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Abstract In this paper, we propose preliminary estimators for the parameters of
a mixture distribution introduced for the analysis of ordinal data where the mixture
components are given by a Combination of a discrete Uniform and a shifted Binomial
distribution (cub model). After reviewing some preliminary concepts related to the
meaning of parameters which characterize such models, we introduce estimators which
are related to the location and heterogeneity of the observed distributions, respec-
tively, in order to accelerate the EM procedure for the maximum likelihood estimation.
A simulation experiment has been performed to investigate their main features and
to confirm their usefulness. A check of the proposal on real case studies and some
comments conclude the paper.
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1 Introduction

Ordinal data are ubiquitous in several empirical studies concerning different disci-
plines: Economics and Politics, Medicine and Sociology, Marketing and Linguistics
(Agresti 2010). Generally, such data are generated by respondents to a survey who
select a graduated category in a definite Likert scale. Classical methodologies for
fitting and interpreting such models are included in the framework of Generalized
Linear Models (GLM). More specifically, cumulative probabilities are introduced for
relating the responses to the characteristics (covariates) of subjects (McCullagh 1980;
McCullagh and Nelder 1989).
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164 M. Iannario

A different approach for analysing ordinal data consists in finite mixtures, as in
Wedel and DeSarbo (1995), Greene and Hensher (2003), Grün and Leisch (2008) and
Breen and Luijkx (2010), among others. Generally, such proposals are introduced as
generalizations of GLM and are obtained as convex combination of probability dis-
tributions belonging to the same class of models. These approaches generally assume
the existence of some subgroups whose responses should be differently modelled.

Mainly motivated by psychological arguments, another mixture distribution has
been proposed by Piccolo (2003). He interprets responses as the result of a complex
mechanism whose main components are the feeling of the subject towards the item
and an intrinsic uncertainty surrounding the modality of the choice. Thus, this class of
models combines a Binomial distribution with a discrete Uniform distribution. These
models are parsimonious with respect to parameters and flexible for fitting empirical
data with different shapes. Inferential issues have been developed for their implemen-
tation and many applications support their usefulness in different fields (Iannario and
Piccolo 2009).

In this paper we consider the EM algorithm for finding the maximum likelihood
(ML) estimates of the parameters in this mixture model and propose using a special
type of preliminary parameter estimates as initial values in the EM algorithm in order to
increase the efficiency and speed of maximum likelihood (ML) estimation. To this end,
we relate the two parameters of the mixture to a location and a heterogeneity measure,
respectively. As a consequence, given the correspondence between the modal value of
the mixture and the modal value of the first component we suggest the sample mode
as the starting point of a possible estimate of the first parameter. Similarly, since we
show that the weight of the mixture is dependent upon a heterogeneity measure (as
Gini index) we derive a corresponding relationship for it, conditional on the value of
the first parameter.

A peculiar characteristic of these proposals consists in the fact that both estimates
are based on the frequency distribution of data. Then, these estimators are derived by
taking the qualitative nature of ordinal data into account such that we do not require
any arbitrary transformation of responses.

The paper is organized as follows: in the next section we set notations for the class
of models we will discuss and briefly comment on their properties. Then, in Sect. 3 we
derive a relationship between the mode and the feeling measure; similarly, in Sect. 4,
we obtain a relationship between an index of heterogeneity and the uncertainty. In
Sect. 5, we assess the joint preliminary estimation of model parameters and discuss
their major distributional properties in terms of bias and variability. We also discuss
several problems occurring in some extreme situations. In Sect. 6, the improvement
gained by the new proposal with respect to some alternatives is compared in terms of
computational efficiency. In Sect. 7, the performance of the proposed estimators has
been checked on some real case studies. Section 8 provides some concluding remarks.

2 Specification and inference for CUB models

The stochastic structure we will deal with has been denoted cub model (the acro-
nym stems from the Combination of a discrete Uniform and a shifted Binomial
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Preliminary estimators for a mixture model of ordinal data 165

random variable). This class of models has been introduced by Piccolo (2003), further
developed in D’Elia and Piccolo (2005) and Iannario (2012), and generalized by using
a direct (logistic) link among parameters and subjects’ covariates.

Although in this paper we limit ourselves to consider cub models without covari-
ates, we report that substantial improvements may be achieved both in interpretation
and fitting of real data by using cub models with covariates (Iannario and Piccolo
2012).

With respect to the classical GLM framework, cub models are specified in terms
of probabilities, require just two parameters to fit discrete distributions with different
shapes and offer a simple visual interpretation of the results by means of a graphical
display on the parametric space (Piccolo and D’Elia 2008).

Their main motivation derives from an interpretation of the behaviour of respon-
dents when faced with multiple choices concerning evaluation and/or preferences. The
selection of an ordered modality among several ones is a very complex mental process
since it involves several factors influencing the final choice. Thus, a simplified version
of such a psychological process should limit the analysis only to relevant components.
In cub models, the attractiveness (repulsion) towards the item and the indecision
(fuzziness) in the response have been considered as the relevant ones. In fact, feeling
is an internal/personal attitude concerning the opinion of the subject towards the object
whereas uncertainty pertains to the operational modes of the final choice and some-
times to the external circumstances surrounding the final decision. In a sense, we may
interpret feeling as a true latent variable while uncertainty is an inherent component
of human decisions; thus, it deserves more consideration than just a residual analysis.

