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Abstract We establish an affine equivariant, constrained heteroscedastic model and
criterion with trimming for clustering contaminated, grouped data. We show existence
of the maximum likelihood estimator, propose a method for determining an appro-
priate constraint, and design a strategy for finding reasonable clusterings. We finally
compute breakdown points of the estimated parameters thereby showing asymptotic
robustness of the method.
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1 Introduction

1.1 Background

Statistical clustering methods start from a statistical model of the data deriving from
it, in general by the maximum likelihood or maximum a posteriori paradigms, a clus-
ter criterion to be optimized. Various problems, expected and unexpected ones, are
encountered on this way. First, the criteria do not possess maxima in general so that
special precautions have to be taken. Second, the criteria possess so-called “local max-
ima” and “minimum distance partitions” (MDP’s), some of them reasonable solutions
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136 M. T. Gallegos, G. Ritter

but others containing spurious, undesirable clusters. Third, optimization of the criteria
is not easy. Fourth, the clustering method obtained may not be robust in the sense that
deviations from the model may grossly falsify the result.

Solutions to some of these problems are available. Hathaway (1985), following a
proposal by Dennis (1981), Beale and Thompson (oral communications), investigated
constraints on the scale parameters v1, . . . , vg of a univariate normal mixture of g com-
ponents showing that they mitigated or even avoided some of the problems. Hathaway
also indicated how to extend the constraints to d dimensions. We call them the HDBT
constraints. Denoting the covariance matrices of the g (multivariate) components by
V1, . . . , Vg , they may be written

Vj � cV�, 1 ≤ j, � ≤ g, (1)

for some constant c > 0. The symbol � stands for the positive semidefinite or Löwner
ordering on the space of symmetric matrices and the constant c is necessarily bounded
above by 1 so that 0 < c ≤ 1. The constraints are affine equivariant and mean that
the covariance matrices Vj must not be too different in size and shape. They are a
generalization of homoscedasticity, i.e., equality of all covariance matrices, which
they contain as the special case c = 1. We also define the HDBT ratio of a g-tuple
V = (V1, . . . , Vg) of positive-definite matrices as the maximum c for which the
constraints (1) hold. It is easy to see that it can be computed as

rHDBT(V) = max{c | Vj � c V� for all j, �} = min
j,�,k

λk

(
V −1/2

� Vj V −1/2
�

)
, (2)

where λ1(A), . . . , λd(A) denote the d eigenvalues of a symmetric d by d matrix A. The
HDBT ratio of a clustering is the HDBT ratio of its scatter matrices. Hathaway showed
in the univariate context that, besides guaranteeing the maximum likelihood estimate
and its consistency, the HDBT constraints removed many undesirable local optima.
In the clustering context, Pollard (1981) proves (for the homoscedastic, spherical
normal model) that the optimal solution is consistent in a certain sense. This means
that the global maximum is the favorite solution if the data set is large. But the
asymptotic nature of this result must not be overlooked. If the data set is small or
of medium size then experience shows that the optimal solution may again be undesir-
able. We will show here that the HDBT constraints are of benefit also in the clustering
context.

Outliers, i.e., observations discordant with the posited populations, are known
to severely hamper the performance of statistical methods, see Barnett and Lewis
(1994); Ritter and Gallegos (1997); Becker and Gather (1999). Clustering algorithms
deemed to be robust actually break down under the influence of a single gross out-
lier, see García-Escudero and Gordaliza (1999). Nevertheless, there are nowadays
some robust trimming methods based on classification models. Cuesta-Albertos et al.
(1997) and García-Escudero and Gordaliza (1999) proposed a trimmed extension of the
k-means algorithm conjecturing on the basis of empirical studies that its breakdown
point applied to “well-structured” data sets could be large. Gallegos and Ritter (2005)
undertook a mathematical analysis of a trimmed homoscedastic classification model
obtaining among other things a high asymptotic breakdown point of the covariance
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matrices. The mean values turn out to be more fragile but we were able to show
that their maximum likelihood estimates, too, are robust in the presence of well-sep-
arated data sets. The majority of data sets is neither spherical nor homoscedastic
and it is desirable to extend these methods and results to the general heterosced-
astic case. However, it is well known that homoscedasticity cannot be dispensed
with without additional cost since the very existence of a maximum likelihood
or maximum a posteriori estimate already poses a problem. Moreover, one can-
not expect robustness if clusters with arbitrarily different covariance matrices are
allowed.

To our knowledge, the first heteroscedastic, normal classification model with full
covariance structure and trimming is Rocke and Woodruff (1999) MINO. Besides
trimming they used also constraints on the cluster sizes n j , 1 ≤ j ≤ g, in order to
enforce the existence of maximum likelihood estimates. The constraints n j ≥ d + 1
protect scatter matrices against singularity if the data are in general position. Gallegos
and Ritter (2009) extended their method to maximum a posteriori estimation and
showed that their algorithm leads to a standard problem from combinatorial opti-
mization, λ-assignment, a special transportation problem. Despite trimming, these
methods do not act robustly on all data sets. García-Escudero et al. (2008) present a
constrained heteroscedastic trimming algorithm relaxing the requirements on sphe-
ricity in García-Escudero and Gordaliza (1999) and of equality of shapes in Gallegos
and Ritter (2005). They also prove convergence of the parameter estimates as the
size of the data set tends to infinity. The limit is given by the parameters obtained
from the related cluster criterion for the underlying mixture if they are unique. How-
ever, their constraints lack affine equivariance. Here, we propose and analyse a robust,
affine equivariant, heteroscedastic, full normal classification model. Specializations
to normal submodels such as the diagonal or spherical are immediate and left to the
interested reader.

