorithm (Dempster et al. 1977), avoiding in this way the use
of three steps methods. The described estimation method is implemented in the R
package MultiLCIRT;1 see Bartolucci et al. (2014) for a detailed description of this
package in simpler contexts.

The proposed multilevel LC-IRT model with covariates is applied for the analysis
of data deriving from two Italian National Tests for the assessment of primary, lower
middle, and high-school students, which are developed and yearly collected by the
National Institute for the Evaluation of the Education System (INVALSI). Here we
focus on the INVALSI Tests administered to middle school students as they are hav-
ing an increasing relevance in the Italian educational context and their collection will
become compulsory in the near future. These data are based on a nationally represen-
tative sample of 27,592 students within 1,305 schools and refer to students’ results at
the Language and Mathematics Tests, administered in June 2009.

With reference to the data mentioned above, we are interested in detecting hetero-
geneity between examinees and schools, studying the latent score distribution and the
size of the latent classes, and examining the relationship between observed covariates
and latent traits standing within each latent class, at both hierarchical levels. The aim
of this work is twofold. First of all, we aim at clustering students and schools into
homogeneous classes of latent traits, evaluating, on one side, the degree to which
latent subgroups of examinees show distinct response strategies and, on the other
side, the degree to which latent subgroups (or types) of schools differently charac-
terise the expected abilities of their students. Moreover, we aim at assessing if and
how examinees’ and school covariates (i.e., gender and geographic area, respectively)
affect the probability for a student or for a school to belong to each of these latent
classes.

The remainder of this paper is organised as follows. In the next section we describe
the INVALSI data used in our analysis. The statistical methodological approach
employed to investigate the structure of the questionnaires is described in Sect. 3.
First, we describe the basic assumptions for the model adopted in our study; then, we
illustrate the extension to take into account the multilevel structure of the data and
the effect of covariates. Details about the estimation algorithm are given in Sect. 4.
Finally, in Sect. 5 we illustrate the main results obtained by applying the proposed
approach to the INVALSI datasets and in Sect. 6 we draw the main conclusions of the
study.

2 The INVALSI data

The INVALSI Language and Mathematics Tests were administered in June 2009, at
the end of the pupils’ compulsory educational period. Afterwards, a nationally repre-
sentative sample made of 27,592 students was drawn (INVALSI 2009a). From each of
the 20 strata, corresponding to the 20 Italian geographic regions, a random sample of
schools was drawn; allocation of sample units within each stratumwas chosen propor-

1 Downloadable from http://www.CRAN.R-project.org/package=MultiLCIRT
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tional to an indicator based on the standard deviations of certain variables, such as the
school size and the stratum size. Classes within schools were then sampled through
a random procedure, with one class sampled in each school. Overall, 1,305 schools
(and classes) were sampled.

The INVALSI Language Test includes two sections, a Reading Comprehension
section and a Grammar section. The first section is based on two texts: a narrative type
text (where readers engage with imagined events and actions) and an informational
text (where readers engage with real settings); see INVALSI (2009b). The compre-
hension processes are measured by 30 items, which require students to demonstrate a
range of abilities and skills in constructing meaning from the two written texts. Two
main types of comprehension process are considered in developing the items: Lexical
Competency, which covers the ability to make sense of words in the text and to recog-
nise meaning connections among them, and Textual Competency, which relates to the
ability to: (i) retrieve or locate information in the text, (ii) make inferences, connecting
two or more ideas or pieces of information and recognising their relationship, and (iii)
interpret and integrate ideas and information, focusing on local or global meanings.
TheGrammar section is made of ten items, whichmeasure the ability of understanding
the morphological and syntactic structure of sentences within a given text.

