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Abstract The following mixture model-based clustering methods are compared
in a simulation study with one-dimensional data, fixed number of clusters and a
focus on outliers and uniform “noise”: an ML-estimator (MLE) for Gaussian mix-
tures, an MLE for a mixture of Gaussians and a uniform distribution (interpreted as
“noise component” to catch outliers), an MLE for a mixture of Gaussian distributions
where a uniform distribution over the range of the data is fixed (Fraley and Raftery in
Comput J 41:578–588, 1998), a pseudo-MLE for a Gaussian mixture with improper
fixed constant over the real line to catch “noise” (RIMLE; Hennig in Ann Stat 32(4):
1313–1340, 2004), and MLEs for mixtures of t-distributions with and without estima-
tion of the degrees of freedom (McLachlan and Peel in Stat Comput 10(4):339–348,
2000). The RIMLE (using a method to choose the fixed constant first proposed in
Coretto, The noise component in model-based clustering. Ph.D thesis, Department of
Statistical Science, University College London, 2008) is the best method in some, and
acceptable in all, simulation setups, and can therefore be recommended.
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112 P. Coretto, C. Hennig

1 Introduction

This paper compares several methods for robust clustering based on mixture models.
The term “model-based cluster analysis” was coined by Banfield and Raftery (1993)
for clustering based on finite mixtures of Gaussian distributions and related meth-
ods. The standard Gaussian mixture model is to assume that data (X1, . . . , Xn) are
modelled as drawn i.i.d. from a distribution with density

f (x; θ) =
G∑

j=1

π jφ(x;μ j , σ
2
j ), (1)

where φ(·, μ, σ 2) is the density of a Gaussian distribution with mean μ and variance
σ 2, π j is the proportion of the j th mixture component,

∑G
j=1 π j = 1. The parameter

vector θ contains all proportions, means and variances. Analogous notations will be
used later for other models as well, the proportions sometimes including a π0.

The maximum likelihood estimator (MLE) of the parameter θ from a dataset xn =
{x1, x2, . . . , xn} is obtained by

θ̂n = arg max
θ∈�

n∑

i=1

log f (xi ; θ), (2)

where � = {θ | σ 2
j ≥ s, j = 1, 2, . . . ,G,

∑G
j=1 π j = 1} for some choice of s > 0.

It is necessary to bound variances from below in order to avoid degeneracies of the
log-likelihood function. The MLE is usually computed by the EM algorithm, which
means that only local maxima of the likelihood function are available. For more back-
ground and details on the EM algorithm, see Redner and Walker (1984), McLachlan
and Krishnan (1997), and McLachlan and Peel (2000).

Based on θ̂n (the included parameters are denoted by giving them hats, too), obser-
vations xi can be classified to component

ki = arg max
p=1,...,G

τ̂i p, (3)

where the quantity τ̂i p is the estimated posterior probability that xi was generated by
the pth mixture component:

τ̂i p = π̂pφ(xi ; μ̂p, σ̂
2
p)

f (xi ; θ̂ )
. (4)

A sensible philosophy for model-based clustering is that (1) is not necessarily assumed
to be “true”, but rather that the Gaussian distribution is treated as a cluster shape proto-
type, given that many distributions can be approximated closely by a Gaussian mixture.
However, for a wide class of finite mixtures, including Gaussians, MLEs are not robust
(Hennig 2004). This implies that deviations from the nominal model such as a small
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A simulation study to compare robust clustering methods 113

proportion of outliers in the data can lead to poor estimates and clustering. Note, how-
ever, that the concept of “high breakdown” is generally more problematic in cluster
analysis than in traditional robust statistics, because it cannot be taken for granted that,
adding some outliers, it is not desired to use a mixture component to fit them, which
would yield breakdown of parameters.

Here we present a simulation study that compares the ML-estimator for Gaussian
mixtures with several alternatives that have been proposed in order to deal better with
outliers. Considerations are confined to one-dimensional data and a fixed number of
clusters G. Apart from the practical relevance of fitting one-dimensional data, our
aim is to contribute to the deeper understanding of a simple situation in order to also
contribute to the understanding of more complex setups. In robust cluster analysis the
comparison of the quality of different methods depends strongly on features such as
separation of clusters and number and location of outliers, and even for one-dimen-
sional data and fixed G one could imagine many more setups of interest apart from
those that we consider in the present study.

A way to deal with the outlier problem is to add a “noise component” to the mix-
ture, i.e., an additional mixture component to capture points like outliers that are not
consistent with the Gaussian mixture. This was originally proposed by Banfield and
Raftery (1993), who propose to add a uniform mixture component on the convex hull
of the data (the range in one-dimensional situations). Variations of this idea have been
proposed by Coretto (2008), who added uniform mixture components estimated by
ML to the mixture, and the proposal of Hennig (2004), where the noise component is
represented by a fixed constant on the real line. He showed that the resulting estimates
are robust to even extreme outliers, as opposed to the noise component method of
Banfield and Raftery (1993). Coretto (2008) studied the asymptotics of this approach
and its computation based on the EM algorithm [note that further journal publica-
tions of the material in Coretto (2008) are in preparation by the authors of the present
paper, and that an overview of the basic ideas was already given in Hennig and Coretto
(2008)].

As an alternative approach, fitting mixtures of t-distributions (McLachlan and Peel
2000) is included in our simulation study.

In Sect. 2, the compared methods are defined. Section 3 explains in more details
how they are computed in the simulation study. Section 4 defines the setups from which
data are generated. Section 5 presents and discusses the results of the simulation study.
Section 6 concludes the paper.

Alternative methods for robust clustering exist, particularly high breakdown meth-
ods based on a fixed partition model and trimming of observations (Cuesta-Albertos
et al. 1997; García-Escudero et al. 2008; Gallegos and Ritter 2005). See Neykov et al.
(2007) for a recent approach based on mixtures.

2 Methods and estimators

In this section we describe the estimators and methods under comparison. For com-
putational details of the estimators proposed in this section, see Sect. 3.

123



114 P. Coretto, C. Hennig

2.1 MLE for Gaussian mixtures

In order to assess whether things can be improved by the robust alternatives, the ML
estimator for Gaussian mixtures as in (1), computed by the EM-algorithm, is included
in the simulation study.

2.2 Gaussian mixtures with uniform noise on the data-range

The method suggested in Banfield and Raftery (1993) and Fraley and Raftery (1998)
consists of modelling the population by the following density function (notation as
above):

g(x; ζ ) = π01{x ∈ [min(xn),max(xn)]}
max(xn)− min(xn)

+
G∑

j=1

π jφ(x;μ j , σ
2
j ). (5)

The vector of all parameters is called ζ ∈ 	,	 = {ζ | σ 2
j ≥ s > 0, j = 1, 2, . . . ,G,

∑G
j=0 π j = 1} for some fixed s. ζ̂n is defined as maximizer of the log-likelihood

function associated to g. Note that this does not define a proper maximum likeli-
hood estimator (MLE) because the model specification is data dependent. Moreover,
n → ∞ ⇒ [max(xn)−min(xn)]−1 → 0 a.s. Banfield and Raftery (1993) and Fraley
and Raftery (1998) suggested to compute ζ̂n by applying the EM algorithm (the range
held fixed).

