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Abstract In model-based clustering and classification, the cluster-weighted model is
a convenient approach when the random vector of interest is constituted by a response
variable Y and by a vector X of p covariates. However, its applicability may be
limited when p is high. To overcome this problem, this paper assumes a latent factor
structure for X in each mixture component, under Gaussian assumptions. This leads
to the cluster-weighted factor analyzers (CWFA) model. By imposing constraints on
the variance of Y and the covariance matrix of X , a novel family of sixteen CWFA
models is introduced for model-based clustering and classification. The alternating
expectation-conditional maximization algorithm, for maximum likelihood estimation
of the parameters of all models in the family, is described; to initialize the algorithm,
a 5-step hierarchical procedure is proposed, which uses the nested structures of the
models within the family and thus guarantees the natural ranking among the sixteen
likelihoods. Artificial and real data show that these models have very good clustering
and classification performance and that the algorithm is able to recover the parameters
very well.
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1 Introduction

Mixture models have been used for clustering for at least fifty years (Wolfe 1963, 1970).
Following the inception of the expectation-maximization (EM) algorithm (Dempster
et al. 1977), parameter estimation became more manageable and applications of mix-
ture models for clustering and classification became more common (see Titterington
et al. 1985; McLachlan and Basford 1988 for examples). With the increasing availabil-
ity of computational power, the popularity of mixture models has grown consistently
since the mid-1990s, including notable work by Banfield and Raftery (1993), Celeux
and Govaert (1995), Ghahramani and Hinton (1997), Tipping and Bishop (1999),
McLachlan and Peel (2000a), Fraley and Raftery (2002), Dean et al. (2006), Bouvey-
ron et al. (2007), McNicholas and Murphy (2008), McNicholas and Murphy (2010a),
Karlis and Santourian (2009), Lin (2010), Scrucca (2010), Baek et al. (2010), Andrews
et al. (2011), Browne et al. (2012), McNicholas and Subedi (2012), and Browne and
McNicholas (2012), amongst others.

Consider data (x, y) that are realizations of the pair (X,Y ) defined on some space
�, where Y ∈ R is a response variable and X ∈ R

p is a vector of covariates. Suppose
that � can be partitioned into G groups, say �1, . . . , �G . Let p (x, y) be the joint
density of (X,Y ). In this paper, we shall consider a mixture model having density of
the form

p (x, y; θ) =
G∑

g=1

πgφ
(

y|x;m(x;βg), σ
2
g

)
φ
(
x;μg,�g

)
, (1)

where φ(x;μg,�g) denotes a p-variate Gaussian density with mean μg and covari-
ance matrix�g , andφ(y|x;m(x;βg), σ

2
g )denotes the (Gaussian) density of the condi-

tional distribution of Y |x with mean m(x;βg) = β0g+β ′1g x, β0g ∈ R and β1g ∈ R
p,

and variance σ 2
g . Model parameters are denoted by θ . The density in (1) defines the

linear Gaussian cluster-weighted model (see, e.g., Gershenfeld 1997; Schöner 2000).
Quite recently, the cluster-weighted model (CWM) has been developed under more
general assumptions: Ingrassia et al. (2012a) consider t distributions, Ingrassia et al.
(2013) introduce a family of twelve parsimonious linear t CWMs for model-based
clustering, and Ingrassia et al. (2012b) propose CWMs with categorical responses.
Finally, Punzo (2012) introduces the polynomial Gaussian CWM as a flexible tool for
clustering and classification.

In the mosaic of work around the use of mixture models for clustering and classifi-
cation, CWMs have their place in applications with random covariates. Indeed, differ-
ently from finite mixture of regressions (see, e.g., Leisch 2004; Frühwirth-Schnatter
2006), which are examples of mixture models with fixed covariates, the CWM allows
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Clustering and classification via cluster-weighted factor analyzers 7

for assignment dependence: the covariate distributions for each group �g can also be
distinct. In clustering and classification terms, this means that X can directly affect the
clustering results and this represents an advantage, for most applications, with respect
to the fixed covariates approach (Hennig 2000).

However, the applicability of model (1) in high dimensional X-spaces still remains
a challenge. In particular, the number of parameters for this model is (G−1)+G(p+
2) + G[p + p(p + 1)/2], of which Gp (p + 1) /2 are used for the component (or
group) covariance matrices �g of X , g = 1, . . . ,G, and this increases quadratically
with p. To overcome this issue, we assume a latent Gaussian factor structure for X ,
in each mixture-component, which leads to the factor regression model (FRM) of Y
on x (see West 2003; Wang et al. 2007, and Carvalho et al. 2008). The FRM assumes
�g = �g�

′
g+�g , where the loading matrix is a p×q matrix of parameters typically

with q � p and the noise matrix �g is a diagonal matrix. The adoption of this
group covariance structure in (1) leads to the linear Gaussian cluster-weighted factor
analyzers (CWFA) model, which is characterized by G [pq − q (q − 1) /2] + Gp
parameters for the group covariance matrices. The CWFA model follows the principle
of the general form of mixtures of factor analyzers regarding X . Mixtures of factor
analyzers were introduced by Ghahramani and Hinton (1997) and further developed
by Tipping and Bishop (1999) and McLachlan and Peel (2000b). More recent results
have been also provided in Montanari and Viroli (2010, 2011).

Starting from the works of McNicholas and Murphy (2008), McNicholas (2010),
Ingrassia et al. (2012b), and Ingrassia et al. (2013), a novel family of sixteen mix-
ture models—obtained as special cases of the linear Gaussian CWFA by conveniently
constraining the component variances of Y |x and X—is introduced to facilitate par-
simonious model-based clustering and classification in the defined paradigm. The
novelty of this proposal is that it considers a family of models that use factor models
in a regression context to effectively, and flexibly, reduce dimensionality.

The paper is organized as follows. Sect. 2 recalls the FRM; the linear Gaussian
CWFA models are introduced in Sect. 3. Model fitting with the alternating expectation-
conditional maximization (AECM) algorithm is presented in Sect. 4. Section 5
addresses computational details on some aspects of the AECM algorithm and discusses
model selection and evaluation. Artificial and real data are considered in Sect. 6, and
the paper concludes with discussion and suggestions for further work in Sect. 7.

2 The factor regression model

The factor analysis model (Spearman 1904; Bartlett 1953), for the p-dimensional
variable X , postulates that

X = μ+�U + e, (2)

where U ∼ Nq
(
0, Iq

)
is a q-dimensional (q � p) vector of latent factors, � is a

p × q matrix of factor loadings, and e ∼ Np (0,�), with � = diag
(
ψ2

1 , . . . , ψ
2
p

)
,

independent of U . Then X ∼ Np(μ,��′ + �) and, conditional on u, results in
X|u ∼ Np (μ+�u,�).
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8 S. Subedi et al.

Model (2) can be considered jointly with the standard (linear) regression model
Y = β0 + β ′1 X + ε leading to the Factor Regression Model (FRM) (see West 2003;
Wang et al. 2007, and Carvalho et al. 2008);

Y = β0 + β ′1(μ+�U + e)+ ε = (β0 + β ′1μ
)+ β ′1�U + (β ′1e+ ε) ,

where ε is assumed to be independent of U and e. The mean and variance of Y are
given by

E (Y ) = β0 + β ′1μ
Var (Y ) = Var

(
β ′1�U

)+ Var
(
β ′1e
)+ Var (ε)

= β ′1��′β1 + β ′�β1 + σ 2 = β ′1
(
��′ +	)β1 + σ 2,

respectively, and so Y ∼ N
(
β0 + β ′1μ,β ′1

(
��′ +	)β1 + σ 2

)
.

