
Adv Data Anal Classif (2016) 10:27–52
DOI 10.1007/s11634-014-0194-2

REGULAR ARTICLE

Extreme logistic regression

Che Ngufor · Janusz Wojtusiak

Received: 6 February 2014 / Revised: 23 November 2014 / Accepted: 13 December 2014 /
Published online: 31 December 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Kernel logistic regression (KLR) is a very powerful algorithm that has been
shown to be very competitive with many state-of the art machine learning algorithms
such as support vector machines (SVM). Unlike SVM, KLR can be easily extended
to multi-class problems and produces class posterior probability estimates making it
very useful for many real world applications. However, the training of KLR using gra-
dient based methods or iterative re-weighted least squares can be unbearably slow for
large datasets. Coupled with poor conditioning and parameter tuning, training KLR
can quickly design matrix become infeasible for some real datasets. The goal of this
paper is to present simple, fast, scalable, and efficient algorithms for learning KLR.
First, based on a simple approximation of the logistic function, a least square algo-
rithm for KLR is derived that avoids the iterative tuning of gradient based methods.
Second, inspired by the extreme learning machine (ELM) theory, an explicit feature
space is constructed through a generalized single hidden layer feedforward network
and used for training iterative re-weighted least squares KLR (IRLS-KLR) and the
newly proposed least squares KLR (LS-KLR). Finally, for large-scale and/or poorly
conditioned problems, a robust and efficient preconditioned learning technique is pro-
posed for learning the algorithms presented in the paper. Numerical results on a series
of artificial and 12 real bench-mark datasets show first that LS-KLR compares favor-
able with SVM and traditional IRLS-KLR in terms of accuracy and learning speed.
Second, the extension of ELM to KLRresults in simple, scalable and very fast algo-

C. Ngufor (B)
School of Physics, Astronomy, and Computational Sciences,
George Mason University, Fairfax, VA 22030, USA
e-mail: nguforche@gmail.com; Ngufor.Che@mayo.edu

J. Wojtusiak
Department of Health Administration and Policy,
George Mason University, Fairfax, VA 22030, USA
e-mail: jwojt@mli.gmu.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-014-0194-2&domain=pdf

28 C. Ngufor, J. Wojtusiak

rithms with comparable generalization performance to their original versions. Finally,
the introduced preconditioned learning method can significantly increase the learning
speed of IRLS-KLR.

Keywords Kernel logistic regression · Extreme learning machine · Classification ·
Least squares · Kernel matrix · Preconditioner

Mathematics Subject Classification 62H30 · 62H12

1 Introduction

Logistic regression (LR) is a very popular classification algorithm with a sound sta-
tistical background that has found widespread use in many fields including machine
learning, data mining, and statistics. The popularity of LR can be attributed to its
simplicity and interpretability of model parameters. However, LR is a linear classifier
whereas most real world classification problems are non-linear. Applying the “kernel
trick” to LR as done for support vector machines (SVM), a robust non-linear version of
LR is obtained called kernel logistic regression (KLR) which has been proven to be a
very powerful classifier (Zhu and Hastie 2005). Unlike SVM, KLR has the advantage
that it directly provides estimates of class posterior probabilities and can be easily
extended to multi-class problems. As with LR, the training of KLR is typically done
through the Newton–Rahpson or iterative re-weighted least squares (IRLS) algorithm
(Hastie et al. 2001; Cawley and Talbot 2004). Although several adaptations have been
made on these algorithms to improve their performance, computing solutions for KLR
is still very challenging especially for very large data sets.

Training KLR and other kernel learning machines requires choosing a kernel func-
tion along with kernel parameters. In addition, the models are often regularized. The
setting of these parameters is critical for the quality of the results. In practice, one
has to (1) chose the right kernel, (2) tune kernel parameters (if any) and, (3) tune the
regularization parameter. This procedure is commonly carried out by cross-validation
or trial-and-error. However, this can be computationally very expensive and time con-
suming.

As a first attempt to solve this problem, this paper proposes a least squares solution
of KLR based on a simplifying approximation of the logistic function proposed in
Ngufor and Wojtusiak (2013). The proposed least squares solution for KLR, termed
LS-KLR in the sequel, is found to compete favorably with SVM and the traditional
iterative re-weighted least squares KLR (IRLS-KLR) while having a much faster
learning speed and is computationally less expensive to deploy. Though the proposed
LS-KLR is relatively faster to train, computing the kernel and selection of optimal
parameters can still be time consuming.

To address this problem, this paper further presents a new approach for training
KLR inspired by the extreme learning machine (ELM) of Huang et al. (2006b) which
practically avoids the expensive kernel matrix computation and most of the parameter
tuning steps. ELMbuilds an explicit feature space through a generalized single-hidden
layer feed-forward network (SLFN)whose hidden layer need not be tuned (Huang et al.
2006a, 2012). Specifically, ELM randomly chooses the input weights and biases of the

123

Extreme logistic regression 29

hidden layer and determines the output weights of the SLFN through a simple linear
system. Since the determination of the inputs weights and biases are independent of
the training data, no tuning is required (Huang et al. 2006a, 2012). This results in an
extremely fast algorithm with excellent generalization performance.

Based on this observation, a number of researchers have derived extreme learning
machine methods for the SVM by simply plugging in the resulting ELM hidden layer
outputweightmatrix orELM-kernel for the standard SVMkernel. For example, Frénay
and Verleysen (2010) uses the plug-in ELM-kernel for training the standard SVM.
The authors obtained comparable generalization performance with SVM, however,
standard training algorithms for SVM are known to scale at least quadratic in the
number of examples which may quickly become infeasible for large datasets. Liu
et al. (2008) on the other hand, uses the ELM-kernel for training a version of the least
squares support vector machine producing a significantly faster algorithm.

The extension of ELM technique toKLR is yet to be derived. Extending ELMmeth-
ods to KLR faces similar problems as with SVM. KLR is commonly trained through
the iterative re-weighted least squares algorithm which performs the minimization by
solving iteration-dependent linear systems recursively. However, this process can be
unbearably slow for moderate to very large data sets, in fact IRLS-KLR is compu-
tationally more expensive than SVM (Zhu and Hastie 2002; Komarek 2004; Ramani
and Fessler 2010). Furthermore, convergence of the method may be troublesome for
poor conditioned systems (Ramani and Fessler 2010). This paper extends the extreme
learning technique to IRLS-KLR and LS-KLR producing two new algorithms. While
the new algorithms show comparable generalization performance to their original
versions, they are however relatively very fast to train. Henceforth, the new extreme
learning machine algorithms for KLR or simply “extreme logistic regression” (ELR)
will be called iterative-reweighted least squares ELR (IRLS-ELR) and least squares
ELR (LS-ELR) respectively.

Even with the introduction of extreme learning machine methods to KLR, con-
vergence of IRLS-ELR for large datasets can still be very slow. A very large dataset
poses numerous challenges for the computational complexity of a learning algorithm.
At worst, the algorithm should scale linearly with data size to be able to learn in a
reasonable time. To address this problem, this paper further proposes a large scale
learning method that can be used to train IRLS-KLR, LS-KLR, IRLS-ELR and LS-
ELR. The method makes use of an efficient approximate inverse preconditioner in a
Krylov subspace method for the solution of the linear systems represented by these
algorithms.

Given that the classification performance of SVM and KLR are very similar (Zhu
and Hastie 2002), the major benefit of introducing ELM methods to KLR is that it
produces an algorithm with little or no parameter optimization while maintaining
similar generalization performance to SVM and KLR. Thus ELR is very quick to
implement and train. Like ELM, ELR can be readily extended tomulti-class problems.
However, a major advantage of ELR over SVM and ELM is that ELR produces class
posterior probability outcomes based onmaximum likelihood criterion, whereas SVM
and ELM outputs class decision scores. This can be very useful in many real-world
applications such as in medical diagnosis where class probabilities are more important
than class decisions. In summary, the following contributions are made in this paper:

123

30 C. Ngufor, J. Wojtusiak

1. An approximate least squares solution or LS-KLR for KLR is derived. LS-KLR
is very simple, fast, and competes favorably to SVM and traditional IRLS-KLR
as shown by the numerical experiments performed in this paper.