The estimated posterior probability τ̂i p that the observation xi was generated by
component p now looks like this:

τ̂i p =
⎧
⎨

⎩

π̂pφ(xi ;μ̂p,σ̂
2
p)

g(xi ;ζ̂ ) if p = 1, 2, . . . ,G
π̂0

[max(xn)−min(xn)]g(xi ;ζ̂ ) if p = 0.
. (6)

Hennig (2004) argued that this method is not robust against very extreme outliers.
As opposed to low breakdown methods in traditional setups such as location esti-
mation, it may however remain unaffected by less extreme outliers, and it may have
good satisfactory behavior in many practical situations. We call this the range- or
R-method.

2.3 MLE for Gaussian mixtures with uniform noise

In Coretto (2008), an ML-estimator for the following model is considered:

u(x; γ ) = π0 1{x ∈ [a, b]}
b − a

+
G∑

j=1

π jφ(x;μ j , σ
2
j ). (7)
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A simulation study to compare robust clustering methods 115

where 1(A) is the indicator function of the set A. The parameter vector is called γ ,

γ̂n = arg max
γ∈�

n∑

i=1

log u(xi ; γ ), (8)

with� = {γ | minm,p vm/vp ≥ h > 0; m, p = 0, 1, 2, . . .G; ∑G
j=0 π j = 1}, where

v0 = (b − a)/
√

12 and vp = σp for p > 0. The restricted set � allows to obtain
an MLE that exists and is scale-equivariant (see Hathaway 1985), though the maxi-
mization problem in (8) is rather difficult: the log-likelihood function has infinitely
many points of discontinuity, the restricted parameter set is not compact, moreover
� cannot be described as a set of smooth inequalities, hence standard optimization
theory does not apply. Coretto (2008) showed that the MLE exists and is strongly
consistent for the set of maximizers of the expected log-likelihood function, and he
also developed the EM algorithm for computing (8) and showed convergence. In the
simulation study, for computational reasons, we stick to the simpler optimization on
�0 = {γ | v2

j ≥ s, j = 0, 1, 2, . . .G; } for fixed s > 0.
The estimated posterior probability τ̂i p to be maximized for classification of xi

becomes

τ̂i p =

⎧
⎪⎨

⎪⎩

π̂01(xi ∈[â,b̂])
(b̂−â)u(xi ;γ̂n)

if p = 0

π̂pφ(xi ;μ̂p,σ̂
2
p)

u(xi ;γ̂n)
if p = 1, 2, . . . ,G

. (9)

Coretto (2008) showed that the EM algorithm generates local maxima of the log-like-
lihood for (a, b) chosen as any pair of data points as long as the restrictions above
are fulfilled, so that the EM-algorithm is not very informative about the parameters
of the uniform. One possible solution is to run the EM algorithm several times, and
each time the uniform parameters are initialized by a suitable pair of distinct data-
points. Among all solutions the MLE will be chosen so that the likelihood value is
the largest. We confine the search to the best local maximum over a selected grid of
distinct data-points. By this the quality of approximation of the MLE is affected but
the computational complexity can be controlled. We call this the grid- or G-method.
Note that the breakdown point for this approach, according to the definition of Hennig
(2004), can at best be 2

n+2 (compared to 1
n+1 for the R-method), because two added

outliers on both sides converging to infinity in absolute value emulate the robustness
problem that the R-method has with a single point, namely that the log-likelihood can
only be prevented from converging to −∞ by fitting one of the outliers by a Gaussian
component.

2.4 Robust improper maximum likelihood estimator

The idea of the robust improper maximum likelihood estimator (RIMLE) is to choose
a fixed constant over the whole real line for the noise, instead of modelling it by a
proper uniform distribution. Hennig (2004) showed that this has a better breakdown
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116 P. Coretto, C. Hennig

behavior than the two previous approaches. The approach is based on the following
improper density:

λc(x; η) = π0c +
G∑

j=1

π jφ(x;μ j , σ
2
j ). (10)

c ≥ 0 is a constant that (in order to apply the theory in Hennig 2004) needs to be
specified in advance. The idea is that points are classified as noise if they arise from
areas where the Gaussian components account for density values smaller than c. The
RIMLE is defined as:

η̂n(c) = arg max
η∈�

n∑

i=1

log(λc(xi ; η)). (11)

where � = {η|σ j ≥ s > 0, j = 1, 2, . . . ,G; ∑G
j=0 π j = 1}. The constrained set

� ensures existence but does not guarantee scale-equivariance. The EM algorithm
can be applied to compute the RIMLE because for a fixed dataset (10) can be written
down as a proper density with value c on a set of Lebesgue-measure 1

c containing the
observed data (the RIMLE is not a proper ML estimator for such a model, though).
Asymptotic analysis of the method is given in Coretto (2008). Points can be classified
by maximizing

τ̂i p = π̂0c

λc(xi ; η̂n(c))
for p = 0 and

τ̂i p = π̂pφ(xi ;μp, σ
2
p)

λc(xi ; η̂n(c))
for p = 1, 2, . . . ,G, (12)

where τ̂i0 is the “improper” posterior probability that the observation xi belongs
to the noise component based on the proper, but data dependent model mentioned
below (11).

The key issue here is how to fix c. Hennig (2005) gives some orientation about a
data-independent (subject matter based) choice of c. However Coretto (2008) provided
empirical evidence that in most situations a bad choice of c can seriously affect the
performance of the RIMLE. The author suggested a data dependent choice of c called
“filtering method”:

Step 1 Start from a set of values c′ ∈ [0, c̄] and for each of them compute the RIMLE
η̂c′ .

Step 2 For each η̂c′ remove those observations classified as noise and thus obtain the
“filtered dataset”.

Step 3 Use the filtered dataset to compute the MLE of a distribution function of a
mixture (1).

Step 4 Compute the empirical distribution function over the filtered dataset and use the
Kolmogorov distance to compare it to the distribution function of the Gaussian
mixture estimated in the previous step.

Step 5 Choose the value of c minimizing the Kolmogorov distance.
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A simulation study to compare robust clustering methods 117

The method depends on the choice of c̄, but this can be easily fixed. For large values
of c the RIMLE will end up classifying all points as noise, which is not desired. Hence
the value c̄ can be fixed in terms of the maximum proportion of data points we are
willing to accept as noise points. We chose 50% here.

2.5 MLE for t-mixtures

McLachlan and Peel (2000) argue that for elliptically shaped clusters with heavier than
Gaussian tails or atypical observations, the use of Gaussian components may affect
the fit of the data. The strategy proposed by the authors is as follows: if the population
is assumed to contain G Gaussian clusters plus noise, we model it as arising from a
finite mixture of t-distributions with G components. Noise is identified with the set of
data-points that are far away from the cluster centers. The meaning of “far away” will
be explained later in this section. Consider a finite mixture of univariate t-distributions
with G components having density

t (x; ξ) =
G∑

j=1

π jψ(x;μ j , σ j , u j ), (13)

where ψ(x;μi , σi , ui ) is the density of a non-central t-distribution with location μi ,
scale σi and degrees of freedom ui . Note that the scale parameter is related to the
variance v2

j of the distribution by

v2
j = u j

u j − 2
σ 2

j . (14)

The parameter vector is denoted by ξ (the degrees of freedom could be included or
fixed). McLachlan and Peel (2000) proposed to estimate ξ by ML. The estimator can
be obtained by the EM algorithm. Classification can be carried out maximizing

