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Abstract Generalized GIPSCAL, like DEDICOM, is a model for the analysis of
square asymmetric tables. It is a special case of DEDICOM, but unlike DEDICOM, it
ensures the nonnegative definiteness (nnd) of the model matrix, thereby allowing a spa-
tial representation of the asymmetric relationships among “objects”. A fast convergent
algorithm was developed for GIPSCAL with acceleration by the minimal polynomial
extrapolation. The proposed algorithm was compared with Trendafilov’s algorithm in
computational speed. The basic algorithm has been adapted to various extensions of
GIPSCAL, including off-diagonal DEDICOM/GIPSCAL, and three-way GIPSCAL.
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1 Introduction

Asymmetric square tables arise in many scientific disciplines. Social mobility
tables (sociology), brand switching data (marketing), stimulus identification data
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58 S. Loisel, Y. Takane

(psychology) are but a few examples. Generalized GIPSCAL (Generalized Inner Prod-
uct SCALing; Kiers and Takane 1994; hereafter simply referred to as GIPSCAL)
is a model for such tables. It is similar to DEDICOM (DEcomposition into DIrec-
tional COMponents; Harshman 1978; Harshman et al. 1981), but unlike DEDICOM,
the model matrix in GIPSCAL is constrained to be nnd (nonnegative definite). This
allows a visualization of the asymmetric relationships among the n objects in a low
(p) dimensional space.

More formally, let A∗ denote an n by n model matrix in DEDICOM describing the
asymmetric relationships among n objects. (In principle, A∗ could also be symmetric.
However, the main objective of DEDICOM is to analyze asymmetric data. We thus
assume that A∗ is asymmetric throughout this paper, unless otherwise stated, as is
the matrix A to be introduced in (8).) DEDICOM postulates that this matrix can be
expressed as

A∗ = YBY′, (1)

where Y is an n by p columnwise nonsingular matrix that relates p latent “objects”
to n observed objects, and B is a square asymmetric matrix of order p describing the
asymmetric relationships among the latent objects. There are many decomposition
methods that take a similar quadratic/bilinear form. What characterizes DEDICOM is
the assumption that B is square and asymmetric.

Let Bs = (B + B′)/2, and Bsk = (B − B′)/2 represent the symmetric and skew-
symmetric parts of B, respectively. Then the DEDICOM model can be rewritten as

A∗ = Y(Bs + Bsk)Y′. (2)

Kiers and Takane (1994) assumed that Bs was pd (positive definite), and further
rewrote (2) as follows. Let

Bs = PD2P′ (3)

denote the spectral decomposition of Bs where D2 > 0, and let

D−1P′BskPD−1 = Q�R′ (4)

be the singular value decomposition (SVD) of D−1P′BskPD−1. Note that the singular
values of a skew symmetric matrix come in pairs except possibly for 0. Hence, �

consists of diagonal sub-matrices of the form δ j I2 (1 ≤ j ≤ (p − 1)/2; if p is odd,
an additional 0 is appended to the diagonal elements of �). Note also that (4) can be
rewritten as (Constantine and Gower 1978),

Q�R′ = Q�JQ′, (5)
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Generalized GIPSCAL re-revisited 59

where J is a block diagonal matrix with diagonal blocks of the form
( 0 1
−1 0

)
(again,

when p is odd, an additional 0 is appended to the diagonals). Then

A∗ = X∗(Ip + �J)X∗′
, (6)

where X∗ = YPDQ. Kiers and Takane (1994) developed an alternating least squares
algorithm to fit (6) to an observed square asymmetric table.

More recently, Trendafilov (2002) developed a dynamical system algorithm for
GIPSCAL. While doing so, he also changed the model slightly. He required that Bs

be nnd rather than pd. Let (3) denote the spectral decomposition of Bs , where now
D2 may have zero diagonal elements (D2 ≥ 0). Then,

A∗ = X(D2 + K)X′, (7)

where X = YP, and K = P′BskP is a skew-symmetric matrix. Trendafilov (2002)
showed that his dynamical system algorithm worked better than Kiers and Takane’s
algorithm in two respects. On average, the computation time is shorter, and the value
of the minimization criterion is smaller with his algorithm.

The better performance of Trendafilov’s algorithm, however, may be due to the fact
that he allowed Bs to be nnd, while Kiers and Takane assumed Bs to be strictly pd. The
set of pd matrices is an open set within which a least squares (LS) loss function may
not have a minimum (but only an infimum), in which case Kiers and Takane’s algo-
rithm never converges, while monotonically reducing the value of the loss function.
(A minimum is attained on the boundary of the parameter space, but the boundary is
not part of the feasible parameter space.) In such situations, Kiers and Takane (1994)
algorithm continues to iterate forever (increasing the average convergence time) or it
stops prematurely (giving rise to a larger value of fitting criterion). This point has been
directly verified by running Kiers and Takane (1994) algorithm on data sets generated
from psd (positive-semidefinite) D2 matrices in (7).