In the following, we refer to experimental surveys where people are asked to give
ordered responses by means of a (Likert) m-point rating scale made up by numbers or
ordinal attributes or categories. Then, for a given number of levels m > 3, we define
a random variable R to be a cub variable if and only if its probability mass function
is defined by:

Pr (R = r | θ) = π br (ξ) + (1 − π) Ur , r = 1, 2, . . . , m, (1)

where we denoted the parameter vector by θ = (π, ξ)′ and

br (ξ) =
(

m − 1

r − 1

)
ξm−r (1 − ξ)r−1; Ur = 1

m
, r = 1, 2, . . . , m, (2)

are the shifted Binomial and discrete Uniform components of the mixture, respectively.
Since Pr (R = r | θ) = pr (θ) is well defined when π ∈ (0, 1] and ξ ∈ [0, 1], the

parametric space is the (left open) unit square:

�(θ) = �(π, ξ) = {(π, ξ) : 0 < π ≤ 1; 0 ≤ ξ ≤ 1}.

It has been proved (Iannario 2010) that cub models are identifiable for any m > 3.
The main interest in pursuing such an approach stems from the parsimony of param-

eters and their interpretation of the choice process. In fact, given the one-to-one corre-
spondence among cub models and points belonging to (0, 1]×[0, 1], such models may
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166 M. Iannario

be graphically displayed in the unit square. This representation may help in several
circumstances, and we list some of them:

• If cub models are fitted for different subgroups of respondents and their parameter
estimates are reported on �(θ), the closeness or the distance among the points may
help to detect similarity or dissimilarity in the behaviour of the subgroups.

• If cub models are fitted before and after some interventions, the possible displace-
ment of the points may be tested and assigned to a significant effect of the known
actions.

• If cub models are fitted for a given item in different times, the trajectory of the
points during the time periods may easily show the dynamic direction of the feeling
and/or uncertainty of respondents.

Thus, this representation may usefully synthesize hundreds or thousands of responses
just by plotting their main indicators derived by modelling framework.

Although R is related to an ordinal variable (not necessarily a numeric one), we
report that the expectation of R is given by:

E (R) = π (m − 1)(
1

2
− ξ) + (m + 1)

2
.

The exact meaning of the parameter ξ changes with the setting of the analysis and,
given that R is a reversible random variable, it mostly depends on how the ratings are
codified (the larger the rating the larger the feeling, or vice versa). Thus, according to
the context, the ξ parameter may be related to a degree of perception, a measure of
closeness, a level of satisfaction, an assessment of proficiency, a rating of concern, an
index of selectiveness, a pain threshold, a subjective probability, and so on.

Usually, high values of the responses imply high appreciation (rating) towards the
object. Thus, the quantity (1 − ξ) increases with agreement towards the item whereas
uncertainty of the choice increases with (1 − π). We may deduce that ξ is related to
the predominance of unfavourable responses (that is, lower than the midrange) and
this affects the skewness of the distribution (Lemma 1, Appendix).

The two parameters play a different role in determining the shape and the interpre-
tation of the mixture. Briefly, the parameter ξ may be interpreted as mostly related to
location measures and strongly determined by the skewness of responses: it increases
when respondents prefer low ratings, and vice versa. On the contrary, the parameter
π adds dispersion to the shifted Binomial distribution and it increases the amount of
frequencies in each category; thus, it modifies the heterogeneity of the distribution.

Specification, estimation and testing issues for cub models are discussed by Piccolo
(2006). Moreover, asymptotically efficient estimators of the parameters are provided
by maximum likelihood (ML) methods and, for discrete distributions, this is equivalent
to minimize a discrepancy measure between the theoretical model and the observed
data (Gourieroux and Monfort 1995, p.165). In this regard, the EM procedure may be
considered a safe algorithm to reach convergence almost everywhere on �(θ). Since
this procedure is extremely slow, it is important to accelerate its convergence by giving
adequate initial values; thus, the determination of starting values is a serious problem,
as emphasized by McLachlan and Peel (2000, pp. 47–49) and Karlis and Xekalaki
(2003) and Biernacki et al. (2003).
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Preliminary estimators for a mixture model of ordinal data 167

A focal point in this respect is the existence and uniqueness of ML estimators as we
do, in fact, conjecture for cub models. Although we do not know of a formal proof of
this assertion, it may be confidently assumed as supported by a huge amount of real
data set, several computations with extreme configuration of sample data and millions
of simulations. Thus, the short run strategy advocated by Biernacki et al. (2003), and
efficiently performed when multiple maxima are present, is not used in our context.
In addition, given a set of sample data (generated by cub models of different shapes),
we obtain the same final estimates even with random starting values: as will be seen
by our experiments in Sect. 6, random initial estimates slow down the iteration times
but do not miss the convergence to ML estimates.

3 Location measures as estimators of parameter ξ

We denote by r = (r1, r2, . . . , rn)′ the collection of responses assigned by n raters
to a given object/service/item. Then, r is the observed sample of size n generated
by a random sample (R1, R2, . . . , Rn), where Ri , i = 1, 2, . . . , n are independent
and identically distributed random variables as (1), each one characterized by the
parameter vector θ .