τ̂i p = π̂pψ(xi ; μ̂p, σ̂p, û p)

t (xi ; ξ̂n)
, j = 1, 2, . . . ,G (15)

over � = {ξ | v2
j ≥ s, j = 1, 2, . . . ,G,

∑G
j=1 π j = 0} for fixed s > 0. Define the

squared Mahalanobis distance between the point x and μ

δ(x;μ, σ) = (x − μ)2

σ 2 . (16)

We also define the sequence:

Ci =
G∑

j=1

1

{
arg max
j=1,2,...,G

τ̂i j = j

}
δ(xi ; μ̂ j , σ̂ j ); i = 1, 2, . . . , n. (17)
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118 P. Coretto, C. Hennig

McLachlan and Peel (2000) argued (without proof) that if an i.i.d. sample is generated
from a Gaussian mixtures with G components, then {Ci ; i = 1, 2, . . . , n} follows
(at least approximately) a χ2

1 distribution. They consider the observation xi as “noise”
if Ci exceeds the 0.95-quantiles of χ2

1 . Therefore, xi is assigned to the ki th cluster (the
Gaussian cluster prototype is mimicked by the set of non-noise points of a t-distribu-
tion here), if ki = arg max j=1,2,...,G τ̂i j 1{Ci < 3.841459}. ki = 0 (assignment to no
component) means that the points is assigned to the noise.

In terms of the breakdown behavior, this approach is very similar to the R-method,
see Hennig (2004).

3 Computational details

In the simulation study we considered sample sizes of n = 50, 200, 500. For each
data generating process and for each sample size we drew 500 samples, and for each
replica we applied the estimation methods described before. For each estimator we per-
formed clustering and computed summary statistics to evaluate relative performance
(see Sect. 5.1). Here we describe some computational aspects of these methodologies.

The EM algorithm depends on the initialization of the parameter values. For all
methods involving a π0, its initial value was fixed at 0.05, following the idea that
if data are partitioned into several clusters, the remaining noise proportion will nor-
mally be quite small (this is not necessarily the case in practice, but many practitioners
would like to have as many points as possible assigned to clusters). For all methods,
the proportions of the other components are always initialized at equal value. The
means and variances of Gaussian components are initialized by trimming the 10% of
observations in both the tails of the data and then applying the k-means algorithm with
G components with randomly chosen initial values. This is related, but not identical
to the trimmed-k-means method (Cuesta-Albertos et al. 1997), which is usually com-
puted by a more computer-intensive algorithm. In general, good initialization of the
EM-algorithm for a Gaussian mixture alone is a complicated issue, and alternatives
to our approach exist, see for example Karlis and Xekalaki (2003) and the hierarchi-
cal approach in the software package MCLUST (Fraley and Raftery 2006). For the
t-mixtures we do the same but we use both the variance from k-means after trimming
and degrees of freedom to get the initial values for scales, see (14). Each EM run
stops either when the likelihood value has not improved by more than 10−6 or when
the number of iterations exceeds 600. The latter did not happen more than once (out
of 500 replicas) in any simulation setup, in which case the corresponding result was
discarded.

The lower variance bound was chosen as s = 0.1 for all methods. Note that as a
side-effect of the described initialization method variances below 0.1 never occurred
in any EM run (though of course in practice the order of magnitude of the observations
would need to be taken into account choosing s).

Gaussian mixtures with uniform noise (R, G-method) In Sect. 2 we introduced two
methods where the noise is represented by uniform densities. The R-method was
initialised as previously explained.
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A simulation study to compare robust clustering methods 119

The ML estimate for (7) was approximated using the EM algorithm with the uniform
parameter (a, b) initialized over a selected grid of data points (G-method). The pro-
portion parameters, means and variances were initialized as before. Given the sample
size, we defined a preliminary grid of equi-spaced points on the range of the data. For
computational reasons, the size of the preliminary grid decreases as the sample size
increases. For n = 50 the grid consists of 20 points, for n = 200 the grid consists of
15 points, and for n = 500 it consists of 10 points. We then defined the initialization
grid by using the nearest data point for each point in the preliminary grid. Out of
two points in the initialization grid with distance of less than 1% of the interquartile
range, one was removed (in order to prevent problems with the variance restrictions
in Sect. 2.3).

RIMLE (If, I-method) The RIMLE defined in Sect. 2 was computed by selecting the
improper constant density via the filtering method. This approach is referred to as
“If-method”.

In order to illustrate how good the method could be with near optimal selection of
c (and how close the quality of the If-method is to that), we added a method called
“I-method” that makes use of (unrealistic) knowledge of the data generation pro-
cess. In the I-method the value of c was fixed as the value that we found for a given
data-generating process (over all replicas and all sample sizes) that achieved the low-
est average misclassification percentage. All other initializations were as previously
described.

t-mixture (Te, Tf-method) We considered the methodology based on t-mixtures both
in the case where degrees of freedom are estimated (“Te-method”), and the case when
the degrees of freedom are fixed (“Tf-method”). The computation of the MLE for
the Te-method was done using the EM/ECM algorithm studied in Liu (1997). Dur-
ing our experiments we noted that the EM/ECM algorithm does not move too far
from the starting values with respect to degrees of freedom when these are estimated.
This is possibly due to the fact that the log-likelihood surface has many local max-
ima or has flat regions with respect to the degrees of freedom. We could not find any
research on this topic. A good practice (though not followed in the previous study for
computational reasons) would be to run the ECM several times, with many possible
combinations of initial values for the degrees of freedom, and then select the solution
that corresponds to the highest log-likelihood value.

When the degrees of freedom were estimated, they were initialized to be equal
to 15 for each component (half way between Gaussian tails and heavier tails, given
that from 30 degrees of freedom upwards the t-distribution can be considered to
be approximately Gaussian). For the t-mixture with fixed degrees of freedom we
fixed them at 3 for all components (allowing for heavy tails but with existing vari-
ances).

See Sect. 4.3 for the proportions, means and variances estimated by the Te- and
Tf-method.

Furthermore, we computed the MLE for plain Gaussian mixtures (N-method) as
explained already.
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120 P. Coretto, C. Hennig

4 Data generating processes

We considered six different data generating processes. Throughout the rest of this
chapter, N(μ, v) is the Gaussian distribution with mean μ and variance v; U (a, b)
is the uniform distribution with support on the interval [a, b]. For g > 2, Tg(μ, v)

is the non-central t-distribution with g degrees of freedom, location parameter μ and
variance v. Note that we here parameterized the t-distribution in terms of variance,
assuming that g > 2, see (14). We tried to cover a range of essentially different arche-
typical situations that are not obviously unrealistic. Note particularly that, whereas all
setups fulfil the model assumptions of at least one method (and all methods apart from
the RIMLE have their model assumptions fulfilled in at least one setup), most methods
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Fig. 1 Right side histogram for a sample of 200 points drawn from the side-noise model (18) with density
function. Circles on the bottom represent the non-noise points in data set, strokes represent noise points.
Left side same for a sample of 200 points drawn from the inside-noise model (19)
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Fig. 3 Left side sample of 200 points from t-noise model (22). Again, circles on the bottom represent the
non-noise points in data set, strokes represent noise points. Right side sample of 200 points from Gaussian
mixture model (23)

are in most setups confronted with data generating processes that violate their nominal
assumptions. This is realistic and it also reflects the philosophy that we are interested
in the method to construct reasonable Gaussian shaped clusters regardless of whether
model assumptions are fulfilled.