In this paper, we develop an algorithm for model (7) that works better than Trend-
afilov’s algorithm, thereby reaffirming the above contention. In the following section
(Sect. 2.1), we present our basic algorithm, followed by an exposition of an accelera-
tion technique called the minimal polynomial extrapolation (Sect. 2.2). Then Trendafi-
lov’s dynamical system algorithm is briefly discussed (Sect. 2.3). The three algorithms
(the basic algorithm, the accelerated algorithm, and Trendafilov’s algorithm) are then
empirically evaluated (Sect. 3). Some extensions of the proposed algorithm to sim-
ilar situations are considered in Sect. 4. These extensions include an additive con-
stant incorporated into GIPSCAL, off-diagonal DEDICOM/GIPSCAL and three-way
GIPSCAL. Section 5 concludes the paper.

2 Algorithms to be compared

In this section, we describe in some detail three algorithms to be compared in later
sections. We start with our basic algorithm, which is then combined with the minimal
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polynomial extrapolation (MPE) for acceleration, and then Trendafilov’s dynamical
system algorithm.

2.1 The basic algorithm

Let A be a square asymmetric data matrix. The two-way GIPSCAL model postulates

A = A∗ + E, (8)

where A∗ is as given in (7), and E is a matrix of disturbance terms. We estimate the
parameters in the model in such a way that the following least squares (LS) criterion
is minimized, namely

f (X, D2, K) = SS(E) = SS(A − X(D2 + K)X′), (9)

where SS(E) = tr(E′E). The above criterion is minimized using a conditional mini-
mization strategy. That is, we first minimize f (X, D2, K) with respect to D2 and K
conditional on X, and then with respect to X. This is written as

min
X,D2,K

f (X, D2, K) = min
X

min
D2,K |X

f (X, D2, K). (10)

The conditional minimum of f with respect to D2 and K given X is obtained by

D̂2 = max(diag(X′AsX), 0), (11)

and

K̂ = X′AskX, (12)

where As = (A+A′)/2 and Ask = (A−A′)/2 are the symmetric and skew-symmetric
parts of A, respectively. Let

g(X) = f (X, D̂2, K̂) = min
D2,K |X

f (X, D2, K). (13)

To minimize this function with respect to X subject to X′X = I, we define

g∗(X, S) = g(X) + tr(S(X′X − I)), (14)

where S is a symmetric matrix of Lagrange multipliers. Differentiating (14) with
respect to X and S and setting the results equal to zero gives

− 1

2

∂g∗

∂X
= G − XB̂′B̂ − XB̂B̂′ − XS = 0, (15)
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Generalized GIPSCAL re-revisited 61

where

G = A′XB̂ + AXB̂′, (16)

with B̂ = D̂2 + K̂, and

X′X − I = 0. (17)

Note that the derivatives of g(X) with respect to X in (15) can be taken as if D̂2 and K̂
were constant, whereas they are in fact functions of X. This is justified by the fact that
D̂2 and K̂ are obtained by minimizing f conditional on X. See Takane et al. (2010,
Appendix) for full technical details. Premultiplying (15) by X′ and considering (17),
we obtain

S = X′G − B̂′B̂ − B̂B̂′. (18)

Putting this into (15), we obtain

G = XX′G, (19)

or

(I − XX′)G = 0. (20)

This equation is solved by (e.g., Jennrich 2001)

X = UV′, (21)

where U and V are such that G = UDV′ is the SVD of G.

Algorithm 1 (GIPSCAL) Let A be a square asymmetric matrix of order n, and let X(0)

be an n by p columnwise orthogonal matrix, where p ≤ n. For each j = 0, 1, . . .,
compute X( j+1) using the following steps:

(1) Compute D̂2 and K̂ using (11) and (12), with X = X( j).
(2) Compute X( j+1) = X using (21).

Remark 1 Algorithm 1 can be rephrased as a fixed-point iteration of the form

X( j+1) = hGIPSCAL(X( j)), (22)

where hGIPSCAL is the process described by steps (1) and (2) of Algorithm 1.

The above algorithm can easily be combined with acceleration by the minimal
polynomial extrapolation (MPE) method to be described in the following subsection.
Note that GIPSCAL reduces to the spectral decomposition of A when A is symmetric
and nnd, and consequently K = 0.
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2.2 Acceleration of Algorithm 1 by the MPE method

In this subsection, we outline the MPE method of convergence acceleration for vector
sequences, and we explain how this method can be used to accelerate the convergence
of our basic GIPSCAL algorithm presented in the previous subsection. A good over-
view of vector acceleration techniques can be found in Smith et al. (1987). See also
Loisel and Takane (2009, 2010), and Takane et al. (2010).

We begin by defining the MPE algorithm, which accelerates the convergence of
vector sequences.

Algorithm 2 (Minimal Polynomial Extrapolation) Let x(0), . . . , x(k) be vector iter-
ates. Define

u( j) = x( j+1) − x( j), (23)

for j = 0, . . . , k, and let

U = [u(0), . . . , u(k−1)]. (24)

Define c = [c0, c1, . . . , ck−1]′ by

c = −U+u(k). (25)

Then, the limit of the vector sequence x(0), x(1), . . . predicted by MPE is given by

xMPE =
k∑

j=0

c j x( j)
/ k∑

j=0

c j , (26)

where we have defined ck = 1.

