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Abstract We introduce a dimension reduction method for model-based clustering
obtained from a finite mixture of t-distributions. This approach is based on existing
work on reducing dimensionality in the case of finite Gaussian mixtures. The method
relies on identifying a reduced subspace of the data by considering the extent to which
group means and group covariances vary. This subspace contains linear combinations
of the original data, which are ordered by importance via the associated eigenvalues.
Observations can be projected onto the subspace and the resulting set of variables cap-
tures most of the clustering structure available in the data. The approach is illustrated
using simulated and real data, where it outperforms its Gaussian analogue.
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322 K. Morris et al.

1 Introduction

In this paper, we introduce a dimension reduction method for model-based clustering
via t-mixtures, which is analogous to the approach of Scrucca (2010) for Gaussian
mixtures. Dimension reduction methods summarize the information available in a set
of variables through a reduced subset of features derived from the original variables.
At the same time, using multivariate t-distributions to model data can be advantageous
because it provides robustness to outliers (cf. Peel and McLachlan 2000). Our aim is
to estimate a subspace which captures most of the clustering structure contained in the
data. Following the work of Li (1991, 2000), the dimension reduction subspace is found
by looking at the variation in both group means and group covariances. This subspace
contains linear combinations of the original data, which are ordered by importance via
the associated eigenvalues. Observations can be projected onto the subspace and the
resulting set of variables captures most of the clustering structure available in the data.

The remainder of the paper is outlined as follows. Background material is presented
in Sect. 2. In Sect. 3, we outline our dimension reduction clustering method and
highlight an algorithm for selecting a subset of the variables while retaining most
of the clustering information contained within the data. We apply the algorithm to
simulated and real data sets, including comparison of the performance of our method
with its Gaussian analogue and five other dimension reduction techniques (Sect. 4).
The paper concludes with discussion and suggestions for future work (Sect. 5). All
the computational work in this paper was carried out within R (R Development Core
Team 2012).

2 Background

Clustering algorithms based on probability models are a popular choice for exploring
structures in modern data sets, which continue to grow in size and complexity. The
model-based approach assumes that the data are generated by a finite mixture of
probability distributions. A p-dimensional random vector X is said to arise from a
parametric finite mixture distribution if f (x|ϑ) = ∑G

g=1 πg fg(x|θ g), where G is the

number of components, πg are mixing proportions, so that
∑G

g=1 πg = 1 and πg > 0,
and ϑ = (π1, . . . , πG , θ1, . . . , θG) is the parameter vector. The fg(x|θ g) are called
component densities and f (x|ϑ) is formally referred to as a G-component parametric
finite mixture distribution.

For Gaussian mixtures, Banfield and Raftery (1993) developed a model-based
framework for clustering by using the following eigenvalue decomposition of the
covariance matrix

�g = λg Dg Ag D�
g , (1)

where Dg is the orthogonal matrix of eigenvectors of �g, Ag is a diagonal matrix with
elements proportional to the eigenvalues of �g , and λg is a scalar. Here, Dg determines
the orientation of the principal components of �g, Ag determines the shape of the
density contours, and λg specifies the volume of the corresponding ellipsoid.
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Dimension reduction for model-based clustering 323

Table 1 Nomenclature for a subset of models in the MCLUST family which appear in this paper:
‘E’ indicates that a constraint is imposed, ‘V’ indicates that a constraint is not imposed (Fraley and Raftery
1999)

Model Volume Shape Orientation Covariance Free covariance parameters
λg Ag Dg �g

EEE Equal Equal Equal λD AD� p(p + 1)/2

VEV Variable Equal Variable λg Dg AD�
g Gp(p + 1)/2 − (G − 1)(p − 1)

VVV Variable Variable Variable λg Dg Ag D�
g Gp(p + 1)/2

Table 2 Nomenclature for a subset of models in the tEIGEN family which appear in this paper: ‘C’ indicates
that a constraint is imposed, ‘U’ indicates that a constraint is not imposed (Andrews and McNicholas 2012a)

Model Volume Shape Orientation Degrees of Free covariance parameters
λg Dg Ag freedom νg

CCCC C C C C [p(p + 1)/2] + 1

CUCC C U C C G[p(p + 1)/2] − (G − 1)p + 1

UUCU U U C U G[p(p + 1)/2] − (G − 1)(p − 1) + G

UUUC U U U C G[p(p + 1)/2] + 1

UUUU U U U U G[p(p + 1)/2] + G

By imposing constraints on the elements of (1), a family of Gaussian parsimonious
clustering models (GPCM) is obtained and discussed by Celeux and Govaert (1995).
A description of a subset of these models appears in Table 1.