The INVALSI Mathematics Test consists of 27 items covering four main content
domains: Numbers, Shapes and Figures, Algebra, and Data and Predictions (INVALSI
2009c). The Number content domain consists of understanding (and operation with)
whole numbers, fractions and decimals, proportions, and percentage values. TheAlge-
bra domain requires students the ability to understand, among others, patterns, expres-
sions andfirst order equations, and to represent them throughwords, tables, and graphs.
Shapes and Figures domain covers topics such as geometric shapes, measurement,
location, andmovement. It entails the ability to understand coordinate representations,
to use spatial visualisation skills in order to move between two and three dimensional
shapes, draw symmetrical figures, and understand and being able to describe rota-
tions, translations, and reflections in mathematical terms. The Data and Previsions
domain includes three main topic areas: data organisation and representation (e.g.,
read, organise and display data using tables and graphs), data interpretation (e.g.,
identify, calculate and compare characteristics of datasets, including mean, median,
mode), and chance (e.g., judge the chance of an outcome, use data to estimate the
chance of future outcomes).

All items included in the LanguageTest are ofmultiple choice type, with one correct
answer and three distractors, and are dichotomously scored (assigning 1 point to cor-
rect answers and 0 otherwise). The Mathematics Test is also made of multiple choice
items, but it also contains two open questions for which a score of 1 was assigned to
correct answers and a score of 0 to incorrect or partially correct answers.

A preliminary analysis (see Table 1) shows that students’ scores are affected by
students’ gender [male (M), female (F)] and school geographic area [North–West
(NW), North–East (NE), Centre, South, and Islands]. Overall, females performed
better than males at the Language Test, but worse than males at the Mathematics Test.
In both Tests, average percentage scores per geographic area show very different levels
of attainment.
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Table 1 Average relative score per gender and geographic area for the three dimensions of the INVALSI
Tests

Area Total

NW NE Centre South Islands
(17.70%) (20.95%) (20.39%) (20.91%) (20.05%)

M (50.28%)

Reading (V1) 0.730 0.711 0.731 0.725 0.701 0.721

Grammar (V2) 0.781 0.743 0.780 0.815 0.781 0.780

Mathematics (V3) 0.770 0.760 0.783 0.795 0.789 0.779

F (49.72%)

Reading (V1) 0.744 0.737 0.755 0.744 0.732 0.743

Grammar (V2) 0.810 0.778 0.816 0.836 0.812 0.811

Mathematics (V3) 0.744 0.732 0.769 0.792 0.781 0.764

Total 0.763 0.743 0.772 0.785 0.767 0.766

3 Methodological approach

In this section, we illustrate the methodological approach adopted to investigate the
students’ abilities. First, we review the basic model proposed by Bartolucci (2007)
and then we extend it to the multilevel setting.

3.1 Preliminaries

The class of multidimensional LC-IRT models developed by Bartolucci (2007)
presents two main differences with respect to classic IRT models: (i) the latent struc-
ture is multidimensional and (ii) it is based on latent variables that have a discrete
distribution; see Bacci et al. (2014) for a more general formulation for polytomously-
scored items. We consider in particular the version of these models based on the 2PL
logistic parameterisation of the conditional response probabilities (Birnbaum 1968).

Let n denote the number of subjects in the sample and suppose that these subjects
answer r dichotomous test items that measure s different latent traits or dimensions.
For the moment, possible multilevel structures are ignored. Also let Jd , d = 1, . . . , s,
be the subset ofJ = {1, . . . , r} containing the indices of the itemsmeasuring the latent
trait of type d and let rd denoting the cardinality of this subset, so that r = ∑s

d=1 rd .
Since we assume that each item measures only one latent trait, the subsets Jd are
disjoint; on the other hand, these latent traits may be correlated. Moreover, adopting
a 2PL parameterisation, it is assumed that

logit[p(Yi j = 1 | Vi = v)] = γ j

(
s∑

d=1

δ jdξ
(V )
vd − β j

)

,

i = 1, . . . , n, j = 1, . . . , r. (1)
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In the above expression, Yi j is the random variable corresponding to the response
to item j provided by subject i (Yi j = 0, 1 for wrong or right response, respectively),
β j is the difficulty level of item j and γ j is its discriminating level. Moreover, Vi is a
latent variable indicating the latent class of the subject, v denotes one of the possible
realisations of Vi , and δ jd is a dummy variable equal to 1 if index j belongs to Jd