To understand how MPE works, it is best to consider a fixed point iteration whose
update function is linear. Let

hlin(x) = Hx + b, (27)

and for a given x(0), consider the vector sequence defined by

x( j+1) = hlin(x( j)) = Hx( j) + b. (28)

If the sequence converges to a point xconv , then we have

xconv = (I − H)−1b, (29)

where I − H is assumed nonsingular. We define the increments u( j) of the iteration
using (23) for j = 0, 1, . . . The matrix H and its minimal polynomial with respect to
u(0) play an important role in the analysis of the convergence of the MPE acceleration
method defined by Algorithm 2.
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Generalized GIPSCAL re-revisited 63

Definition 1 The minimal polynomial P(H) of the matrix H with respect to u(0) is
the unique polynomial in H whose leading coefficient is 1, and whose degree k is the
smallest possible, such that

P(H)u(0) = 0. (30)

The theory of minimal polynomials is a standard component of linear algebra. The
existence of a minimal polynomial follows immediately from the fact that the vec-
tor space is finite dimensional. Indeed, in a d-dimensional vector space, the vectors
{u(0), Hu(0), . . . , Hdu(0)} must be linearly dependent, since there are d + 1 of them.
Hence, for some k ≤ d, there is a set of coefficients c0, . . . , ck such that

k∑

j=0

c j H j u(0) = 0. (31)

By taking k as small as possible, we may further assume that ck = 1, and this gives (30).

Lemma 1 Let x(0) be given, and x(1), x(2), . . . be defined by (28), and let u(0) be
defined by (23). Let k be the degree of the minimal polynomial P(H) of H with respect
to u(0). Then, the limit xconv of (28) is xMPE, as defined by Algorithm 2.

In other words, the MPE algorithm computes the true limit xconv .

Proof of Lemma 1 Let

P(H) = c0I + c1H + · · · + Hk (32)

be the minimal polynomial P(H)of H with respect to u(0). We now show how to recover
the coefficients c0, c1, . . . , ck−1 from the increments u(0), . . . , u(k−1). Observe that
u( j) = H j u(0) for j = 0, 1, . . . , k. Hence, from (30) and (32), we have that

k∑

j=0

c j u( j) = 0, (33)

where ck = 1. We may rewrite this as the linear system

U

⎡

⎢
⎣

c0
...

ck−1

⎤

⎥
⎦ = −u(k), (34)

where we have moved the data ck = 1 from the left-hand side over to the right-hand
side. Although U may be rectangular, since the system (34) is obtained from the min-
imal polynomial equation (30), we know that (34) has a unique solution. Any method
can be used to obtain this solution, but certainly one may use Eq. (25). We have thus
now shown that the vector c is indeed the vector of the coefficients of the minimal
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polynomial of H with respect to u(0), provided that the number k is the degree of that
minimal polynomial.

We now turn our attention to the next task, which is to recover xconv from the iterates
x(0), . . . , x(k+1). Observe that

u(0) = (I − H)(xconv − x(0)). (35)

(The above identity is readily verified.) We substitute this into Eq. (30) (and take into
account that I − H commutes with P(H), and it is invertible) to obtain the relation

0 = P(H)(xconv − x(0))

=
k∑

j=0

c j H j (xconv − x(0))

=
k∑

j=0

c j (xconv − x( j)); (36)

where we have used the following relation:

xconv − x( j) = (Hxconv + b) − (Hx( j−1) + b) = H(xconv − x( j−1))

= · · · = H j (xconv − x(0)).

By solving Eq. (36) for the unknown xconv , we obtain that xconv = xMPE, where xMPE
is defined by (26). ��

The fixed point iteration defined by Algorithm 1 is nonlinear; i.e., the function
hGIPSCAL, defined in Remark 1, is nonlinear. Therefore, MPE as defined in Algo-
rithm 2 will not generally produce the limit point of the iteration for any finite value of
k. Nevertheless, we can define an MPE accelerated version of Algorithm 1, as follows.

Algorithm 3 (GIPSCAL-MPE) Let A be an n by n asymmetric matrix, and let X(0)

be an n by p columnwise orthogonal matrix, with p ≤ n. Let k ≥ 1 be an integer.

(1) Compute X(1), . . . , X(k) using Algorithm 1.
(2) Convert the n by p matrices X(0), . . . , X(k) into np-dimensional column vectors

x(0), . . . , x(k). Compute xMPE using Algorithm 2. Convert xMPE into a matrix,
re-orthonormalize it by SVD (see (21)), and store it into X(0).

(3) Iterate steps (1) and (2) until convergence.

The above algorithm assumes that the value of k is known. However, as far as the
MPE method has to be applied repeatedly as described in Algorithm 3 because of the
nonlinearity of the updating equation hGIPSCAL, a precise value of k is generally not
required. It suffices to have a value of k for which (33) holds approximately. Typi-
cally, there is a wide range of values of k for which the MPE algorithm works well.
In the following numerical experiments, we vary the value of k (= 5, 10, 15, and 20)
systematically, and choose the best value.