2. The paper extends ELM technique to IRLS-KLR and the newly proposed LS-
KLR to produce highly scalable and computationally less complex algorithms.
Like ELM, ELR is very fast to train requiring little or no parameter optimization,
and the implementation of ELR is very straight forward.

3. A preconditioning learning approach is proposed for very large and/or poorly con-
ditioned problems. It is shown that the preconditioner can significantly increase
the convergence speed of IRLS-KLR and IRLS-ELR. Further more, the precon-
ditioner can be directly applied to train other linear systems such as least squares
SVM (LS-SVM) (Suykens and Vandewalle 1999).

Unless otherwise mentioned, the following notations will be adopted throughout
the paper: D = {(xi , yi), i = 1, . . . , n} is a list of n training examples with
xi = (xi1, . . . , xid)ᵀ ∈ R

d a d-dimensional column vector of feature variables and yi
the class label of xi . For simplicity, only binary classification tasks will be considered
where yi ∈ {0, 1} for KLR and yi ∈ {−1, 1} for ELM. These class labels are chosen
solely for mathematical convenience. In and 1n are the n × n identity matrix and
n × 1 column vector of ones respectively. xᵀ is the transpose of x , i.e. a row vector.
Boldfaced type letters represent either matrices or vectors, the distinction will be clear
from the context. Further, it is assumed that the observations inD are independent and
identically distributed.

The paper is hence organized as follows: Sect. 2 provides a brief review of LR and
KLR models. Parameter estimation of KLR is performed by the iterative re-weighted
least squares algorithm. Section 3 presents a least squares approximation of IRLS-KLR
to improve the scalability and lessen the computational complexity of the method. To
understand the extension of ELM to KLR and for comparison purposes, Sect. 4 briefly
describes the constrained optimization based version of ELM introduced in Huang
et al. (2012). Section 5 then extends ELM technique to KLR to derive ELR. Section
6 presents a new preconditioned learning strategy for KLR suitable for large-scale
problems. Experiments on artificial and real datasets are performed in Sect. 7 while
Sect. 8 concludes the paper.

2 Logistic regression and kernel logistic regression

This section briefly reviews logistic regression (LR) and its kernelized version (KLR).
The iterative re-weighted least square algorithm (IRLS) is then presented to numeri-
cally solve the KLR maximum likelihood equations.

2.1 Logistic regression

LR is a popular classification method that makes no assumption about the distribution
of the independent variables. The fundamental assumption of themethod is that the log-
odds or “logit” transformation of the class posterior probability π(x) = Pr(y = 1|x)
is a linear combination of the independent variables i.e.

123

Extreme logistic regression 31

η(x) = log

(
π(x)

1 − π(x)

)
= β0 + βᵀx (1)

where β0 and β = (β1, . . . , βd)
ᵀ are the unknown parameters of the model. The

constant β0 is the intercept also known as the “bias”. Thus LR models the posterior
probability of the binary response variable y taking the value y = 1 depending on a
number of independent variables x by the logistic function

π(x) = Pr (y = 1|x;β) = 1/
(
1 + exp(−β0 − βᵀx)

)
.

For mathematical convenience, a constant variable 1 will be included in the vector
x to account for the bias term and β0 included in β. Then the regularized negative
log-likelihood function can be written as

l(β) = 1

2
‖β‖2 − γ

2

n∑
i=1

[
yiβ

ᵀxi − log
(
1 + exp(βᵀx)

)]

where the parameter γ reflects the strength of regularization.
Typically, themethod ofmaximum likelihood is used to estimate themodel parame-

ters. To solve for β, the negative log-likelihood equation is differentiated with respect
to β and set to zero

∂l(β)

∂β
= β − γ

2

n∑
i=1

xi (yi − πi (xi)) = 0. (2)

Unfortunately, (2) is nonlinear and there is no closed-form solution. The traditional
approach is to approximately solve it using iterative methods.

There aremany numerical optimizationmethods that can provide efficient solutions
to (2). The Newton–Raphson method is perhaps the first goto off-the-shelf method to
use. The method takes the first degree Taylor series approximation of (2) at a point
βold (initial guess), set this to zero and solve for a new approximate solution βnew.
The update process is repeated until convergence. A full treatment of the Newton–
Raphson algorithm and other equivalent maximization techniques can be found in
standard statistics text such as Hastie et al. (2001).

One major disadvantage of LR is that it is a linear classifier. It assumes that the
outcome or log-odd is a linear function of the independent variables. However, most
real world classification problems are non-linear, and so classical logistic regression
cannot capture any non-linearity that may exist in the data. The next section describes
the kernel version of LR to account for any non-linear relationship that may exist
between the outcome and the independent variables.

2.2 Kernel logistic regression

Kernel learning machines has gained a lot of interest since the beginning of the mid
1990’s. Their widespread use can be attributed to their mathematical elegance and

123

32 C. Ngufor, J. Wojtusiak

excellent performance.Numerous nonlinear extensions of traditionalmachine learning
classification techniques have been proposed based on the so-called “kernel trick”. The
kernelized versions of these algorithms have shown state-of-the art performances over
a wide range of benchmark datasets and real-world problems.

Using the kernel trick, a kernelized version of the LR, i.e., KLR can be easily
constructed. A mapping function φ(·) is chosen to convert the non-linear relationship
between the response and the independent variable into a linear relationship in a higher
dimensional feature space. Thus the function maps x from a lower dimensional to a
higher (and possibly infinite) dimensional feature space

φ : x ∈ R
d → φ(x) ∈ R

d f , (3)

where d f is the dimension of the feature space. The mapping function is however
usually unknown, but dot products in the feature space can be expressed in terms of
the input vector through the kernel function

K (x1, x2) = φ(x1)
ᵀφ(x2)

for any pair of data points x1 and x2. The kernel function must satisfy Mercer’s
condition (Mercer 1909), i.e for it to be expressed as inner product in the feature space,
the function must be positive semi-definite. Common choices for the kernel function
include: K (x1, x2) = xᵀ

1 x2 (linear kernel), K (x1, x2) = (xᵀ
1 x2 + c)p (polynomial

kernel of degree p with c ≥ 0 a tuning parameter), K (x1, x2) = exp(−σ‖x1 − x2‖2)
(radial basis function kernel with σ > 0 a tuning parameter).

Using this feature mapping, the logit transformation can be written as

η(x) = log

(
π(x)

1 − π(x)

)
= βᵀφ(x) + b

where

π(x) = Pr(y = 1|x;β) = 1/
(
1 + exp(−βᵀφ(x) − b)

)

is the class posterior probability and b is the bias term. With this transformation, the
regularized negative log-likelihood function becomes

l(β) = 1

2
‖β‖2 − γ

2

n∑
i=1

[
yi (β

ᵀφ(xi) + b) − log
(
1 + exp(βᵀφ(xi) + b)

)]
. (4)

As with LR, the maximum likelihood estimates of the parameters of KLR can be
obtained through the Newton–Raphson algorithm.

123

Extreme logistic regression 33

2.3 Iterative re-weighted least squares KLR

Similar to the derivation of the LR model, to facilitate the derivation of the IRLS
algorithm for KLR a constant variable 1 is included in the vector φ(x) and the bias
term b is included in β. The minimization of (4) can be carried out by setting the
derivative with respect to β to zero and using Newton–Raphson method to iteratively
solve the score equation. It can be shown that the Newton–Raphson update formula
is equivalent to an iterative re-weighted least squares step [see for example Zhu and
Hastie (2005) and Katz et al. (2005)] which can be written as

βnew =
(

�ᵀW� + 1

γ
Id f

)−1

�ᵀWz (5)

where W is a n × n diagonal matrix with i-th element wi = π(xi)(1 − π(xi)),
Y = (y1, . . . , yn)ᵀ, π = (π(x1), . . . , π(xn))ᵀ, Id f is a d f × d f identity matrix, � is
a n × (d f + 1) matrix containing φ(xi)ᵀ in its i-th row, and

z = �βold + W−1(Y − π).