As already discussed in Sect. 2, for a given m > 3, the parameter ξ completely
characterizes the shifted Binomial component and it is inversely associated with feel-
ing (positive evaluation increases with 1 − ξ ); thus, when ξ → 0 (ξ → 1) most of
probability mass moves towards high (low) categories. As a consequence, preliminary
estimators Tn of ξ may be obtained as linear functions of a location measure Ln , that
is: Tn = a + b Ln, b < 0. If we specify Ln as the sample mean or mode (or even
sample median or trimmed means), we get different estimators.

The simplest proposal is a (negative) linear function of the sample mean Rn of the
observed ratings Ri , i = 1, 2, . . . , n:

ξ = m − Rn

m − 1
. (3)

This statistic is both moments and maximum likelihood estimator of ξ in a cub model
if and only if π = 1 (that is, if the mixture degenerates into a shifted Binomial random
variable).

The estimator ξ ∈ [0, 1] is always well defined; however, since

E
(
ξ
) = ξ + (1 − π)

(
1

2
− ξ

)
,

it is biased for ξ (even asymptotically), for any cub model with π < 1. The bias
has the sign of the skewness of distribution, since it depends on ( 1

2 − ξ). Although
V ar(ξ) = O(n−1), ξ is not a consistent estimator of ξ since the mean square error of
ξ does not converge to 0.

To introduce an alternative proposal, we observe that the mode Mo of a cub random
variable coincides with the mode of the shifted Binomial component of the mixture
(Lemma 2, Appendix):
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168 M. Iannario

Mo = 1 + [m(1 − ξ)] ;

here, [x] denotes the maximum integer contained in x . Of course, Mo assumes only
integer values on the support.

Since the mode of cub models is invariant with respect to π , such location measure
may be proposed for inferring on the parameter ξ . In fact, if the mode is unique, the
correspondence among ξ and the population mode Mo is given by:

Mo = j ⇐⇒ ξ ∈
[

m − j

m
,

m − j + 1

m

)
, j = 1, 2, . . . , m.

As a consequence, even if one knows exactly the mode Mo of this random variable,
it is only possible to detect a range of admissible values of the true parameter ξ as
determined by the real interval I (Mo):

ξ ∈ I (Mo) =
[

m − Mo

m
,

m − Mo + 1

m

]
, Mo = 1, 2, . . . , m.

This approach based on the mode generates infinite solutions for ξ and we discuss
only the simplest one as a convenient preliminary estimator of ξ .

Specifically, given a random sample (R1, . . . , Rn) and the corresponding multino-
mial samples of absolute (N1, . . . , Nm) and relative frequencies (F1, . . . ,Fn), respec-
tively, we define the sample mode Mn as the unique integer value (if exists) of the
support where the frequency is a maximum. Formally, we set:

Mn = j ⇐⇒ F j > Fk, ∀k 	= j = 1, 2, . . . , m.

Given that the sample mode may be unique, coincident on adjacent values or coin-
cident in different values, different strategies are necessary to cope with this problem:

• If the sample mode is unique, we propose as a point estimator the midpoint of the
interval I (Mo), that is:

ξ̃ = m − Mn + 0.5

m
= 1 − Mn − 0.5

m
. (4)

• If m(1−ξ) is an integer value, Binomial distribution supports two adjacent modes
at R = m(1 − ξ) and m(1 − ξ) + 1 (as shown in Lemma 2, Appendix) and the
parameter ξ is determined by ξ = 1 − Mo/m. Then, in the case of two adjacent
sample modes at R = j and R = j + 1 we assume ξ̃ = 1 − Mn

m .
• In the case of small sample size and/or high uncertainty in the responses, we may

observe two non-adjacent modes at R = j and R = k, respectively, for j < k +1.
Then, as a practical suggestion, we choose estimator (4) where Mn is equal to j
or k according to the category whose neighbours include most of the observed
frequencies.

The last case may be considered uncommon in real surveys with ordinal data where
the sample size ranges from some hundreds to several thousands. The previous solution
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Preliminary estimators for a mixture model of ordinal data 169

may be motivated by the following consideration: since the parameter ξ is related to
the predominance of unfavourable responses, and this modifies the skewness of the
distribution (see Sect. 2), then the most reliable information about ξ should be derived
from the category surrounded by most of the responses.

A different situation should be considered when two high frequencies are located at
distant modalities. If this happens, there is room for seriously contending the validity
of a standard cub model, since the specification (1) implies a single or two adjacent
modes. Indeed, high isolated frequencies should be interpreted as atypical responses
and should be modelled by means of an extension of the class of cub models, as
obtained by inserting a shelter effect, for instance (Iannario 2012). In these cases, we
should not automatically prefer the estimator (4) for a preliminary evaluation of the
parameter ξ .

Now, if we concentrate on estimator (4), we notice that its admissible range is
[ 0.5

m , 1 − 0.5
m ]; thus, the unit interval is now shortened by the amount 1/(2m) at both

ends. The estimator ξ̃ can generate only m distinct values for the parameter ξ , which
is instead intrinsically continuous: for moderate m, this circumstance produces some
shortcomings. For instance, if m = 5 the estimator (4) is constrained to [0.1, 0.9]
whereas the shape of the observed distribution might suggest more extreme values
for ξ .

A solution to this problem might be obtained by defining: ξ∗ = m−Mn+U
m =

1 + U−Mn
m , where a previously generated value of a continuous Uniform random var-

iable U (on the unit interval) should be determined. Although ξ∗ is continuous and
covers the whole unit interval for ξ , the maximum admissible error for any sub-interval
is now doubled to 1

m , and a preliminary random mechanism increases the variance of
this alternative proposal.