Consider the triplet
(
Y, X ′,U ′

)′. Its mean is given by

E

⎡

⎣
Y
X
U

⎤

⎦ =
⎡

⎣
β0 + β ′1μ

μ

0

⎤

⎦ ,

and because Cov(X,Y ) = (��′ +�)β1 and Cov(U,Y ) = �′β1, it results that

Cov

⎡

⎣
Y
X
U

⎤

⎦ =
⎡

⎣
β ′1�β1 + σ 2 β ′1� β ′1�

�β1 � �

�′β1 �′ Iq

⎤

⎦ ,

where � = ��′ +�. Now, we can write the joint density of
(
Y, X ′,U ′

)′ as

p (y, x, u) = φ (y|x, u) φ (x|u) φ (u) . (3)

Here, the distribution and related parameters for both X|u and U are known. Thus,
we only need to analyze the distribution of Y |x, u. Importantly, E (Y |x, u) = E (Y |x)
and Var (Y |x, u) = Var(Y |x), and so Y |x, u ∼ N

(
β0 + β ′1x, σ 2

)
; mathematical

details are given in Appendix A. This implies that φ (y|x, u) = φ (y|x) and, therefore,
Y is conditionally independent of U given X = x, so that (3) becomes

p (y, x, u) = φ (y|x) φ (x|u) φ (u) . (4)

Similarly, U |y, x ∼ N
(
γ (x − μ) , Iq − γ�

)
, where γ = �′

(
��′ +�

)−1, and
thus U is conditionally independent of Y given X = x. Therefore,

E [U |x;μ,�,�] = γ (x − μ) , and

E
[
UU ′|x;μ,�,�] = Iq − γ�+ γ (x − μ) (x − μ)′ γ ′.
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Clustering and classification via cluster-weighted factor analyzers 9

3 The modelling framework

3.1 The general model

Assume that for each �g , g = 1, . . . ,G, the pair (X,Y ) satisfies a FRM, that is

Y = β0g + β ′1g X + εg with X = μg +�gU g + eg, (5)

where �g is a p×q matrix of factor loadings, Ug ∼ Nq
(
0, Iq

)
is the vector of factors,

eg ∼ Np
(
0,�g

)
are the errors, �g = diag

(
ψ1g, . . . , ψpg

)
, and εg ∼ N (0, σ 2

g ). Then
the linear Gaussian CWM in (1) can be extended in order to include the underlying
factor structure (5) for X . In particular, by recalling that Y is conditionally independent
of U given X = x in the generic �g , we get

p (x, y; θ) =
G∑

g=1

πgφ
(

y|x;m (x;βg
)
, σ 2

g

)
φ
(

x;μg,�g�
′
g +�g

)
, (6)

where θ =
{
πg,βg, σ

2
g ,μg,�g,�g; g = 1, . . . ,G

}
. Model (6) is the linear Gaussian

CWFA, which we shall refer to as the CWFA model herein.

3.2 Parsimonious versions of the model

To introduce parsimony, we extend the linear Gaussian CWFA after the fashion of
McNicholas and Murphy (2008) by allowing constraints across groups on σ 2

g , �g , and
�g , and on whether �g = ψg I p (isotropic assumption). The full range of possible
constraints provides a family of sixteen different parsimonious CWFAs (Table 1).

Here, models are identified by a sequence of four letters. The letters refer to whether
or not the constraints σ 2

g = σ 2, �g = �, �g = �, and �g = ψg I p, respectively, are
imposed. The constraints on the group covariances of X are in the spirit of McNicholas
and Murphy (2008), while that on the group variances of Y are borrowed from Ingrassia
et al. (2013). Each letter can be either C, if the corresponding constraint is applied, or
U if the particular constraint is not applied. For example, model CUUC assumes equal
Y variances between groups, unequal loading matrices, and unequal, but isotropic,
noise.

3.3 Model-based classification

Suppose that m of the n observations in S are labeled. Within the model-based classi-
fication framework, we use all of the n observations to estimate the parameters in (6);
the fitted model classifies each of the n − m unlabeled observations through the cor-
responding maximum a posteriori probability (MAP). As a special case, if m = 0, we
obtain the clustering scenario. Drawing on Hosmer Jr. (1973), Titterington et al. (1985,
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10 S. Subedi et al.

Table 1 Parsimonious covariance structures derived from the CWFA model

Model
ID

Y variance Loading
matrix

Error
variance

Isotropic Covariance parameters

UUUU Unconstrained Unconstrained Unconstrained Unconstrained G + G [pq − q (q − 1) /2]+ Gp

UUUC Unconstrained Unconstrained Unconstrained Constrained G + G [pq − q (q − 1) /2]+ G

UUCU Unconstrained Unconstrained Constrained Unconstrained G + G [pq − q (q − 1) /2]+ p

UUCC Unconstrained Unconstrained Constrained Constrained G + G [pq − q (q − 1) /2]+ 1

UCUU Unconstrained Constrained Unconstrained Unconstrained G + [pq − q (q − 1) /2]+ Gp

UCUC Unconstrained Constrained Unconstrained Constrained G + [pq − q (q − 1) /2]+ G

UCCU Unconstrained Constrained Constrained Unconstrained G + [pq − q (q − 1) /2]+ p

UCCC Unconstrained Constrained Constrained Constrained G + [pq − q (q − 1) /2]+ 1

CUUU Constrained Unconstrained Unconstrained Unconstrained 1+ G [pq − q (q − 1) /2]+ Gp

CUUC Constrained Unconstrained Unconstrained Constrained 1+ G [pq − q (q − 1) /2]+ G

CUCU Constrained Unconstrained Constrained Unconstrained 1+ G [pq − q (q − 1) /2]+ p

CUCC Constrained Unconstrained Constrained Constrained 1+ G [pq − q (q − 1) /2]+ 1

CCUU Constrained Constrained Unconstrained Unconstrained 1+ [pq − q (q − 1) /2]+ Gp

CCUC Constrained Constrained Unconstrained Constrained 1+ [pq − q (q − 1) /2]+ G

CCCU Constrained Constrained Constrained Unconstrained 1+ [pq − q (q − 1) /2]+ p

CCCC Constrained Constrained Constrained Constrained 1+ [pq − q (q − 1) /2]+ 1

Section 4.3.3) show that knowing the label of just a small proportion of observations
a priori can lead to improved clustering performance.

Notationally, if the i th observation is labeled, denote with z̃i = (̃zi1, . . . , z̃iG)
its component membership indicator. Then, arranging the data so that the first m
observations are labeled, the complete-data likelihood becomes

Lc (θ) =
m∏

i=1

G∏

g=1

[
πgφ

(
yi |xi ;m

(
x;βg

)
, σ 2

g

)
φ
(
xi |uig;μg,�g,�g

)
φ
(
uig
)]̃zig

×
n∏

j=m+1

H∏

h=1

[
πhφ

(
y j |x j ;m

(
x;βh

)
, σ 2

h

)
φ
(
x j |u jh;μh ,�h ,�h

)
φ
(
u jh
)]z jh ,

where H ≥ G (often, it is assumed that H = G). For notational convenience, in
this paper we prefer to present the AECM algorithm in the model-based clustering
paradigm (cf. Sect. 4). However, the extension to the model-based classification context
is simply obtained by substituting the ‘dynamic’ (with respect to the iterations of the
algorithm) z1, . . . , zm with the ‘static’ z̃1, . . . , z̃m .

3.4 On identifiability

No theoretical results are currently available on the identifiability of CWMs; however,
because they can be seen as mixture models with random covariates, the results in
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Clustering and classification via cluster-weighted factor analyzers 11

Hennig (2000, Section 3, Model 2.a) can apply. With regard to the latent factor struc-
ture, the necessary conditions for the identifiability of factor analyzers are discussed
by Bartholomew and Knott (1999).

4 Maximum likelihood estimation

4.1 The AECM algorithm

The AECM algorithm (Meng and van Dyk 1997) is used for fitting all models within the
CWFA family defined in Sect. 1. The expectation-conditional maximization (ECM)
algorithm proposed by Meng and Rubin (1993) replaces the M-step of the EM algo-
rithm by a number of computationally simpler conditional maximization (CM) steps.
The AECM algorithm is an extension of the ECM algorithm, where the specification
of the complete data is allowed to be different on each CM step.

Let S = {(xi , yi ) ; i = 1, . . . , n} be a sample of size n from (6). In the EM frame-
work, the generic observation (xi , yi ) is viewed as being incomplete; its complete
counterpart is given by

(
xi , yi , uig, zi

)
, where zi is the component-label vector in

which zig = 1 if (xi , yi ) comes from �g and zig = 0 otherwise. Then the complete-
data likelihood, by considering the result in (4), can be written as

Lc (θ)=
n∏

i=1

G∏

g=1

[
πgφ

(
yi |xi ;m

(
x;βg

)
, σ 2

g

)
φ
(

xi |ui ;μg,�g�
′
g+�g

)
φ
(
uig
)]zig

.