It can be seen that, if z is regarded as a new response variable or adjusted response,
then (5) is the solution of the following weighted regularized least squares problem:

min
β

L = 1

2
‖β‖2 + γ

2
(z − �β)ᵀW(z − �β). (6)

This can also be further simplified as

min
β,εi

L = 1

2
‖β‖2 + γ

2

n∑
i=1

wiε
2
i (7)

where εi = zi − βᵀφ(xi).
Equation (7) can be written as a constrained optimization problem thus

min
β,εi

L = 1

2
‖β‖2 + γ

2

n∑
i=1

wiε
2
i (8)

subject to : zi = βᵀφ(xi) + b + εi , ∀ i = 1, . . . , n. (9)

where the bias term b has been re-introduced. The Lagrangian function for the opti-
mization problem (8), (9) is given by

L(β, b,α, ε) = 1

2
‖β‖2 + γ

2

n∑
i=1

wiε
2 −

n∑
i=1

αi
(
βᵀφ(xi) + b + εi − zi

)
(10)

123

34 C. Ngufor, J. Wojtusiak

where α = (a1, . . . , αn) ∈ R
n is the Lagrange multipliers. The optimality condition

for this problem can be expressed as

∂L
∂β

= 0 �⇒ β =
n∑

i=1

αiφ(xi) (11)

∂L
∂b

= 0 �⇒
n∑

i=1

αi = 0 (12)

∂L
∂εi

= 0 �⇒ αi = γwiεi , ∀ i = 1, . . . , n (13)

∂L
∂αi

= 0 �⇒ βᵀφ(xi) + b + εi = zi , ∀ i = 1, . . . , n. (14)

Using (11) and (13) to eliminate β and ε from (14) gives the linear system

n∑
i=1

αiφ(xi)
ᵀφ(x j) + b + 1

γ

αi

wi
= zi , ∀ j = 1, . . . , n

n∑
i=1

αi = 0.

PThis system can be written in matrix form as

⎛
⎝K + 1

γ
W−1 1n

1ᵀ
n 0

⎞
⎠

⎛
⎝ [l]α

b

⎞
⎠ =

⎛
⎝ z

0

⎞
⎠ (15)

where K = ��ᵀ is the n × n kernel matrix and

z = Kα + b1n + W−1(Y − π). (16)

A different approach to derive the linear system (15) can be found inCawley andTalbot
(2008). The IRLS-KLR algorithm proceeds iteratively, updating α and b according to
(15) and then updating z according to (16).

The recursive training of IRLS-KLR can be very slow for very large data sets
(Komarek 2004; Ramani and Fessler 2010). The recursion is brought about by the
dependence on non-linear terms in the weight matrix W. Recall that W depend non-
linearly on the parameters α and b through the posterior probabilities π = 1/(1 +
exp(−(Kα + b1n)). The next section presents an approximation to IRLS-KLR which
eliminates the non-linear dependence and hence speeding up the training process.

3 Least squares kernel logistic regression

The training of most kernel machines often scales poorly, with running times that are
at least quadratic or cubic in the number of training examples (Fine and Scheinberg

123

Extreme logistic regression 35

2002; Kulis et al. 2006). For example, the computational complexity of the traditional
training of SVM isO(n2m)where n is the number of training points andm the number
of support vectors. The situation is even worse for IRLS-KLR which is cubic O(n3)
in the number of training points (Zhu and Hastie 2002). Furthermore, the computation
of the kernel matrix requires O(n2) memory overhead, which may be prohibitive for
large-scale learning tasks (Kulis et al. 2006).

3.1 Least squares versions of kernel learning machines

Various approaches have been proposed to simplify the implementation and increase
training speed of kernel learning machines. For example, Suykens and Vandewalle
(1999) proposed the LS-SVM technique for training SVMby replacing the in-equality
constraint with an equality constraint leading to a simple linear system. Thus LS-
SVM is easier and quicker to implement than SVM (Kuh 2004). Though training
LS-SVM can still be impractical for large datasets, a number of schemes have been
proposed to solve this problem. For example, Suykens et al. (1999) presented an
iterative algorithm based on conjugate gradient, Keerthi and Shevade (2003) proposed
a sequential minimal optimization (SMO) algorithm for LS-SVM while Chu et al.
(2005) proposed an improved conjugate gradient method. Other methods to speed
up training of LS-SVM based on introducing some form of sparseness in the linear
system can be found in Suykens et al. (2000, 2002a), De Kruif and De Vries (2003),
Zeng and Chen (2005) and Jiao et al. (2007).

Many tests and comparisions have shown the great performance of LS-SVM on
several benchmack classification problems (Gestel et al. 2002) which motivated the
extension of LS-SVM formulation to many other methods including kernel princi-
pal component analysis, kernel canonical correlation analysis, recurrent networks,
and optimal control (Suykens et al. 2002b). No such linear system or LS-SVM type
formulation exist for KLR.

KLR is traditionally trained through the Newton–Raphson method as described in
Sect. 2. However, each step of the iteration requires the inversion of a n × n matrix
leading to a O(n3) computational cost. A few approaches have been proposed to
improve the convergence of KLR. For example Keerthi et al. (2005) proposed an SMO
type algorithm while Zhu and Hastie (2005) proposed the import vector machines
which is a sparse method for training KLR. Similar to the support vectors of SVM,
the import vectors are a few selected data points that defines the decision hyperplane
in the feature space of KLR. As with LS-SVM, these methods can be applied to a
least squares version of KLR to obtain similar benefits. The next section describes a
derivation of such a least squares solution for KLR.

3.2 Least squares approximation of KLR

The Newton–Raphson method and its variants obtain approximate solution of LR
through a first order Taylor series approximation of the maximum likelihood score
equations (2). Instead of using the Taylor expansion of the score equation, Ngufor and
Wojtusiak (2013) replaced the logistic function by its first order Taylor expansion about
the decision boundary η(x) = 0 in the score equation. This led to a simple least squares

123

36 C. Ngufor, J. Wojtusiak

solution for LR which was shown to have excellent generalization and scalabilty
properties compared to popular gradient basedmethods such as the stochastic gradient
descent.

Using this idea, a similar least squares method can be derived for KLR. However,
unlike the approach presented in Ngufor and Wojtusiak (2013), the first order Taylor
expansion of the logistic function is applied directly to the IRLS-KLR linear system
in (15).

Note first that the Taylor series expansion of the logistic function f (x) = 1/(1 +
e−z) around z = 0 is given by

f (z) = 1

2
+ 1

4
z − 1

48
z3 + 1

480
z5 − 17

80,640
z7 + · · ·

The decision boundary for KLR is given byKα+b1n = O (or φ(x)β+b = 0). Points
on the boundary have equal chances to be classified to either class i.e.π(x) = 0.5, thus
they are more informative for learning. The learning of KLR can thus be restricted
to learning the characteristic of points on the boundary. Substituting the first order
Taylor series expansion of π aboutKα +b1n = O in the weight matrix of IRLS-KLR
and keeping only first order terms reduces the matrix to identity i.e. W = 1

4 In . A
similar procedure reduces z in the right hand side of (15) to z = 4(Y− 1

21n). Thus the
IRLS-KLR linear system reduces to a non-iterative least squares system or LS-KLR
given by

⎛
⎝K + 4

γ
In 1n

1ᵀ
n 0

⎞
⎠

⎛
⎝α

b

⎞
⎠ =

⎛
⎝4

(
Y − 1

21n
)

0

⎞
⎠ . (17)

This is a simple linear system similar to LS-SVM that can be solved directly without
the iterative steps of IRLS-KLR. Similar to LS-SVM, SMO type and sparse methods
can be applied to LS-KLR.

Figure 1 illustrates the superiority of kernelized logistic regression over traditional
logistic regression for a non-linear classification problem. It shows how LR can per-
form very poorly on a dataset with non-linear decision boundaries while KLR accu-
rately identify all non-linear decision boundaries. The decision boundaries are shown
by the shaded gray contour lines. The Banana dataset (Alcalá-Fdez et al. 2009) is
a simple two dimensional artificial binary classification dataset where data points
belong to several clusters with banana shapes. As seen from Fig. 1a LR is unable to
identify any of the clusters correctly. The simple LS-KLR with the Gaussian kernel
(K (x, y) = exp (−σ‖x − y‖2)) on the other hand in Fig. 1b correctly captures all
clusters with an accuracy of over 90 % (parameters for LS-KLR: γ = 100, σ = 1.5).