(and then item j measures the dth latent trait) and to 0 otherwise. Finally, a crucial
assumption is that each random variable Vi has a discrete distribution with support
1, . . . , kV , which correspond to kV latent classes in the population. Associated to
subjects in latent class v there is a vector ξ (V )

v with elements ξ
(V )
vd corresponding to

the ability level of subjects in the class with respect to dimension d. Note that, when
γ j = 1 for all j , then the above 2PL parameterisation reduces to a multidimensional
Rasch parameterisation. At the same time, when the elements of each support vector
ξ (V )

v are obtained by the same linear transformation of the first element, the model is
indeed unidimensional even when s > 1.

As for the conventional LCmodel (Lazarsfeld andHenry 1968;Goodman1974), the
assumption that the latent variables have a discrete distribution implies the following
manifest distribution of the full response vector Y i = (Yi1, . . . ,Yir )′:

p( yi ) = p(Y i = yi ) =
k∑

v=1

pv( yi )π
(V )
v , (2)

where yi = (yi1, . . . , yir )′ denotes a realisation ofY i ,π
(V )
v = p(Vi = v) is theweight

or a priori probability of the vth latent class, with
∑

v π
(V )
v = 1 and π

(V )
v > 0 for

v = 1, . . . , kV . Furthermore, the local independence assumption which characterises
all IRT models, implies that

pv( yi ) = p(Y i = yi | Vi = v) =
r∏

j=1

p(Yi j = yi j | Vi = v), v = 1, . . . , kV .

The specification of themultidimensional LC-2PLmodel, based on the assumptions
illustrated above, univocally depends on: (i) the number of latent classes (kV ), (ii) the
number of the dimensions (s), and (iii) the way items are associated to the different
dimensions. The last feature is related to the definition of the subsetsJd , d = 1, . . . , s.

3.2 Extension to multilevel setting

The INVALSI data have a hierarchical structure, with students nested into schools, so
that students responses are not independent. These groups of students are known, in
contrast with the unknown ability classes.

The model illustrated above does not take into account the dependence between
item responses of individuals belonging to the same group, which typically arises in
the presence of multilevel data, as well as the possible effect of one or more covariates.
More generally, it is reasonable to suppose that the ability of a subject coming from
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a given latent class of ability is influenced by some unobserved characteristics of the
groupwhich she/he belongs to. Suchunobserved characteristics define anew latent trait
that can be called “group effect”, which adds up to the effect of individual covariates
and which may be explained by some group covariates.

In the multilevel context, let Yhi j denote the response provided by subject i within
group h to item j , with possible values 0 and 1, where h = 1, . . . , H , i = 1, . . . , nh ,
and j = 1, . . . , r , with H denoting the number of groups and nh denoting the size of
group h, so that n = ∑H

h=1 nh . Note that such a notation is somehow different from
that usually adopted in the multilevel model setting (Goldstein 2011), where the first
subscript is referred to individuals and the second to groups. However, the reversed
order of subscripts allows us to accommodate the third subscript j , which refers to
item, coherently with the notation typically adopted in the IRT literature.

Now letWh = (Wh1, . . . ,WhmU )′ be a vector ofmU covariates (group level covari-
ates) related to group h and let Xhi = (Xhi1, . . . , XhimV )′ denote a vector of mV

covariates (individual level covariates) for subject i in group h. Besides, according to
the definitions given in the previous section, the distribution of the latent traits mea-
sured by the questionnaire is described by a latent variable Vhi with kV support points,
whereas the group effect is denoted by a discrete latent variable Uh with kU support
points, from 1 to kU .

The kV and kU support points define as many latent classes of individuals and
groups, respectively. To avoid any misunderstanding, hereafter we use the term “type”
as a synonymous of latent class when we refer to the latent variablesUh at group level.