The idea of the AECM algorithm is to partition θ , say θ = (θ ′1, θ ′2
)′, in such a

way that the likelihood is easy to maximize for θ1 given θ2 and vice versa. For the
application of the AECM algorithm to our CWFA family, one iteration consists of two
cycles, with one E-step and one CM-step for each cycle. The two CM-steps correspond
to the partition of θ into the two subvectors θ1 and θ2. Then, we can iterate between
these two conditional maximizations until convergence. In the next two sections, we
illustrate the two cycles for the UUUU model only. Details on the other models of the
CWFA family are given in Appendix B.

4.2 First cycle

Here, θ1 =
{
πg,βg,μg, σ

2
g ; g = 1, . . . ,G

}
, where the missing data are the unob-

served group labels zi , i = 1, . . . , n. The complete-data likelihood is

L1 (θ1) =
n∏

i=1

G∏

g=1

[
πgφ

(
yi |xi ;m

(
xi ;βg

)
, σ 2

g

)
φ
(
xi ;μg,�g

)]zig
.

Consider the complete-data log-likelihood
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12 S. Subedi et al.

lc1 (θ1)

=
n∑

i=1

G∑

g=1

zig ln
[
πgφ

(
yi |xi ;m

(
xi ;βg

)
, σ 2

g

)
φ
(
xi ;μg,�g,�g

)]

= −n (p + 1)

2
ln 2π − 1

2

n∑

i=1

G∑

g=1

zig ln σ 2
g −

1

2

n∑

i=1

G∑

g=1

zig

(
yi − β0g − β ′1g xi

)2

σ 2
g

−1

2

n∑

i=1

G∑

g=1

zig ln
∣∣�g
∣∣− 1

2

n∑

i=1

G∑

g=1

zig
(
xi − μg

)′
�−1

g

(
xi − μg

)

+
G∑

g=1

ng ln πg,

where ng =
n∑

i=1

zig . Because �g = ��′g +�g , we get

lc1 (θ1) = −n (p + 1)

2
ln 2π − 1

2

n∑

i=1

G∑

g=1

zig ln σ 2
g

−1

2

n∑

i=1

G∑

g=1

zig

(
yi − β0g − β ′1g xi

)2

σ 2
g

− 1

2

n∑

i=1

G∑

g=1

zig ln
∣∣∣��′g +�g

∣∣∣

−1

2

n∑

i=1

G∑

g=1

zigtr

{(
xi − μg

) (
xi − μg

)′ (
�g�

′
g +�g

)−1
}

+
G∑

g=1

ng ln πg.

The E-step on the first cycle of the (k + 1)st iteration requires the calculation of

Q1

(
θ1; θ (k)

)
= Eθ (k) [lc (θ1) |S], which is the expected complete-data log-likelihood

given the observed data and using the estimate θ (k) from the kth iteration. In practice,
it requires calculating Eθ (k)

[
Zig|S

]
; this step is achieved by replacing each zig by

z(k+1)
ig , where

z(k+1)
ig =

π
(k)
j φ

(
yi |xi ;m

(
xi ;β(k)g

)
, σ

2(k)
g

)
φ
(

xi |μ(k)g ,�
(k)
g ,�

(k)
g

)

∑G
j=1 π

(k)
j φ

(
yi |xi ;m

(
xi ;β(k)j

)
, σ

2(k)
j

)
φ
(

xi |μ(k)j ,�
(k)
j ,�

(k)
j

) .
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Clustering and classification via cluster-weighted factor analyzers 13

For the M-step, the maximization of this complete-data log-likelihood yields

π(k+1)
g = 1

n

n∑

i=1

z(k+1)
ig

μ(k+1)
g = 1

ng

n∑

i=1

z(k+1)
ig xi

β
(k+1)
1g =

[
1

ng

n∑

i=1

z(k+1)
ig yi

(
xi−μ(k+1)

g

)][ 1

ng

n∑

i=1

z(k+1)
ig x′i xi − μ

′(k+1)
g μ(k+1)

g

]−1

β
(k+1)
0g = 1

ng

n∑

i=1

z(k+1)
ig yi − β

′(k+1)
1g μ(k+1)

g

σ 2(k+1)
g = 1

ng

n∑

i=1

z(k+1)
ig

{
yi −

(
β
(k+1)
0g + β

′(k+1)
1g xi

)}2
,

where n(k+1)
g =

n∑

i=1

z(k+1)
ig . Following the notation in McLachlan and Peel (2000a),

we set θ (k+1/2) =
{
θ
(k+1)
1 , θ

(k)
2

}
.

4.3 Second cycle

Here, θ2 =
{
�g,�g; g = 1, . . . ,G

}
, where the missing data are the unobserved

group labels zi and the latent factors uig , i = 1, . . . , n, and g = 1, . . . ,G. Therefore,
the complete-data likelihood is

Lc2(θ2) =
n∏

i=1

G∏

g=1

[
φ
(

yi |xi , uig;m
(

xi ;β(k+1)
g

)
, σ 2(k+1)

g

)

×φ
(

xi |uig;μ(k+1)
g ,�g

)
φ(uig)π

(k+1)
g

]zig

=
n∏

i=1

G∏

g=1

[
φ
(

yi |xi ;m
(

xi ;β(k+1)
g

)
, σ 2(k+1)

g

)

×φ
(

xi |uig;μ(k+1)
g ,�g,�g

)
φ(uig)π

(k+1)
g

]zig
,

because Y is conditionally independent of U given X = x and

φ
(

xi |uig;μ(k+1)
g ,�g

)
= 1
∣∣2π�g

∣∣1/2
exp

{
−1

2

(
xi − μ(k+1)

g −�guig

)′

123



14 S. Subedi et al.

×�−1
g

(
xi − μ(k+1)

g −�guig

)}

φ
(
uig
) = 1

(2π)q/2
exp

{
−1

2
u′iguig

}
.

Hence, the complete-data log-likelihood is

lc2 (θ2) = −n (p + q + 1)

2
ln (2π)− 1

2

n∑

i=1

G∑

g=1

zig ln σ 2(k+1)
g +

−1

2

n∑

i=1

G∑

g=1

zig

(
yi − β(k+1)

0g − β
′(k+1)
1g xi

)2

2σ̂ 2
g

+
G∑

g=1

ng ln πg + 1

2

n∑

i=1

G∑

g=1

zig ln
∣∣∣�−1

g

∣∣∣+

−1

2

n∑

i=1

G∑

g=1

zigtr

{(
xi−μ(k+1)

g −�guig

) (
xi−μ(k+1)

g −�guig

)′
�−1

g

}
,

where we set

S(k+1)
g = 1

n(k+1)
g

n∑

i=1

z(k+1)
ig

(
xi − μ(k+1)

g

) (
xi − μ(k+1)

g

)′
.

The E-step on the second cycle of the (k + 1)st iteration requires the calcula-

tion of Q2

(
θ2; θ (k+1/2)

)
= Eθ (k+1/2) [lc2 (θ2) |S]. Therefore, we must calculate

the following conditional expectations: Eθ (k+1/2)

(
Zig|S

)
, Eθ (k+1/2)

(
ZigU ig|S

)
, and

Eθ (k+1/2)

(
ZigU igU ′ig|S

)
. Based on (2), these are given by

Eθ (k+1/2)

(
ZigU ig|S

) = z(k+1)
ig γ (k)g

(
xi − μ(k+1)

g

)

Eθ (k+1/2)

(
ZigU igU ′ig|S

)
= z(k+1)

ig

{
Iq − γ (k)g �(k)

g + γ (k)g Sgγ
′(k)
g

}
= z(k+1)

ig �(k)
g ,

where

γ (k)g = �′(k)g

(
�(k)

g �′(k)g +�(k)
g

)−1
(7)

�(k)
g = Iq − γ (k)g �(k)

g + γ (k)g S(k+1)
g γ ′(k)g . (8)
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Thus, the gth term of the expected complete-data log-likelihood Q2

(
θ2; θ (k+1/2)

)

becomes

Q2

(
�g,�g; θ (k+1/2)

)

= C(θ (k+1)
1 )+ 1

2
n(k+1)

g ln |�−1
g | −

1

2
n(k+1)

g tr
{

S(k+1)
g �−1

g

}

+n(k+1)
g tr

{
�gγ

(k)
g S(k+1)

g �−1
g

}
− 1

2
n(k+1)

g tr
{
�′g�−1

g �g�
(k)
g

}
, (9)

where C
(
θ
(k+1)
1

)
denotes the terms in (9) that do not depend on θ2. Then (9) is

maximized for
{
�̂, �̂

}
, satisfying

∂Q2

∂�g
= n(k+1)

g �−1
g S(k+1)

g γ
′(k)
g − n(k+1)

g �−1
g �g�

(k)
g = 0

∂Q2

∂�−1
g

= 1

2
n(k+1)

g �g− 1

2
n(k+1)

g S(k+1)
g +n(k+1)

g S
′(k+1)
g γ

′(k)
g �′g−

1

2
n(k+1)

g �g�
(k)
g �′g=0.