1.2 Outline

In Sect. 2, we first use again the statistical clustering model with “spurious” outliers
presented in Gallegos and Ritter (2005, 2009) in order to derive a heteroscedastic clus-
tering criterion with trimming. Its maximum exists provided that some constraints are
introduced. In the normal case, contrary to Rocke and Woodruff (1999) and Gallegos
and Ritter (2009), we apply here the HDBT constraints (1) on the covariance matrices
obtaining a trimmed, heteroscedastic, affine equivariant cluster criterion, the Trimmed
Determinant Criterion (TDC). It is the extension of the homonymous criterion appear-
ing in Gallegos and Ritter (2005) to the heteroscedastic case. We propose and substan-
tiate an iterative and alternating reduction step for finding MDP’s w.r.t. the posterior
density. It consists of three successive steps: maximum likelihood estimation of param-
eters, maximum a posteriori classification, and trimming.

Of course, the minimizer of the TDC depends on the constant c in (1). The space
of possible solutions increases as c decreases. However, if c is chosen too small, the
optimal clustering turns out to be undesirable in many cases of real and synthetic data
sets, see Sect. 5. Although it provides optimal fit of estimated populations and clusters
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it may be unbalanced in the sense that its HDBT ratio is excessively small. In most
applications, cluster balance turns out to be an important asset of a credible solution.
Since the solution with the best fit often lacks sufficient balance we need a trade-off
between the two and solutions which combine a large posterior density with a large
HDBT ratio are more promising. This means that we are facing a problem of biob-
jective optimization. Making a compromise by optimizing the target function under a
fixed constraint c is not advisable for two reasons. First it introduces a parameter in
the algorithm that must be known a priori. What is more, the optimal solution under
the HDBT constraints is hard to find, at least in the multivariate case. The crux is the
estimation step. In Sect. 2.4, we propose instead a heuristic method based on a plot
of the posterior density versus the HDBT ratio of MDP’s or local optima for finding
reasonable clusterings together with a constant c.

The aim of a trimming algorithm is robustness. We show here that, as an addi-
tional benefit besides existence of solutions and balance, the HDBT constraints render
the estimates obtained from the TDC robust. Mutatis mutandis, the properties of the
homoscedastic case, Gallegos and Ritter (2005), remain valid if the HDBT constraints
are used instead. Constraints serving a similar purpose can be designed for statistical
models other than normality. The method first uses the number of clusters and the
number of discarded elements as fixed parameters. In Sect. 2.5, we comment on their
choice.

In Sects. 3 and 4, we offer a theoretical robustness analysis of the TDC estimates
showing first that the estimates of the covariance matrices are indeed robust under the
HDBT constraints. The same cannot be said about the location parameters if arbitrary
data sets are allowed, Sect. 4. However, the question of their robustness has an affir-
mative answer for data sets that possess a certain separation property. The larger the
constraint c is the more robust the method turns out to be. These results are obtained
from a mathematical analysis of breakdown points.

Thus, the consideration of HDBT ratio and constraints serves five purposes: it guar-
antees a solution, it reduces local optima, it avoids spurious clusters, it adds robustness,
and it is a key to feasible solutions. In the final Sect. 5, we report on our experience
with two numerical data sets.

1.3 Notation

The n elements or objects to be clustered are numbered 1, . . . , n. Associated with
them are n observations or data points x1, . . . , xn in a sample space E which we
collect in the data set D = {x1, . . . , xn}. Given natural numbers g ≥ 2 and r ≤ n,
a solution of the trimming and clustering problem is given by an r -element subset
R ⊆ {1, . . . , n} and a partition of R in g groups or clusters C1, . . . , Cg . It is most
easily specified by an array � = (�1, . . . , �n) of labels �i , 0 ≤ �i ≤ g, which is
admissible in the sense that exactly n − r labels �i are 0. If �i ≥ 1 then object
i is retained and assigned to class �i . If �i = 0 then object i is discarded, i.e.,
not assigned to a class. (If � is a “meaningful” assignment then discarded objects
may be regarded as “outliers” and retained elements as “regular.”) The g clusters
defined by the assignment � are written C j (�) = {i | �i = j}, 1 ≤ j ≤ g.
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Trimming algorithms 139

Their cardinalities are n j = n j (�) = |C j (�)| and we have
∑g

j=1 n j = r . We
denote the set of all admissible assignments by �r and allow one or more clusters to
be empty.

We also consider g distributional models (classes) on E with class-specific param-
eters γ j ∈ � j and density functions fγ j , 1 ≤ j ≤ g. The joint parameter γ =
(γ1, . . . , γg) is contained in some subspace � ⊆ �1 × · · · × �g of the product.
Given an assignment � ∈ �r with retained objects R and a parameter γ ∈ �, we
abbreviate f [R | �, γ ] = ∏g

j=1

∏
i∈C j (�)

fγ j (xi ). We call it the trimmed likelihood

function. If E = R
d and if the model is normal then γ j = (m j , Vj ) with the loca-

tion parameters m j ∈ R
d and the covariance matrices Vj ∈ PD(d), the cone of sym-

metric, positive-definite d by d matrices. We gather m = (m1, . . . , mg) and V =
(V1, . . . , Vg). We will often need the positive semidefinite or Löwner ordering � on
PD(d).