Recent work on model-based clustering using the multivariate t-distribution has
been contributed by Peel and McLachlan (2000), McLachlan et al (2007), Greselin
and Ingrassia (2010a,b), Andrews et al. (2011), Baek and McLachlan (2011), Andrews
and McNicholas (2011a,b), Andrews and McNicholas (2012a), Steane et al. (2012),
McNicholas and Subedi (2012), and McNicholas (2013). In particular, Andrews and
McNicholas (2012a) used the decomposition (1) of the multivariate t-distribution scale
matrix to build a family of 20 mixture models which are called the tEIGEN family
(a selection is shown in Table 2). The tEIGEN family uses the ten MCLUST covariance
structures as well as two of the other GPCM structures and also includes constraints
on the degrees of freedom (cf. Andrews and McNicholas 2012a).

Parameter estimation for the tEIGEN family is carried out via the expectation-
conditional maximization algorithm (ECM; Meng and Rubin 1993), an iterative pro-
cedure for finding maximum likelihood estimates when data are incomplete or treated
as being incomplete. Extensive details on the ECM algorithm are given by McLachlan
and Krishnan (2008). The ECM algorithm replaces the M-step in the expectation-
maximization (EM) algorithm (Dempster et al. 1977) with a number of conditional
maximization steps that can be more computationally efficient.

Model selection for the tEIGEN family is carried out using the Bayesian information
criterion (BIC; Schwarz 1978):

BIC = 2l(x, ϑ̂) − r log n ,
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324 K. Morris et al.

where l(x, ϑ̂) is the maximized log-likelihood, ϑ̂ is the maximum likelihood estimate
of ϑ, r is the estimated number of free parameters, and n is the number of obser-
vations. While alternatives to the BIC exist, the authors feel safe contending that it
remains the most popular mixture model selection criterion within the literature. Note
that the tEIGEN family is implemented within the teigen package (Andrews and
McNicholas 2012b) for R; we use teigen in our analyses (Sect. 4).

Recently, Scrucca (2010) proposed a new method of dimension reduction for model-
based clustering in the Gaussian framework, called GMMDR. Given a G-component
Gaussian mixture model (GMM) of the form

f (x|ϑ) =
G∑

g=1

πg fN(x|μg,�g),

the procedure finds the smallest subspace that captures the clustering information
contained within the data. The core of the method is to identify those directions
where the cluster means μg and the cluster covariances �g vary as much as possible,
provided that each direction is �-orthogonal to the others. The variations in cluster
means and cluster covariances are captured by the matrices MI and MII, respectively,
as given below. Identifying these directions is achieved via the generalized eigen-
decomposition of the kernel matrix M, defined by Scrucca (2010) as

Mvi = li�vi , (2)

where l1 ≥ l2 ≥ · · · ≥ ld > 0 and v�
i �v j =

{
1 if i = j, and

0 otherwise.
Here,

M = MI�
−1 MI + MII,

MI =
G∑

g=1

πg(μg − μ)(μg − μ)�,

MII =
G∑

g=1

πg(�g − �̄)�−1(�g − �̄)�.

Also, μ = ∑G
g=1 πgμg is the global mean, � = 1

n

∑n
i=1(xi − μ)(xi − μ)� is

the covariance matrix and �̄ = ∑G
g=1 πg�g is the pooled within-cluster covariance

matrix.