Therefore,

S(k+1)
g γ

′(k)
g −�g�

(k)
g = 0 (10)

�g − S(k+1)
g + 2S

′(k+1)
g γ

′(k)
g �′g −�g�

(k)
g �′g = 0. (11)

From (10), we get

�̂g= S(k+1)
g γ ′(k)g �−1

g , (12)

and substituting in (11) we get

�g−S(k+1)
g +2S(k+1)

g γ ′(k)g

(
S(k+1)

g γ ′(k)g �−1
g

)′−
(

Sg γ̂
′
g�
−1
g

)
�g

(
Sg γ̂

′
g�
−1
g

)′ =0,

which yields

�̂g = diag
{

S(k+1)
g − �̂g γ̂ g S(k+1)

g

}
. (13)

Hence, the maximum likelihood estimates for � and � are obtained by iteratively
computing

�+g = S(k+1)
g γ

′
g�
−1
g

�+g = diag
{

S(k+1)
g −�+g γ g S(k+1)

g

}
,
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where the superscript + denotes the update estimate. Using (7) and (8), we get

γ+g = �′+g
(
�+g �′+g +�+g

)−1

�+g = Iq − γ+g �+g + γ+g S(k+1)
g γ ′+g . (14)

4.4 Outline of the algorithm

In summary, the procedure can be described as follows. For a given initial guess θ (0), on
the (k + 1)st iteration, the algorithm carries out the following steps for g = 1, . . . ,G:

1. Compute π(k+1)
g ,μ

(k+1)
g ,β(k+1)

g , σ
2(k+1)
g ;

2. Set �g ← �
(k)
g and � ← �

(k)
g , and compute γ g and �g;

3. Repeat the following steps until convergence on �g and �g:

(a) Set �+g ← S(k+1)
g γ ′g�−1

g and �+g ← diag
{

S(k+1)
g −�+g γ g S(k+1)

g

}
;

(b) Set γ+g ← �′+g
(
�+g �′+g +�+g

)−1
and �+g ← Iq − γ+g �+g + γ+g S(k+1)

g γ ′+g ;

(c) Set �g ← �+g , �g ← �+g , γ g ← γ+g , and �g ← �+g ;

4. Set �
(k+1)
g ← �g and �

(k+1)
g ← �g .

4.5 AECM initialization: a 5-step procedure

The choice of starting values is a well known and important issue in EM-based algo-
rithms. The standard approach consists of selecting a value for θ (0). An alternative
method, more natural in the authors’ opinion, consists of choosing a value for z(0)i ,
i = 1, . . . , n (see McLachlan and Peel 2000a, p. 54). Within this approach, and due
to the hierarchical structure of the CWFA family of parsimonious models, we propose
a 5-step hierarchical initialization procedure.

For a fixed number of groups G, let z(0)i , i = 1, . . . , n, be the initial classifi-

cation for the AECM algorithm, so that z(0)ig ∈ {0, 1} and
∑

g z(0)ig = 1. The set{
z(0)i ; i = 1, . . . , n

}
can be obtained either through some clustering procedure (here

we consider the k-means method) or by random initialization, for example by sam-
pling from a multinomial distribution with probabilities (1/G, . . . , 1/G). Then, at
the first step of the procedure, the most constrained CCCC model is estimated from
these starting values. At the second step, the resulting (AECM-estimated) ẑig are
taken as the starting group membership labels to initialize the AECM-algorithm of
the four models {UCCC,CUCC,CCUC,CCCU} obtained by relaxing one of the
four constraints. At the third step, the AECM-algorithm for each of the six models
{CCUU,CUCU,UCCU,CUUC,UCUC,UUCC} with two constraints is initialized
using the ẑig from the previous step and the model with the highest likelihood. For
example, to initialize CCUU we use the ẑig from the model having the highest likeli-
hood between CCCU and CCUC. In this fashion, the initialization procedure continues
according to the scheme displayed in Fig. 1, until the least constrained model UUUU
is estimated at the fifth step.
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Fig. 1 Relationships among the
models in the 5-step hierarchical
initialization procedure. Arrows
are oriented from the model used
to initialize towards the model to
be estimated

CCCC

CCCU CCUC CUCC UCCC

CCUU CU CU UCC U CUUC UCUC UUCC

CUUU UCUU UU CU UUUC

UUUU

For all of the models in the CWFA family, in analogy with McNicholas and Murphy
(2008), the initial values for the elements of �g and �g are generated from the eigen-

decomposition of Sg as follows. The Sg are computed based on the values of z(0)ig . The
eigen-decomposition of each Sg is obtained using the Householder reduction and the
QL method (details given by Press et al. 1992). Then the initial values of the elements
of �g are set as λi j =

√
d jρi j , where d j is the j th largest eigenvalue of Sg and ρi j

is the i th element of the eigenvector corresponding to the j th largest eigenvalue of
Sg , where i ∈ {1, 2, . . . , d} and j ∈ {1, 2, . . . , q}. The �g are then initialized as

�g = diag
(

Sg −�g�
′
g

)
.

4.6 Convergence criterion

The Aitken acceleration procedure (Aitken 1926) is used to estimate the asymptotic
maximum of the log-likelihood at each iteration of the AECM algorithm. Based on this
estimate, a decision is made about whether the algorithm has reached convergence,
i.e., whether the log-likelihood is sufficiently close to its estimated asymptotic value.
The Aitken acceleration at iteration k is given by

a(k) = l(k+1) − l(k)

l(k) − l(k−1)
,
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where l(k+1), l(k), and l(k−1) are the log-likelihood values from iterations k+1, k, and
k − 1, respectively. Then, the asymptotic estimate of the log-likelihood at iteration
k + 1 is

l(k+1)∞ = l(k) + 1

1− a(k)

(
l(k+1) − l(k)

)

Böhning et al. (1994). In the analyses in Section 6, we stop our algorithms when
l(k+1)∞ − l(k) < ε (Böhning et al. 1994; Lindsay 1995). Note that we use ε = 0.05 for
the analyses herein.

5 Model selection and performance assessment

5.1 Model selection

The CWFA model, in addition to θ , is also characterized by the number of latent
factors q and by the number of mixture components G. So far, these quantities have
been treated as a priori fixed. Nevertheless, the estimation of these is required, for
practical purposes, when choosing a relevant model.

For model-based clustering and classification, several model selection criteria are
used, such as the Bayesian information criterion (BIC; Schwarz 1978), the integrated
completed likelihood (ICL; Biernacki et al. 2000), and the Akaike information criterion
(AIC; Sakamoto et al. 1983). Among these, the BIC is the most predominant in the
literature and is given by

BIC = 2l(θ̂)− η ln n,

where l(θ̂) is the maximized log-likelihood and η is the number of free parameters.
This is the model selection criterion used in the analyses of Sect. 6.

5.2 Adjusted rand index

Although the data analyses of Sect. 6 are mainly conducted as clustering examples, the
true classifications are actually known for these data. In these examples, the adjusted
Rand index (ARI; Hubert and Arabie 1985) is used to measure class agreement. The
Rand index (RI; Rand 1971) is based on pairwise comparisons and is obtained by
dividing the number of pairwise agreements (observations that should be in the same
group and are, plus those that should not be in the same group and are not) by the
total number of pairs. The ARI corrects the RI to account for agreement by chance: a
value of ‘1’ indicates perfect agreement, ‘0’ is expected under random classification,
and negative values indicate a classification that is worse than would be expected by
guessing.
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Fig. 2 Scatterplot matrix of the simulated data for Example 1

6 Data analyses

This section presents the application of the CWFA family of models to both artificial
and real data sets. Code for the AECM algorithm, described in this paper, was written
in the R computing environment (R Development Core Team 2012).