Estimates of the parameters γ j , m j , and Vj w.r.t. an assignment � are denoted by
γ j (�), m j (�), and Vj (�), respectively. We also abbreviate γ (�) = (γ1(�), . . . , γg(�)),

m(�) = (m1(�), . . . , mg(�)), V(�) = (V1(�), . . . , Vg(�)). A bar as in x denotes a sam-
ple mean and the letters W and S indicate (pooled) SSP matrices and scatter matrices,
respectively. The precise meaning becomes clear from various additional specifica-
tions as subscripts or in parentheses. E.g., xT = 1

|T |
∑

i∈T xi is the sample mean of a

non-empty subset T ⊆ {1, . . . , n}, WT = ∑
i∈T (xi − xT )(xi − xT )T (ST = 1

|T | WT )

is its SSP matrix (scatter matrix), and W (�) = ∑g
j=1 WC j (�) (S(�) = 1

r W (�)) is the
pooled SSP matrix (pooled scatter matrix) of the retained elements w.r.t. �. Likewise,
x j (�) = xC j (�), W j (�) = WC j (�), and S j (�) = SC j (�). Sample means and SSP and
scatter matrices of empty clusters are put to zero.

The entropy of a probability vector (p1, . . . , pg) is H(p1, . . . , pg) =
−∑g

j=1 p j ln p j . Finally, �∗ denotes an optimal assignment and a ∗ indicates param-
eter estimates w.r.t. �∗. E.g., m∗

j = m j (�
∗) is the estimated mean of its j th cluster.

2 Statistical model, criteria and algorithm

Gallegos and Ritter (2005, 2009) established parametric classification models with
trimming for data with so-called “spurious” outliers for a data set D of n observations
in some sample space E as explained in Sect. 1.3. At least r ≤ n of the data are
regular, i.e., independent draws from the g class-specific densities fγ1 , . . . , fγg , each,
(γ1, . . . , γg) ∈ �. The remaining n − r observations may, but do not have to be gross
outliers. Besides the population parameters, their assignment to the g classes and the
number of occurrences of each class are unknown. Therefore, the number of classes,
the number of outliers in the data set, the outliers themselves, the class assignments,
and the population parameters are subject to estimation. Applying the ideas presented
in these papers to the present context of constrained parameters � ⊆ �1 × · · · × �g ,
we obtain a trimmed a posteriori density, i.e., the a posteriori probability w.r.t. the
assignment and the likelihood function w.r.t. the parameters γ j . We use it here as our
starting point referring the interested reader to the communications cited above for the
details.
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140 M. T. Gallegos, G. Ritter

2.1 The trimmed a posteriori cluster criterion

The trimmed a posteriori log-density for (�, γ ) in the setup just described is

− rH

(
n1(�)

r
, . . . ,

ng(�)

r

)
+ ln f

[
R | �, γ

]

= −rH

(
n1(�)

r
, . . . ,

ng(�)

r

)
+

g∑
j=1

∑
i :�i = j

ln fγ j (xi ).

It implies the trimmed maximum a posteriori cluster criterion

− rH

(
n1(�)

r
, . . . ,

ng(�)

r

)
+ ln f [R | �, γ (�)]

= −rH

(
n1(�)

r
, . . . ,

ng(�)

r

)
+ max

γ∈�

g∑
j=1

∑
i :�i = j

ln fγ j (xi ) (3)

to be maximized w.r.t. all admissible assignments �. The use of the entropy H of the
cluster proportions n j (�)/r goes back to Symons (1981) and accounts for unequal
cluster sizes. It distinguishes the maximum a posteriori from the maximum likelihood
estimator.

It must be noted that the maximum w.r.t. γ ∈ � required in criterion (3) does not
exist in general for all � and all � ∈ �r . If � = �1 × · · · × �g , i.e., if the parameters
γ j may be chosen freely in the factors � j then the maximum, if it exists, and the sum
over j commute so that the double sum reduces to

g∑
j=1

max
γ∈� j

∑
i :�i = j

ln fγ (xi ) =
g∑

j=1

∑
i :�i = j

ln fγ j (�)(xi ). (4)

Sometimes, the maximum likelihood estimate γ j (�) w.r.t. C j (�) appearing here does
not exist, e.g. in a normal model if C j (�) is too small. The problem may be circum-
vented in various ways. A first is restricting � (or parts of it) to a compact subset
(together with continuity of the likelihoods γ �→ fγ (x)). This has the effect that the
estimator looses equivariance. A second way requires that each cluster should contain
sufficiently many data points together with an assumption on their locations such as
“general position” (affine independence of any d +1 elements) in the normal case, see
Rocke and Woodruff (1999) and Gallegos and Ritter (2009). If the data are in general
position and if we allow only assignments � with cluster sizes n j (�) ≥ b for some
lower bound b ≥ d + 1 then the maximum of criterion (3) exists with free parameters
and (4) shows that, up to a constant, the criterion reduces to minimization of