3 Mehodology

The dimension reduction approach of Scrucca (2010) is extended herein through devel-
opment of a t-analogue. The density of a multivariate t-mixture model (tMM) is given
by
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Dimension reduction for model-based clustering 325

f (x|ϑ) =
G∑

g=1

πg ft (x|μg,�g, νg) , (3)

where πg are the mixing proportions and

ft (x|μg,�g, νg) = �(
νg+p

2 )|�g|− 1
2

(πνg)
p
2 �(

νg
2 )(1 + δ(x,μg |�g)

νg
)

νg+p
2

, (4)

is the density of a multivariate t-distribution with mean μg , scale matrix �g , and
νg degrees of freedom, and δ(x,μg|�g) = (x − μg)

��−1
g (x − μg) is the squared

Mahalanobis distance between x and μg .
Note that, although �g is a covariance matrix, it is not the covariance matrix of

the random variable X with the density in (4). The covariance matrix of X is �̃g =
νg/(νg − 2)�g , for νg > 2. Thus, we obtain a modified version of the kernel matrix
M t (cf. 2), where MII = ∑G

g=1 πg(�̃g − �̄)�−1(�̃g − �̄)�.
Given a tMM (3), we wish to find a subspace, S (β), where the cluster means and

cluster covariances vary the most. As outlined in Sect. 2, this is achieved through the
eigen-decomposition of the modified kernel matrix M t .

Definition 3.1 The tMMDR directions are the eigenvectors [v1, . . . , vd ] ≡ β which
form the basis of the dimension reduction subspace S (β).

Suppose S (β) is the subspace spanned by the tMMDR directions obtained from the
eigen-decompostion of M t , and that μg and �̃g are the mean and covariance matrix,
respectively, for the gth component. Then the projections of the parameters onto S (β)

are given by β�μg and β��̃gβ, respectively. For an n × p sample data matrix X , the

sample version M̂ t of the kernel M t is obtained using the corresponding estimates
from the fit of a t-mixture model via the ECM algorithm. Then the tMMDR directions
are calculated from the generalized eigen-decomposition of M̂ t with respect to �̂.
The tMMDR directions are ordered based on eigenvalues; this means that directions
associated with approximately zero eigenvalues can be discarded in practice because
clusters will overlap substantially along these directions. Also, their contribution to
the overall location of the sample points in an eigenvector expansion is approximately
zero and so they provide little positional information.

Definition 3.2 The tMMDR variables, Z, are the projections of the n × p data matrix
X onto the subspace S (β) and can be computed as Z = Xβ.

As in the case of GMMDR, the estimation of the tMMDR variables can be viewed
as a form of feature extraction where the components are reduced through a set of
linear combinations of the original variables. This set of features may contain esti-
mated tMMDR variables that provide no clustering information but require parameter
estimation. Thus, the next step in the process of model-based clustering is to detect
and remove these unnecessary tMMDR variables.
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326 K. Morris et al.

Scrucca (2010) used the subset selection method of Raftery and Dean (2006) to
prune the subset of GMMDR features. We will also use this approach to select the
most appropriate tMMDR features. We compare two subsets of features, s and s′ =
{s\i} ⊂ s, using the BIC difference

BICdiff(Zi∈s) = BICclust(Zs) − BICnot clust(Zs)

= BICclust(Zs) − [BICclust(Zs′) + BICreg(Zi |Zs′)] , (5)

where BICclust(Zs) is the BIC value for the best clustering model fitted using features
in s, BICclust(Zs′) is the BIC value for the best clustering model fitted using features
in s′, and BICreg(Zi |Zs′) is the BIC value for the regression of the i th feature on the
remaining features in s′.

Now, the space of all possible subsets contains 2d − 1 elements and an exhaustive
search is not feasible. To bypass this issue, we employ the greedy search algorithm
of Scrucca (2010) to find a local optimum in the model space, which is based on the
forward-backward search algorithm of Raftery and Dean (2006). The greedy search
from Scrucca (2010) is a forward-only procedure; a backward step is not necessary
because the tMMDR variables are �-orthogonal. Because a backward step is not
needed, computing time is decreased.

1. Select the first feature to be the one which maximizes the BIC difference in (5)
between the best clustering model and the model which assumes no clustering,
i.e., a single component.

2. Select the next feature amongst those not previously included, to be the one which
maximizes the BIC difference in (5).