6.1 Simulated data

6.1.1 Example 1

The first data set consists of a sample of size n = 175 drawn from model UUCU
with G = 2, n1 = 75, n2 = 100, p = 5, and q = 2 (see Fig. 2 for details). The
parameters used for the simulation of the data are given in Table 2 (see Appendix C.1
for details on the covariance matrices �g , g = 1, . . . ,G).
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Table 2 True and estimated parameters for the simulated data of Example 1

All 16 CWFA models were fitted to the data for G ∈ {1, 2, 3} and q ∈ {1, 2},
resulting in 96 different models. As noted above (Sect. 4.5), initialization of the zi ,
i = 1, . . . , n, for the most constrained model (CCCC), and for each combination
(G, q), was done using the k-means algorithm according to the kmeans function of
the R package stats. The remaining 15 models, for each combination (G, q), were
initialized using the 5-step hierarchical initialization procedure described in Sect. 4.5.
The BIC values for all models were computed and the model with the largest BIC
value was selected as the best. In this example, the model corresponding to the largest
BIC value (−5,845.997) was a G = 2 component UUCU model with q = 2 latent
factors, the same as the model used to generate the data. The selected model gave
perfect classification and the estimated parameters were very close to the parameters
used for data simulation (see Table 2 and Appendix C.1).

Figure 3 shows the BIC values of the top 10 models sorted in increasing order.
The horizontal dotted line separates the models with a BIC value within 1 % of the
maximum (over all 96 models) BIC value (hereafter simply referred to as the ‘1%
line’). As mentioned earlier, the model with the largest BIC was UUCU (with G = 2
and q = 2). The subsequent two models, those above the 1 % line, were UUUU with
G = 2 and q = 2 (BIC equal to−5,867.006) and CUCU with G = 2 and q = 2 (BIC
equal to−5,869.839). These two models are structurally very close to the true UUCU
model and also yielded perfect classification. It should also be noted that most of the
models with high BIC values have G = 2 and q = 2.

6.1.2 Example 2

For the second data set, a sample of size n = 235 was drawn from the CUUC model
with G = 3 groups (with n1 = 75, n2 = 100, and n3 = 60) and q = 2 latent factors
(see Fig. 4).
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Fig. 3 BIC values of the top 10 models, sorted in increasing order, for Example 1

All 16 CWFA models were fitted to the data for G ∈ {1, 2, 3, 4} and q ∈ {1, 2},
resulting in 128 different models. The algorithm was initialized in the same way as for
Example 2. The model with the highest BIC (−6,579.116) was CUUC with G = 3
and q = 2, resulting in perfect classification. The estimated parameters of this model
were very close to the true ones (Table 3 and Appendix C.2).

The plot of BIC values is omitted for the sake of space. Besides the true model, we
underline that the other three models above the 1% line are UUUC (BIC =−6,583.692),
CUUU (BIC = −6,637.222), and UUUU (BIC = −6,641.798), all with G = 3 and
q = 2. Thus, these models are congruent, with respect to the true one, in terms of G
and q. Moreover, they have a similar covariance structure to the true one (CUUC) and
yielded perfect classification.

6.1.3 Example 3

A third simulated data set, of dimension p + 1 = 11, was generated from the CCUU
model with G = 2 groups (with n1 = 75 and n2 = 100) and q = 4 latent factors.
All 16 CWFA models were fitted to the data for G ∈ {1, 2, 3} and q ∈ {1, 2, 3, 4, 5},
resulting in 240 different models. The algorithm was initialized in the same way as for
Example 1. The model with the highest BIC (−10,190.23) was CCUU with G = 2
and q = 4, resulting in perfect classification. The estimated parameters of this model
were very close to the true ones (Table 4).

As before, the plot of BIC values is omitted for the sake of space. The next three
models with the highest BIC were UCUU (BIC = −10, 192.989, q = 4), CCUU
(BIC = −10, 195.264, q = 5), and UCUU (BIC = −10, 198.027, q = 5), all with
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Fig. 4 Scatterplot matrix of the simulated data for Example 2

G = 2. All of these models had two components and a constrained loading matrix,
and yielded perfect classification.

6.1.4 Example 4

A fourth simulated data set, of dimension p+ 1 = 21, was generated from the UUCC
model with G = 2 groups (with n1 = 120 and n2 = 100) and q = 5 latent factors.

All 16 CWFA models were fitted to the data for G ∈ {1, 2, 3} and q ∈
{1, 2, 3, 4, 5, 6}, resulting in 288 different models. The algorithm was initialized in the
same way as for Example 1. The model with the highest BIC (−24,199.57) was UUCC
with G = 2 and q = 5, resulting in perfect classification. The estimated parameters
of this model were very close to the true ones (Table 5).

The plot of BIC values is omitted for the sake of space. The next three models with
the highest BIC were UUUC (BIC =−24204.955), CUCC (BIC =−24,213.742), and
CUUC (BIC = 24,219.126), all with G = 2 and q = 5.
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Table 3 True and estimated parameters for the simulated data of Example 2

Table 4 True and estimated parameters for the simulated data of Example 3
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Table 5 True and estimated parameters for the simulated data of Example 4

6.2 The f.voles data set

In addition to the simulated data analyses of Sect. 6.1, the CWFA family was also
applied to a real data set for both clustering and classification. The f.voles data
set, detailed in Flury (1997, Table 5.3.7) and available in the Flury package for
R, consists of measurements of female voles from two species, M. californicus and
M. ochrogaster. The data consist of 86 observations for which we have a binary
variable Species denoting the species (45 Microtus ochrogaster and 41 M. califor-
nicus), a variable Age measured in days, and six remaining variables related to skull
measurements. The names of the variables are the same as in the original analy-
sis of this data set by Airoldi and Hoffmann (1984): L2 = condylo-incisive length,
L9 = length of incisive foramen, L7 = alveolar length of upper molar tooth row,
B3 = zygomatic width, B4 = interorbital width, and H1 = skull height. All of the
variables related to the skull are measured in units of 0.1 mm.

The purpose of Airoldi and Hoffmann (1984) was to study age variation in M. cali-
fornicus and M. ochrogaster and to predict age on the basis of the skull measurements.
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Table 6 Clustering of f.voles data using six different approaches

The best model as indicated by the BIC is noted at the top of each sub-table

For our purpose, we assume that data are unlabelled with respect to Species and that
our interest is in evaluating clustering and classification using the CWFA family models
as well as comparing the algorithm with some well-established mixture model-based
techniques. Therefore, Age can be considered the natural Y variable and the p = 6
skull measurements can be considered as the X variable for the CWFA framework.

6.2.1 Clustering

All sixteen linear Gaussian CWFA models were fitted—assuming no known group
memberships—for G ∈ {2, . . . , 5} components and q ∈ {1, 2, 3} latent factors, result-
ing in a total of 192 different models. The model with the largest BIC value was CCCU
with G = 3 and q = 1, with a BIC of−3,837.698 and an ARI of 0.72. Table 6 displays
the clustering results from this model.

Table 6 also shows the clustering results of the following model-based clustering
approaches applied to the vector (X,Y ):

PGMM: parsimonious latent Gaussian mixture models as described in McNicholas
and Murphy (2008, 2010b); McNicholas (2010), and McNicholas et al. (2010),
and estimated via the pgmmEM function of the R package pgmm (McNicholas et al.
2011);
FMA: factor mixture analysis as described in Montanari and Viroli (2010, 2011),
and implemented via the fma function of the R package FactMixtAnalysis;
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Table 7 Estimated parameters for the chosen CWFA model applied to the f.voles data

FMR: finite mixtures of linear Gaussian regressions as described, among many
others, in DeSarbo and Cron (1988), and estimated via the stepFlexmix func-
tion of the R package flexmix (Leisch 2004);
FMRC: finite mixtures of linear Gaussian regressions with concomitants as
described in Grün and Leisch (2008) and estimated via the stepFlexmix func-
tion of the R package flexmix; and
MCLUST: parsimonious mixtures of Gaussian distributions as described in Ban-
field and Raftery (1993); Celeux and Govaert (1995), and Fraley and Raftery
(2002), and estimated via the Mclust function of the R package mclust (see
Fraley et al. 2012, for details).