2rH

(
n1(�)

r
, . . . ,

ng(�)

r

)
+

g∑
j=1

n j (�) · ln det S j (�); (5)
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Fig. 1 A synthetic data set with two clusters of ten points, each, randomly sampled from the normal dis-
tributions N−2e1,I2 and N2e1,I2 , respectively (separated by the dashed line). There are no outliers. Shown
are nine almost collinear “spurious clusters.” The partitions defined by them all mask the genuine partition
in two clusters, their negative log-posteriors (5) falling below its value 65.96. However, the HDBT ratio (2)
of the genuine partition is 1/1.69 whereas the largest of the spurious ones shown is 1/2757 (the cluster of
five points). The optimal unconstrained solution uses the uppermost horizontal cluster and has a negative
log-posterior (5) of 60.95 but an HDBT ratio of 1/66 244

here S j (�) is the scatter matrix of cluster j w.r.t. �. (In the outlier-free context, see also
Symons (1981), criterion (11). The SSP matrix appearing there must be replaced with
the scatter matrix which was plainly intended.) In this case, the estimates of means and
covariance matrices are the sample means and scatter matrices of the optimal clusters.
However, the sizes or shapes of the estimated covariance matrices may sometimes be
too different to be credible, cf. Fig. 1, so that the lower bound b has to be properly
chosen. We will follow here a third way using the HDBT constraints (1) on the covari-
ance matrices.

2.2 The normal case: Trimmed Determinant Criterion

We next specialize criterion (3) to the general normal case with parameters γ j =
(m j , Vj ), 1 ≤ j ≤ g, under the HDBT constraints. Letting

Vc ={V=(V1, . . . , Vg) | Vj 
 0, Vj � cV� for all j, �, 1≤ j, � ≤ g}, 0 < c≤1,

we show first that the HDBT constraints guarantee the existence of the maximum w.r.t.
the population parameters γ in criterion (3). We need an analytic lemma.

Lemma 1 If the data D are in general position and if r ≥ gd + 1 then, for any
assignment � ∈ �r (some clusters may be empty), the minimum of

g∑
j=1

n j (�)
[
ln det Vj + tr

(
V −1

j S j (�)
)]

w.r.t. V ∈ Vc exists for any 0 < c ≤ 1.
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Proof The HDBT constraints imply det Vj ≥ det(cV�) and V −1
j � cV −1

� . Hence, we
have for any 1 ≤ � ≤ g

g∑
j=1

n j

[
ln det Vj + tr

(
V −1

j S j (�)
)]

≥
g∑

j=1

n j

[
ln det(cV�) + tr

(
cV −1

� S j (�)
)]

= r ln det(cV�) + c tr
(

V −1
� W (�)

)
,

where W (�) is the pooled SSP matrix specified by �. By assumption there is some
cluster, say �, of size n�(�) ≥ d + 1. By general position, its SSP matrix is positive
definite so that W (�) ≥ ε Id with some constant ε > 0 that depends only on the data.
Hence

g∑
j=1

n j

[
ln det Vj + tr

(
V −1

j S j (�)
)]

≥ r ln det(cV�) + εc tr V −1
� .

As V approaches the boundary of Vc, i.e., as some Vj approaches the boundary of
PD(d), again by the HDBT constraints, so does V�. It is well known that this implies
that the right, and hence the left side of the above inequality tends to ∞. This proves
the claim. �
Now standard normal estimation theory shows that, for any admissible assignment �,
the partial maximizer w.r.t. the means m j in (3) [here, γ j = (m j , Vj )] depends only
on C j (�) and is given by the sample means of the clusters defined by �,

m j (�) =
{

x j (�), if C j (�) �= ∅,

arbitrary, e.g. 0, otherwise,
1 ≤ j ≤ g. (6)

Omitting the entropy term, the partial maximum w.r.t. the location parameter m(�) is

const − 1

2

g∑
j=1

n j (�)
[
ln det Vj + tr

(
V −1

j S j (�)
)]

.

According to Lemma 1, this expression attains its maximum w.r.t. V ∈ Vc, i.e., under
the HDBT constraints for any 0 < c ≤ 1. Summing up, after a change of sign, the
(HDBT constrained) trimmed maximum a posteriori cluster criterion (3) becomes in
the normal case the (heteroscedastic) Trimmed Determinant Criterion

r · H

(
n1(�)

r
, . . . ,

ng(�)

r

)
+ min

V∈Vc

1

2

g∑
j=1

n j (�)
[
ln det Vj + tr

(
V −1

j S j (�)
)]

. (TDC)

It is to be minimized w.r.t. all � ∈ �r and it contains the scatter matrices S j (�) of
C j (�). Finally, we denote the minimizing assignment by �∗, R∗ = {i | �i �= 0}
is the set of regular elements w.r.t. �∗, and the partition of R∗ associated with �∗ is
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(C∗
1 , . . . , C∗

g). The optimal assignment �∗ induces estimates m∗
j and V ∗

j of the location
and scale parameters m j and Vj which we call the TDC parameter estimates. They
are m∗

j = m j (�
∗) as in (6), and the minimizers w.r.t. V ∈ Vc appearing in the TDC,

where �∗ is inserted for �.
There are only few cases where the minimizing parameters Vj for given � are known

to us in closed form. One is the unconstrained model where they are the scatter matri-
ces if clusters are large enough. If the scatter matrices happen to satisfy the constraints
then they are the solutions also in the constrained case. Another is the homoscedastic
case, c = 1, where the common estimate of the Vj ’s is the pooled scatter matrix S(�),
see Sect. 1.3; up to an additive constant, the TDC reduces to

r

{
H

(
n1(�)

r
, . . . ,

ng(�)

r

)
+ 1

2
ln det S(�)

}
. (7)

Without the entropy term, this is the criterion of the same name derived in Gallegos
and Ritter (2005). Finally, a univariate case is treated in Proposition 1.