4 Heterogeneity measures as estimators of parameter π

For given m categories, diversity (heterogeneity) among units increases if probabili-
ties (or relative frequencies, for observed data) among categories become as equal as
possible (that is, tends to the Uniform probability mass). Given a probability distribu-
tion, the addition of a constant value to each cell increases per se the diversity of the
mixture distribution; since this constant quantity is strictly dependent on π , it seems
relevant to connect diversity measures and preliminary π estimators. Specifically, we
will use the Gini index whose computation and inference are immediate (Pardo 2006).

For a well defined probability distribution pr , r = 1, 2, . . . , m, the Gini index of
heterogeneity G and its normalized version G ∈ [0, 1] are defined, respectively, by:

G = 1 −
m∑

r=1

p 2
r ; G = m

m − 1

(
1 −

m∑
r=1

p 2
r

)
.

If we denote by Gcub, GSB , GU N the (non-normalized) Gini indices of cub, shifted
Binomial and Uniform random variables, respectively, we get (Lemma 3, Appendix)
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Gcub = π2 GSB + (1 − π2) GU N . (5)

This relationship holds true also for the normalized indices Gcub,GSB,GU N .
Since GU N = 1 − 1/m and GU N = 1, we obtain:

Gcub = 1 − π2 (1 − GSB) . (6)

Identity (6) shows that, for a given shifted Binomial component, heterogeneity (as
measured by the Gini index) is inversely related to π and increases with uncertainty
(related to 1 − π ). Thus, it seems correct to introduce an estimator of π based on this
heterogeneity measure.

More specifically, GSB can be parametrically estimated by ĜSB , if one has a pre-
liminary estimate of ξ (as given by ξ̃ in (4), for instance). In addition, Gcub can be
consistently and non-parametrically estimated by means of the relative frequencies
Fr , r = 1, 2, . . . , m:

Ĝcub = 1 −
m∑

r=1

F 2
r .

In this way, by solving for π in decompositions (5) and (6), we obtain a preliminary
estimator of π , that is:

π̃ =
√

Ĝcub − GU N

ĜSB − GU N
=

√
Ĝcub − 1

ĜSB − 1
,

where the second expression considers normalized Gini indices.
This new estimator of π may be explicitly written as:

π̃ =
√√√√ ∑m

r=1 F 2
r − 1

m∑m
r=1 [br (ξ̃ )]2 − 1

m

, (7)

and it is strictly dependent on a preliminary estimate of ξ .
In this regard, we remember that an unbiased estimator of Gini index is:

Ĝ = n

n − 1

(
1 −

m∑
r=1

F 2
r

)

and, for small sample sizes, it may be appropriate to modify (7) as:

π̃u =
√√√√ n

n−1

∑m
r=1 F 2

r − 1
m − 1

n−1
n

n−1

∑m
r=1 [br (ξ̃ )]2 − 1

m − 1
n−1

. (8)
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Notice that the radicand of the estimator (7) is non-negative since, for any well
defined mass probability distribution (q1, q2, . . . , qm)′, we always get:

0 ≤
m∑

r=1

(
qr − 1

m

)2

=
m∑

r=1

q2
r − 1

m
,

and the equality sign holds if and only if qr is the discrete Uniform distribution. How-
ever, given sampling variability, the radicand might be greater than 1; in this case, we
must assume: π̃ = 1.

5 Sampling distributions

In Sects. 3 and 4 we obtained preliminary estimators of parameters of a cub model by
using exploratory measures dependent on the frequency distribution. Operationally,
given m > 3, and a relative frequencies distribution { f1, f2, . . . , fm} derived from
an observed sample (r1, r2, . . . , rn)′, we get the sample mode Mn and then compute
sequentially the joint parameter estimators:

ξ̃ = 1 − Mn − 0.5

m
; π̃ = min

⎛
⎝
√√√√ ∑m

r=1 F 2
r − 1

m∑m
r=1 [br (ξ̃ )]2 − 1

m

, 1

⎞
⎠ . (9)

We observe that ξ̃ is computed without any reference to the parameter π (although
its sampling distribution is determined by this quantity) whereas the π̃ estimator is
strictly dependent on the observed ξ̃ . This feature is not uncommon in statistical infer-
ence: for instance, for random samples generated by X ∼ N (μ, σ 2), the estimator of
μ is the sample mean (whose distribution is dependent on σ 2) whereas the estimator
of σ 2 is the sample variance which is dependent on the sample mean.

Given the difficulty of assessing the bias, consistency and distributional shape
of estimators (9) in a formal way, we will perform a Monte Carlo experiment to
investigate their main properties. In all cases, 2000 replications are generated for
each selected cub model. A wide range of sample sizes and different m have been
checked and in any case consistent results have been obtained. Thus, we present the
main characteristics of estimators (9) when m = 9 and for random samples of size
n = 200.

In planning the simulation experiment we select a wide range of cub models in
order to explore several features of this distribution in terms of skewness, location
of mode, weight of tails, and so on. To save space, we limit ourselves showing and
discussing only a subset of these results by choosing some typical shapes.