123



Generalized GIPSCAL re-revisited 65

2.3 Trendafilov’s algorithm

Trendafilov (2002) proposed an algorithm for GIPSCAL which also minimizes the
same criterion (9). His method reformulates the problem as an ordinary differential
equation, whose asymptotic solution as t → ∞ is a solution of the generalized GIP-
SCAL problem. Indeed, we can regard (9) as an energy which is to be minimized. One
method for minimizing an energy is to simulate a physical system in which “particles”
are following the steepest descent direction.

Assume that we are given an energy functional E(Y), which is a non-negative func-
tion of the vector or matrix Y. Given initial estimates Y(0), we can define the function
Y(t) of the time parameter t to be the unique solution to the differential equation

d

dt
Y(t) = −(∇E)(Y(t)), (37)

where ∇E denotes the gradient of E with respect to Y. This defines a “gradient dynam-
ical system”, which can be interpreted physically as particles following the gradient
of the energy functional. Under some conditions, one may show that Y(t) converges
to some limit as t → ∞. Moreover, we have that

(∇E)(Y(∞)) = 0. (38)

In other words, Y(∞) is a critical point of E(Y).
We now relate this gradient dynamical system to our optimization problem (9). We

consolidate the variables X, D and K into a single object Y = (X, D, K). (In Trend-
afilov’s algorithm, D rather than D2 is estimated directly. This ensures the nnd-ness of
D2.) We can then define E(Y) = f (X, D, K) (cf. (9)). However, there is a significant
pitfall. The gradient (∇E) appearing on the right-hand side of (37) must be understood
in terms of the tangent space of the manifold in which Y resides. This requires some
further technical reasoning, which we now outline [and we refer to Trendafilov (2002)
for details].

Recall that the variable X is an n × p columnwise orthogonal matrix, which we
write as X ∈ O(n, p). Likewise, we write D ∈ D(p) and K ∈ Sk(p) to denote that D
and K are diagonal and skew-symmetric, respectively. In this notation, we therefore
have that Y ∈ O(n, p) × D(p) × Sk(p) =: Y . This set is a smooth manifold. Hence,
for any Y ∈ Y , there is a corresponding tangent space, denoted TY. Because Y is a
product, the tangent spaces are also given by the following product:

TY = T(X,D,K) = TX O(n, p) × D(p) × Sk(p), (39)

where

TX O(n, p) = {H ∈ R
n×p|X′H is skew-symmetric}. (40)

The gradient ∇X f should then be understood in terms of a tangential derivative in the
manifold O(n, p). In other words, for any fixed X, the gradient (∇X f )(X) is a linear
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function defined for all tangent directions in TX O(n, p). This derivative can be made
explicit in terms of the entrywise derivatives ∂ f

∂xi j
, where X = (xi j ).

We can assemble these entrywise derivatives into an n × p matrix

fX =

⎛

⎜
⎜
⎝

∂ f
∂x11

· · · ∂ f
∂x1p

...
. . .

...
∂ f

∂xn1
· · · ∂ f

∂xnp

⎞

⎟
⎟
⎠ ∈ R

n×p. (41)

The difficulty is that this entrywise derivative is not likely to be in the tangent space
TX O(n, p). The derivative “in the tangent space” is instead defined to be a projection
of this entrywise derivative to the tangent space. This projection is defined by

πTX(Z) = X
X′Z − ZX

2
+ (I − XX′)Z. (42)

Then, the derivative ∇X f “in the tangent space” is defined by

∇X f = πTX( fX). (43)

The variables D and K reside in vector spaces instead of curved manifolds, and hence
no such subtlety arises for these variables. After further simplifications, the resulting
system of ordinary differential equations is given by (Trendafilov 2002)

dX
dt

= X([K, X′AskX] − [D2, X′AsX]) + 2(I − XX′)(AsXD2 − AskXK), (44)

dD
dt

= 2(X′AsX − D2) � D, (45)

dK
dt

= X′AskX − K, (46)

where we have used the notation � to denote the entrywise product, and [A, B] =
AB − BA indicates the Lie bracket.

Trendafilov’s algorithm then consists of solving the system (44), (45), and (46),
given a starting point Y(0), using the MATLAB ODE solver ode15s from the initial
time t = 0 until the time t = 100 (with possible early termination if E decreases very
slowly). The value Y(100) is then returned as a local minimizer of (9).

3 Numerical experiments

In this section, we report the results of a numerical experiment (Experiment 1) on the
algorithms described in the previous section. In our first numerical experiment, we
compare the mean CPU time and the average fit reached by Algorithm 1, Algorithm
3, and Trendafilov’s. Two hundred fifty data sets each were generated by varying the
number of objects at three levels (n = 10, 20, and 30) with each entry of the data tables
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following the uniform distribution between −.5 and .5 (Trendafilov 2002). Randomly
generated data sets presumably impose the toughest condition for algorithms because
they must look for structures that “do not exist” in the data, and if they work well
under these conditions, they are bound to work well in more natural settings, where
some GIPSCAL structures exist. Jennrich (2001) and Takane and Zhang (2009) tested
their algorithms under similar conditions.