The optimal clustering may contain empty clusters, an indication that the number
of clusters g has been chosen too large. E.g., if a data set is a clear sample from a single
univariate normal population then the optimal partition in two clusters will leave one
cluster empty. A simple example is n = r = 4, D = {0, 3, 4, 7}, and c = 1. Some
values of the criterion (7) are

⎧⎪⎨
⎪⎩

3.66516, for the partition {D,∅},
3.79572, for the partition {{0, 3, 4}, {7}},
4.39445, for the partition {{0, 3}, {4, 7}}.

The remaining partitions need not to be considered, either by symmetry or since they
cannot be optimal. Hence the method returns a single nonempty cluster. Empty clusters
become less likely as c decreases.

2.3 Minimum distance partitions and optimization

Several strategies for optimizing the TDC are available, among them local descent
methods on a suitably defined graph structure on �r and alternating methods of type
k-means. An apparent disadvantage of these methods is their getting stuck in sub-
optimal solutions such as local minima or MDP’s. A closer analysis of the situation
shows however that particular suboptimal solutions often deserve more attention than
the absolute optimum of the criterion itself. It is therefore interesting to generate local
optima and MDP’s.

We propose next an alternating method of type k-means for producing MDP’s of
criterion (3). We begin by rewriting the trimmed posterior density in a different form:
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144 M. T. Gallegos, G. Ritter

−rH

(
n1(�)

r
, . . . ,

ng(�)

r

)
+

g∑
j=1

∑
i :�i = j

ln fγ j (xi ) =
∑

i :�i �=0

(
ln

n�i

r
+ ln fγ�i

(xi )
)

=
∑

i :�i �=0

ui,�i

with ui, j = ln
n j
r + ln fγ j (xi ), the logarithm of the posterior probability of j for xi .

For given parameters γ j , this sum is maximized w.r.t. � by assigning each object i
according to the maximum a posteriori discriminant rule and by discarding the n − r
observations with the overall smallest posterior probabilities. Given a labelling �, the
unconstrained maximum in criterion (3) chooses as γ the (unconstrained) maximum
likelihood estimate for the retained observations. As a consequence the following strat-
egy improves the criterion (3) starting from an initial admissible labelling �. It extends
the k-means algorithm and its generalization by Schroeder (1976) to trimming. We
first keep the parameters g and r fixed.

Multipoint reduction step

// Input: An admissible labelling �;
// Output: An admissible labelling �new with larger value of the criterion or the

response “fail.”
Estimation: if some cluster C j (�) does not allow maximum likelihood estimation

of its parameters, respond “fail;”
else update each γ j with the maximum likelihood estimate for C j (�)

(no constraints);
Classification: assign each of the n objects i to the cluster j with maximum posterior

probability ui, j to obtain a labelling �′;
Trimming: discard the n − r objects i with smallest values ui,�′

i
from �′ to obtain

�new;

In the Classification step all misfits are removed, hence the name “multipoint.”
(Other schemes are possible, e.g., the “single-point” reduction step which removes
just one misfit. They all improve the criterion.) In the Trimming step the r obser-
vations which best fit in their clusters are retained. Note that either step may leave
one or more clusters empty. Iteration of the three steps will eventually result in a sta-
tionary configuration since there is only a finite number of labellings and since the
criterion continually improves. The solution attained at convergence is self-consistent
[or a (free) minimum distance partition] in the sense that clustering and parameters
generate each other.

The preceding reduction step disregards constraints (e.g. HDBT if the TDC is con-
sidered) in the Estimation step. We claim that MDP’s at the boundary of the constraints
do not deserve much interest. A solution at the boundary depends on the precise value
of c (see Proposition 1). But there is no precise value since it is unknown. Moreover,
even if c were known, the Estimation step would require the maximum likelihood esti-
mate w.r.t. Vc. We do not know of a practicable analytical solution to the associated
constrained optimization problem in Euclidean space R

d for d ≥ 2 and numerical
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Trimming algorithms 145

methods such as gradient descent would lead to inefficient overall algorithms. An
exception are free MDP’s that happen to satisfy the constraints—they are automati-
cally constrained MDP’s. The constant c must be estimated together with the assign-
ment and the other parameters. In Sect. 2.4, we will propose a method based on free
MDP’s or free local optima.

We can say more in the univariate case. Given �, we denote the sample variance of
cluster j by s j and w j = n j s j . Our next proposition deals with arbitrary g and covers
the general constrained case if g = 2.

Proposition 1 Let d = 1, let g ≥ 2, let r ≥ g+1, and let 0 < c ≤ 1. Let � be such that
the sample variances s j satisfy s2 > 0 and cs� ≤ s j ≤ s�/c for all 3 ≤ j ≤ g, � < j .1

(In other words, the sample variances satisfy the HDBT constraints except, possibly,
for the pair s1, s2.) Then partial minimization of the TDC w.r.t. V = (v1, . . . , vg) ∈ Vc

is solved by

⎧
⎪⎪⎨
⎪⎪⎩

v1(�) = s1, v2(�) = s2, if cs1 ≤ s2 ≤ s1/c,

v1(�) = w1+w2/c
n1+n2

, v2(�) = cw1+w2
n1+n2

, if s2 < cs1,

v1(�) = w1+cw2
n1+n2

, v2(�) = w1/c+w2
n1+n2

, if s1 < cs2,

and v j (�) = s j , 3 ≤ j ≤ g.