The relation between Vhi and Yhi j is based on the formulation illustrated in Sect.
3.1, Eq. (1), where subscript h is added to account for level 2 units (schools):

logit[p(Yhi j = 1 | Vhi = v)] = γ j

(
s∑

d=1

δ jdξ
(V )
vd − β j

)

,

h=1, . . . , H, i=1, . . . , nh, j = 1, . . . , r. (3)

Moreover, since now each Vhi depends on Uh and Xhi , then in Eq. (2) there is not
any more a constant weight π

(V )
v = p(Vhi = v) for each latent class, but a weight

π
(V )
hi,v|u = p(Vhi = v|Uh = u, Xhi = xhi ) depending on Uh and on the individual

configuration of Xhi .
The above dependence is represented by amultinomial logit parameterisation (Day-

ton andMacready 1988; Formann 2007b) for the weights π
(V )
hi,v|u , v = 2, . . . , kV , with

respect to πhi,1|u (or another weight), as follows:

log
π

(V )
hi,v|u

π
(V )
hi,1|u

= ψ
(V )
0uv + x′

hiψ
(V )
1v , v = 2, . . . , kV . (4)

Each regression parameter in the vector ψ
(V )
1v corresponds to the effect of individual

covariates Xhi on the logit of π
(V )
hi,v|u with respect to π

(V )
hi,1|u , whereas ψ

(V )
0uv is the

intercept which is specific for examinees of class v that belong to a school in class (or
of type) u.
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Let π
(U )
hu = p(Uh = u|Wh = wh) denote the weights associated to the support

points for Uh that depend on the group covariate configuration Wh = wh . Then, a
similar multinomial logit parameterisation is adopted for the conditional distribution
of Uh given Wh :

log
π

(U )
hu

π
(U )
h1

= ψ
(U )
0u + w′

hψ
(U )
1u , u = 2, . . . , kU , (5)

where elements of vector ψ
(U )
1u denote the effect of group covariates Wh on the logit

of π
(U )
hu with respect to π

(U )
h1 and ψ

(U )
0u is the intercept specific for schools within type

u.

4 Likelihood based inference

In this section, we deal with maximum likelihood of the extended model based
on assumptions (4) and (5). Because one assumes conditional independence (i.e.
responses of level 1 units belonging to the same level 2 units are conditionally inde-
pendent given the corresponding latent variable Uh), the likelihood for a level 2 unit
can be obtained as a product of individual likelihoods.

For given kU and kV , the parameters of the proposed model may be estimated by
maximising the log-likelihood

�(θ) =
H∑

h=1

log
kU∑

u=1

π
(U )
hu ρh(u), (6)

where θ is the vector containing all the free parameters, and

ρh(u) =
nh∏

i=1

kV∑

v=1

π
(V )
hi,v|u

r∏

j=1

p(yhi j |Vhi = v),

with p(yhi j |Vhi = v) defined as in (3).
The vector θ contains item parameters β j (difficulty) and γ j (discriminating index),

covariate parameters ψ
(V )
1v and ψ

(U )
1u , ability levels ξ (V )

v affecting the individual and

group weights π
(V )
hi,v|u and π

(U )
hu . However, to make the model identifiable, we adopt

the constraints

β jd = 0, γ jd = 1, d = 1, . . . , s,

with jd denoting a reference item for the d-th dimension (usually, but not necessarily,
the first item for each latent trait); see also Bartolucci (2007). In this way, for each item
j , with j ∈ Jd\{ jd}, the parameter β j is interpreted in terms of differential difficulty
level of this item with respect to item jd ; similarly, γ j , is interpreted in terms of ratio
between the discriminant index of item j and that of item jd .
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Considering the above identifiability constraints, the number of free parameters
collected in θ is equal to

#par = (kU − 1)(mU + 1) + (kV − 1)(mV + kU ) + kV s + 2(r − s).