Though kernel learningmachines such as SVM,LS-SVM, IRLS-KLR andLS-KLR
are conceptually appealing and have excellent performance, their training can be very
difficult in practice. Computing the kernel can be expensive and considerable amount
of time is usually spend on selection of model parameters such as the regularization
constant γ and additional kernel parameters. In addition, these methods are known
to be sensitive to the combination of training parameters. For example SVM and LS-

123

Extreme logistic regression 37

Fig. 1 Decision boundaries of LR and KLR for Banana dataset. The (red) circles represents the missclas-
sified data points by the classifiers. See the electronic version of ADAC for the blue, green, and red color
illustrations. a LR, b LS-KLR (color figure online)

SVMwith the Gaussian kernel are sensitive to the combination of (γ, σ) (Huang et al.
2012). The next section briefly describes a recent popular learning method that was
proposed to mitigate these problems in the case of SLFNs.

4 Extreme learning machine

The extreme learning machine (ELM) is a relatively recent algorithm that was pro-
posed by Huang et al. (2006b) based on the SLFN. ELM randomly selects the SLFN
input weights and biases and computes the output weights through a minimal norm
least squares approach. Thus, the overall computational time for training and model
selection is reduced by several amounts.

To understand the derivation of the ELR algorithms proposed in this paper, this
section briefly describes the basic idea of ELM. However, to simplify comparability
with ELR, the constrained-optimization-based version of ELM (Huang et al. 2012)
will be presented. For the original idea and theory see Huang et al. (2006b).

4.1 Constrained-optimization-based ELM

Consider a set of n training examples (xi , yi) with xi ∈ R
d and yi ∈ {−1, 1}; the

output function of ELM for generalized SLFNs with p hidden neurons is given by

f (xi) =
p∑

j=1

β jφ(xi) = βᵀφ(xi), i = 1, . . . , n

where β = (β1, . . . , βp)
ᵀ is the vector of output weights and φ here represents the

activation or output function of the network. The decision function of ELM classifier
for the data point xi is given by f (xi) = sgn(βᵀφ(xi)).

From Huang et al. (2012), the constrained-optimization problem of regularized
ELM is stated as

min
β,εi

L = 1

2
‖β‖2 + γ

2

n∑
i=1

ε2i (18)

123

38 C. Ngufor, J. Wojtusiak

subject to : βᵀφ(xi) = yi − εi , ∀ i = 1, . . . , n, (19)

where εi is the training error of the output node with respect to the training example xi
and yi ∈ {−1, 1} is the class label of xi . The Lagrangian for this optimization problem
is

L(β,α, ε) = 1

2
‖β‖2 + γ

2

n∑
i=1

ε2i −
n∑

i=1

αi
(
βᵀφ(xi) − yi + εi

)
(20)

and the optimality conditions can be expressed as

∂L
∂β

= 0 �⇒ β =
n∑

i=1

αiφ(xi) = �ᵀα (21)

∂L
∂εi

= 0 �⇒ αi = γ εi , ∀ i = 1, . . . , n (22)

∂L
∂αi

= 0 �⇒ βᵀφ(xi) − yi + εi = 0, ∀ i = 1, . . . , n (23)

where � is the n × p hidden layer output matrix with φ(xi)ᵀ in its rows and α =
(a1, . . . , αn)

ᵀ ∈ R
n is the Lagrange multipliers. Equations (21) and (22) can be

substituted in (23) to eliminate β and ε giving(
��ᵀ + 1

γ
In

)
α = Y (24)

Surprisingly, except for the bias term and the kernel matrix, the first linear system
of LS-KLR given by (17) is very similar to the constrained ELM given by (24). This
similarity suggest ELM can be easily extended to LS-KLR.

5 Extreme logistic regression

In the ELM framework, one can think of the hidden-layer as representing a mapping
φ from the input space x ∈ R

d to a feature space φ(x) ∈ R
p where a regularized

linear system is solved. Thus the learning process of ELM proceeds in two steps: (1)
The input data is mapped to the hidden-layer (a higher dimensional feature space)
using any nonlinear piecewise continuous function (Huang et al. 2012), such as the
Sigmoid or Gaussian function. The parameters (weights and biases) of the hidden
layer map function are randomly generated according to any continuous probability
distribution. (2) A regularized least squares solution is obtained through (24), where
� is the hidden-layer output matrix. This is very similar to the use of kernels in kernel
learning machines except that the map φ in (3) is unknown whereas it is explicitly
computed in ELM. Thus the hidden-layer of ELM can be regarded as a “ELM-trick”
for defining a randomized ELM-kernel given by KELM = ��ᵀ.

Based on these observations, Frénay andVerleysen (2010) andLiu et al. (2008) have
derived extreme learning methods for SVM by simply plugging in the corresponding
ELM hidden-layer output matrix or the ELM-kernel for the standard SVM kernel. The

123

Extreme logistic regression 39

authors obtained comparable generalization performance to SVM but at a much lesser
computational cost. In Frénay and Verleysen (2010), the ELM-kernel was used to train
standard quadratic SVM and only the regularization parameter needed to be turned.
The number of hidden-layer neurons p is also a parameter to be tuned, however it has
been shown in many works on ELM that setting p to a sufficiently large number such
as p ≥ 103 is sufficient to get good generalization (Huang et al. 2010; Frénay and
Verleysen 2010; Huang et al. 2012).

To the best of the knowledge of the authors of this paper, extreme learning methods
have not yet been derived for KLR. This paper proposes to used the ELM-kernel
KELM = ��ᵀ to train IRLS-KLR and the new LS-KLR. That is, the random ELM-
kernel is substituted for the standard KLR kernel in (15) for learning IRLS-KLR
and in (17) for learning LS-KLR. The extension of ELM to KLR is called extreme
logistic regression (ELR) and the two algorithms IRLS-KLR and LS-KLR under ELR
are called IRLS-ELR and LS-ELR respectively. The new ELR linear systems can be
written as

1. IRLS-ELR

⎛
⎝��ᵀ + 1

γ
W−1 1n

1ᵀ
n 0

⎞
⎠

⎛
⎝α

b

⎞
⎠ =

⎛
⎝ z

0

⎞
⎠ (25)

where z = ��ᵀα + b1n + W−1(Y − π).
2. LS-ELR

⎛
⎝��ᵀ + 4

γ
In 1n

1ᵀ
n 0

⎞
⎠

⎛
⎝α

b

⎞
⎠ =

⎛
⎝ 4(Y − 1

21n)

0

⎞
⎠ . (26)

Since � is explicitly computed in ELR, using Eq. (11) the system of equations above
can also bewritten in terms ofβ and b. The training of ELRproceeds as inAlgorithm1.

Algorithm 1: Extreme Logistic Regression
Input : D = {(xi, yi)|xi ∈ R

d , yi = 0, 1, i = 1, . . . n},

hidden-layer map function φ(.),

ELR method: IRLS-ELR or LS-ELR

Output: Parameters: (α, b)

1 Randomly generate the weights {(wi, b0i)}ni=1 according to any continuous

probability distribution,

2 Compute the ELM-kernel: KELM = ΦΦᵀ,

3 Solve the linear systems (29) and (30) iteratively or directly according to the

ELR method.

Commonly used ELM hidden-layer output map functions include the Sigmoid
function φ(x) = 1/(1 + exp(−wᵀx − b0)) with w ∈ R

d , b0 ∈ R and the Gaussian

123

40 C. Ngufor, J. Wojtusiak

function φ(x) = exp(−b0‖x − w‖2) with b0 > 0. The values {(w j , b0 j)}pj=1 are
randomly generated according to any continuous probability distribution.

The training of IRLS-ELR proceeds iteratively, however the computational cost
is now significantly less compared to IRLS-KLR. Since the convergence of IRLS-
ELR can still be very slow, optionally, when time and high accuracy requirements are
essential, the vary fast solution from LS-ELR can be used to initialized IRLS-ELR.
Experiments on the datasets used in this paper showed that IRLS-ELR always con-
verges when initialize with LS-ELR and the convergence time can be reduce in some
cases to more than half. However, results from LS-ELR competes rather favorably to
the iterative methods.