In the following pages, we consider results for both the bias and variance of
estimators (9) since their behaviour is not always concordant; specifically, some
emphasis is given to the bias since it mostly contributes to reduce the efficiency of
estimators.
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5.1 Sampling distributions of both estimators

If we examine the sampling distributions of ξ̃ by means of kernel histograms, for
several selected cub models (evenly scattered through the unit square), we observe
that the discrete nature of estimator (4) induces multiple modal values, with the most
prominent mode close to the true ξ .

Instead, the sampling distribution of the π̃ estimator is almost symmetric and uni-
modal for several cub models, and this achievement is the joint result of the sums and
of the square root which are present in definition (7); in fact, they enforce the appli-
cation of Central Limit Theorem and induce more symmetric behaviour, respectively.
Instead, a bump when π → 1 and a secondary mode for some models with small ξ has
been observed. Indeed, a modal value at π = 1 is induced by the assumption π̃ = 1
when the radicand of (7) is greater than 1 (an event whose probability increases as
π → 1).

Finally, we observe that the correlation among the estimators π̃ and ξ̃ has been
found proportional to ( 1

2 − ξ), and thus to the skewness of the cub distribution. As
a consequence, our preliminary estimators (9) are uncorrelated for a symmetric cub
model (characterized by ξ = 0.5), a feature they share with ML estimators (see The-
orem 1, Appendix).

5.2 Sampling behaviour of the estimator of ξ

Firstly, we mention that the distribution of the estimator ξ̃ is strictly dependent on
that of the sample mode Mn and we are not aware of general solutions in case of
a discrete support. In this regard, we notice that several results are available in the
statistical literature on the estimation of a mode of continuous random variables and
most of them mimic the problem generated by stochastic processes whose period-
ogram is not a consistent estimator of the spectral density function; thus, smooth-
ing the histogram by kernel based method is the basic tool for deriving consistent
estimators of both density and mode (Parzen 1962; Silverman 1993). On the con-
trary, only few papers concern the sampling distribution of mode when the parent
random variable is discrete, and also in this case some smoothing procedures are per-
formed (Titterington 1980; Wang and van Ryzin 1980). A recent approach (Nettleton
2009) concerns tests for the dominance of a cell probability in multinomial samples
and it is related to our issue but it does not solve the problem of the modal value
distribution.

Since sample mode is a functional of relative frequencies (which are consistent for
probabilities), we are in a position to expect similar properties by using an estima-
tor derived from sample frequencies. However, the bias is a serious problem since it
reduces the speed of the MSE convergence to 0. More specifically, the distributions of
the sample mode collapse on some limited range given the discreteness of the support;
thus, although more peaked distributions around parent mode arise with increasing n,
it is not possible to rely on standard asymptotic results (like Normality, for instance).
Moreover, as estimator (4) is restricted on the interval [ 0.5

m , 1− 0.5
m ], we should expect

some atypical behaviour in this case.
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Fig. 1 Bias of ξ̃ estimator for given ξ and varying π (m = 9)

It turns out that the sampling distribution of the sample mode is determined by
π although estimator (4) is invariant with respect to π . This is consistent with the
following argument: if uncertainty is moderate (π → 1), the statistical information
conveyed by relative frequencies (F1,F2, . . . ,Fn) is mainly related to the shifted
Binomial distribution and thus it is characterized by the ξ parameter; moreover, the fre-
quency heterogeneity is mostly due to the feeling component. On the contrary, when
uncertainty is important (π → 0), the heterogeneity of the frequencies is mostly
determined by the Uniform discrete distribution, and sample mode may change even
for small variations in observed data; in these cases, convergence requires very large
sample sizes.

As supported by Fig.1, the absolute bias of ξ̃ tends uniformly to 0 for π → 1 (it is
quite small for π > 0.2); instead, the bias is substantially large for π → 0 and it is
symmetric around ξ = 1/2. This feature is invariant with respect to the true ξ .

Figure 2 shows that the variance of ξ̃ drops to 0 for π → 1 (mostly after π > 0.2)
but it is extremely high for π → 0: this is to be expected since, for small π , a cub
model approximates a Uniform discrete distribution which has no mode, and so sample
mode becomes extremely erratic.

5.3 Sampling behaviour of the estimator of π

The sampling behaviour and distribution of π̃ are conditioned by ξ̃ , since π̃ = π(ξ̃ ).
Fig. 3 shows that the bias of π̃ is moderate, symmetric with respect to ξ and extremely
low when π > 0.5. Notice the presence of two hollows induced by the discrete
nature of the conditioning ξ̃ . In our experiment m = 9, and the hollows happen for
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Fig. 2 Variance of ξ̃ estimator for given ξ and varying π (m = 9)

Fig. 3 Bias of π̃ estimator for given π and varying ξ (m = 9)
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Fig. 4 Variance of π̃ estimator for given π and varying ξ (m = 9)

ξ = 1/m = 0.11 and ξ = 1 − 1/m = 0.89, respectively. Their size increases with
π ; in addition, the pile-up effect for ξ = 1 becomes more and more evident when
π > 0.5.

The variance of the estimator π̃ is symmetric with respect to ξ and fairly constant for
π > 0.2 (as confirmed by Fig. 4). Again, two hollows are present for ξ = 1/m = 0.11
and ξ = 1−1/m = 0.89, respectively, and their size as well a spike at ξ = 1 increase
with π .