In fact, there are (kU − 1)(mU + 1) + (kV − 1)(mV + kU ) regression coefficients
for the latent classes, kV s ability parameters, r − s free discriminating parameters,
and r − s free difficulty parameters. Under the Rasch parameterisation, the number of
parameters decreases by r − s as the discriminating indices have not to be estimated,
as they are all set equal to 1. Note that only the ability parameters ξ (V )

v are estimated,
whereas parameters ξ

(U )
u , which are interpretable as the effect on the students’ abilities

for schools of type u, are estimated as average of the ξ (V )
v with suitable weights, that

is,

ξ̂ (U )
u = 1

ns

s∑

d=1

H∑

h=1

nh∑

i=1

kV∑

v=1

ξ̂dvπ̂hi,v|u .

In order to maximise the log-likelihood �(θ), we make use of the EM algorithm
of Dempster et al. (1977), which is developed along the same lines as in Bartolucci
(2007); see also Bartolucci et al. (2011) for a version for longitudinal data.

The complete log-likelihood, onwhich theEMalgorithm is based,may be expressed
as

�∗(θ) =
H∑

h=1

�∗
1h(θ) + �∗

2h(θ) + �∗
3h(θ),

with

�∗
1h(θ) =

nh∑

i=1

r∑

j=1

kV∑

v=1

zhiv log p(yhi j |Vhi = v),

�∗
2h(θ) =

nh∑

i=1

kU∑

u=1

kV∑

v=1

zhuzhiv logπ
(V )
hi,v|u,

�∗
3h(θ) =

kU∑

u=1

zhu logπ
(U )
hu ,

which is directly related to the incomplete log-likelihood defined in (6). In the above
expression, zhiv is the indicator function for subject i being in latent class v (Vhi =
v) and zhu is the indicator function for cluster h being of typology u (Uh = u).
Consequently, zhuzhiv is equal to 1 if both conditions are satisfied and to 0 otherwise.

Obviously, �∗(θ) is much easier to maximise with respect of �(θ), provided that the
indicator variables zhiv and zhu are known. Based on function �∗(θ), the EM algorithm
alternates the following two steps until convergence in �(θ):
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– E-step. It consists of computing the expected value of the complete log-likelihood
�∗(θ). In practice, this is equivalent to computing the posterior expected values of
the indicator variables. In particular, we have that

ẑhiv = p(Vhi = v|D) =
kU∑

u=1

̂(zhuzhiv). (7)

where D is a short-hand notation for the observed data. Moreover, we have

̂(zhuzhiv) = p(Uh =u, Vhi =v|D)= p(Vhi =v|Uh = u, D)p(Uh = u|D)

= π
(V )
hi,v|u

∏r
j=1 p(yhi j |Vhi = v)

∑kV
v′=1 π

(V )

hi,v′|u
∏r

j=1 p(yhi j |Vhi = v′)
ẑhu

and

ẑhu = p(Uh = u|D) = π
(U )
hu ρh(u)

∑kU
u′=1 π

(U )

hu′ ρh(u′)
. (8)

– M-step. It consists of updating the model parameters by maximising the expected
value of �∗(θ) obtained at the E-step. As an explicit solution does not exist for the
model parameters, iterative optimisation algorithms of Newton–Raphson type are
used, but they are of simple implementation. The resulting estimate of θ is used
to update the expected value of �∗(θ) at the next E-step and so on.

When the algorithm converges, the last value of θ , denoted by θ̂ , corresponds
to the maximum of �(θ) and then it is taken as the maximum likelihood estimate
of this parameter vector. It is important to highlight that the number of iterations
and, in particular, the detection of a global rather than a local maximum point of the
target function crucially depend on the initialisation of the EM algorithm. Therefore,
following Bartolucci (2007), we recommend to try several different starting values,
even randomly chosen, for this algorithm.