In all cases, we use the range G ∈ {2, . . . , 5} for mixture components and values
q ∈ {1, 2, 3} for the number of latent factors where relevant (i.e., PGMM and FMA).
The best model is selected using the BIC. Finally, note that the pair (X,Y ) is used
as a unique input in MCLUST and FMA. Furthermore, as regards the former, all
ten available covariance structures in the package mclust are considered while,
ceteris paribus with the other approaches, no further covariates are considered for
FMA. As seen from Table 6, M. californicus was classified correctly using the four
approaches: CWFA, PGMM, FMA, and MCLUST. M. ochrogaster was classified
into two sub-clusters using CWFA and PGMM while FMA and MCLUST classified
it into one cluster. However, the CWFA approach had no misclassifications between
the two species but PGMM, FMA, and MCLUST misclassified two M. ochrogaster
as M. californicus. On these data, the other two approaches, FMR and FMRC, do not
show a good clustering performance; poor results were obtained for FMR in particular.

For completeness, we give estimated parameters for the chosen CWFA model
(CCCU, q = 1, G = 3) in Table 7.

The plot of BIC values is omitted for the sake of space. In Table 8 we list the five
models which attained the largest BIC values. Notably, the first four models were
characterized by G = 3 components and the subsequent four by G = 2.
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Table 8 BIC values of the top 5 models, sorted in decreasing order, for the f.voles data

Model G q BIC

CCCU 3 1 −3,837.698

UCCU 3 1 −3,839.322

UCCU 3 2 −3,848.574

CCUU 3 1 −3,851.072

CCUU 2 1 −3,852.178

Airoldi and Hoffmann (1984) mention that some unexplained geographic variation
may exist among the voles. However, no covariate was available with such information.
Hence, we opted for the scatter plot matrix to evaluate the presence of sub-clusters
(see Fig. 5). Here, the scatter plot of the variables B3 versus B4 shows the presence
of distinct sub-clusters for M. ochrogaster, which supports our results attained using
CWFA modelling.

6.2.2 Classification

A subset of observations, consisting of 50 % of the data, was randomly selected and
these observations were assumed to have known component membership. To allow
for the unobserved sub-cluster noted in the clustering application of Sect. 6.2.1, we
ran the algorithm for G = 2, 3 and q = 1, 2, 3. The best model (CCUU with G = 2
and q = 1) selected by the BIC (−3,843.482) gave perfect classification, as we can
see from Table 9a.

We also ran the classification assuming that the data are actually comprised of three
known groups. Therefore, using the classification observed by clustering, we also ran
the classification algorithm with 50 % known (i.e., labelled) and 50 % unknown (i.e.,
unlabelled). To further allow for the unobserved sub-cluster, we ran the algorithm
for G ∈ {3, 4} and q ∈ {1, 2, 3}. The model selected using the BIC was CCCU
with G = 3 and q = 1, with a BIC value of −3,837.383. Even though the BIC
value observed using the classification approach (with G = 3 known groups) was
very close to the BIC value using clustering, the sub-clusters do not have precisely
the same classification using the two approaches. This could be a consequence of
the classification of borderline observations among the sub-clusters using maximum a
posteriori probability. However, the BIC value for the classification using three known
groups was higher than the BIC value using two known groups, which again suggests
the presence of sub-clusters.

7 Conclusions, discussion, and future work

In this paper, we introduced a novel family of 16 parsimonious CWFA models. They are
linear Gaussian cluster-weighted models in which a latent factor structure is assumed
for the explanatory random vector in each mixture component. The parsimonious ver-
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Fig. 5 Scatterplot matrix of f.voles data showing the classification observed from CWFA modelling
using the clustering framework, where times symbol and open circle indicate sub-clusters of the M. ochro-
gaster species and triangle indicates the M. californicus species

sions are obtained by combining all of the constraints described in McNicholas and
Murphy (2008) with one of the constraints illustrated in Ingrassia et al. (2013). Due
to the introduction of a latent factor structure, the parameters are linear in dimension-
ality as opposed to the traditional linear Gaussian CWM where the parameters grow
quadratically; therefore, our approach is more suitable for modelling complex high
dimensional data.The AECM algorithm was used for maximum likelihood estima-
tion of the model parameters. Being based on the EM algorithm, it is very sensitive
to starting values due to presence of multiple local maxima. To overcome this prob-
lem, we proposed a 5-step hierarchical initialization procedure that utilizes the nested
structures of the models within the CWFA family. Because these models have a hier-
archical/nested structure, this initialization procedure guarantees a natural ranking on
the likelihoods of the models in our family.Using artificial and real data, we demon-
strated that these models give very good clustering performance and that the AECM
algorithms used were able to recover the parameters very well.
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Table 9 Classification of f.voles data assuming that 50 % of the observations have known group
membership.

True Est.

1 2

a) 2 known groups
ochrogaster 45 –

californicus – 41

b) 3 known groups
ochrogaster 28 17 –

californicus – – 41

Also, while the BIC was able to identify the correct model in our simulations,
the choice of a convenient model selection criterion for these models is still an open
question. Some future work will be devoted to the search for good model selection
criteria for these models. Finally, we assumed that the number of factors was the
same across groups, which might be too restrictive. However, assuming otherwise
also increases the number of models that need to be fitted, resulting in an additional
computational burden. Approaches such as variational Bayes approximations might
be useful for significantly reducing the number of models that need to be fitted.
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Appendix A: The conditional distribution of Y |x, u

To compute the distribution of Y |x, u, we begin by recalling that if Z ∼ Nq (m,	)
is a random vector with values in R

q and if Z is partitioned as Z = (Z′1, Z′2
)′, where

Z1 takes values in R
q1 and Z2 in R

q2 = R
q−q1 , then we can write

m =
[

m1
m2

]
and 	 =

[
	11 	12
	21 	22

]
.

Now, because Z has a multivariate normal distribution, Z1|Z2 = z2 and Z2 are sta-
tistically independent with Z1|Z2 = z2 ∼ Nq1

(
m1|2,	1|2

)
and Z2 ∼ Nq2 (m2,	22),

where

m1|2 = m1 + 	12	
−1
22 (z2 − m2) and 	1|2 = 	11 − 	12	

−1
22 	21. (15)
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Therefore, setting Z = (
Z′1, Z′2

)′, where Z′1 = Y and Z2 =
(
X ′,U ′

)′, gives

m1 = β0 + β ′1μ and m2 =
(
μ′, 0′

)′, with the elements in 	 given by

	11 = β ′1�β1 + σ 2, 	22 =
[

� �

�′ Iq

]
, and 	12 =

[
β ′1� β ′1�

]
.

It follows that Y |x, u is Gaussian with mean my|x,u = E (Y |x, u) and variance
σ 2

y|x,u = Var (Y |x, u), in accordance with the formulae in (15). Because the inverse
matrix of 	22 is required in (15), the following formula for the inverse of a partitioned
matrix is utilized:

[
A B
C D

]−1

=
[ (

A− B D−1C
)−1 −A−1 B

(
D − C A−1 B

)−1

−D−1C
(

A− B D−1C
)−1 (

D − C A−1 B
)−1

]
.

Again, writing � = ��′ +�, we have

	−1
22 =

[
� �

�′ Iq

]−1

=
[

�−1 −�−1�
(
Iq −�′�−1�

)−1

−�′�−1
(
Iq −�′�−1�

)−1

]
.

Moreover, according to the Woodbury identity (Woodbury 1950),

�−1 = (��′ +�)−1 = �−1 −�−1�(Iq +�′�−1�)−1�′�−1.

Now,

	12	
−1
22 =

[
β ′1� β ′1�

]
[

�−1 −�−1�
(
Iq −�′�−1�

)−1

−��−1 (Iq −�′�−1�)−1

]
= [β ′1 0

]
.