4.1 Side, inside and wide uniform noise

Noise here is defined as points drawn from a uniform mixture component. We consider
three alternatives, differing in terms of the position of the uniform support relative to
the means of the Gaussians. We refer to these models as side-noise, inside-noise, and
wide-noise.

Side-noise:

0.1U(17, 25)+ 0.30N(0, 1.5)+ 0.25N(7, 2)+ 0.35N(14, 1.5). (18)

We chose a noise proportion of 10% here in order to still have clusters that are clearly
visible. Though this may not always be the case in reality, it is a minimum benchmark
requirement whether cluster analysis methods can find the clusters in a situation with
at least fairly clearly separated clusters. The noise produced in this model is located
on the right of the mean of the largest Gaussian (see Fig. 1) Note that the Gaussian
components are reasonably separated, they have relatively small variances, and their
proportions do not deviate much from being equal. Hosmer (1978) showed that when
the number of Gaussian components is larger than two and the separation between
components is weak, the solution provided by the EM algorithm can be a poor approx-
imation for the maximum likelihood estimate. In some experiments we noted also that
this happens particularly when the variances in the underlying Gaussians are rela-
tively large and the proportions deviate considerably from equality. This latter effect
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Table 1 Average misclassification percentages for “side noise”

n Method Global Component

Noise 2 3 4

50 G 20.72 (1.81) 13.12 0.60 4.58 2.41

R 19.90 (1.79) 14.75 0.56 4.16 0.43

I 13.43 (1.52) 3.31 0.85 5.90 3.37

If 13.67 (1.54) 3.40 1.18 6.04 3.04

Te 17.16 (1.69) 3.27 1.64 5.67 6.59

Tf 17.57 (1.70) 6.70 1.31 5.12 4.44

N 19.73 (1.78) 0.00 1.70 6.35 11.68

200 G 5.29 (1.00) 4.42 0.11 0.47 0.29

R 11.00 (1.40) 10.17 0.01 0.78 0.04

I 4.24 (0.90) 2.47 0.07 0.89 0.81

If 4.30 (0.91) 2.50 0.07 0.90 0.82

Te 8.78 (1.27) 3.25 0.03 0.70 4.81

Tf 10.84 (1.39) 6.25 0.01 1.06 3.52

N 13.89 (1.55) 0.00 0.17 0.79 12.93

500 G 2.51 (0.70) 2.08 0.11 0.19 0.12

R 8.21 (1.23) 8.19 0.01 0.00 0.01

I 2.39 (0.68) 0.89 0.08 0.09 1.33

If 2.08 (0.64) 1.42 0.06 0.09 0.51

Te 7.27 (1.16) 3.34 0.01 0.01 3.91

Tf 9.66 (1.32) 6.32 0.01 0.03 3.30

N 13.04 (1.51) 0.00 0.17 0.13 12.74

The components’ average misclassification percentage is the average percentage of points wrongly assigned
to that component. Percentages are computed with respect to n. Standard errors are given in brackets

was documented by Karlis and Xekalaki (2003). However, these problems are not the
focus of this research. Hence the choice of well separated Gaussian components with
relatively small variances and not very dissimilar proportions.

Inside-noise:

0.1U(11, 19)+ 0.30N(0, 1.5)+ 0.25N(7, 1.5)+ 0.35N(21, 2). (19)

The model is similar to the previous one with the exception that the uniform noise is
now located in the region between the tails of two Gaussians (see Fig. 1).

Wide-noise:

0.1U(0, 21)+ 0.45N(7, 2)+ 0.45N(14, 1.5). (20)

Here, the uniform noise spreads over the entire range of the data (see Fig. 2).
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Table 2 Upper-trimmed means of distances for classes of parameters for “side noise”

n Method c dπ dμ dv

50 G 0.36 (0.01) 2.22 (0.18) 2.54 (0.06)

R 0.49 (0.01) 1.69 (0.13) 2.63 (0.05)

I 0.020 0.26 (0.01) 1.68 (0.13) 3.20 (0.28)

If 0.014 (0.001) 0.27 (0.01) 1.52 (0.15) 3.18 (0.26)

Te 0.21 (0.01) 1.76 (0.18) 6.23 (0.34)

Tf 0.20 (0.01) 1.59 (0.10) 5.42 (0.33)

N 0.35 (0.01) 2.11 (0.18) 14.18 (0.37)

200 G 0.19 (0.01) 0.45 (0.01) 1.16 (0.03)

R 0.41 (0.01) 0.46 (0.01) 1.76 (0.03)

I 0.020 0.15 (0.00) 0.53 (0.02) 1.62 (0.16)

If 0.020 (0.000) 0.18 (0.00) 0.45 (0.01) 1.17 (0.03)

Te 0.12 (0.00) 0.65 (0.02) 3.12 (0.13)

Tf 0.15 (0.00) 0.62 (0.01) 3.02 (0.09)

N 0.32 (0.00) 1.16 (0.02) 14.43 (0.17)

500 G 0.10 (0.00) 0.27 (0.01) 0.68 (0.02)

R 0.38 (0.00) 0.27 (0.01) 1.60 (0.01)

I 0.020 0.12 (0.00) 0.30 (0.01) 0.84 (0.02)

If 0.020 (0.000) 0.13 (0.00) 0.28 (0.01) 0.80 (0.02)

Te 0.09 (0.00) 0.43 (0.01) 2.38 (0.07)

Tf 0.14 (0.00) 0.43 (0.01) 2.59 (0.04)

N 0.31 (0.00) 1.06 (0.01) 14.00 (0.10)

For the If-method and I-method we also report the average value for the improper density c. Standard errors
are given in brackets

4.2 Outlier process

This model consists of a two-Gaussian mixture plus two gross outliers drawn from a
uniform distribution. In each replica of the simulation study for sample size equal to
n we drew a sample of n − 2 points from the mixture model

0.5N(0, 2)+ 0.5N(5, 1.2) (21)

and then added two outliers from U(20, 25) (see Fig. 2). We call these points “outliers”
because they are so far away from the Gaussian components that under a Gaussian
mixture (21) such points are generated with a probability of virtually zero.

4.3 t-Noise

Here data were generated by a mixture of t-distributions, and points were declared to
be “noise” if they are far in the tails of the t-distribution. This is necessary in order to
make the distinction between “noise” and “cluster” compatible with the other setups,
and it also reflects the idea that t-distributions are not used because they are thought
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Table 3 Average misclassification percentages for “inside noise”