3. Iterate the previous step until all the BIC differences for the inclusion of a variable
become negative.

At each step, the search over the model space is performed with respect to the
model parametrization and the number of clusters. A summary of our new method
of dimension reduction for model-based clustering via t-mixtures, tMMDR, appears
below.

Algorithm: tMMDR estimation and feature selection

1. Fit a tMM to the data using the tEIGEN family.
2. Estimate the tMMDR directions: identify directions where the cluster means and cluster variances

vary the most, provided each direction is �-orthogonal to the others. This is done through the eigen-
decomposition of the kernel matrix M t .

3. Select the tMMDR variables: compute the set of features by projecting the data onto the estimated
subspace and use the greedy search algorithm to discard the ones which provide no clustering infor-
mation.

4. Fit a tMM on the selected tMMDR variables and return to step 2.
5. Repeat steps 2–4 until none of the remaining features can be dropped.
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Dimension reduction for model-based clustering 327

4 Applications

4.1 Simulated data

We ran the tMMDR algorithm on the data simulation schemes outlined in Scrucca
(2010) and compared its performance to that of the GMMDR procedure. Data were
generated from the Gaussian distribution and the following models (corresponding to
family members) were considered: three overlapping clusters with common covari-
ance, three overlapping clusters with common shape, and three overlapping clusters
with unconstrained covariance. For each model we ran three scenarios, namely:

I. No noise variables: generated three variables from a multivariate normal distrib-
ution.

II. Noise variables: started with scenario one and added seven noise variables gen-
erated from independent standard normal variables.

III. Redundant and noise variables: started with scenario one and added three variables
correlated with each clustering variable (with correlation coefficients equal to 0.9,
0.7, 0.5, respectively) as well as four independent standard normal variables.

For the full details on developing the synthetic data see Scrucca (2010). To ascer-
tain the performance of the clustering methods under varying data dimensions, each
scenario was run for three data sets consisting of 100, 300, and 1,000 data points,
respectively, generated according to the schemes described earlier. Every run com-
prised 1,000 simulations. We evaluated the clustering results by computing the adjusted
Rand index (ARI; Hubert and Arabie 1985) for each scenario: higher values of ARI
correspond to better performance, with the value 1 reflecting perfect class agreement.

We chose to generate only 10 variables in the latter two simulation scenarios so that
we could provide a direct comparison between our results for tMMDR and the results
for GMMDR from Scrucca (2010); results are given in Table 3. When no noise or
redundant variables are present, the performance of the two methods is quite similar.
However, for the scenarios which include noise and redundant variables, tMMDR
exhibits ARI values which are higher than those for GMMDR, particularly for small
sample sizes. This occurs consistently for all models as well as for varying data dimen-
sions.

Next, we simulated data with higher dimensions using the R package cluster
Generation (Qiu and Joe 2006). With this procedure, we chose to generate five clus-
ters with equal numbers of observations by setting the degree of separation between
them to 0.4 (with 1 representing the most separation), and choosing arbitrary posi-
tive definite covariance matrices. We generated four data sets, each comprising 300
observations, with dimensions 10, 30, 50, and 100, respectively.

Figure 1 depicts the scatterplot of five random variables from the data which indicate
the underlying structure. The clustering results (Table 4) show that the number of
features selected and the computing time increases with the dimensionality of the data.
These simulations were performed on a computer with 128 GB of RAM utilizing one
core of an Intel® Xeon® E7-8837 CPU running at 2.67 GHz. Note that the computing
times for our approach will decrease with any future improvements in the efficiency
of the teigen package.
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Fig. 1 Scatterplot of five variables from the higher dimensional simulation indicating the five clusters
present in the data (colour figure online)

Table 4 Computing time for
the tMMDR procedure applied
to simulated data, based on five
runs

Dim. Obs. Comp. Features ARI Avg. time
(seconds)

10 300 5 4 1 807

30 300 5 5 1 3,174

50 300 5 10 1 4,540

100 300 5 12 0.97 16,676

4.2 Real data

For the analyses in this section, we ran the GMMDR and tMMDR algorithms on the
scaled version of each data set. We used the MCLUST hierarchical agglomerative
procedure for initialization (cf. Fraley and Raftery 1999). In order to gauge the perfor-
mance of our algorithm, we compared our results with five other dimension reduction
procedures, outlined briefly below.