The data were analyzed by Algorithm 1, Algorithm 3 with k = 5, 10, 15, and 20,
and Trendafilov’s algorithm. Only 3-component solutions were obtained for n = 10,
while both 3- and 5-component solutions were obtained for n = 20 and n = 30. For
Algorithms 1 and 3, the normalized Frobenius norm of the projected gradients was
defined as the square root of the sum of squares of the left-hand side of (20) divided
by the sum of squares of data elements, and this quantity being less than 10−7 was
used as the convergence criterion. Trendafilov’s algorithm, on the other hand, used the
criterion that the improvement in the loss function between two consecutive output
points was less than 10−6. This criterion turned out to be much more lenient than that
used for Algorithms 1 and 3. [This was directly verified by evaluating the normalized
Frobenius norm of the projected gradients (defined above) at the convergence points of
Trendafilov’s algorithm. This quantity was almost always larger than 10−7.] However,
no further effort was made to equate the two convergence criteria because Algorithm 3
was found much faster than Trendafilov’s algorithm despite the fact that it used a more
stringent convergence criterion.

For Algorithms 1 and 3, initial estimates of X were first generated by uniform
random numbers between −.5 and .5 followed by the orthonormalization step by
SVD (see (21)). In Trendafilov’s algorithm, initial estimates were calculated by a
matrix of eigenvectors of the symmetric part of the data matrix corresponding to the
p largest eigenvalues. Initial estimates of D and K were then calculated by D̂ =
{max(diag(X′AsX), 0)}1/2, and K̂ = X′AskX.

The main results of the simulation study are summarized in Table 1. In the table,
two numbers are given in each cell, one without and the other with parentheses. The

Table 1 The comparison of the mean cpu time and fit among Algorithm 1, Algorithm 3 (k = 5, 10, 15,

and 20), and Trendafilov’s

n p Algorithm 1 Algorithm 3 Trendafilov

k = 5 k = 10 k = 15 k = 20

10 3 cpu 0.1633 0.0183 0.0114 0.0149 0.0217 0.1394

fit (.6482) (.6001) (.6003) (.6011) (.6031) (.6010)

20 3 cpu 0.2454 0.0316 0.0179 0.0204 0.0209 0.2401

fit (.7904) (.7643) (.7635) (.7634) (.7635) (.7651)

20 5 cpu 0.5061 0.0966 0.0512 0.0440 0.0465 0.5417

fit (.6702) (.6377) (.6377) (.6380) (.6379) (.6376)

30 3 cpu 0.3540 0.0602 0.0365 0.0276 0.0271 0.3544

fit (.8537) (.8321) (.8322) (.8323) (.8322) (.8338)

30 5 cpu 0.7085 0.1551 0.0894 0.0655 0.0629 1.0029

fit (.7627) (.7372) (.7376) (.7375) (.7376) (.7372)
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former indicates the mean cpu time, and the latter the mean fit value at the convergence
point. It is clear that the MPE method speeds up the convergence substantially. An
optimal value of k ranges between 10 and 15, although for larger problems, a larger
value of k may be desired. It is important to observe that within this range, Algorithm
3 works very well, and that it is nearly 10 times as fast as both Algorithm 1 and
Trendafilov’s algorithm. Trendafilov’s algorithm has a slight edge over Algorithm 1
for smaller problems, although its advantage disappears for larger problems.

The computation times given in Table 1 were measured between the start of the
algorithms and whatever stationary points the algorithms first reached. The stationary
points reached, however, may not be a global minimum of the loss function. To com-
pare the quality of solutions obtained by the various algorithms, Table 1 also reports
the average fit value at the convergence points. The average fits obtained by the three
algorithms are very comparable (Algorithm 1 is somewhat worse than the other two).
This means that there is not much difference in the quality of solutions obtained by
Algorithm 3 and Trendafilov’s.

But just how serious is the problem of suboptimal solutions under the conditions
examined above? To investigate this problem, Algorithm 3 with k = 10 was run 50
times for each data set starting from 50 random initials. The best solution among the
50 solutions was considered as the globally optimal solution. (This is justified by the
following reasoning. Even if the chance of convergence to a suboptimal solution in a
single run is as high as .80, the probability of hitting the globally optimal solution at
least once in 50 runs is quite high; this is calculated by 1 − .8050 ≈ .999986.) The
globally optimal solution was then compared with a solution in a single run to see
if the latter is a suboptimal solution or not. The incidence of suboptimal solutions is
then averaged over 250 data sets in each condition. The probabilities of suboptimal
solutions thus obtained were .232, .260, .404, .236, and .428 for the five conditions
(the five combinations of n and p) in Table 1. It seems that they are more heavily
affected by the dimensionality (p) of solutions than the number (n) of objects. When
p = 3, the probability of suboptimal solutions is around .25; this jumps up to above
.40 for p = 5.

4 Some extensions

Model (8) is the very basic model for GIPSCAL, and various extensions of the basic
model are possible. In this section, we consider three such extensions along with the
corresponding extensions of Algorithms 1 and 3.