n Method Global Component

Noise 2 3 4

50 G 21.04 (1.82) 15.92 1.04 2.14 1.94

R 15.48 (1.62) 12.23 0.52 1.36 1.36

I 10.81 (1.39) 3.27 0.74 3.40 3.40

If 10.55 (1.37) 3.40 1.07 3.43 2.65

Te 13.18 (1.51) 3.43 2.11 4.56 3.08

Tf 14.07 (1.56) 6.81 1.85 3.05 2.36

N 13.22 (1.51) 0.00 2.17 6.37 4.68

200 G 6.91 (1.13) 5.33 0.09 0.29 1.20

R 9.05 (1.28) 7.66 0.00 0.03 1.36

I 5.24 (1.00) 2.91 0.02 0.20 2.11

If 5.65 (1.03) 3.14 0.02 0.21 2.27

Te 8.41 (1.24) 3.20 0.04 2.18 2.99

Tf 8.76 (1.26) 5.88 0.04 0.56 2.28

N 10.96 (1.40) 0.00 0.06 5.43 5.47

500 G 5.27 (1.00) 3.87 0.06 0.14 1.20

R 7.33 (1.17) 6.00 0.00 0.00 1.33

I 4.62 (0.94) 1.08 0.02 0.06 3.47

If 4.50 (0.93) 2.19 0.01 0.01 2.28

Te 6.97 (1.14) 3.18 0.00 1.18 2.61

Tf 7.78 (1.20) 5.53 0.00 0.10 2.15

N 10.76 (1.39) 0.00 0.02 5.65 5.09

The components’ average misclassification percentage is the average percentage of points wrongly assigned
to that component. Percentages are computed with respect to n. Standard errors are given in brackets

to model “true clusters”, but rather because their ML-estimators can accommodate
outliers. The setup is included in order to have “similar-to-Gaussian” but not pre-
cisely Gaussian clusters and “noise” that corresponds to the model assumptions of the
Te-method (the fixed number of degrees of freedom assumed for the Tf-method is in
this situation correct for one of the three mixture components):

0.4T3(0, 2)+ 0.3T10(6, 2)+ 0.3T10(12, 1). (22)

“Noise” is defined by the method proposed by McLachlan and Peel (2000). x1, j1 ,

x2, j2 , . . . , xn, jn denotes the sample, where ji ∈ {1, 2, . . . ,G}, and xi, ji is generated
by the ji th component. For each observation we compute δi = δ(xi, ji ;μ ji , σ ji ). A
point xi, ji will be defined as noise if δi ≥ 3.841459 (see Sect. 2.5, Fig. 3). In order to
make the parameter estimators comparable over different methods, proportions were
re-computed to add up to 1 (including a “noise component proportion” for the points
classified as noise), and means and variances were re-computed for the non-noise
components based on the non-noise points only. The same method was generally
applied to the estimators from the Te- and Tf-method to calibrate it properly in order
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Table 4 Upper-trimmed means of classes of parameters for “inside noise”

n Method c dπ dμ dv

50 G 0.41 (0.01) 2.24 (0.14) 2.47 (0.07)

R 0.42 (0.01) 1.44 (0.14) 2.35 (0.04)

I 0.024 0.25 (0.01) 1.46 (0.10) 3.03 (0.20)

If 0.016 (0.001) 0.25 (0.01) 1.30 (0.08) 3.05 (0.24)

Te 0.20 (0.00) 1.56 (0.08) 5.24 (0.27)

Tf 0.18 (0.00) 1.30 (0.06) 3.66 (0.20)

N 0.29 (0.00) 1.80 (0.08) 8.11 (0.31)

200 G 0.22 (0.00) 0.48 (0.01) 1.15 (0.03)

R 0.34 (0.00) 0.50 (0.01) 1.43 (0.02)

I 0.024 0.15 (0.00) 0.72 (0.02) 2.05 (0.12)

If 0.026 (0.000) 0.18 (0.00) 0.54 (0.01) 1.28 (0.03)

Te 0.11 (0.00) 0.75 (0.02) 2.55 (0.14)

Tf 0.12 (0.00) 0.57 (0.01) 1.55 (0.04)

N 0.24 (0.00) 1.38 (0.02) 8.50 (0.20)

500 G 0.18 (0.00) 0.33 (0.01) 0.88 (0.02)

R 0.31 (0.00) 0.33 (0.01) 1.20 (0.01)

I 0.024 0.11 (0.00) 0.45 (0.01) 1.09 (0.03)

If 0.026 (0.000) 0.14 (0.00) 0.39 (0.01) 0.99 (0.02)

Te 0.07 (0.00) 0.49 (0.01) 1.53 (0.08)

Tf 0.10 (0.00) 0.39 (0.01) 1.24 (0.02)

N 0.24 (0.00) 1.30 (0.01) 9.10 (0.17)

For the If-method and I-method we also report the average value for the improper density c. Standard errors
are given in brackets

to be comparable with the other methods. This model produces noise with an average
proportion of about 10.7%.

4.4 Gaussian mixture/noiseless data

We also added a process fulfilling the basic Gaussian mixture assumption (1) with
moderately well separated clusters (see Fig. 3):

0.4N(0, 2)+ 0.3N(6, 2)+ 0.3N(12, 1). (23)

No points were treated as “true noise” here.

5 Evaluation of the simulation study

5.1 Measures of performance

As a measure of clustering performance we computed the misclassification percent-
ages. Because in all setups the non-noise component means are well separated, we
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Table 5 Average misclassification percentages for “wide noise”

n Method Global Component

Noise 2 3

50 G 31.89 (2.08) 25.35 3.78 2.76

R 15.04 (1.60) 10.47 2.42 2.15

I 8.28 (1.23) 0.70 4.19 3.39

If 9.54 (1.31) 2.34 3.98 3.21

Te 9.70 (1.32) 3.77 3.33 2.61

Tf 12.05 (1.46) 7.05 2.75 2.26

N 10.44 (1.37) 0.00 5.41 5.02

200 G 8.96 (1.28) 2.54 3.44 2.98

R 7.99 (1.21) 1.72 3.35 2.93

I 7.70 (1.19) 0.44 3.88 3.38

If 8.29 (1.23) 1.25 3.79 3.26

Te 9.28 (1.30) 3.96 2.89 2.43

Tf 11.02 (1.40) 6.29 2.54 2.19

N 10.44 (1.37) 0.00 5.21 5.23

500 G 7.50 (1.18) 0.94 3.43 3.13

R 7.49 (1.18) 0.94 3.43 3.13

I 7.49 (1.18) 0.33 3.76 3.40

If 7.74 (1.20) 0.65 3.72 3.37

Te 9.12 (1.29) 3.98 2.75 2.39

Tf 10.81 (1.39) 6.19 2.45 2.17

N 10.35 (1.36) 0.00 5.14 5.21

The components’ average misclassification percentage is the average percentage of points wrongly assigned
to that component. Percentages are computed with respect to n. Standard errors are given in brackets

used lexicographical ordering of component means to match estimated with true com-
ponents. Misclassification percentages were averaged over all 500 replicas and are
given (component-wise and overall) in the Tables 1, 3, 5, 7, 9, and 11.