5.4 Discussion of an extreme case

In some cub models where uncertainty is great, the main problem induced by esti-
mators (9) is the bias caused by the sample mode since the variance of the estimators
reduces with n but the bias lingers on a positive value.

As an example, the probability distribution of a cub model with π = 0.05 and
ξ = 0.75 is shown in Fig.5 (left panel). Then, even for sample sizes as large as
n = 1000, 2000, . . . , 20000 the bias of the mode estimator Mn is considerably high
(right panel). Unfortunately, this difficulty is unavoidable since it derives from the
very nature of the chosen estimators when faced with a distribution which is almost
undistinguishable from a discrete Uniform random variable.

6 Computational efficiency

Estimators (9) may be useful to shorten the lengthy iterative EM procedure imple-
mented for achieving the asymptotically efficient ML estimates. Thus, for finite sample
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Fig. 5 An extreme cub distribution (m = 7) and related bias (dotted) and MSE (solid) of the mode
estimator Mn , obtained by simulation for varying sample sizes n = 1000, 2000, . . . , 20000

Table 1 Alternative preliminary estimators for the simulation experiment

Estimators Estimators of π Estimators of ξ

Naive version π = 0.5 ξ = m − Rn

m − 1
Random starting πo = Uni f (0, 1) ξo = Uni f (0, 1)

New proposal π̃ = min

(√ ∑m
r=1 F2

r − 1
m∑m

r=1 [br (ξ̃ )]2− 1
m

, 1

)
ξ̃ = 1 + 0.5 − Mn

m

sizes, we check if they really reduce time for convergence with respect to a naive pro-
posal or some random starting.

Since time is proportional to the number of iterations necessary for convergence to
ML estimates, we use these quantities for measuring the computational efficiency of
different alternatives. In this way, results are independent from the numerical accuracy
and speed of PC machines. Specifically, we will compare the preliminary estimators
listed in Table 1 as starting values for the EM procedure.

Then, for a given m > 3, the simulation experiment has been conducted in the
following way:

1. Specify a parameter vector (π, ξ)′ for a well defined cub model.
2. For each given model, and for varying sample size n = 100, . . . , 1000, generate

2000 random samples of ordinal values drawn by a cub random variable (with
parameters specified in step 1).
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Fig. 6 Average number of iterations required for convergence: new (solid), random (dashed) and previous
(dotted) preliminary estimators (m = 9, δ = 10−6)

3. For each random sample of step 2, set the three preliminary estimators of Table 1
as starting values of the EM procedure, and compute for each of them the average
number of iterations required for the convergence to the ML solution.

4. Repeat steps 1–3 for different selected cub models.
5. Plot summary results in a suitable format.

We checked the results by setting the tolerance required in the variation of log-
likelihood function for reaching the convergence at δ = 10−3 and δ = 10−6, and
obtained the same ranking of performance among the three estimators as shown
in Fig. 6.

In the following we will comment on the most relevant results of an extensive
experiment of simulation, based on the random selection of several cub models evenly
scattered throughout the parametric space. This choice is necessary since an ad hoc
selection of models for the simulation experiment could favour the proposed estimators
(given their discrete nature). We checked several values of m = 7, 9, . . . , but the
general pattern of the results is substantially unmodified; thus, we will discuss the
most significant findings when m = 9 (see Fig. 6).

It turns out that the proposed estimators (solid lines in the plots) outperform the
others since they uniformly reduce the average number of required iterations for con-
vergence. As expected, random starting is comparatively the worst method except in
specific situations, thus it should not be chosen as a criterion for initial values. Finally,
the naive version is generally intermediate but it generates a substantially longer time
to achieve convergence with respect to the new proposal (9) for most of the parametric
space.
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Table 2 Ratings of a service

Items Number of iterations Relative gain Euclidean distance

Naive New New vs. Naive ϑ(Naive, ML) ϑ(New, ML)

Information 37 33 0.108 0.302 0.083

Willingness 33 30 0.091 0.300 0.110

Opening Hours 47 39 0.170 0.296 0.042

Competence 37 33 0.108 0.302 0.099

Global 34 22 0.353 0.316 0.015

Comparisons of the number of iterations required for convergence

7 Some empirical evidence

As further confirmation of the results of the previous Section, we discuss some data
set collected in real case studies.

Firstly, we present a case study where cub models have been applied for interpreting
the response behaviours of thousands of students attending the Orientation service of
the University of Naples Federico II during the 2007 wave (Capecchi and Piccolo
2010; Iannario and Piccolo 2010). The purpose of the survey has been to measure the
level of satisfaction towards several aspects of the service: Information, Willingness,
Opening Hours, Competence and Global satisfaction. Students’ opinions have been
anonymously collected by means of a questionnaire with an ordinal (Likert) scale
ranging from 1 (=“completely unsatisfied”) to 7 (=“completely satisfied”). The results
we will present refer to a sample of n = 3, 511 validated responses.

We summarize the computational aspects of this research by reporting in Table 2 the
number of iterations required to achieve convergence of the EM algorithm by using as
different starting values the naive estimates and proposal (9). Then, we report the gain
of the new estimates computed as the relative reduction of the number of iterations
achieved by replacing naive with new estimators.