1. Robust PCA algorithm (Hubert et al. 2005) paired with t-mixtures via the tEIGEN
family: principal components analysis resistant to outliers, with robust loadings
computed by using projection-pursuit techniques and the minimum covariance
determinant method. We used the R package rrcov (Todorov and Filzmoser
2009) for the ROBPCA computations as well as the teigen package.
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330 K. Morris et al.

2. Mixtures of t-factor analyzers (MMtFA; Andrews and McNicholas 2011a,b)
extend the mixtures of multivariate t-factor analyzers model to include constraints
on the degrees of freedom, the factor loadings, and the error variance matrices.
These models are essentially a t-analogue of the Gaussian family developed by
McNicholas and Murphy (2008, 2010). For the MMtFA results, the algorithms
were initialized using a hierarchical agglomerative clustering and they were run
for a range of 1–5 components and 1–4 factors. The BIC was used to select the
number of components and the number of factors. The numbers of components
and factors do not need to be specified a priori but when we write about the number
of features, note that we are referring to the number of latent factors q, where each
component requires q factors.

3. FisherEM algorithm (Bouveyron and Brunet 2012): a subspace clustering method
based on Gaussian mixtures where the EM-like algorithm estimates both the dis-
criminative subspace and the parameters of the model. This procedure requires the
number of clusters to be specified. We used the R packageFisherEM (Bouveyron
and Brunet 2012) in our analyses.

4. Clustvarsel algorithm (Raftery and Dean 2006) paired with Gaussian mixtures via
the MCLUST family: a greedy procedure to find the (locally) optimal subset of
variables in a dataset. We employed the R package clustvarsel (Dean and
Raftery 2009) in our analyses.

5. SelvarClust algorithm (Maugis et al 2009): a greedy algorithm for variable selec-
tion in model-based clustering via Gaussian mixtures which modifies the method
of Raftery and Dean (2006) by allowing data where individuals are described by
quantitative block variables. We used the software available at http://www.math.
univ-toulouse.fr/~maugis/SelvarClustHomepage.html for our analyses.

4.2.1 Wine data

Forina et al (1986) recorded several chemical and physical properties for three types
of Italian wines: Barolo, Grignolino, and Barbera. For our analysis, we used the data
set comprising 13 variables and 178 observations which is available from the gclus
package (Hurley 2004) in R. The resulting classifications (Table 5) and algorithm
comparisons (Table 6) show that the MMtFA with 2 factors produces the best results
(ARI = 0.96). Also, the tMMDR and FisherEM procedures (both with ARI =
0.93) outperform the GMMDR method (ARI = 0.85), while using less features in
the process. Figure 2 illustrates a scatterplot of the estimated tMMDR directions
corresponding to the three clusters found by the procedure. The separation between
the varieties of wine is clear in the plots of direction 1 against directions 2 and 3.

Table 5 A classification table
for the best tMMDR model
fitted to the wine data

1 2 3

Barolo 59 2 0

Grignolino 0 67 0

Barbera 0 2 48

123

http://www.math.univ-toulouse.fr/~maugis/SelvarClustHomepage.html
http://www.math.univ-toulouse.fr/~maugis/SelvarClustHomepage.html


Dimension reduction for model-based clustering 331

Table 6 Summary of results
for the best models fitted to
the wine data

Method ARI Components Features

tMMDR 0.93 3 4

GMMDR 0.85 3 5

FisherEM 0.93 3 2

selvarclust 0.59 5 7

clustvarsel with
Gaussian mixtures

0.78 3 5

ROBPCA with t-mixtures 0.86 3 5

MMtFA 0.96 3 2

Fig. 2 Plots of estimated tMMDR directions for the wine data. The labels of the observations indicate
their true cluster classification and the colour gives their estimated tMMDR cluster allocation (colour figure
online)