Finally, according to (15), we have

my|x,u = m1 + 	12	
−1
22

[
z2 − m2

] = (β0 + β ′1μ
)+ [β ′1 0

] [x − μ

u − 0

]
= β0 + β ′1x,

σ 2
y|x,u = 	11 − 	12	

−1
22 	21 = β ′1�β1 + σ 2 − [β ′1 0

] [�β1
�β1

]
= σ 2.

Appendix B: Details on the AECM algorithm for the parsimonious models

This appendix details the AECM algorithm for the models summarized in Table 1.

B.1 Constraint on the Y variable

In all of the models whose identifier starts with ‘C’, that is the models in which the
error variance terms σ 2

g (of the response variable Y ) are constrained to be equal across
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groups, i.e., σ 2
g = σ 2 for g = 1, . . . ,G, the common variance σ 2 at the (k + 1)th

iteration of the algorithm is computed as

σ 2(k+1) = 1

n

n∑

i=1

G∑

g=1

z(k+1)
ig

{
yi −

(
β
(k+1)
0g + β

′(k+1)
1g xi

)}2
.

B.2 constraints on the X variable

With respect to the X variable, as explained in Sect. 3.2, we considered the following
constraints on �g = �g�

′
g +�g: (i) equal loading matrices �g = �, (ii) equal error

variance �g = �, and (iii) isotropic assumption: �g = ψg I p. In such cases, the gth

term of the expected complete-data log-likelihood Q2

(
θ2; θ (k+1/2)

)
, and then the

estimates (12) and (13) in Sect. 4.3, are computed as follows.

B.2.1 Isotropic assumption: �g = ψg I p

In this case, Eq. (9) becomes

Q2

(
�g, ψg; θ (k+1/2)

)
=C

(
θ
(k+1)
1

)
+ 1

2
n(k+1)

g ln |ψ−1
g I p| − 1

2
n(k+1)

g ψ−1
g tr

{
S(k+1)

g

}

+n(k+1)
g ψ−1

g tr
{
γ (k)g S(k+1)

g �g

}
− 1

2
n(k+1)

g ψ−1
g tr

×
{
�g�

(k)
g �′g

}
,

yielding

∂Q2

∂ψ−1
g
= 1

2
n(k+1)

g

[
pψg − tr

{
S(k+1)

g

}
+ 2tr

{
γ (k)g S(k+1)

g �g

}
− tr

{
�g�

(k)
g �′g

}]
.

Then the estimated ψg is attained for ψ̂g , satisfying

∂Q2

∂ψ−1
g
= 0 ⇒ pψg − tr

{
S(k+1)

g

}
+ 2tr

{
γ (k)g S(k+1)

g �g

}
− tr

{
�g�

(k)
g �′g

}
= 0.

Thus, according to (12), for �g = �̂g = S(k+1)
g γ

′(k)
g �−1

g we get tr
{
�g�

(k)
g �′g

}
=

tr
{
γ
(k)
g S(k+1)

g �g

}
and, finally, ψ̂g = 1

p tr
{

S(k+1)
g − �̂gγ

(k)
g S(k+1)

g

}
. Thus,

ψ+g =
1

p
tr
{

S(k+1)
g −�gγ

+
g S(k+1)

g

}
(16)

γ+g = �′g
(
�g�

′
g + ψ+g I p

)−1
,
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with �+g computed according to (14).

B.2.2 Equal error variance: �g = �

In this case, from Eq. (9), we have

Q2

(
�g,�; θ (k+1/2)

)
= C(θ (k+1)

1 )− 1

2
n(k+1)

g ln |�| − 1

2
n(k+1)

g tr
{

S(k+1)
g �−1

}

+n(k+1)
g tr

{
�gγ

(k)
g S(k+1)

g �−1
}
− 1

2
n(k+1)

g tr

×
{
�′g�−1�g�

(k)
g

}
,

yielding

∂Q2

(
�g,�; θ (k+1/2)

)

∂�−1 = 1

2
n(k+1)

g � − 1

2
n(k+1)

g S(k+1)
g + n(k+1)

g S
′(k+1)
g γ

′(k)
g �′g

−1

2
n(k+1)

g �g�
(k)
g �′g.

Then the estimated �̂ is obtained by satisfying

G∑

g=1

∂Q2

(
�g,�; θ (k+1/2)

)

∂�−1 = 0,

that is

n

2
�− 1

2

G∑

g=1

n(k+1)
g S(k+1)

g +
G∑

g=1

n(k+1)
g S

′(k+1)
g γ

′(k)
g �′g−

1

2

G∑

g=1

n(k+1)
g �g�

(k)
g �′g=0,

which can be simplified as

n

2
� − 1

2

G∑

g=1

n(k+1)
g

[
S(k+1)

g + 2S
′(k+1)
g γ

′(k)
g �′g −�g�

(k)
g �′g

]
= 0,

with
G∑

g=1

n(k+1)
g = n. Again, according to (12), for �g = �̂g = S(k+1)

g γ
′(k)
g �−1

g we

get �̂g�
(k)
g �̂

′
g = �̂gγ

(k)
g S(k+1)

g and, afterwards,
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�̂ =
G∑

g=1

ng

n
diag

{
S(k+1)

g − �̂gγ
′(k)
g S(k+1)

g

}

=
G∑

g=1

π(k+1)
g diag

{
S(k+1)

g − �̂gγ
(k)
g S(k+1)

g

}
. (17)

Thus,

�+ =
G∑

g=1

π(k+1)
g diag

{
S(k+1)

g −�+g γ g S(k+1)
g

}
, (18)

γ+g = �′g
(
�+g �′+g +�+

)−1
,

where �+g is computed according to (14).

B.2.3 Equal loading matrices: �g = �

In this case, Eq. (9) can be written as

Q2

(
�,�g; θ (k+1/2)

)
= C(θ (k+1)

1 )+ 1

2
n(k+1)

g ln |�−1
g | −

1

2
n(k+1)

g tr
{

S(k+1)
g �−1

g

}

+n(k+1)
g tr

{
�γ (k)g S(k+1)

g �−1
g

}
− 1

2
n(k+1)

g tr
{
�′�−1

g ��(k)
g

}
,

yielding

∂Q2

(
�,�g; θ (k+1/2)

)

∂�
= n(k+1)

g �−1
g S(k+1)

g γ
′(k)
g − n(k+1)

g �−1
g ��

(k)
g = 0.

Then the estimated �̂ is obtained by solving

G∑

g=1

∂Q2

(
�,�g; θ (k+1/2)

)

∂�
=

G∑

g=1

n(k+1)
g �−1

g

[
S(k+1)

g γ
′(k)
g −��(k)

g

]
= 0, (19)

with γ
(k)
g = �

′(k)
(
�(k)�

′(k) +�
(k)
g

)−1
. In this case, the loading matrix cannot

be solved directly and must be solved in a row-by-row manner as suggested by
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McNicholas and Murphy (2008). Therefore,

λ+i = ri

⎛

⎝
G∑

g=1

ng

ψg(i)
�g

⎞

⎠
−1

(20)

γ+g = �′
(
�+�′+ +�+g

)−1
(21)

�+g = Iq − γ+g �+ + γ+g S(k+1)
g γ ′+g , (22)

where λ+i is the i th row of the matrix �+, ψg(i) is the i th diagonal element of �g , and

ri represents the i th row of the matrix
∑G

g=1
n(k+1)

g

(
� ′g
)−1

S(k+1)
g .

B.2.4 Further details

A further schematization is here given without considering the constraint on the Y
variable. Thus, with reference to the model identifier, we will only refer to the last
three letters.

Models ended by UUU: no constraint is assumed.
Models ended by UUC: �g = ψg I p, where the parameterψg is updated according
to (16).
Models ended by UCU: �g = �, where the matrix � is updated according to
(18).
Models ended by UCC: �g = ψ I p. By combining (16) and (18) we obtain

ψ̂ = 1

p

G∑

g=1

n(k+1)
g

n
tr
{

S(k+1)
g − �̂gγ

(k)
g S(k+1)

g

}

= 1

p

G∑

g=1

π̂ (k+1)
g tr

{
S(k+1)

g − �̂gγ
(k)
g S(k+1)

g

}
. (23)

Thus, ψ+ = (1/p)
∑G

g=1 π
(k+1)
g tr

{
S(k+1)

g −�+g γ g S(k+1)
g

}
and

γ+g = �′+g
(
�+g �′+g + ψ+ I p

)−1
, with �+g computed according to (14).