6 An approximate inverse preconditioner for KLR and ELR

Equations (15), (17), (25) and (26) can be written in a general form as(
A B
Bᵀ 0

)
︸ ︷︷ ︸

A

(
α

b

)(
f
0

)
. (27)

In its general form, the coefficient matrixA in (27) arises from the solution of equality
constrained quadratic programming or saddle point problems (Benzi et al. 2005). It
is known that if the 1 × 1 block matrix A is non-singular, then A is invertible if and
only if the Schur complement of A: S = BᵀA−1B is non-singular (Benzi et al. 2005).
In this case however, the Schur complement S is a 1 × 1 matrix i.e a scalar, thus the
block inverse of A can be expressed as

A−1 =
(
A−1 − A−1BS−1BᵀA−1 A−1BS−1

S−1BᵀA−1 −S−1

)
. (28)

This shows in particular that the solution of (27) is given by

α = (A−1 − A−1BS−1BᵀA−1)f

b = S−1BᵀA−1f

By defining the vector z0 = A−1f, the solutions above can be further simplified to

b = S−1Bᵀz0 (29)

α = z0 − A−1Bb. (30)

This simple transformation of the direct solution greatly reduces the number ofmatrix-
matrix and matrix-vector multiplication and can thus speed up the computation.

AssumingA−1 exist, these two equations are iterated recursively in IRLS-KLR and
IRLS-ELR until convergence or a specified maximum number of iterations is reached.
For LS-KLR and LS-ELR, these are simply the direct solutions of the system.

The simple direct solutions represented by (29) and (30) has the disadvantage that as
the size of the matrix A becomes large, the computational effort grows in the order of

123

Extreme logistic regression 41

n3 for dense systems. Iterative methods such as krylov subspace methods are typically
used to solve such linear systems. The amount of reduction in computational time by
an iterative method depends on the spectral properties of the coefficient matrix which
in turn determines the convergence rate of the method (Benzi 2002). Most real world
application problems leading to weighted least squares systems may produce very
poor conditioned matrices, thus making the convergence rate of the iterative solver to
be unacceptably slow (Ramani and Fessler 2010). Convergence can be accelerated by
the use of robust and efficient preconditioners. This section presents an approximate
inverse preconditioner for the solution of KLR and ELR for large scale problems based
on the generalized inverse A−1 of A.

6.1 Preconditioned KLR and ELR

Preconditioning amounts to transforming the original system into one having the same
solution but with more favorable spectral properties (Benzi 2002). A preconditioner
is a matrix that affects such a transformation. Specifically, ifP is a nonsingular matrix
which approximates A−1, then instead of solving Ax = b, the equivalent but much
simpler system PAx = Pb can be solved. In general a good preconditioner P is
chosen such that the preconditioned system is easy to solve and the preconditioner
should be cheap to construct and apply. With a robust and efficient preconditioner, the
computing time for the preconditioned system should be sign cantly less than that for
the unpreconditioned one.

Based on the generalized inverse of A given by (28), Le Borne and Ngufor (2010)
proposed an implicit approximate inverse preconditioner for the saddle point problem
which exploits the 2 × 2 block structure but does not require any additional infor-
mation about the matrix or underlying problem. Since very little information may be
available about the underlying problem leading up to the system represented by (27),
this preconditioning technique is therefore suitable for the system.

Based on this idea, a simple approximate inverse preconditioner for IRLS-KLR,
LS-KLR, IRLS-ELR and LS-ELR systems is defined as

P =
⎛
⎜⎝
Ã

−1 − Ã
−1

BS̃
−1

BᵀÃ−1
Ã

−1
BS̃

−1

S̃
−1

BᵀÃ−1 −S̃
−1

⎞
⎟⎠ (31)

where Ã
−1

and S̃
−1

are some good approximations of A−1 and S−1 respectively.
However, since S is just a scalar, the problem reduces to finding a good approximation
of A−1 which in turn reduces to finding a suitable approximation of the kernel matrix
K.

6.2 Approximating the kernel matrix

Any positive definite matrix K can be represented by its Cholesky factorization K =
QQᵀ, whereQ is a lower triangular matrix. If K is positive semi-definite and possibly

123

42 C. Ngufor, J. Wojtusiak

singular, it is still possible to compute an “incomplete” Cholesky factorization (ILU)
where some columns of Q are zero. In particular, in the case where K is a kernel
matrix, an attractive factorization suitable for large-scale learning problems is the
predictive low-rank incomplete Cholesky decomposition (pILU) (Bach and Jordan
2005). pILUmakes use of side information such as the class labels for classification and
the continuous outputs for regression to compute the low-rank decomposition. Using
these decompositions, an explicit computation of the inverse of K can be avoided by
solving linear systems using approximate inverse preconditioners. The preconditioned
linear system can then be solved using any appropriate Krylov subspace method.

The main difficulty in computing the approximate inverse preconditioner P lies
in finding a suitable approximate inverse of the 1 × 1 block matrix A which in the
case of IRLS-KLR (or IRLS-ELR) is given by A = K + 1

γ
W. However, since kernel

matrices usually have low ranks,K can be approximated by its ILU or pILU such that
K ≈ QQᵀ whereQ is an n × q matrix with q
 n. Even if the kernel has full rank, it
is still possible to approximate it by a low rank positive semidefinite matrix (Fine and
Scheinberg 2002).

With this approximations, the inverse (approximate) of A can be obtained using
the Woodbury matrix identity (Hager 1989),

Ã
−1 = (QQᵀ + 1

γ
W)−1

= γW−1 − γ 2W−1Q (Iq + γQᵀW−1Q)−1︸ ︷︷ ︸
q×q

QᵀW−1.

Thus the inversion of an n × n matrix has been reduced to the inversion of a q × q
matrix, and the speed up in computation time can be substantial. Depending on the
application and computational complexity of pILU, q can be set to as small as desired.
To complete the derivation of the preconditioner, a suitable approximation toA−1 can

be taken as Ã
−1

withW = In .
Note that the use of pILU to compute the preconditioner can be seen as a learning

procedure where the data is used to learn the approximate inverse preconditioner. Note
also that incomplete Cholesky factorization of the ELM-kernel is not necessary since
a decomposed form of the matrix is already available.

6.3 A preconditioned MINRES solver for KLR and ELR

With the approximate inverse preconditioner, a preconditioned minimal residual
(MINRES) method can be used to solve the linear systems presented in this paper.
Other Krylov subspace methods such as the well-known conjugate gradient (CG) can
equally be used. However, the coefficient matrix A in (27) is not positive definite
(Cawley and Talbot 2008), some transformations are required in order to use the CG
method (Suykens et al. 1999). The MINRES method on the other hand can be applied
to both symmetric positive definite and indefinite systems. Research has indicated
that MINRES can converge faster than CG on symmetric positive definite systems
(Hogben 2006).

123

Extreme logistic regression 43

In the preconditioned step of the MINRES algorithm, one can take advantage of
the reduced form of the direct solution given by (29) and (30) to reduce the number of
matrix-matrix or matrix-vector multiplications. In some of the experiments reported in
Sect. 7, the preconditionedMINRES algorithm as presented in Algorithm 2 converges
in as little as 5–10 steps with a relative norm residual less than or equal to 1 × 10−5.
Further details of the MINRES alorithm can be found in standard linear algebra text
such as Hogben (2006).

Algorithm 2: Preconditioned MINRES solver for KLR and ELR
Input : Coefficient matrix A and right hand side vector b of equation Ax = b

and preconditioner P.

Output: Solution x.

1 Choose initial guess x0 ;

2 Set r0 = b − Ax0, p0 = z0 = Pr0, q0 = Ap0, t0 = q0;

3 for k = 0, 1, . . . , to convergence or max iter do

4 vk = Pqk ; // Apply (29) and (30)

5 δk = zᵀ
k qk/qᵀ

k vk ;

6 xk+1 = xk + δkpk;

7 rk+1 = rk − δkqk;

8 zk+1 = zk − δkvk;

9 tk+1 = Azk+1 ;

10 ηk+1 = zᵀ
k+1tk+1/zᵀ

k tk ;

11 pk+1 = zk+1 + ηk+1pk ;

12 qk+1 = tk+1 + ηk+1qk ;

13 end

7 Experiments

This section evaluates and compares the performances of the algorithms presented
in this paper on a series of artificial datasets and on 12 real benchmark classification
datasets from the UCI machine learning repository (Bache and Lichman 2013).

7.1 Artificial datasets

A simple two populationmultivariate normal distributionwith equal covariancematrix
Nd(μi ,�) was used to generate a series of datasets with sample sizes varying from
100 to 10,000. The mean vectors was set to μ1 = (0, 0, . . . , 0) and μ2 = μ1 + 0.2
and � = diag(1.5, . . . , 1.5). The dimension of each dataset was fixed at d = 50 and
random noise from a zero mean normal distribution with variance 0.03 was added to
each dimension to further increase the overlap between the two populations.