The EM algorithm described above is implemented in the R package named
MultiLCIRT (Bartolucci et al. 2014). We also clarify that, alternatively, analyses
similar to the one here proposed may be performed by means of Latent GOLD
(Vermunt and Magidson 2005), mdltm (von Davier 2005), and Mplus (Muthén and
Muthén 2012) softwares,which allow formultidimensional IRTmodels, discrete latent
variables, multilevel data structures, and presence of covariates. However, at least to
our knowledge, no other software treats multidimensionality and discreteness of latent
traits at the same time.

After parameter estimation, each subject i can be allocated to one of the kV latent
classes on the basis of the response pattern yi she/he provided, her/his covariates xi ,
and the typology of group she/he belongs to. Similarly, each group h can be allocated
to one of the kU latent classes. In both cases, the most common approach is to assign
the subject and the group to the class with the highest posterior probability, computed
as in Eqs. (7) and (8), respectively.
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5 Application to the INVALSI dataset

In this section, we illustrate the application of the multilevel finite mixture IRTmodels
to the data collected by the two INVALSI Tests. For the purposes of this analysis, the 30
items which assess reading comprehension within the Language Test are kept distinct
from the 10 items which assess grammar competency, as these sections deal with two
different competencies. Overall, we consider a model with three dimensions: Reading
(V1), Grammar (V2), andMathematics (V3). Besides, regarding the way of taking the
covariate effect into account, we consider subjects classified according to gender, and
schools classified according to the geographic area.

In the following, we first deal with the problem of the model selection, regarding in
particular the optimal number of latent classes and the item parameterisation. Then,
we deal with the analysis of the ability distribution and with the assessment of the
covariate effect at both levels of the hierarchy.

5.1 Model selection

In analysing the INVALSI dataset by the model described in Sect. 3, a key point is the
choice of the number of latent classes at the individual level and at the group level,
that is, kV and kU , respectively.

In educational settings, each student’s ability may be classified into one of several
categories on the basis of cut scores. The setting of cut scores on standardised tests is a
composite judgmental process (Loomis and Bourque 2001; Cizek et al. 2004), whose
complexities and nuances are well beyond the scope of this work. For the purposes of
the analysis described in the following, it is enough to acknowledge that it is possible
to select a different number of groups depending on the adopted judgmental criteria.
Here, we adopt a widespread classification of students into three groups (i.e., basic,
advanced, and proficient), corresponding to kV = 3.

Given the value of kV , we choose the number of school types relying on the main
results reported in the literature about finite mixture models (Biernacki and Govaert
1999; McLachlan and Peel 2000; Fraley and Raftery 2002; Nylund et al. 2007), who
suggest the use of the Bayesian Information Criterion (BIC) of Schwarz (1978). On
the basis of this criterion, the selected number of school types is the one corresponding
to the minimum value of

BIC = −2�(θ̂) + log(n)#par.

In practice, we fit the model for increasing values of kU and when BIC starts to
increase, the previous value of kU is taken as the optimal one. Note that, apart from kV
and kU , the other elements characterising the model, that is, the item parameterisation
and the multidimensional structure of items, remain fixed. If one already has some a
priori knowledge about the multidimensional structure of the set of items, then it is
convenient to adopt it. Otherwise, we suggest to select the number of latent classes
taking a very general model based on a different dimension for each item. Similarly,
we suggest to adopt a basic LC model in absence of any specific indication about the

123



Multilevel finite mixture IRT 65

Table 2 Log-likelihood,
number of parameters and BIC
values for kU = 1, . . . , 6 latent
classes for the INVALSI test; in
boldface is the smallest BIC
value

k �(θ̂) #par BIC

1 −531,346.4 205 1,064,688

2 −530,195.9 212 1,062,455

3 −529,947.7 219 1,062,027

4 −529,829.2 226 1,061,858

5 −529,782.3 233 1,061,833

6 −529,766.5 240 1,061,869

Table 3 Model selection:
log-likelihood and BIC values
for the Rasch (1PL) model and
2PL model with covariates; in
boldface is the smallest BIC
value

Model �(θ̂) #par BIC

1PL −533,994.6 105 1,069,011

2PL −530,039.6 169 1,061,724

item parameterisation. For further details about this strategy see, for instance, Bacci
et al. (2014).