4.2.2 Crabs data

Campbell and Mahon (1974) recorded five measurements for specimens of Leptograp-
sus crabs found in Australia. Crabs were classified according to their colour (blue or
orange) and their gender. This data set, which consists of 200 observations, is available
through the R package MASS (Venables and Ripley 2002). The known classification
of the crabs data by colour and gender has four groups: 50 blue/orange males and 50
blue/orange females. The tMMDR method (ARI = 0.86) produces a better clustering
than the GMMDR method (ARI = 0.82) on the crabs data but it requires one more
feature than GMMDR. The resulting classification is presented in Table 7, while the
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Table 7 A classification table
for the best tMMDR model
fitted to the crabs data

1 2 3 4

Female

Blue 50 8 0 0

Orange 0 42 0 0

Male

Blue 0 0 47 0

Orange 0 0 3 50

Table 8 Summary of results for
the best models fitted to the
crabs data

Method ARI Components Features

tMMDR 0.86 4 4

GMMDR 0.82 4 3

FisherEM 0.03 4 3

selvarclust 0.84 4 4

clustvarsel 0.76 5 4

ROBPCA with t-mixtures 0.82 4 5

MMtFA 0.61 3 3

procedure comparison appearing in Table 8 shows that tMMDR outperforms all other
algorithms.

Figure 3 illustrates a scatterplot of the estimated tMMDR directions corresponding
to the four clusters found by the procedure. The separation between the crabs species
is most clear in the plots of direction 1 against direction 3. As the number of clusters
increases, it becomes more difficult to visualize their separation as evidenced in the
plots of direction 2 against directions 3 and 4. Looking at Fig. 3, it is interesting to
compute the ARI for each set of directions and compare the values to those obtained
by GMMDR. Using tMMDR, direction 1 has ARI = 0.1394, directions 1 and 2
have ARI = 0.4507, directions 1–3 have ARI = 0.5556, and directions 1–4 have
ARI = 0.8617. By comparison, using GMMDR, direction 1 has ARI = 0.5342,
directions 1 and 2 have ARI = 0.7738, and directions 1–3 have ARI = 0.8195.
We observe that, for up to three directions, the ARI for tMMDR is less than those
directions computed for GMMDR, but when the 4th direction is used for tMMDR,
the ARI gets larger. Thus, adding this ‘extra’ direction improves accuracy.

4.2.3 Diabetes data

Reaven and Miller (1979) examined the relationship between five measures of blood
plasma glucose and insulin in order to classify people as normal, overt diabetic, or
chemical diabetic. This data set consists of observations from 145 adult patients at the
Stanford Clinical Research Centre and is available through the R package locfit
(Loader 2012). There are 76 normal patients, 36 chemical diabetics, and 33 overt
diabetics; their tMMDR classifications are given in Table 9. Table 10 indicates that
the selvarclust algorithm (ARI = 0.81) outperforms both the tMMDR (ARI = 0.70)

123



Dimension reduction for model-based clustering 333

Fig. 3 Plots of estimated tMMDR directions for the crabs data. The labels of the observations indicate
their true cluster classification and the colour gives their estimated tMMDR cluster allocation (colour figure
online)

Table 9 A classification table
for the best tMMDR model
fitted to the diabetes data

1 2 3

Overt 26 0 0

Chemical 7 27 2

Normal 0 9 74

and GMMDR methods (ARI = 0.65), while the rest of the procedures do not do
particularly well on these data.

Figure 4 illustrates the overlap between the predicted groups. In particular, the
chemical group is sometimes classified into the normal or overt group, but normal is
never wrongly classified as overt or vice-versa. The average uncertainty associated
with each identified cluster is as follows: 0.0106 for overt, 0.0524 for chemical, and
0.0158 for normal. The modest ARI is likely due to the nature of chemical diabetes.

4.2.4 SRBCT data

Khan et al. (2001) used microarray experiments of small round blue cell tumours
(SRBCT) to classify childhood cancer. Their data contained 2308 genes and 83 tissue
samples which were used to measure gene expressions in four types of tumours,
namely Ewing sarcoma (EWS), Burkitt lymphoma (BL), neuroblastoma (NB), and
rhabdomyosarcoma (RMS). The SRBCTs of childhood are given this collective name
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Table 10 Summary of results
for the best models fitted to the
diabetes data

Method ARI Components Features

tMMDR 0.70 3 4

GMMDR 0.65 3 3

FisherEM 0.54 3 2

selvarclust 0.81 3 4

clustvarsel 0.66 3 4

ROBPCA with t-mixtures 0.59 4 5

MMtFA 0.67 3 1

Fig. 4 Plots of estimated tMMDR directions for the diabetes data. The letters of the observations indicate
their true cluster classification and the colour gives their estimated tMMDR cluster allocation (colour figure
online)

because of their similar appearance on routine histology. These data are available via
the R package plsgenomics (Boulesteix et al. 2011).