123

44 C. Ngufor, J. Wojtusiak

The artificial datasets are used in a first experiment to demonstrate the time scalabil-
ity of LS-KLR, LS-ELR, IRLS-ELR and the performance of the approximate inverse
preconditioner when used to train IRLS-KLR or simply pIRLS-KLR.

7.2 Benchmark datasets

The 12 benchmark datasets consists of Pima Indians diabetes (Diabetes), Breast
Cancer (Breast), South African Hearth Disease (SAheart) [data from Hastie et al.
(2001)], Mammographic Mass (Mam), Sonar, Mines vs. Rocks (Sonar), Car Eval-
uation (Car), Australian Credit Approval (Credit), Ozone Level Detection (Ozone),
Spambase (Spam), Abalone,WineQuality (Wine), andWaveformDatabaseGenerator
(Waveform). Each dataset was randomly split into 75 % training and 25 % testing as
shown in Table 1.

Most of the datasets represents binary classification problems except for the Car,
Abalone and Wine datasets. The Car dataset has four classes representing car evalua-
tions. Thesewere aggregated into two classes: class 1 = (“unacceptable”, “acceptable”)
and class 0 = (“good” , “very good”). The Abalone dataset represents the problem of
predicting the age of abalone from physical measurements. The age is determined by
the number of rings in the Abalone’s cone. The number of rings varied from 1 to 29.
The negative class was taken to represent rings in the range 1–10 while the rest made
up the positive class. Finally, the outcome variable in the wine dataset is wine quality
ranging from 0 (very bad) to 10 (very excellent). The binary classification problem
constructed out of this dataset was to distinguish poor or normal wine (0–6) from good
or excellent (7–10) wine.

The algorithms compared are grouped into two categories (a) Kernel-Methods com-
prising SVM, IRLS-KLR and LS-KLR (2) ELM-Methods including ELM, IRLS-ELR
and LS-ELR. All computations were performed using the R statistical programming
environment (R Core Team 2012) version 3.0.1 running on a 8 core, 1.4 GHz and

Table 1 Binary classification
datasets

Data Attributes Sample size

Train Test

Diabetes 8 576 192

Breast 9 207 70

SAheart 9 346 116

Mam 5 622 208

Sonar 60 156 52

Car 6 1,296 432

Credit 14 517 173

Ozone 72 1,385 462

Spam 57 3,447 1,150

Abalone 8 3,132 1,045

Wine 11 3,673 1,225

Waveform 40 3,750 1,250

123

Extreme logistic regression 45

16 GB RAM machine. The computation of kernel matrices and the pILU of kernels
is facilitated by the kernlab add on package (Karatzoglou et al. 2004).

For the experiments, the Kernel-Methods: LS-KLR and IRLS-KLR are trained
using the systems (15) and (17) while ELM-Methods: IRLS-ELR and LS-ELR are
trained using (25) and (26). All the methods can be directly solved through the simple
direct solution given by (29) and (30).Due to the slowconvergence or non-convergence
of IRLS-KLR on some datasets, the preconditioning approach described in Sect. 6 was
used for this algorithm.Results for preconditioning is indicated by the asterisk (*) sym-
bol. The LIBSVM librarywas used for training SVMand is conveniently implemented
in the kernlab package through a function ksvm. The function can internally compute
the kernel matrix from the data or can accept a kernel matrix from the user. The later
option was chosen so that the same method for computing the kernel matrix is used
for all the kernel-methods.

7.3 Model selection

The Gausssian kernel function was chosen for the kernel-methods while the Sig-
moid function was selected as the ELM hidden-layer map function. The weights and
biases (wi , b0i) of the Sigmoid function were uniformly generated from the interval
(−1/

√
d, 1/

√
d)where d is the dimension of the training data. The regularization and

kernel parameters (γ, σ) were selected by a tenfold cross-validation using the 75 %
training data. In the tenfold cross-validation step, each training data was randomly
split into ten non-overlapping parts or folds: onefold is used for training and the rest
used as a validation set for parameter selection. Though the number of hidden layer
neurons could be conveniently set to a large value such as p ≥ 103 with very little
effect on performance as Fig. 2 shows, cross-validation was however used to select an
optimal value.

Through a grid search, the parameters with the highest performance on the valida-
tion set were selected and used to construct new models using the full training data.
The following values were chosen for the parameters in the grid search:

γ ∈ {0.001, 0.01, 0.05, 0.1, 0.5, 1.5, 5, 10, 20, 50, 100, 1,000},
σ ∈ {0.0001, 0.001, 0.01, 0.5, 0.8, 1.01, 1.5, 5.5, 10, 20},
p ∈ {10, 20, 40, 50, 80, 100, 150, 200, 250, 300, 500, 1,000}.

Because the ELM-kernel is randomly generated, the output from ELM-methods
are non-deterministic, i.e. slightly different results are obtained on each run. Thus in
the experiments, the final training and testing was repeated ten times and the results
averaged.

7.4 Results

Experimental results showing the accuracy, computational time and optimal parame-
ters are presented in this section.

123

46 C. Ngufor, J. Wojtusiak

p

Te
st

 A
cc

ur
ac

y

10 200 500 800 1000 1500 2000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Diabetes
Breast
SAheart
Mam
Sonar
Car

Fig. 2 Test accuracy of LS-ELR with respect to number of hidden-layer neurons (p) for the first six
benchmark datasets in Table 1. The optimal regularization parameter γ used in training was taken from
Table 3. Good generalization performance can be obtained by setting p large enough say p ≥ 103 (color
figure online)

Training Size

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

100 1600 3100 4600 6100 7600 9100

10 −1

10 0

10 1

10 2

10 3

tic
ks

 p
la

ce
d

on
 lo

g 1
0 s

ca
le

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

● ● ●

●
●

●
● ●

●
● ●

● ●

●

●

LS−KLR
IRLS−KLR
pIRLS−KLR
SVM
IRLS−ELR
LS−ELR
ELM

Fig. 3 Time scalability of the algorithms (color figure online)

In a first experiment, the artificial datasets are used to demonstrate time scala-
bility of the algorithms as the sample size is gradually increased. Figure 3 shows
the performance of the seven algorithms: LS-KLR, IRLS-KLR, pIRLS-KLR, SVM,
IRLS-ELR, LS-ELR, and ELM on the series of artificial datasets. The regularization
parameter was arbitrary set to γ = 100 for all algorithmswhile the kernel parameter in
Kernel-Methods was set to σ = 0.5 and the number of hidden-layer neurons in ELM-

123

Extreme logistic regression 47

Methods set to p = 100. As Fig. 3 shows, the training time in seconds on the log scale
of LS-KLR, pIRLS-KLR, SVM, and IRLS-KLR increases sharply in that order as
the training size increases. Clearly, LS-KLR outperforms all the other kernel-methods
with IRLS-KLR having the worst performance. On the other hand, the training time
for ELM-methods remains very low as the sample size increases. An exception can
be found for IRLS-ELR, where its computational time rises sharply for larger sample
sizes.Avery interesting result illustrated on the figure is the performance of the precon-
ditioner (pIRLS-KLR). The preconditioner significantly reduces the convergence time
of IRLS-KLR. Further, for small training sizes, SVMscales slightly better than pIRLS-
KLR, however, as the training size increases pIRLS-KLR scales better than SVM.

It should be noted that, the performance of kernel-methods especially SVM with
respect to time scalability (and accuracy) depends greatly on the choice and combi-
nation of the learning parameters γ and σ . The arbitrary choice of these parameters
used in this experiment may not be optimal for some of the algorithms. However, this
is one of the goals of this paper: to introduce simple algorithms that are less or non
tunable.

The second experiment demonstrates the performance of the algorithms on the 12
benchmark datasets. Results showing validation (VAL) and testing (TEST) accuracy
and computation time (in seconds) are shown in Tables 2 and 3. The validation accu-
racy is the average accuracy over the tenfold cross-validation corresponding to the
parameters with the best performance. The computation time is reported only for the
final stage of themodeling i.e the time for training and testing using optimal parameters
selected at the validation step.