In the application described in the present paper, for the selection of the school
types (i.e., the number of latent classes at the school level) we fit the multilevel LC
model with covariates (gender and geographic area) in the three-dimensional version
(V1, V2, and V3), in which each item measures just one ability, for values of kU from
1 to 6. The results of this preliminary fitting are reported in Table 2. On the basis of
these results, we choose kU = 5 types of schools, which corresponds to the smallest
BIC value.

After the selection of kV and kU has been made as described above, alternative
models with the given number of classes at the two levels of the hierarchy and the
same latent variables are considered. In particular, a Rasch (1PL) model with covariate
effects and a 2PL model with covariate effects are fitted (see Table 3).

The BIC value of the 2PL model with covariates is smaller than that observed for
the 1PL model. Therefore, we retain the 2PL model with kV = 3 and kU = 5.

5.2 Distribution of the abilities

In this section, we discuss the estimation of the parameters of themultilevel 2PLmodel
with kV = 3 and three dimensions (V1, V2, and V3) at student level, and kU = 5 at
school level.

Ability values are expressed on a standardised scale and class weights are obtained
as average values of the estimated individual-specific class weights, denoted by ˆ̄π(V )

v

and obtained as

ˆ̄π(V )
v = 1

n

H∑

h=1

nh∑

i=1

kU∑

u=1

π̂
(V )
hi,v|uπ̂

(U )
hu .
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Table 4 Student level:
distribution of the ordered
estimated abilities ξ̂

(V )
v for the

three involved dimensions
within classes, together with the

average weights ( ˆ̄π(V )
v )

V1 V2 V3 ˆ̄π(V )
v

Class 1 −0.643 1.322 1.214 0.174

Class 2 0.657 2.302 1.671 0.428

Class 3 1.988 3.564 2.214 0.398

Table 5 School level:
distribution of the estimated
average abilities ξ̂

(U )
u , for

u = 1, . . . , 5, and the average
weights ( ˆ̄π(U ))

Type 1 Type 2 Type 3 Type 4 Type 5

ξ̂
(U )
u 1.009 1.531 1.594 2.046 2.451

ˆ̄π(U ) 0.081 0.081 0.370 0.351 0.116

Table 4 shows the estimated ability levels and corresponding average weights for
the three classes of students and the three involved dimensions. Inspection of these
estimates shows that students belonging to class 1 within the two sections (V1 and V2)
of the Language Test and the Mathematics Test (V3) tend to have the lowest ability
level in relation with the involved dimensions. Overall, the weight of low attainment
students grouped in class 1 is quite negligible in terms of class proportions, as they
count for slightly more than 17% of the students, overall. Besides, students with the
highest ability levels belong to class 3, which counts for a little less than 40%, while
class 2 is a class of examinees with intermediate ability levels over the three involved
dimensions.

Overall, we observe that predicted abilities over the three dimensions tend to be
correlated. In fact, the Spearman correlation coefficients between the three dimensions
are always very high (and >0.99), confirming that the three classes tend to group
examinees who show consistent levels of ability over the involved dimensions.

At school level, the distribution of the estimated average abilities ξ̂
(U )
u for the five

chosen types (see Table 5) allows us to qualify the schools from the worst ones,
classified in the Type 1, to the best ones, classified in the Type 5.We observe that more
than 46 per cent of the schools belong to the best types (Type 4 and 5), whereas only
the 16% is classified among the worst ones; the remaining 37% is of intermediate
type.

5.3 Effects of level 1 and level 2 covariates

As previously stated, in our multilevel setting, covariates express examinees’ char-
acteristics (e.g., gender) as well as school characteristics (e.g., geographic area) and
therefore we have first- and second-level covariates. In the following, we discuss esti-
mates of the regression parameters for such covariates, to further study the nature of
the classes at both levels of the hierarchy and the substantive differences among them.