Recall that in most of the situations under consideration the data generating pro-
cess does not coincide with the estimated model. Measurement of performance cannot
fairly be made by comparing parameter estimates with the truth. What we do instead
is to compare the moments and proportions of what was defined as “true” (non-noise)
clusters with their estimated counterparts. We based our evaluation on the L1 distance
for vectors of classes of estimates. Let us assume that the data generating process
consists of G components plus the noise component. Let π0

0 , π
0
1 , . . . , π

0
G be the true

proportion parameters, μ0
1, . . . , μ

0
G the true means and v0

1, . . . , v
0
G the true variances

of the non-noise components. Suppose, for instance, that an estimation method A
produces the following estimates π A

0 , π
A
1 , . . . , π

A
G , μA

1 , . . . , μ
A
G and vA

1 , . . . , v
A
G . For

each replica we considered the L1 distances of the three different classes of vectors:
proportions, means and variances. That is, for each replica we computed
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Table 6 Upper-trimmed means of classes of parameters for “wide noise”

n Method c dπ dμ dv

50 G 0.49 (0.01) 1.41 (0.09) 1.97 (0.06)

R 0.33 (0.01) 0.49 (0.01) 1.32 (0.03)

I 0.043 0.17 (0.00) 0.45 (0.01) 1.06 (0.03)

If 0.025 (0.001) 0.20 (0.00) 0.47 (0.01) 1.18 (0.03)

Te 0.13 (0.00) 0.46 (0.01) 1.06 (0.03)

Tf 0.13 (0.00) 0.48 (0.01) 1.22 (0.02)

N 0.23 (0.00) 0.50 (0.01) 2.06 (0.07)

200 G 0.11 (0.00) 0.23 (0.01) 0.55 (0.02)

R 0.10 (0.00) 0.22 (0.01) 0.51 (0.01)

I 0.043 0.09 (0.00) 0.22 (0.01) 0.53 (0.01)

If 0.035 (0.001) 0.12 (0.00) 0.22 (0.01) 0.65 (0.02)

Te 0.07 (0.00) 0.23 (0.01) 0.69 (0.01)

Tf 0.07 (0.00) 0.23 (0.01) 0.92 (0.02)

N 0.20 (0.00) 0.34 (0.01) 2.04 (0.04)

500 G 0.06 (0.00) 0.14 (0.00) 0.32 (0.01)

R 0.06 (0.00) 0.14 (0.00) 0.32 (0.01)

I 0.043 0.06 (0.00) 0.14 (0.00) 0.33 (0.01)

If 0.037 (0.001) 0.08 (0.00) 0.15 (0.00) 0.40 (0.01)

Te 0.05 (0.00) 0.15 (0.00) 0.63 (0.01)

Tf 0.05 (0.00) 0.15 (0.00) 0.92 (0.01)

N 0.20 (0.00) 0.31 (0.01) 2.04 (0.02)

For the If-method and I-method we also report the average value for the improper density c. Standard errors
are given in brackets

dπ =
G∑

j=0

|π0
j − π A

j |, dμ =
G∑

j=1

|μ0
j − μA

j |, dv =
G∑

j=1

|v0
j − vA

j |.

Note that dμ and dv do not contain means and variances for the noise component.
For each setup and sample size we give 90%-upper-trimmed means (over the 500
replica) as quality measurements in the Tables 2, 4, 6, 8, 10, and 12. This is because
for some sample the EM algorithm solution can be strongly dependent on the initial
values, and in some situations this could cause anomalous values of the L1 distances,
which should not affect the quality measurement too much (following the idea that if
a method gets an estimator grossly wrong, it is not important how wrong it exactly
is). Standard errors for 90%-upper-trimmed means were estimated by nonparametric
bootstrap.

Complementary to 90%-upper-trimmed mean, Table 13 gives an idea about how
often a method produced grossly outlying parameter estimators, as suggested by a
referee. It is subtle to define “gross outliers” in such a situation. What we did was
to aggregate, for a given n and data generating process, all values of dμ (distance
from truth of mean estimators). All estimators in the upper 1% were interpreted as
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Table 7 Average misclassification percentages for the “outlier process”

n Method Global Component

Noise 2 3

50 G 31.10 (2.07) 24.50 4.06 2.53

R 3.63 (0.84) 0.42 1.53 1.68

I 3.33 (0.80) 0.08 1.62 1.62

If 5.13 (0.99) 2.13 1.44 1.56

Te 6.98 (1.14) 3.60 0.42 2.96

Tf 9.50 (1.31) 5.44 1.73 2.34

N 25.67 (1.95) 0.00 10.76 14.90

200 G 3.39 (0.81) 0.88 1.05 1.45

R 2.61 (0.71) 0.10 1.03 1.47

I 2.52 (0.70) 0.02 1.03 1.46

If 3.22 (0.79) 0.73 1.02 1.47

Te 7.23 (1.16) 5.63 0.64 0.97

Tf 9.46 (1.31) 8.12 0.50 0.84

N 22.05 (1.85) 0.00 0.10 21.95

500 G 2.43 (0.69) 0.11 1.03 1.29

R 2.35 (0.68) 0.03 1.02 1.30

I 2.33 (0.67) 0.01 1.03 1.30

If 2.68 (0.72) 0.36 1.02 1.30

Te 6.92 (1.14) 5.35 0.76 0.81

Tf 9.88 (1.33) 8.83 0.41 0.64

N 14.35 (1.57) 0.00 0.01 14.34

The components’ average misclassification percentage is the average percentage of points wrongly assigned
to that component. Percentages are computed with respect to n. Standard errors are given in brackets

gross outliers, and Table 13 gives the percentage for this to happen for each method.
The same principle was applied to variance estimators (results not shown; they were
generally similar but looked a bit more favourable for the G- and R-method).

5.2 Results

Side noise (Tables 1, 2). The RIMLE method (I and If) clearly performed best, at least
with respect to classification. Even the If-method performed better than the G-method,
of which the model assumptions were fulfilled here. The G-method was bad for small
n. The R-method assigned too many points to the noise component, but its location
estimators were acceptable. As in many other setups, Te, Tf and N were clearly worse
than the competitors.

Inside noise (Tables 3, 4). The results were generally similar to those for “side noise”.
However, the G- and R-method were better than If with respect to mean estimation with
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Table 8 Upper-trimmed means of classes of parameters for the “outlier process”

n Method c dπ dμ dv

50 G 0.38 (0.02) 6.95 (0.46) 1.24 (0.05)

R 0.09 (0.00) 0.46 (0.01) 0.91 (0.02)

I 0.015 0.06 (0.00) 0.46 (0.01) 0.88 (0.02)

If 0.019 (0.002) 0.12 (0.01) 0.47 (0.01) 0.97 (0.02)

Te 0.11 (0.00) 0.49 (0.01) 1.17 (0.02)

Tf 0.16 (0.00) 0.53 (0.02) 1.38 (0.03)

N 0.56 (0.01) 3.35 (0.41) 19.92 (0.41)

200 G 0.03 (0.00) 0.22 (0.01) 0.43 (0.01)

R 0.04 (0.00) 0.22 (0.01) 0.43 (0.01)

I 0.015 0.03 (0.00) 0.22 (0.01) 0.42 (0.01)

If 0.025 (0.002) 0.06 (0.00) 0.22 (0.01) 0.48 (0.01)

Te 0.11 (0.00) 0.24 (0.01) 0.87 (0.01)

Tf 0.16 (0.00) 0.24 (0.01) 1.08 (0.01)

N 0.53 (0.00) 1.71 (0.01) 10.95 (0.04)

500 G 0.02 (0.00) 0.14 (0.00) 0.27 (0.01)

R 0.02 (0.00) 0.14 (0.00) 0.27 (0.01)

I 0.015 0.02 (0.00) 0.14 (0.00) 0.27 (0.01)

If 0.027 (0.002) 0.04 (0.00) 0.14 (0.00) 0.31 (0.01)

Te 0.10 (0.00) 0.15 (0.00) 0.83 (0.01)

Tf 0.17 (0.00) 0.16 (0.00) 1.14 (0.01)

N 0.36 (0.00) 1.45 (0.02) 6.21 (0.05)

For the If-method and I-method we also report the average value for the improper density c. Standard errors
are given in brackets

not too small n (but worse with respect to classification), and the Te- and Tf-method
were clearly better than the G- and R-method for small n.