Proof Let us abbreviate h j (v) = n j (ln v + s j
v
). In the present case, the partial mini-

mum of the TDC w.r.t. (v1, . . . , vg) can be rewritten in the form (omitting the entropy
term)

h := min
v1>0

cv�≤v j ≤v�/c, �< j

g∑
j=1

h j (v j )

= min
v1>0

{
h1(v1) + min

cv1≤v2≤v1/c

{
h2(v2) + min

cv�≤v j ≤v�/c
�< j, j≥3

∑
j≥3

h j (v j )

}}

≥ min
v1>0

{
h1(v1) + min

cv1≤v2≤v1/c

{
h2(v2) +

∑
j≥3

min
v>0

h j (v)

}}

= min
v1>0

{
h1(v1) + min

cv1≤v2≤v1/c
h2(v2)

}
+

∑
j≥3

h j (s j ),

1 This presupposes that the clusters 2, . . . , g contain at least two different elements, each.
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since h j , j ≥ 3, assumes its unconstrained minimum at v = s j (> 0). The constrained
minimizer of h2(v2) w.r.t. v2 is

ṽ2(v1) =

⎧⎪⎨
⎪⎩

s2, cs2 < v1 < s2/c,

cv1, v1 ≥ s2/c,

v1/c, v1 ≤ cs2,

and we have thus shown

h ≥ min
v1>0

{h1(v1) + h2 (̃v2(v1))} +
∑
j≥3

h j (s j ). (8)

The function v1 �→ h2(̃v2(v1)) is differentiable, monotone decreasing in ]0, cs2],
constant in [cs2, s2/c], and monotone increasing in [s2/c,∞[. It follows that the sum
v1 �→ h1(v1) + h2(̃v2(v1)) has a minimum which is attained in the interval where
the minimum of the unimodal function h1(v1) is located. The minimizer of the lower
bound (8) turns out to be the value v1(�) given in the proposition.

We have, thus, shown that the target function is nowhere less than its value at
the parameters stated in the proposition. The proof will be finished if we show
that these parameters satisfy the HDBT constraints. This is true by assumption for
all pairs ( j, �), j, �≥ 3, and was ensured for the pair (1, 2). The remaining pairs
(1, j), (2, j), j ≥ 3, follow from elementary estimates based on the constraints
assumed for (s1, s j ) and (s2, s j ). The condition r ≥ g + 1 ensures that the mini-
mum w.r.t. v1 > 0 exists so that v j (�) > 0 for all j . �

2.4 Overall algorithm and choice of the constant c

Iteration of (unconstrained) multipoint reduction steps strives for labellings with large
values of criterion (3) (or small values of the TDC). If the “fail” signal does not occur
then the iteration stalls at some unconstrained MDP for the reasons stated before.
However, it does not necessarily represent an interesting solution so that the process
has to be replicated, for possibly many different, randomly or expediently chosen,
initial assignments or parameters. The number of replications needed depends on the
data set and on the initial assignments.

Two different outcomes of this algorithm are possible. It may happen that all repli-
cations return the signal “fail.” This occurs typically if the data set contains very small
clusters or if the number of clusters, g, has been chosen too large. E.g., if one attempts
to group a d-dimensional data set of less than g(d + 1) elements in g clusters (normal
model, r = n) then “fail” signals, only, are returned. In this case, the parameters g
and/or r must be adapted. Reducing r discards very small clusters. Moreover, clusters
large enough to allow estimation of their parameters can be enforced by putting lower
bounds on cluster sizes in the reduction step if r is large enough, cf. Gallegos and
Ritter (2009).

Otherwise, we obtain unconstrained MDP’s and we have to decide which one to use.
The optimum of the criterion does not guarantee a reasonable clustering as experience

123



Trimming algorithms 147

shows and a solution close to the desired one cannot be estimated without a further
assumption. In most normal cases, we are interested in solutions that combine a large
value of the criterion with a large HDBT ratio. Of course, this is not a law. Rescaling
Fig. 1 in such a way that the five-point cluster becomes spherical, we obtain an oblong,
vertical data set which contains the quintuple as a region of concentration. This might
suggest a partition in two clusters with five and 15 elements. But we contend that
this is not the point of view to be taken in general. The criterion measures how well
the estimated populations fit their clusters. Declaring the HDBT ratio of a solution a
measure of its balance, we postulate that, in general, it is good fit combined with high
balance that characterizes a feasible solution. Since it occurs only rarely that the best
fitting solution enjoys high (but not the highest) balance, this leads to a biobjective
optimization problem which calls for a compromise.

Here is a simple heuristic method that finds a well-fitting, balanced clustering
together with a constant c: Generate a large number of (unconstrained) MDP’s and
display their HDBT ratios versus the values of their criteria in a negative double-log-
arithmic plot as shown in Figs. 3 and 5 in Sect. 5. The convex hull of all MDP’s will
usually show a knee at its left lower part. The extreme point at the knee determines
the favorite solution and c. Often, the MDP’s are supported from below by an almost
horizontal line segment and this MDP is found close to its left end. It is not unusual
that it has an HDBT ratio of a hundredth or less. The plot provides also some guidance
about the number of replications needed. Run the algorithm until its convex hull has
stabilized.

The method may also be applied with local optima instead of MDP’s.