As already shown with the extensive simulations of Sect. 6, it is convenient to
adopt (9) as starting points for the EM algorithm since they are closer to the final ML
estimates. To measure this closeness, we have introduced the normalized Euclidean
distance among the preliminary (naive or new) and the final (ML) estimates:

ϑ(θ̂pre, θ̂M L) =
√

(θ̂pre − θ̂M L)′(θ̂pre − θ̂M L)/2 .

Table 2 confirms that such a measure is uniformly smaller for the proposal (9). Observe
that for Willingness and Global items there is the maximum and minimum closeness
among initial and final estimates, respectively, and we register the minimum and
maximum relative gain in the number of iterations.

Unlike the first case study (characterized by a very low uncertainty among respon-
dents), we analyze a further data set where more heterogeneity has been found in the
sample. More precisely, we report a study on the preference ratings for living in two
cities in Italy (Florence and Verona) expressed by means of an ordinal scale (m = 12)
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Table 3 Preferences for living in a city

Items Number of iterations Relative gain Euclidean distance

Naive New New vs. Naive ϑ(Naive, ML) ϑ(New, ML)

Living in Florence 20 13 0.350 0.238 0.016

Living in Verona 81 57 0.296 0.334 0.082

Comparisons of the number of iterations required for convergence

by a sample of n = 214 young people resident in Naples. Now, ratings 1 and m are the
best and worst choices, respectively; thus, we should interpret ξ as a direct measure
of preference towards the city. In this case, responses are characterized by an impor-
tant uncertainty amount, estimated for Florence and Verona as 1 − π̂ = 0.166 and
1 − π̂ = 0.834, respectively.

Table 3 summarizes the main results and confirms a serious reduction in the num-
ber of iterations achieved by the new proposal. The reported distances show how
estimates (9) accelerate the EM algorithm by starting the iterative procedure from a
point far closer to the final ML estimates.

Both the case studies (and many others here unreported, for brevity) and the sim-
ulation experiments confirm the relevant role of uncertainty in determining the speed
of convergence of the numerical routines for ML estimation. This consideration may
be obvious from an interpretative point of view (since a tendency to maximum het-
erogeneity reduces information about the parameter ξ ) but it strictly derives from the
properties of the likelihood function of cub models. In fact, the score function is pro-

portional to
(

1 − 1
m pr (θ)

)
which is identically 0 if the probability distribution becomes

a Uniform one, that is if π = 0. Thus, the algorithms become lengthy to converge
when π → 0 because of a borderline indeterminacy in the likelihood function.

8 Concluding remarks

Main usage of preliminary estimators in the framework of ordinal data analysis con-
cerns both models specification and computational aspects.

First of all, the availability of quick and accurate estimators for subsets of sample
characterized by relevant covariates (such as gender, job, education, socioeconomic
status, and so on) allows inferring about their possible significance in a more elaborate
cub model: some experiments following these lines have been positively pursued
by Iannario (2008), mainly with reference to feeling covariates. If this approach is
repeatedly pursued for any available covariate, the method would lead to a selection
criteria for choosing covariates (before submitting them to a fully specified model by
ML estimate procedures).

Secondly, it is well known that the search for accurate preliminary estimators is
a fundamental step in EM algorithm and speed and accuracy are relevant aspects if
one needs to perform massive simulation experiments. In this direction, the results of
this paper may orient towards the implementation of more efficient algorithms for ML
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estimation. Specifically, we would suggest a mixed strategy made up of the following
steps:

• Start the search of the optimum by using the new estimators (9).
• Perform EM algorithm until the direction of the gradient does not change for some

consecutive steps.
• Switch to scoring algorithm to accelerate the convergence towards ML estimates

by a second-order rate.

This strategy might seem more expensive from a computational point of view, since
it requires computations (and inversions) of the matrix of the second derivatives of
the log-likelihood function in the final steps. However, the order of these matrices is
generally low, the number of steps substantially decreases and the computation of the
final variance-covariance matrix is necessary for assessing parameters significance
and confidence regions.

Appendix

We will prove some formal results quoted in the paper.

Lemma 1 A cub random variable is symmetric if and only if ξ = 1
2 .

The symmetry of a discrete distribution pr defined over a support {r = 1, 2, . . . , m}
implies: pr = pm−r+1, r = 1, 2, . . . , m. These requirements, for a cub distribution,
become:

π br (ξ) + (1 − π)
1

m
= π bm−r+1(ξ) + (1 − π)

1

m
, r = 1, 2, . . . , m.

After a simple algebra, these equalities simplify to:

ξm−r (1 − ξ)r−1 = ξ r−1 (1 − ξ)m−r ⇐⇒
(

ξ

1 − ξ

)m−1

= 1 , r = 1, 2, . . . , m.

whose unique solution is ξ = 1
2 .

To prove viceversa, we let ξ = 1
2 in (1) and (2) and immediately obtain the symmetry

of pr , r = 1, 2, . . . , m.
This result may be also confirmed by a lengthy algebra, since the third central

moment, computed by Piccolo (2003), is proportional to (2 ξ − 1). �
Lemma 2 The modal value of a cub model coincides with the modal value of its
shifted Binomial component.