Wide noise (Tables 5, 6). This setup did not only fulfil the model assumptions of
the G-method, but also corresponded to the R-method in the sense that with high
probability the two extreme points in the dataset were generated from the uniform
distribution. Keeping this in mind, it is remarkable that the If-method was still better
than the R-method for n = 50 and not much worse for larger n. The G-methods again
required a high n to work well, and the Te-, Tf- and N-methods fell again clearly
behind (though the t-mixture methods worked reasonably well to estimate the cluster
locations and very well to estimate the proportion).

Outlier process (Tables 7, 8). The If-method was clearly worse than the optimal
I-method here, so that this is the only setup in which the R-method worked consis-
tently better than the If-method. The G-method was only good for n = 500 here.
Comments as before apply for the Te-, Tf and N-method, though the Te-method was
acceptable for parameter estimation. Both t-mixture methods classified far too many
points as outliers, though.
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Table 9 Average misclassification percentages for “t-noise”

n Method Global Component

Noise 2 3 4

50 G 25.21 (1.94) 16.70 3.18 3.21 2.12

R 12.81 (1.49) 8.50 1.67 1.89 0.75

I 11.00 (1.40) 4.12 2.63 2.94 1.30

If 10.55 (1.37) 1.36 3.83 3.31 2.05

Te 8.52 (1.25) 1.91 2.51 2.68 1.43

Tf 9.24 (1.30) 4.66 1.44 2.13 1.01

N 12.24 (1.47) 0.00 5.48 3.90 2.85

200 G 10.95 (1.40) 4.96 2.70 1.71 1.58

R 6.53 (1.10) 1.82 2.40 1.27 1.05

I 5.93 (1.06) 2.15 2.03 0.94 0.82

If 7.45 (1.17) 0.79 3.15 1.93 1.58

Te 4.30 (0.91) 0.88 1.42 1.18 0.82

Tf 4.71 (0.95) 3.30 0.54 0.65 0.23

N 10.44 (1.37) 0.00 5.53 2.40 2.51

500 G 8.17 (1.22) 0.46 3.58 2.30 1.82

R 7.74 (1.20) 0.14 3.65 2.27 1.67

I 4.49 (0.93) 1.76 1.70 0.57 0.45

If 6.82 (1.13) 0.24 3.21 1.90 1.47

Te 3.18 (0.78) 0.43 1.20 1.00 0.54

Tf 3.76 (0.85) 2.72 0.41 0.52 0.11

N 10.58 (1.38) 0.00 5.64 2.39 2.55

The components’ average misclassification percentage is the average percentage of points wrongly assigned
to that component. Percentages are computed with respect to n. Standard errors are given in brackets

t-noise (Tables 9, 10). As expected, the methods based on t-mixtures performed best
in this setup. The If-method performed better than R in most respects (except with
respect to classification for n = 200, and estimation of variances for n = 50, 200).
It is interesting here that, whereas the I-method was overall better in terms of clas-
sification than If (as it should be), the If-method was better in terms of proportion
estimation. The G-method was worse than the robust competitors, though still better
than the N-method for n = 500.

Gaussian mixture (Tables 11, 12). As expected, the N-method was optimal here,
but the almost flawless performance of the RIMLE (I and If) is remarkable. All other
methods suffered from finding many outliers where they did not exist, though the
Te-method was still relatively good.

General In most setups, the results with respect to classification were much more
conclusive than those with respect to estimation. The G-method was generally bad
for small n; apparently n = 50 is not enough to locate the uniform component cor-
rectly. For n = 200, its overall performance was still disappointing, given that four out

123



A simulation study to compare robust clustering methods 131

Table 10 Upper-trimmed means of classes of parameters for “t-noise”

n Method c dπ dμ dv

50 G 0.35 (0.01) 1.01 (0.07) 1.29 (0.04)

R 0.30 (0.01) 0.39 (0.02) 0.78 (0.03)

I 0.056 0.21 (0.01) 0.37 (0.02) 0.88 (0.03)

If 0.016 (0.001) 0.18 (0.01) 0.38 (0.01) 1.19 (0.05)

Te 0.11 (0.01) 0.33 (0.01) 0.79 (0.04)

Tf 0.11 (0.00) 0.34 (0.01) 0.65 (0.03)

N 0.21 (0.00) 0.43 (0.01) 1.78 (0.07)

200 G 0.16 (0.00) 0.21 (0.01) 0.84 (0.03)

R 0.14 (0.01) 0.16 (0.00) 0.52 (0.02)

I 0.056 0.16 (0.00) 0.16 (0.00) 0.44 (0.01)

If 0.041 (0.001) 0.11 (0.00) 0.17 (0.00) 0.79 (0.02)

Te 0.06 (0.00) 0.14 (0.00) 0.35 (0.01)

Tf 0.06 (0.00) 0.15 (0.00) 0.33 (0.01)

N 0.20 (0.00) 0.21 (0.01) 1.64 (0.02)

500 G 0.10 (0.00) 0.12 (0.00) 0.91 (0.02)

R 0.09 (0.00) 0.11 (0.00) 0.85 (0.02)

I 0.056 0.18 (0.00) 0.09 (0.00) 0.30 (0.01)

If 0.048 (0.000) 0.07 (0.00) 0.11 (0.00) 0.72 (0.02)

Te 0.05 (0.00) 0.09 (0.00) 0.24 (0.01)

Tf 0.04 (0.00) 0.10 (0.00) 0.26 (0.01)

N 0.21 (0.00) 0.15 (0.00) 1.78 (0.02)

For the If-method and I-method we also report the average value for the improper density c. Standard errors
are given in brackets

of six setups fulfilled its model assumptions. The Te-, Tf- and N-method performed
best in the setups for which their model assumptions were fulfilled, but fell behind in
most other situations, though Te and Tf were often surprisingly good at estimation of
mixture proportions, which apparently is still possible with suboptimal results with
respect to the other criteria. The Te-method (estimating the degrees of freedom) was
almost always better, and sometimes much better than Tf. The R-method was good
for the outlier process, but in most situations it was worse than the If-method, which
often was close to the I-method. This is a good result for the If-method, because the
I-method was defined using (in practice unavailable) information about the true data
generating process. The R-, Te- and Tf-method (and the G-method for small n) have
a tendency to find too many outliers. As expected, the N-method is usually by far the
worst one where its model assumptions are violated.