2.5 Choice of the parameters g and r

Criteria and reduction step (or steepest descent) depend on two parameters, the number
of clusters g and the number of retained elements r . So far we have designed a tool
that allows us to establish interesting clusterings for arbitrary but fixed pairs (g, r).
This is a substantial reduction of the complexity of the data analytic problem but the
task of reducing the number of pairs, maybe even to one, remains. For obvious rea-
sons, r should be chosen no larger than and close to the (unknown) number of regular
elements in the data set. We give some guidelines for the selection of g and r .

Recently, Neykov et al. (2007) proposed a simple method that estimates both param-
eters at a time, the trimmed BIC. They establish a table of BIC values indexed by
g and r proposing to use the parameter values where the minima w.r.t. g stabilize.
There are many other methods and we compile first some known methods for estimat-
ing the number of classes of uncontaminated data sets.

2.5.1 The number of classes of uncontaminated data

For the number of clusters there are essentially three approaches, cf. Milligan and
Cooper (1985) and Gordon (1999), cluster validation, the so-called elbow criterion,
and model selection criteria. Cluster validation assesses the quality of a partition and
may be divided in two branches: tests and validity measures. The classical test, due to
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Wolfe (1970), is a likelihood ratio test for the hypothesis of k clusters against (k − 1)

clusters. Bock (1985) discusses some significance tests for distinguishing between the
hypothesis of a homogeneous population versus the alternative of heterogeneity. Chen
et al. (2004) propose a modified likelihood ratio test for a mixture of two components
versus g ≥ 3. Also normality tests may sometimes be beneficial in this respect, see
the comprehensive review by Mecklin and Mundfrom (2004). Validity measures are
functionals of partitions and usually measure between cluster separation and within
cluster cohesion (or “compactness”); see, e.g., Bezdek et al. (1999). In the case of
(almost) spherical models, the total within-clusters sum of squared distances about
the centroids is used as a measure of cohesion and the total between-clusters sum of
squared distances for separation; cf. Milligan and Cooper (1985) and the abridged pre-
sentation of their work by Gordon (1999). The elbow criterion identifies the number of
clusters as the location where the decrease of some cluster criterion flattens markedly.
For a refinement of this method see Tibshirani et al. (2001).

Comparing the maximum likelihoods or a posteriori densities between solutions for
different numbers of classes does not make sense since each additional class allows
better fit so that these values increase with g. A model selection criterion counteracts
this tendency by subtracting a penalty term that increases with g from the maximum
of the log-likelihood or from the posterior log-density. Schwarz (1978) proposed his
popular Bayesian Information Criterion (BIC) for exponential families. In the uncon-
taminated case, its penalty term is q

2 ·ln n, q being the total dimension of the parametric
model. There is some practical evidence that supports BIC as a means for estimating
the number of clusters of mixture models, too; see the discussion in McLachlan and
Peel (2000), Ch. 6. Moreover, Kéribin (2000) described a family of penalty terms,
among them BIC, which asymptotically as n → ∞ neither over- nor underestimate
the correct number of components of a mixture model

∑g
j=1 π j fγ j if the class-con-

ditional populations satisfy certain regularity conditions and the parameters certain
constraints. Her interesting result is applicable, e.g., to Gaussian families if the mean
values are bounded and if the covariance matrices are bounded below in the Löwner
ordering by a positive multiple of the identity matrix. In the case of a mixture, q = q(g)

equals g − 1 (for the mixing rates) plus the total number of (real) parameters of the g
components.

We propose BIC with this value of q also for our clustering model if there is suffi-
cient separation. For a justification, we compare the maximum a posteriori density (3)
in an outlier-free context, r = n, with the maximum likelihood of the related g-class
mixture model under suitable constraints as in Kéribin’s theorem. Let �∗ be the opti-
mal maximum a posteriori assignment and let π∗ and γ ∗ be the optimal mixing rates
and population parameters of the mixture model. For any g, the optimal value of
criterion (3) is no larger than that of the mixture model:

−nH

(
n1(�

∗)
n

, . . . ,
ng(�

∗)
n

)
+

g∑
j=1

∑
i :�∗

i = j

ln fγ j (�
∗)(xi )

=
∑

i

{
ln

n�∗
i
(�∗)
n

+ ln fγ�∗i (�∗)(xi )

}
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= ln
∏

i

n�∗
i
(�∗)
n

fγ�∗i (�∗)(xi ) ≤ ln
∏

i

∑
j

n j (�
∗)

n
fγ j (�

∗)(xi )

≤ max
π,γ

ln
∏

i

∑
j

π j fγ j (xi )

= ln
∏

i

∑
j

π∗
j fγ ∗

j
(xi ).

On the other hand, if the data set is well separated in g clusters then fγ ∗
j
(xi ) � fγ ∗

�∗i
(xi )

for all j �= �∗
i , 1 ≤ i ≤ n, fγ ∗

�∗i
(xi ) ≈ fγ�∗i (�∗)(xi ), and π∗

j ≈ n j (�
∗)

n , 1 ≤ j ≤ g, so

that, for this g, the third and the last terms of the above chain are close and both
ends almost meet. This reasoning supports BIC as a penalty term also for maximum
a posteriori partitioning in the case of large data sets and good separation.