If the modal value (mode) of a discrete distribution over the support {1, 2, . . . , m}
is unique, it is an integer r ∈ {1, 2, . . . , m} such that:

(pr+1 − pr )(pr − pr−1) < 0, r = 2, 3, . . . , m − 1.
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For a cub distribution, these inequalities solve into:

[
br+1(ξ) − br (ξ)

] [
br (ξ) − br−1(ξ)

]
< 0, r = 2, 3, . . . , m − 1,

which concern only the shifted Binomial distribution, and then lemma is proved.
In addition, when ξ = 0 (ξ = 1) the modal value of a cub distribution is at

R = m (R = 1).
Finally, it is simply to show (by equating pr = pr+1, for instance) that in a cub

model two equal and adjacent modes at R = r and R = r + 1 are possible if and only
if r = m(1 − ξ) is an integer. �

Lemma 3 If we denote by Gcub, GSB , GU N the Gini and normalized Gini index
of heterogeneity of cub, shifted Binomial and discrete Uniform random variables,
respectively, we obtain:

Gcub = π2 GSB + (1 − π2) GU N

A dual relationship holds for the corresponding normalized Gini index of heterogeneity
Gcub,GSB,GU N .

The first result is easily obtained since:

m∑
r=1

p2
r =

m∑
r=1

[
π br (ξ) + (1 − π)

1

m

]2

= π2
m∑

r=1

[br (ξ)]2 + (1 − π)2
m∑

r=1

(
1

m

)2

+ 2 π (1 − π)
1

m

m∑
r=1

br (ξ)

= π2
m∑

r=1

[br (ξ)]2 + (1 − π2)
1

m
.

Then, from the definition of Gcub, GSB, GU N , the final relationship holds. �

Lemma 4 For any finite sequence gr , r = 1, 2, . . . , m, with m ≥ 1, we have:

gr = gm−r+1, r = 1, 2, . . . , m �⇒
m∑

r=1

(
r − m + 1

2

)
gr = 0.
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For m even, we get:

m/2∑
r=1

(
r − m + 1

2

)
gr +

m∑
r=m/2+1

(
r − m + 1

2

)
gr

=
m/2∑
r=1

(
r − m + 1

2

)
gr +

m/2∑
r=1

(
m + 1

2
− r

)
gm−r+1

=
m/2∑
r=1

[(
r − m + 1

2

)
−

(
r − m + 1

2

)]
gr = 0.

For m odd, the central term of the sum is: 0 × g(m+1)/2 = 0 , and previous result
applies to the other terms.

This lemma is trivial if gr is a mass probability distribution since the sum is the
first central moment of a symmetric random variable. �

Theorem 1 For any symmetric cub model, ML estimators θ̂ have asymptotically
uncorrelated components.

A classical result for grouped data, (Rao 1973, pp. 367–368) asserts that the variance
and covariance matrix of ML estimators θ̂ = (π̂, ξ̂ )′ is asymptotically given by:

V (θ) = 1

n

⎡
⎢⎢⎢⎢⎢⎢⎣

m∑
r=1

(
∂ pr (θ)

∂ π

)2

pr (θ)

m∑
r=1

(
∂ pr (θ)

∂ π

) (
∂ pr (θ)

d ξ

)
pr (θ)

m∑
r=1

(
∂ pr (θ)

∂ π

) (
∂ pr (θ)

∂ ξ

)
pr (θ)

m∑
r=1

(
d pr (θ)

∂ ξ

)2

pr (θ)

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

= 1

n

[
i11 i12
i21 i22

]−1

= 1

n

[
v11 v12
v21 v22

]
.

For cub random variables, these quantities are:

∂ pr (θ)

∂ π
= br (ξ) − 1

m
; ∂ pr (θ)

∂ ξ
= π br (ξ)

A(ξ) − r

ξ (1 − ξ)
;

where we put: A(ξ) = m − ξ (m − 1).
Then, ML estimators are uncorrelated if v12 = v21 = 0 and this implies that

i12 = i21 = 0, that is they are globally (expected information) orthogonal (Lindsey
1996, pp. 236–238).
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For a symmetric cub model ξ = 1/2 (Lemma 1), and pr (θ) = π
[(m−1

r−1

)
21−m

− 1
m

] + 1
m . Accordingly, previous derivatives simplifies to:

∂ pr (θ)

∂ π

∣∣∣
ξ=1/2

=
(

m − 1

r − 1

)
21−m − 1

m
;

∂ pr (θ)

∂ ξ

∣∣∣
ξ=1/2

= π

(
m − 1

r − 1

)
23−m

(
m + 1

2
− r

)
;

since: A(1/2) = (m + 1)/2.
Then, for a symmetric cub model, the quantities i12 = i21 become:

i12 =
m∑

r=1

(
∂ pr (θ)

∂ π

) (
∂ pr (θ)

d ξ

)
pr (θ)

= −π 23−m
m∑

r=1

(
r − m + 1

2

) [(m−1
r−1

)
21−m − 1

m

] (m−1
r−1

)
π

[(m−1
r−1

)
21−m − 1

m

]
+ 1

m

=
m∑

r=1

(
r − m + 1

2

)
gr ,

where we let:

gr = −π 23−m

[(m−1
r−1

)
21−m − 1

m

] (m−1
r−1

)
π

[(m−1
r−1

)
21−m − 1

m

]
+ 1

m

, r = 1, 2, . . . , m.

Now, since:
(m−1

r−1

) = (m−1
m−r

)
, it is immediate to confirm that gr = gm−r+1, for r =

1, 2, . . . , m.
Thus, according to Lemma 4, i12 = 0 and, as a consequence, the estimators are

asymptotically uncorrelated. �
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