The variability of the results can be assessed by the standard errors for global mis-
classification rates and 90%-upper-trimmed distance means given in the tables. Note,
however, that even though standard errors for some quantities may seem to be large,
they give a too pessimistic impression of what can be said about the comparisons
between methods, because all methods were computed on the same simulated data
sets. In order to get an impression of which comparisons are statistically meaningful,
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Table 11 Average misclassification percentages for “Gaussian mixture”

n Method Global Component

Noise 2 3 4

50 G 28.05 (2.01) 24.88 0.54 1.54 1.09

R 24.10 (1.91) 22.78 0.32 0.85 0.16

I 3.06 (0.77) 0.00 0.76 1.80 0.50

If 4.39 (0.92) 1.44 0.72 1.85 0.39

Te 6.86 (1.13) 4.56 0.54 1.46 0.30

Tf 11.88 (1.45) 10.15 0.42 1.15 0.15

N 2.99 (0.76) 0.00 0.76 1.74 0.50

200 G 17.63 (1.70) 16.36 0.46 0.64 0.17

R 10.82 (1.39) 10.09 0.32 0.35 0.05

I 1.83 (0.60) 0.00 0.67 0.94 0.23

If 2.92 (0.75) 1.21 0.62 0.90 0.19

Te 5.65 (1.03) 4.55 0.39 0.64 0.07

Tf 10.47 (1.37) 9.84 0.20 0.40 0.04

N 1.83 (0.60) 0.00 0.67 0.93 0.23

500 G 6.87 (1.13) 5.73 0.48 0.51 0.15

R 4.32 (0.91) 3.09 0.55 0.57 0.12

I 1.65 (0.57) 0.00 0.67 0.76 0.22

If 2.09 (0.64) 0.49 0.65 0.75 0.21

Te 5.43 (1.01) 4.50 0.38 0.48 0.07

Tf 10.22 (1.35) 9.77 0.16 0.26 0.03

N 1.66 (0.57) 0.00 0.66 0.76 0.23

The components’ average misclassification percentage is the average percentage of points wrongly assigned
to that component. Percentages are computed with respect to n. Standard errors are given in brackets

we also ran some paired two-sample Wilcoxon tests. Most of these were highly signifi-
cant even in cases where there was considerable overlap between confidence intervals
roughly calculated from standard errors. Just to give a single example for this, the
comparison between the global misclassification rates of the I- and If-method for
n = 200 in Table 1 was still borderline significant under the paired test (difference
0.06 between methods with both standard errors estimated to be about 0.9, but paired
Wilcoxon p = 0.043).

Table 13 is consistent with the other results in the sense that in most cases the
N- and G-method, which performed worst in other respects as well, produced the larg-
est number of outlying estimators. Interestingly, the outlier percentages rarely behave
monotonically over n, but of course the percentages are based on small numbers, so
some variation can be expected.

6 Concluding remarks

Though different methods “win” different setups in the simulation study, the RIMLE
method with c estimated by the filtering method (If) as explained in Sect. 2.4 can
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Table 12 Upper-trimmed means of classes of parameters for “Gaussian mixture”

n Method c dπ dμ dv

50 G 0.57 (0.01) 1.41 (0.05) 2.64 (0.04)

R 0.65 (0.01) 1.00 (0.03) 2.74 (0.04)

I 0.001 0.15 (0.00) 0.78 (0.02) 1.76 (0.05)

If 0.006 (0.001) 0.18 (0.01) 0.81 (0.02) 1.90 (0.05)

Te 0.19 (0.00) 0.83 (0.02) 1.97 (0.04)

Tf 0.27 (0.00) 0.89 (0.02) 2.29 (0.04)

N 0.15 (0.00) 0.78 (0.02) 1.76 (0.05)

200 G 0.39 (0.01) 0.66 (0.02) 1.60 (0.03)

R 0.41 (0.01) 0.47 (0.01) 1.56 (0.03)

I 0.001 0.08 (0.00) 0.42 (0.01) 0.83 (0.02)

If 0.019 (0.001) 0.12 (0.00) 0.42 (0.01) 0.94 (0.02)

Te 0.13 (0.00) 0.44 (0.01) 1.29 (0.02)

Tf 0.21 (0.00) 0.46 (0.01) 1.81 (0.02)

N 0.08 (0.00) 0.41 (0.01) 0.82 (0.02)

500 G 0.22 (0.00) 0.35 (0.01) 0.96 (0.02)

R 0.22 (0.00) 0.27 (0.01) 0.89 (0.02)

I 0.001 0.05 (0.00) 0.25 (0.01) 0.53 (0.01)

If 0.020 (0.001) 0.08 (0.00) 0.26 (0.01) 0.60 (0.01)

Te 0.10 (0.00) 0.27 (0.01) 1.14 (0.01)

Tf 0.20 (0.00) 0.29 (0.01) 1.79 (0.02)

N 0.05 (0.00) 0.25 (0.01) 0.53(0.01)

For the If-method and I-method we also report the average value for the improper density c. Standard errors
are given in brackets

be recommended as optimal in some situations, and always acceptable. Particularly
it does not suffer as many other supposedly robust methods from overestimating the
number of outliers/noise points, and is therefore clearly better than those for data from
a plain Gaussian mixture.

Note that we did not include in the simulations a setup with outliers in which the
better breakdown point of the I- and If-method can be directly observed. This can be
better explored by finding out how extreme an outlier has to be added to data from a
“nice” mixture in order to drive a mixture component away from the non-outliers. This
does not depend strongly on simulated variation. Examples given in Hennig (2004,
2005) show that a single outlier has to be very extreme for the R- and t-method to
achieve “practical breakdown” (for example above 107 for the R-method in a situa-
tion with “good data” between −5 and 10; as opposed to estimators with robustness
problems in other statistical setups, these methods remain almost unaffected as long
as added outliers are not extreme enough), but two or three outliers put together on
the same point do not have to be that extreme.

The authors currently work on a similar study for multidimensional data; the
filtering method for the RIMLE needs to be slightly modified for this because the
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Table 13 Percentage of estimation of mean parameters of a method in upper 1% of distances dμ from true
means aggregated over all methods for given n and model (these sum up to 7 for every n/model-combination
because there are seven methods)

Model n Method

G R I If Te Tf N

Side noise 50 1.6 0.4 0.2 1.2 0.8 1.4 1.4

200 0.8 2.0 1.6 1.0 0.8 0.2 0.6

500 0.0 0.0 0.2 0.0 0.4 0.2 6.2

Inside noise 50 1.4 0.6 0.8 1.2 0.6 1.2 1.2

200 3.4 1.8 0.8 0.4 0.2 0.2 0.2

500 0.8 0.0 0.4 0.0 2.2 0.0 3.6

Wide noise 50 7.0 0.0 0.0 0.0 0.0 0.0 0.0

200 2.0 0.2 0.2 0.2 0.4 0.4 3.6

500 0.0 0.0 0.0 0.0 0.0 0.0 7.0

Outlier 50 5.2 0.0 0.0 0.0 0.0 0.0 1.8

200 1.6 0.0 0.0 0.0 0.0 0.0 5.4

500 0.2 0.0 0.0 0.0 0.0 0.0 6.8

t-Noise 50 3.0 0.6 0.4 0.4 0.4 0.6 1.6

200 6.2 0.0 0.0 0.0 0.0 0.0 0.8

500 1.8 1.0 0.0 0.6 0.0 0.0 3.6

Gaussian 50 4.0 1.2 0.4 0.4 0.2 0.4 0.4

200 7.0 0.0 0.0 0.0 0.0 0.0 0.0

500 4.2 0.4 0.4 0.4 0.4 1.0 0.2

multidimensional Kolmogorov distance is not suitable. The G-method is computa-
tionally cumbersome to generalise, and the current study suggests that it would not be
worthwhile anyway (though mixtures of Gaussian and uniform distributions may be
interesting for reasons other than robustness).

Designing simulations like the present one involves subtle decisions in order to
make parameters and results from methods and data generating processes based on
different models comparable. The present study does this in a particular way, which
may be controversial, but at least highlighting the issue is an intended contribution of
this paper.

Certainly it would be interesting to compare the methods discussed here with fur-
ther robust clustering competitors such as high breakdown methods based on a fixed
partition model, and to simulate situations where the number of clusters is estimated.
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