Models ended by CUU: �g = �, where the matrix � is updated
according to (20). In this case, �g is estimated directly from (11) and thus

�+g = diag
{

S(k+1)
g − 2�+γ g S(k+1)

g +�+�g�
′+
}

, with γ+g and �+g computed

according to (21) and (22), respectively.
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Models ended by CUC: �g = � and �g = ψg I p. In this case, Equation (19), for
�g = ψg I p, yields

G∑

g=1

∂Q2

(
�, ψg; θ (k+1/2)

)

∂�
=

G∑

g=1

n(k+1)
g ψ−1

g S(k+1)
g γ

′(k)
g

−
G∑

g=1

n(k+1)
g ψ−1

g �(k)
g = 0,

and afterwards

�̂ =
⎛

⎝
G∑

g=1

n(k+1)
g

ψ−1
g

S(k+1)
g γ

′(k)
g

⎞

⎠

⎛

⎝
G∑

g=1

n(k+1)
g

ψ−1
g

�

⎞

⎠
−1

,

with γ
(k)
g = �

′(k)
(
�(k)�

′(k) + ψ(k)g I p

)−1
. Moreover, from

∂Q2

(
�, ψg; θ (k+1/2)

)

∂ψ−1
g

= p

2
ψg − n(k+1)

g

2

[
tr
{

S(k+1)
g

}
− 2tr

{
S
′(k+1)
g γ ′(k)g �′

}

+tr
{
��(k+1)

g �′
}]
= 0

we get ψ̂g = (1/p)tr
{

S(k+1)
g − 2�̂γ

′(k)
g Sg + �̂�g�̂

′}
. Thus,

�+ =
⎛

⎝
G∑

g=1

n(k+1)
g

ψ−1
g

S(k+1)
g γ ′g

⎞

⎠

⎛

⎝
G∑

g=1

n(k+1)
g

ψ−1
g

�

⎞

⎠
−1

ψ+g =
1

p
tr
{

S(k+1)
g − 2 �+γ ′g Sg +�+��′+

}

γ+g = �′+
(
�+�′+ + ψ+g I p

)−1
,

with �+g computed according to (22).
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Models ended by CCU: �g=� and �g=�, so that γ (k)=�′(k)
(
�(k)�(k)+�(k)

)−1
.

Setting �g = � in (19), we get

G∑

g=1

∂Q2

(
�,�; θ (k+1/2)

)

∂�
=

G∑

g=1

n(k+1)
g �−1

[
S(k+1)

g γ ′(k) −��(k)
g

]

= �−1

⎡

⎣γ ′(k)
G∑

g=1

n(k+1)
g S(k+1)

g −�

G∑

g=1

n(k+1)
g �(k)

g

⎤

⎦

= �−1
[
γ ′(k)S(k+1) −��(k)

]
= 0,

where S(k+1) = ∑G
g=1 π

(k+1)
g S(k+1)

g and �(k) = ∑G
g=1 π

(k+1)
g �

(k)
g = Iq −

γ (k)�(k) + γ (k)S(k+1)γ ′(k). Thus,

�̂ = S(k+1)γ ′(k)
(
�(k)

)−1
. (24)

Moreover, setting �g = � in (17), we get �̂ = diag
{

S(k+1) − �̂γ (k)S(k+1)
}

.

Hence,

�+ = S(k+1)γ ′�−1 (25)

�+ = diag
{

S(k+1) −�+γ S(k+1)
}

γ+g = �′+
(
�+�′+ +�+

)−1
,

with �+g computed according to (22).

Models ended by CCC: �g = � and �g = ψ I p, so that

γ (k) = �′(k)
(
�(k)�′(k) + ψ(k))−1

. Here, the estimated loading matrix is
again (24), while the isotropic term obtained from (23) for �g = � is

ψ̂ = (1/p)tr
{

S(k+1) − �̂γ (k)S(k+1)
}

, with γ
(k)
g =�

′(k)
g

(
�
(k)
g �

′(k)
g +ψ(k) I p

)−1
.

Hence,ψ+=(1/p)tr
{

S(k+1) −�+γ S(k+1)} andγ+=�′+(�+�′+ + ψ+ I p
)−1,

with �+ and �+g computed according to (25) and (22), respectively.

Appendix C: True and estimated covariance matrices of Sect. 6.1

Because the loading matrices are not unique, for the simulated data of Examples 1
and 2 we limit the attention to a comparison, for each g = 1, . . . ,G, of true and
estimated covariance matrices.
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C.1 Example 1

�1 =

⎡

⎢⎢⎢⎢⎣

103.36 103.07 101.37 79.41 105.66
103.08 119.39 110.23 85.97 115.47
101.37 110.23 129.77 106.08 118.50
79.41 85.97 106.08 101.46 95.21
105.66 115.47 118.50 95.21 121.63

⎤

⎥⎥⎥⎥⎦

�̂1 =

⎡

⎢⎢⎢⎢⎣

107.59 114.55 110.42 87.29 114.43
114.55 139.40 127.06 100.09 132.06
110.42 127.06 146.31 122.92 134.12
87.29 100.09 122.92 117.97 110.09
114.43 132.06 134.12 110.09 135.66

⎤

⎥⎥⎥⎥⎦
,

and

�2 =

⎡

⎢⎢⎢⎢⎣

34.25 15.16 17.81 22.39 14.62
15.16 17.01 11.42 13.98 8.95
17.81 11.42 17.62 16.12 10.45
22.39 13.98 16.12 28.11 13.11
14.62 8.95 10.45 13.11 10.19

⎤

⎥⎥⎥⎥⎦

�̂2 =

⎡

⎢⎢⎢⎢⎣

22.16 7.44 13.71 12.89 10.12
7.44 11.25 7.59 8.05 5.48
13.71 7.59 18.83 13.53 10.13
12.89 8.05 13.53 22.00 9.41
10.12 5.48 10.13 9.41 8.63

⎤

⎥⎥⎥⎥⎦
.

C.2 Example 2

�1 =

⎡

⎢⎢⎢⎢⎣

10.41 3.61 4.07 4.48 5.71
3.61 7.83 2.88 3.18 4.03
4.07 2.88 8.67 3.81 4.64
4.48 3.18 3.81 9.61 5.17
5.71 4.04 4.64 5.17 11.73

⎤

⎥⎥⎥⎥⎦

�̂1 =

⎡

⎢⎢⎢⎢⎣

8.86 3.89 5.06 3.84 5.72
3.89 7.23 3.59 1.79 4.04
5.06 3.59 8.44 3.85 5.50
3.84 1.79 3.85 7.74 4.38
5.72 4.04 5.50 4.38 9.81

⎤

⎥⎥⎥⎥⎦
,
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�2 =

⎡

⎢⎢⎢⎢⎣

103.36 103.07 101.37 79.41 105.66
103.08 122.1 110.23 85.97 115.47
101.37 110.23 134.33 106.08 118.50
79.41 85.97 106.08 102.73 95.21
105.66 115.47 118.50 95.21 129.21

⎤

⎥⎥⎥⎥⎦

�̂2 =

⎡

⎢⎢⎢⎢⎣

106.17 100.46 93.18 73.81 105.01
100.46 113.71 92.97 72.22 107.88
93.18 92.97 108.25 83.08 102.36
73.81 72.22 83.08 80.09 81.85
105.01 107.88 102.36 81.85 122.59

⎤

⎥⎥⎥⎥⎦
.

and

�3 =

⎡

⎢⎢⎢⎢⎣

25.19 15.16 17.81 22.39 14.62
15.16 10.67 11.42 13.98 8.95
17.81 11.42 13.12 16.12 10.45
22.39 13.98 16.12 20.31 13.11
14.62 8.95 10.45 13.11 8.70

⎤

⎥⎥⎥⎥⎦

�̂3 =

⎡

⎢⎢⎢⎢⎣

32.47 19.91 23.06 28.78 18.80
19.91 14.10 14.96 18.25 11.66
23.06 14.96 16.95 20.77 13.45
28.78 18.25 20.77 25.95 16.77
18.80 11.66 13.45 16.77 11.10

⎤

⎥⎥⎥⎥⎦
.
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