Table 2 shows the performance of the Kernel-Methods: SVM, IRLS-KLR, and
LS-KLR while Table 3 shows the performance of the ELM-Methods: ELM, IRLS-
ELR, and LS-ELR. For each dataset, the highest test accuracy is boldfaced. If two or
more algorithms have the same accuracy, then the accuracy with the smallest time is
boldfaced. In general the results show that all ELM-methods havemuch faster learning
speed than kernel-methods.

The following observations can bemade from the results presented in the two tables:

1. On average, the performance of LS-KLR is superior to all other methods.
2. LS-KLR is significantly faster than SVM and IRLS-KLR. This can be illustrated

more clearly by considering learning speeds on the Abalone, Wine and Waveform
datasets:
(a) Abalone: LS-KLR runs 3.6 and 22 times faster than SVM and IRLS-KLR

respectively
(b) Wine: LS-KLR runs 7.1 and 6.3 times faster than SVM and IRLS-KLR respec-

tively.
(c) Waveform: LS-KLR runs 2.2 and 5.7 times faster than SVM and IRLS-KLR

respectively.
Note that for the Wine and Waveform datasets IRLS-KLR was trained using the
preconditioned technique.Without the preconditioner, it took 1,767.21 and 2,027 s
to train and test IRLS-KLR on Wine and Waveform datasets respectively. This
means without the preconditioner, LS-KLR runs about 28 and 22 times faster than
IRLS-KLR on the Wine and Waveform datasets respectively.

123

48 C. Ngufor, J. Wojtusiak

Ta
bl
e
2

Pe
rf
or
m
an
ce

of
ke
rn
el
-m

et
ho

ds

D
at
as
et
s

SV
M

IR
L
S-
K
L
R

L
S-
K
L
R

A
cc
ur
ac
y

T
im

e
Pa
ra
m
et
er

A
cc
ur
ac
y

T
im

e
Pa
ra
m
et
er

A
cc
ur
ac
y

T
im

e
Pa
ra
m
et
er

T
E
ST

V
A
L

γ
σ

T
E
ST

V
A
L

γ
σ

T
E
ST

V
A
L

γ
σ

D
ia
be
te
s

0.
74

0.
77

3.
13

1.
5

0.
01

0.
77

0.
78

11
.0
9

50
0.
00

1
0.
76

0.
78

0.
85

20
0.
00

1

B
re
as
t

0.
73

0.
76

0.
16

1,
00

0
0.
00

1
0.
73

0.
78

0.
36

5
0.
01

0.
73

0.
78

0.
08

50
0.
00

1

SA
he
ar
t

0.
71

0.
74

0.
50

10
0

0.
00

1
0.
70

0.
75

0.
86

10
0

0.
00

1
0.
70

0.
75

0.
13

10
0

0.
00

1

M
am

0.
79

0.
85

2.
82

20
0.
50

0.
79

0.
85

5.
17

1,
00

0
0.
00

1
0.
81

0.
85

0.
27

10
0

0.
01

So
na
r

0.
83

0.
80

0.
18

20
0.
01

0.
85

0.
79

0.
19

1.
5

0.
01

0.
88

0.
79

0.
12

5
0.
01

C
ar

0.
94

0.
89

15
.1
2

1.
5

0.
80

0.
80

0.
88

61
.8
3

1,
00

0
0.
01

0.
94

0.
89

7.
61

5
0.
50

C
re
di
t

0.
90

0.
87

1.
57

5
0.
01

0.
89

0.
88

11
.9
1

50
0.
01

0.
90

0.
88

0.
83

20
0.
01

O
zo
ne

0.
91

0.
94

16
.2
2

1,
00

0
0.
80

0.
93

0.
94

12
6.
87

20
0.
00

1
0.
93

0.
94

9.
24

5
0.
01

Sp
am

0.
86

0.
92

13
8.
44

5
0.
01

0.
88

0.
92

85
4.
93

5
0.
01

0.
93

0.
93

78
.1
3

10
0.
01

A
ba
lo
ne

0.
77

0.
77

16
8.
05

5
0.
01

0.
79

0.
78

1,
03

7.
36

1,
00

0
0.
01

0.
80

0.
79

47
1,
00

0
0.
01

W
in
e

0.
85

0.
82

44
6.
01

1.
5

1.
01

0.
80

∗
0.
82

∗
39

6.
85

10
0

0.
01

0.
84

0.
83

63
.1
6

0.
50

0.
80

W
av
ef
or
m

0.
85

0.
88

20
0.
44

0.
5

0.
01

0.
91

∗
0.
89

∗
52

0.
85

5
0.
01

0.
90

0.
89

91
.2
3

5
0.
01

123

Extreme logistic regression 49

Ta
bl
e
3

Pe
rf
or
m
an
ce

of
E
L
M
-m

et
ho

ds

D
at
as
et
s

E
L
M

IR
L
S-
E
L
R

L
S-
E
L
R

A
cc
ur
ac
y

T
im

e
Pa
ra
m
et
er

A
cc
ur
ac
y

T
im

e
Pa
ra
m
et
er

A
cc
ur
ac
y

T
im

e
Pa
ra
m
et
er

T
E
ST

V
A
L

γ
p

T
E
ST

V
A
L

γ
p

T
E
ST

V
A
L

γ
p

D
ia
be
te
s

0.
76

0.
79

0.
07

0.
50

20
0.
73

0.
79

1.
73

1.
50

10
0.
76

0.
79

0.
30

0.
5

40

B
re
as
t

0.
79

0.
75

0.
03

0.
10

40
0.
79

0.
74

0.
24

0.
01

20
0.
77

0.
75

0.
60

0.
1

25
0

SA
he
ar
t

0.
71

0.
75

0.
18

0.
05

50
0.
71

0.
74

1.
40

50
15

0
0.
73

0.
75

0.
14

50
10

M
am

0.
78

0.
86

0.
06

0.
10

10
0.
83

0.
86

2.
44

10
0

50
0.
80

0.
86

0.
61

10
0

50

So
na
r

0.
77

0.
82

0.
66

0.
05

30
0

0.
77

0.
83

1.
94

0.
10

30
0

0.
79

0.
85

0.
59

1.
5

25
0

C
ar

0.
89

0.
84

4.
18

10
0

30
0

0.
94

∗
0.
85

∗
31

.6
1,
00

0
1,
00

0
0.
87

0.
79

2.
52

10
0

30
0

C
re
di
t

0.
87

0.
88

0.
83

0.
05

25
0

0.
88

0.
89

1.
36

5
20

0.
87

0.
89

0.
40

1.
5

50

O
zo
ne

0.
92

0.
94

3.
77

1.
5

30
0

0.
91

0.
94

4.
04

0.
00

1
25

0
0.
92

0.
94

1.
47

50
50

Sp
am

ba
se

0.
93

0.
91

44
.1
0

20
30

0
0.
94

0.
93

20
6.
20

50
30

0
0.
91

0.
91

13
.0
2

10
0

30
0

A
ba
lo
ne

0.
78

0.
79

19
.1
4

20
25

0
0.
79

0.
78

46
5.
04

10
0

30
0

0.
79

0.
79

12
.9
9

20
30

0

W
in
e

0.
83

0.
82

12
.1
2

10
15

0
0.
77

∗
0.
79

∗
16

4.
74

0.
00

1
40

0.
83

0.
82

14
.3
4

10
30

0

W
av
ef
or
m

0.
86

0.
86

36
.7
2

5
25

0
0.
87

0.
86

13
3.
64

10
0

20
0

0.
84

0.
86

9.
27

50
20

0

123

50 C. Ngufor, J. Wojtusiak

3. ELM-methods achieve comparable performance as kernel-methods but with much
faster learning speed.

4. The gain in speed resulting from the introduction of extreme learning technique
to KLR was very substantial. For example
(a) LS-ELR runs 4.5 and 27.7 times faster than LS-KLR and IRLS-KLR respec-

tively on the Wine dataset. While the corresponding gain was about 10 and 56
times on the Waveform dataset.

(b) IRLS-ELR gained 2.4 times in speed over IRLS-KLR on the wine data and
about 4 times for the Waveform dataset. The results would have been respec-
tively about 11 and 15 times if IRLS-KLR had been trained without the pre-
conditioner.