4.1 Incorporating an additive constant into GIPSCAL

In many areas of social sciences, data are often measured on an interval scale with no
intrinsic zero point. In order to account for the effect of an arbitrary zero point, Chino
(1990) considered incorporating an additive constant to his original GIPSCAL model.
This model, with his original GIPSCAL model replaced by the generalized GIPSCAL
model (7), can be written as
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Generalized GIPSCAL re-revisited 69

A = X(D2 + K)X′ + c11′ + E, (47)

where c is the additive constant. We can easily modify Algorithm 1 to estimate the
additional parameter c.

Algorithm 4 (GIPSCAL-c) Let A be a square asymmetric matrix of order n, and let
X(0) be a given n by p columnwise orthogonal matrix. Let D̂2 be a non-negative diag-
onal matrix of order p (an initial estimate of D2). For j = 0, 1, . . ., compute X( j+1)

as follows:

(1) Compute ĉ by taking the average of A − X( j)D̂2(X( j))′. (That is, ĉ = 1′(A −
X( j)D̂2(X( j))′)1/n2, where 1 is the n-component vector of ones.)

(2) Compute updated D̂2 and K̂ values using

D̂2 = max(diag((X( j))′(As − ĉ11′)X( j)), 0), (48)

and

K̂ = (X( j))′AskX( j), (49)

where, as before, As = (A + A′)/2 is the symmetric part of A, and Ask =
(A − A′)/2 is the skew-symmetric part of A.

(3) Set G = (A − ĉ11′)′X( j)B̂ + (A − ĉ11′)X( j)B̂′, where B̂ = D̂2 + K̂. Then, set

X( j+1) = UV′, (50)

where U and V are such that G = UDV′ is the SVD of G.

The above algorithm can be easily combined with the MPE acceleration method
in the same manner as Algorithm 1 was combined with Algorithm 2 to produce
Algorithm 3. We call this algorithm Algorithm 4′.

Remark 2 Algorithm 4 can be written as a fixed-point iteration of the form

[
X( j+1)

(D2)( j+1)

]
= fGIPSCAL − c

([
X( j)

(D2)( j)

])
. (51)

This suggests that we would need to pass the matrix iterates (D2)( j) as well as X( j),
to Algorithm 2. However, we found that passing the matrices X( j) was sufficient to
accelerate the convergence of the overall iteration given by (51).

Remark 3 In Algorithm 4, no initial value for K is needed. Indeed, we can estimate
c by averaging A − X( j)(D̂2 + K̂)(X( j))′. The matrix K̂ is skew-symmetric, and for
such a matrix, we have that u′Ku = 0, for any vector u. Hence, 1′XKX′1 = 0, and
the term in K̂ contributes nothing to the average.

123



70 S. Loisel, Y. Takane

4.2 Off-diagonal DEDICOM/GIPSCAL

Diagonal entries of a square asymmetric table may have different meanings from its
off-diagonal entries. For example, in the case of trade between nations, diagonal ele-
ments represent the amount of domestic trade, and off-diagonal elements the amount of
international trade. The two parts of the table may be governed by different principles.

To account for the difference between the two, Takane (1985) considered incorpo-
rating an additional diagonal matrix into GIPSCAL in a manner similar to uniqueness
in common factor analysis. This model may be written as

A = XBX′ + C + E, (52)

where C is the additional diagonal matrix to be estimated. This model is often called
off-diagonal DEDICOM (ten Berge and Kiers 1989). We may further require C to be
nnd. Matrix B in DEDICOM is analogous to D2 + K in GIPSCAL. In DEDICOM,
however, we do not separate D2 and K because no nnd restriction is imposed on B. For
the purpose of comparing our algorithm with ten Berge and Kiers (1989) algorithm
for off-diagonal DEDICOM, we first present an algorithm for this model, and then
extend it to off-diagonal GIPSCAL.

Algorithm 5 (Off-diagonal DEDICOM) Let A be a square asymmetric matrix of
order n. Let X (0) be a given n by p columnwise orthogonal matrix, and let B̂ be a
given nonsingular square matrix of order p (an initial estimate of B). For j = 0, 1, . . .,
compute X( j+1) as follows:

(1) Compute Ĉ using

Ĉ = diag(A − X( j)B̂(X( j))′). (53)

(2) Update B̂ by computing

B̂ = (X( j))′(A − Ĉ)X( j). (54)

(3) Compute X( j+1) using

X( j+1) = U, (55)

where U is such that G = U�V′ is the SVD of G = (A − Ĉ)′X( j)B̂ +
(A − Ĉ)X( j)B̂′.

Again, the above algorithm can be easily combined with the MPE algorithm, which
we call Algorithm 5′. When C = 0 is assumed, (58) reduces to the basic DEDICOM
model, and Algorithm 5 without Step 1 reduces to Takane and Zhang (2009) algorithm
for DEDICOM.

Remark 4 The matrix U appearing in Step (3) of Algorithm 5, is unique up to reflec-
tions and permutations of its column vectors. This is not a big problem when acceler-
ation by the MPE method is not incorporated. However, the MPE method is sensitive
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to the directions and permutations of singular vectors. This means that columns of
successive U’s should be matched in order and sign.

Remark 5 The diagonal matrix C may further be constrained to be nonnegative defi-
nite. This can be done by replacing Step 1 of the above algorithm by Ĉ = max(diag(A−
X( j)B̂(X( j))′), 0).