Regression parameters for the first-level covariate (i.e., gender) are estimated taking
as reference class the one characterised by theworst level of estimated ability over each
of the three involved dimensions (Class 1), and category Males as reference category.
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Table 6 Estimated conditional
probabilities π̂

(U )
hu to belong to

the five types of schools given
the geographic area

Type 1 Type 2 Type 3 Type 4 Type 5

NE 0.042 0.000 0.498 0.387 0.073

NW 0.036 0.000 0.620 0.329 0.014

Centre 0.031 0.044 0.358 0.472 0.095

South 0.115 0.113 0.239 0.341 0.192

Islands 0.180 0.243 0.140 0.232 0.206

The estimates of the regression parameters (ψ (V )
1v ) used in Eq. (4) over Class 2 and

Class 3 (0.117 and 0.175, respectively), and the corresponding standard errors (0.053
and 0.057, respectively) show that females tend to be grouped into these classes, and
therefore they tend to score higher than males at the INVALSI Tests.

Similarly, regression parameters for the second-level covariate (i.e., geographic
area) are estimated taking Type 1 (i.e., the worst schools) as a reference class, and
category NW (North West) as reference category. For easiness of interpretation, the
estimated regression parameters and the corresponding standard errors are not shown
here and they are replaced by the estimated probabilities to belong to any of the five
types of school given the geographic area. Results in Table 6 confirm those of the
preliminary descriptive analysis (see Table 1), that is, different levels of attainment
according to the school geographic area.

On the whole, the great majority of the Italian schools tend to be classified into aver-
age and high attainment schools. However, schools of the North West and North East
show a very similar profile, as they display high probability to belong tomedium attain-
ment schools and high attainment schools (Type 3 and Type 4 schools, respectively).
Finally, schools from the South and the Islands have a relatively higher probability
than the schools of the rest of Italy to belong to the best schools (i.e., Type 5) and, at the
same time, to the worst schools (Type 1). The latter apparently inconsistent result may
be related to the presence in the Southern regions of a few schools with exceptionally
positive results (Sani and Grilli 2011).

6 Conclusions

In this article we propose a framework for assessing the relationship between unob-
served classes of examinees and schools, and observed characteristics, and establishing
the ways observed characteristics are related to unobserved groupings, accounting at
the same time for the multilevel structure of our data.

The data analysed by the proposed framework were collected in 2009 by the
National Institute for the Evaluation of the Education System (INVALSI) and refer to
two assessment Tests—on Italian language competencies (Reading comprehension,
Grammar) and Mathematical competencies—administered to middle school students
in Italy.

The adopted approach may be seen as an extension of that developed by Bartolucci
(2007), by accounting for themultilevel structure of the data and the effects of observed
covariates at the students’ and school levels. This approach has advantageswith respect
to other approaches which account for observed variables only, on one side, or on
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just latent classes of examinees, on the other side. In fact, at the various levels of
the hierarchy, our approach permits the combined use of information derived from
observed group membership (i.e., examinees’ gender and school geographic area) and
unobserved groupings (i.e., latent classes of examinees and type of school) and, thus,
to characterise distinct latent classes of examinees and latent classes of schools, which
are named “type”.

Based on the proposed model, for the data at hand we ascertain the existence of
latent classes of examinees who show consistent levels of ability over the involved
dimensions, and of a few types of schools, from lowest attainment schools to highest
attainment ones. Next, we study the relationship between observed level 1 and level 2
variables, and latent classes.At student level,wefind that gender has a significant effect
on class membership with females who tend to be grouped in the highest attainment
groups of students. At the school level, results reveal how and to what extent factors
related to school geographic area affect the probability for a school to be grouped in
a certain school type.

Overall, the discussed extension of the latent class IRT model developed by Bar-
tolucci (2007) to account for the multilevel structure of the data and the covariate
effect allows us to characterise the classes at the two hierarchical levels in such a way
that would not have been detectable through other available models.
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