5. LS-ELR has comparable test accuracy with IRLS-ELR while the two methods
have a slight advantage over ELM.

6. ELM and LS-ELR have comparable learning speed.

8 Conclusions

This paper proposed new algorithms for learning KLR. First, a simple approximation
of the logistic function is used to convert iterative re-weighted least squares KLR
into a non-iterative least squares KLR. Second, extreme learning machine method
is extended to KLR by replacing the standard kernel with a new kernel constructed
using the first layer of a SLFN. And finally, for large and/or poorly conditioned linear
systems, an approximate inverse preconditioner is proposed for learning KLR and
ELR.

Experiments show that: (1) LS-KLR is as accurate as SVM and IRLS-KLR and
may be better while having the distinct advantage of a much faster learning speed. (2)
The extension of ELM to KLR significantly reduces computational cost and improves
learning speed while maintaining a comparable good generalization performance. (3)
The approximate preconditioner can also increase the learning speed ofKLR andELR.

References

Alcalá-Fdez J, Sánchez L, García S, Del Jesus MJ, Ventura S, Garrell JM, Otero J, Romero C, Bacardit
J, Rivas VM et al (2009) Keel: a software tool to assess evolutionary algorithms for data mining
problems. Soft Comput 13(3):307–318

Bach FR, Jordan MI (2005) Predictive low-rank decomposition for kernel methods. In: Proceedings of the
22nd international conference on machine learning. ACM, pp 33–40

Bache K, Lichman M (2013) UCI machine learning repository [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and Computer Science

Benzi M (2002) Preconditioning techniques for large linear systems: a survey. J Comput Phys 182(2):418–
477

BenziM,GolubGH, Liesen J (2005)Numerical solution of saddle point problems. ActaNumer 14(1):1–137
Cawley GC, Talbot NLC (2004) Efficient model selection for kernel logistic regression. In: IEEE pattern

recognition, 2004. ICPR 2004. Proceedings of the 17th international conference, vol 2, pp 439–442
Cawley GC, Talbot NLC (2008) Efficient approximate leave-one-out cross-validation for kernel logistic

regression. Mach Learn 71(2–3):243–264
ChuW, Ong CJ, Keerthi SS (2005) An improved conjugate gradient scheme to the solution of least squares

svm. IEEE Trans Neural Netw 16(2):498–501

123

http://archive.ics.uci.edu/ml

Extreme logistic regression 51

De Kruif BJ, De Vries TJA (2003) Pruning error minimization in least squares support vector machines.
IEEE Trans Neural Netw 14(3):696–702

Fine S, Scheinberg K (2002) Efficient svm training using low-rank kernel representations. J Mach Learn
Res 2:243–264

Frénay B, Verleysen M (2010) Using svms with randomised feature spaces: an extreme learning approach.
In: ESANN

Gestel T, Suykens J, Lanckriet G, Lambrechts A, Moor B, Vandewalle J (2002) Bayesian framework for
least-squares support vector machine classifiers, gaussian processes, and kernel fisher discriminant
analysis. Neural Comput 14(5):1115–1147

Hager WW (1989) Updating the inverse of a matrix. SIAM Rev 31(2):221–239
Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning: data mining, inference,

and prediction: with 200 full-color illustrations. Springer, New York
Hogben L (2006) Handbook of linear algebra. CRC Press, Boca Raton
Huang G-B, Chen L, Siew C-K (2006a) Universal approximation using incremental constructive feedfor-

ward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892
Huang G-B, Zhu Q-Y, Siew C-K (2006b) Extreme learning machine: theory and applications. Neurocom-

puting 70(1):489–501
HuangG-B,DingX,ZhouH (2010)Optimizationmethod based extreme learningmachine for classification.

Neurocomputing 74(1):155–163
Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass

classification. IEEE Trans Syst Man Cybern Part B Cybern 42(2):513–529
Jiao L, Bo L, Wang L (2007) Fast sparse approximation for least squares support vector machine. IEEE

Trans Neural Netw 18(3):685–697
Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab—an S4 package for kernel methods in R.

J Stat Softw 11(9):1–20. http://www.jstatsoft.org/v11/i09/. Accessed 21 Dec 2014
Katz M, Schaffner M, Andelic E, Krüger S, Wendemuth A (2005) Sparse kernel logistic regression for

phoneme classification. In: Proceedings of 10th international conference on speech and computer
(SPECOM), Citeseer, vol 2, pp 523–526

Keerthi SS, Shevade SK (2003) Smo algorithm for least-squares svm formulations. Neural Comput
15(2):487–507

Keerthi SS, Duan KB, Shevade SK, Poo AN (2005) A fast dual algorithm for kernel logistic regression.
Mach Learn 61(1–3):151–165

Komarek P (2004) Logistic regression for data mining and high-dimensional classification. Robotics Insti-
tute, p 222

Kuh A (2004) Least squares kernel methods and applications. In: Soft computing in communications.
Springer, Berlin Heidelberg, pp 365–387

Kulis B, Sustik M, Dhillon I (2006) Learning low-rank kernel matrices. In: Proceedings of the 23rd inter-
national conference on machine learning. ACM, pp 505–512

Le Borne S, Ngufor C (2010) An implicit approximate inverse preconditioner for saddle point problems.
Electron Trans Numer Anal 37:173–188

Liu Q, He Q, Shi Z (2008) Extreme support vector machine classifier. In: Advances in knowledge discovery
and data mining. Springer, pp 222–233

Mercer J (1909) Functions of positive and negative type, and their connection with the theory of integral
equations. In: Philosophical transactions of the Royal Society of London. Series A, containing papers
of a mathematical or physical character, vol 209, pp 415–446

Ngufor C, Wojtusiak J (2013) Learning from large-scale distributed health data: an approximate logistic
regression approach. ICML 13: role of machine learning in transforming healthcare

R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna. http://www.R-project.org/ISBN3-900051-07-0

Ramani S, Fessler JA (2010) An accelerated iterative reweighted least squares algorithm for compressed
sensing mri. In: 2010 IEEE international symposium, IEEE biomedical imaging: from nano to macro,
pp 257–260

Suykens JAK, Lukas L, Van Dooren P, De Moor B, Vandewalle J (1999) Least squares support vector
machine classifiers: a large scale algorithm. In: European conference on circuit theory and design,
ECCTD, Citeseer, vol 99, pp 839–842

Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett
9(3):293–300

123

http://www.jstatsoft.org/v11/i09/
http://www.R-project.org/ISBN3-900051-07-0

52 C. Ngufor, J. Wojtusiak

Suykens JAK, Lukas L, Vandewalle J (2000) Sparse approximation using least squares support vector
machines. In: The 2000 IEEE international symposium on circuits and systems, 2000. IEEE Proceed-
ings. ISCAS 2000 Geneva, vol 2, pp 757–760

Suykens JAK, De Brabanter J, Lukas L, Vandewalle J (2002a) Weighted least squares support vector
machines: robustness and sparse approximation. Neurocomputing 48(1):85–105

Suykens JAK, Van Gestel T, De Brabanter J, DeMoor B, Vandewalle J, Suykens JAK, Van Gestel T (2002b)
Least squares support vector machines, vol 4. World Scientific, Singapore

Zeng X, Chen X-W (2005) Smo-based pruning methods for sparse least squares support vector machines.
IEEE Trans Neural Netw 16(6):1541–1546

Zhu J, Hastie T (2002) Support vector machines, kernel logistic regression and boosting. In: Multiple
classifier systems. Springer, pp 16–26

Zhu J, Hastie T (2005) Kernel logistic regression and the import vector machine. J Comput Graph Stat
14(1):185–205

123

	Extreme logistic regression
	Abstract
	1 Introduction
	2 Logistic regression and kernel logistic regression
	2.1 Logistic regression
	2.2 Kernel logistic regression
	2.3 Iterative re-weighted least squares KLR

	3 Least squares kernel logistic regression
	3.1 Least squares versions of kernel learning machines
	3.2 Least squares approximation of KLR

	4 Extreme learning machine
	4.1 Constrained-optimization-based ELM

	5 Extreme logistic regression
	6 An approximate inverse preconditioner for KLR and ELR
	6.1 Preconditioned KLR and ELR
	6.2 Approximating the kernel matrix
	6.3 A preconditioned MINRES solver for KLR and ELR

	7 Experiments
	7.1 Artificial datasets
	7.2 Benchmark datasets
	7.3 Model selection
	7.4 Results

	8 Conclusions
	References