Remark 6 Similarly to Remark 2, we found that applying MPE to the iterates X(k)

was sufficient, and that it was not necessary to also include the B iterates in the call to
the MPE acceleration routine.

Remark 7 The above algorithm can be easily modified to fit the off-diagonal GIP-
SCAL model A = X(D2 + K)X′ + C + E by replacing Step (2) of Algorithm 5 by
D̂2 = max(diag((X( j))′(As −C)X( j)), 0), K̂ = (X( j))′AskX( j), and B̂ = D̂2+K̂, and
Step (3) of Algorithm 5 by X( j+1) = UV′, where U and V are such that G = U�V′
is the SVD of G.

Remark 8 Incorporation of an additive constant described in Sect. 4.1, and off-diagonal
DEDICOM/GIPSCAL described in Sect. 4.2 may be combined. It should not make
very much difference whether we update ĉ or Ĉ first.

Algorithm 5′ was compared to ten Berge and Kiers (1989) algorithm for off-diagonal
DEDICOM. The data were generated exactly as in Experiment 1 (three levels of n (10,
20, 30), and each entry of the data tables generated by the uniform random number
between −.5 and .5), but all analyses were conducted with p = 3. Algorithm 5′ used
the same initialization procedure and convergence criterion as in Experiment 1. Ten
Berge and Kier’s algorithm used the same initialization procedure as Algorithm 5′,
but used a convergence criterion similar to the one used in Trendafilov’s algorithm.
That is, an improvement in fit between two successive iterations is less than 10−7.

The results are reported in Table 2. The basic construction of the table remains the
same as in Table 1. The MPE method seems to have a considerable advantage over ten
Berge and Kiers (1989) algorithm for off-diagonal DEDICOM. The former is about 3
times faster than the latter. The average quality of the solutions is comparable between
the two algorithms. Note that, as the authors themselves note, it is difficult to impose
the nnd restriction on C in ten Berge and Kiers algorithm, whereas it is straightforward
to do so in Algorithm 5′. Also, ten Berge and Kiers’ algorithm is not easily extensible
to GIPSCAL, whereas Algorithm 5′ is, as has been demonstrated above.

Table 2 Off-diagonal
DEDICOM: the comparison of
the mean cpu time between
Algorithm 5′ and ten Berge and
Kiers (1989) minres algorithm

n Algorithm 5′ (k = 10) minres

10 cpu 0.0141 0.0500

fit (.4338) (.4398)

20 cpu 0.0198 0.0598

fit (.6904) (.6913)

30 cpu 0.0435 0.1221

fit (.7851) (.7854)
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4.3 Three-way GIPSCAL

So far, it is assumed that there is a single square asymmetric table to be analyzed by
GIPSCAL. In some cases, however, there may be more than one such table available,
possibly obtained under different conditions. Trendafilov (2002) proposed a model for
such data, called three-way GIPSCAL. Suppose there are N square asymmetric data
matrices of order n. The three-way GIPSCAL model is written as

Ai = X(D2
i + Ki )X′ + Ei (56)

for i = 1, . . . , N . This model postulates an X (the matrix that relates latent “objects”
to observed objects) common to all N data matrices, while accounting for their differ-
ences by allowing a distinct D2

i and Ki for each data matrix. This model is an extension
of the INDSCAL model for N symmetric tables to N square asymmetric tables.

In the three-way GIPSCAL model, we minimize

f (X, D2
1, . . . , D2

N , K1, . . . , KN ) =
N∑

i=1

SS(Ei ) =
N∑

i=1

SS(Ai − X(D2
i + Ki )X′),

(57)

where SS(Ei ) = tr(E′
i Ei ). Following a similar line of reasoning to Sect. 2.1, we arrive

at the following algorithm.

Algorithm 6 (Three-way GIPSCAL) Let A1, . . . , AN be n by n asymmetric matrices,
and let X(0) be an n by p columnwise orthogonal matrix. For j = 0, 1, . . ., compute
X( j+1) using the following steps:

(1) Compute D̂2
1, . . . , D̂2

N using

D̂2
i = max(diag((X( j))′Ai,sX( j)), 0), (58)

and K̂1, . . . , K̂N using

K̂i = (X( j))′Ai,skX( j), (59)

where Ai,s = (Ai + A′
i )/2 and Ai,sk = (Ai − Ai )/2.

(2) Let

G =
N∑

i=1

(A′
i X

( j)B̂i + Ai X( j)B̂′
i ), (60)

where B̂i = D̂2
i + K̂i for i = 1, . . . , N . Then, compute

X( j+1) = UV′, (61)

where U and V are such that G = UDV is the SVD of G.
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It is straightforward to accelerate Algorithm 6 with the MPE method. We call this
accelerated algorithm Algorithm 6′.

Remark 9 The above algorithm for three-way GIPSCAL can easily be modified to
accommodate an additive constant and the diagonal modification discussed in the
previous two subsections.