One of the main challenges in clustering these data is the large number of gene
expression levels compared with the small number of cancer samples. As is the case
with microarrays in general, there may be many non-informative genes which could
hinder the clustering of the cancer clusters. Thus, gene filtering is very important
for dimensionality reduction and further analysis. Khan et al. (2001) identified 96
genes which were useful in the classification of tissue samples, while Tibshirani et al
(2002) isolated 43 such genes. We used gene-filtering based on t-tests and identified 36
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Table 11 A classification table
for the best tMMDR model
fitted to the SRBCT data

1 2 3 4

Ewing sarcoma 28 0 0 0

Burkitt lymphoma 0 11 0 0

Neuroblastoma 0 0 18 0

Rhabdomyosarcoma 1 0 0 25

Table 12 Summary of results
for the best models fitted to the
SRBCT data

Method ARI Components Features

tMMDR 0.96 4 7

GMMDR 0.83 6 5

FisherEM 0.96 4 3

selvarclust 0.72 6 17

clustvarsel 0.80 6 36

ROBPCA with t-mixtures 0.80 5 7

MMtFA 0.39 2 3

Fig. 5 Plots of the estimated tMMDR directions for the SRBCT data. The labels of the observations
indicate their true cluster classification and the colour gives their estimated tMMDR cluster allocation
(colour figure online)

differentially expressed genes which were then analyzed via our dimension reduction
procedure.

The resulting classification (Table 11) and algorithm comparisons (Table 12) show
that the tMMDR and FisherEM procedures (both with ARI = 0.96) outperform the
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Table 13 Summary results for the tMMDR and GMMDR approaches on all five real data sets

Data Dim. Method Model Comp. Deg. of freedom Feat. ARI

wine 13 GMMDR VEV 3 – 5 0.85

tMMDR CUCC 3 58 4 0.9309

crabs 5 GMMDR EEV 4 – 3 0.8195

tMMDR CUCU 4 {157, 7, 60, 97} 4 0.8617

diabetes 5 GMMDR VEV 3 – 3 0.6536

tMMDR UUUC 3 66 4 0.702

SRBCT 36 GMMDR VEI 6 – 5 0.8325

tMMDR CICU 4 {63,15,66,64} 7 0.96

GMMDR method (ARI = 0.8), which does not identify the correct number of clusters.
Figure 5 depicts a scatterplot of the estimated tMMDR directions corresponding to
the four clusters found by the procedure. The separation between the tumour classes
is clear in the plots of directions 2 and 3 against the others, as they clearly reveal the
underlying structure.

4.2.5 Summary

The results of our real data analyses are summarized in Table 13. Clearly, the tMMDR
approach has outperformed the GMMDR method on these data. The tMMDR approach
also performed very well when benchmarked against other well established dimension
reduction procedures.

5 Conclusion

This paper introduced an effective dimension reduction technique for model-based
clustering within the multivariate t-distribution framework. Our method, known as
tMMDR, focused on identifying the smallest subspace of the data that captured the
inherent cluster structure. The tMMDR approach was illustrated using simulated and
real data, where it performed favourably compared to its Gaussian analogue (GMMDR;
Scrucca 2010), as well as five other dimension reduction methods (ROBPCA with
t-mixtures, mixtures of t-factor analyzers, clustvarsel with Gaussian mixtures, selvar-
clust, and FisherEM).

Future work will focus on dimension reduction using distributions that account
for skewness (e.g., Karlis and Santourian 2009; Lin 2010; Vrbik and McNicholas
2012; Franczak et al. 2012; Lee and McLachlan 2013). However, it is not clear that
the resulting methods would necessarily outperform the tMMDR method introduced
herein.
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