We compare Algorithm 6′ with Trendafilov (2002) algorithm for three-way GIP-
SCAL. His algorithm for three-way GIPSCAL works similarly to our description of
his algorithm for two-way GIPSCAL in Sect. 2.3. We interpret the LS loss func-
tion (57) as an energy functional E(Y) = f (X, D2

1, . . . , D2
N , K1, . . . , KN ), where

Y ∈ Y := O(n, p)× D(p)×· · ·× D(p)× Sk(p)×· · ·× Sk(p). A gradient dynamic
system like (37) is formed, and again the gradient is understood in the sense of continu-
ous manifolds. The resulting set of differential equations are also similar to (44)–(46).
(Matrices As, Ask, D2, and K should have an additional subscript i , and in (44) the
gradient has to be summed over i .)

In our final numerical experiment, we compared Algorithm 6, Algorithm 6′ (k = 5,
10, 15, and 20), and Trendafilov’s. As in Experiment 1, the data were generated by
uniform random numbers between −.5 and .5 for a fixed N (N = 10), but varying n
at three levels (5, 10, and 20). These data were analyzed with dimensionalities p = 2
for n = 5, p = 3 for n = 10, and p = 4 for n = 20. For Algorithms 6 and 6′,
initial estimates for X remained the same as in Experiment 1. The convergence cri-
terion was also similar to the one used in Experiment 1, although it was normalized
by the sum of squared norms of the N data matrices. Trendafilov’s algorithm used the
same convergence criterion as in Experiment 1. Initial estimates were also obtained
similarly to Experiment 1, except that for X, matrix As is replaced by the average of
Ai,s over i , and for D2

i and Ki (i = 1, . . . , N), As and Ask are replaced by Ai,s and
Ai,sk , respectively.

The results are given in Table 3. Again the basic construction of the table remains
the same as in Table 1. Algorithm 6′ with k = 10 is roughly 10 times faster than
Trendafilov’s algorithm across all conditions. This is despite the fact that the latter
used a more lenient convergence criterion, and a semi-rational starting point. The

Table 3 The mean cpu time by Algorithms 6 and 6′ and Trendafilov (2002) algorithm for three-way
GIPSCAL

n p Algorithm 6 Algorithm 6′ Trendafilov

k = 5 k = 10 k = 15 k = 20

5 2 cpu 0.0652 0.0435 0.0358 0.0430 0.0506 0.3250

fit (.8203) (.8210) (.8208) (.8210) (.8203) (.8244)

10 3 cpu 0.1407 0.1106 0.0876 0.0712 0.0897 0.8849

fit (.8683) (.8686) (.8687) (.8684) (.8682) (.8701)

20 4 cpu 0.4567 0.2318 0.2251 0.2015 0.2746 3.1930

fit (.9198) (.9199) (.9199) (.9199) (.9200) (.9204)
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quality of solutions in terms of average fit is slightly better for Algorithms 6 and 6′
than Trendafilov’s, although the difference is relatively minor in all cases.

As in Experiment 1, we also investigated the seriousness of suboptimal solutions
for three-way GIPSCAL. Probabilities of suboptimal solutions were obtained in a
manner similar to those in two-way GIPSCAL. (Algorithm 6′ with k = 10 was run 50
times for each data set with 50 random initials to identify a globally optimal solution
for each data set. The optimal solution was then compared to a solution obtained in a
single run, and the probabilities of suboptimal solutions were calculated over the 250
data sets in each condition.) These probabilities are .268, .632, and .812 for the three
conditions in Table 3. The probability of suboptimal solutions goes up very quickly, as
more parameters are estimated. (In this case, we are not sure which is more influential,
n or p.) That the probability of suboptimal solutions is over .80 is rather daunting.
However, this is for completely random data. It should be much smaller for data with
some three-way GIPSCAL structures.

5 Concluding remarks

In this paper, we have discussed several related algorithms for analysis of square
asymmetric tables. We studied GIPSCAL, GIPSCAL-c, off-diagonal DEDICOM/GIP-
SCAL, and three-way GIPSCAL. For each model, we have given an iteration which
converges to a stationary point, and an MPE acceleration of the same algorithm. We
have also compared our algorithms with respective algorithms by Trendafilov (2002),
and in the case of off-diagonal DEDICOM, with ten Berge and Kiers (1989) minres-
like algorithm. Our numerical experiments show that our new MPE algorithms are
very efficient and compare favorably with existing algorithms.

It should be noted that monotonic convergence is not assured of the proposed MPE
algorithms, and consequently no theoretical proof of convergence is given. This is
obviously a weakness of the algorithms. However, nonmonotonic convergence is rare
in practice, and nonconvergence is even rarer. We therefore argue that the benefit
of the proposed algorithms far exceeds the weakness, as amply demonstrated in the
empirical studies reported.

In addition to the speed advantage, the MPE method is easily adaptable to other
similar situations. There are many models in science other than GIPSCAL that may
potentially benefit from the MPE method. The MPE method has been success-
fully incorporated into iterative algorithms for two-way single-domain DEDICOM
(Takane and Zhang 2009), and orthogonal INDSCAL (Takane et al. 2010). We can
readily give a couple more examples from quantitative psychology (in which the sec-
ond author of this paper is a specialist): Communality estimation in common factor
analysis, and orthogonal and oblique factor rotation problems. It will be of great
interest to compare the MPE algorithms with non-accelerated algorithms for these
problems.
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