2.5.2 The number of outliers

An approach to estimating the number of clusters can be combined with a test for
estimating the number of outliers. In a first step, establish a table of the optimal
clusterings for all (reasonable) numbers of clusters, g, and all numbers of discarded
elements, n − r . It is, of course, sufficient to perform the procedure with a lacunary
set of values n − r . Next, reduce the number of possible solutions by validating them
w.r.t. absence of outliers with a multiple testing procedure. Tests for goodness of fit of
the regular densities and the clusters C j (�

∗), 1 ≤ j ≤ g, normality tests, see Mecklin
and Mundfrom (2004) extensive survey article, and methods for outlier detection or
identification, see Becker and Gather (1999), are available for this task. If g admits an
acceptable pair (g, n − r), keep the one with maximum r (=: rg) as a candidate. After
having run through all values of g, at most one pair is left in each line of the table so
that the complexity of the problem is again substantially reduced. It remains to choose
the favorite g. Since the estimated numbers rg of regular observations depend on g, the
numbers of objects have to be normalized, e.g. to n. By consistency of parameter esti-
mation, cf. Gallegos and Ritter (2009), Theorems 1 and 2, the value of the maximum
a posteriori criterion (3) increases approximately linearly with the number r , asymp-
totically, at least if there is sufficient separation. Therefore, we propose to combine
the TDC estimates with the following corrected BIC in order to estimate the number
of clusters:

argmax
g

{
− n H

(
n1(�

∗)
rg

, . . . ,
ng(�

∗)
rg

)
+ n

rg

g∑
j=1

∑
�∗

i = j

ln fγ j (�
∗)(xi ) − q(g)

2
ln n

}
.

(9)

Experience with various data sets has shown the effectiveness of this method, see again
Gallegos and Ritter (2009).
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Fig. 2 Non-robustness of criterion (5) with full normal covariance matrices in the free heteroscedastic case
with minimum cluster size 3. Data point x3 is replaced with some x ′

3 close to the abscissa and far away.
Minimization of the criterion (5) discards x7 generating the clustering {{x1, x2, x ′

3}, {x4, x5, x6}}

3 Robustness

Although criterion and algorithm involve trimming, neither the estimates of the means
nor those of the covariance matrices would be robust without HDBT constraints. In fact,
no matter how r is chosen they would break down under the influence of a single outlier.
An example is provided by the data set consisting of seven points x1, . . . , x7 shown
in Fig. 2. We use criterion (5) to subdivide it in two groups of minimum cluster size
3 and r = 6, i.e., we discard one object. There are two equivalent optimal clusterings,
{{x2, x3, x4}, {x5, x6, x7}}, x1 discarded, and {{x3, x4, x5}, {x6, x7, x1}}, x2 discarded.
We now replace x3 with a distant outlier x ′

3 close to the abscissa, say x ′
3 = (a, a−2)

for large a. Although we discard one point, the criterion does not choose the “right”
one, x ′

3. In fact, x ′
3 creates together with x1 and x2 a cluster with a small determi-

nant of its scatter matrix which determines the optimal clustering. This turns out to
be {{x1, x2, x ′

3}, {x4, x5, x6}}, x7 discarded. As a consequence, neither do mean and
largest eigenvalue of the scatter matrix of the slim cluster remain bounded as a → ∞
nor does the smallest eigenvalue remain bounded away from zero.

We show in this and the following section that the HDBT constraints do not only
guarantee existence of a solution but also robustness of the TDC. Our main results are
the following:

(i) If r is large enough then the TDC estimates of the covariance matrices resist
n − r + g − 1 arbitrary replacements. On the other hand they break down under
n − r + g suitable replacements, see Theorem 1;

(ii) there exists a data set such that the TDC estimate of at least one mean (i.e., a
sample mean) breaks down with two suitable replacements no matter how many
objects we discard, see Theorem 2;

(iii) if the data set bears a clear structure of g clusters and if r is large enough and
properly chosen then the TDC estimates of all means resist n − r arbitrary
replacements. On the other hand, it is possible to break down one mean with
n − r + 1 suitable replacements, see Theorem 3.

3.1 Breakdown values

The finite-sample breakdown value of an estimator, Hodges (1967) and Donoho and
Huber (1983), measures the minimum fraction of gross outliers that can completely
spoil the estimate. Two types of breakdown points are customary, the addition and the
replacement breakdown point. The former refers to the addition of n − r outliers to
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a data set of r regular observations and the latter to n − r replacements in a data set
of n regular observations. The former is technically simpler since the set of regular
observations is fixed, but one needs two estimators, one for r data and one for n. By
contrast, the latter considers all

(n
r

)
possible replacements of n − r observations but

needs only one estimator for n objects. For this reason, we deal with replacements only.
Let δ : A → 	 be an estimator on its natural domain of definition A ⊆ En of

admissible data sets of size n (e.g., “general position” in case of the m.l.e. under nor-
mal assumptions). Given m ≤ n, we say that M ∈ A is an m-modification of D ∈ A
if it arises from D by modifying at most m observations of D in an (admissible but
otherwise) arbitrary way. An estimator δ “breaks down with D under m replacements”
if the set

{δ(M) | M is m-modification of D} ⊆ 	

is not relatively compact in 	. Of course, there is no breakdown if 	 is compact. The
individual breakdown point for the data set D is the number

β(δ, D) = min
1≤m≤n

{m

n
| δ breaks down with D under m replacements

}
.

It is the minimal fraction of replacements in D that may cause δ to break down. The
individual breakdown point is not an interesting concept per se since it depends on a
single data set. It tells the statistician how many gross outliers the data set M under his
or her study may contain without causing excessive damage if the imaginary “clean”
data set that should have been observed were D. Now let K ⊆ A be some subclass
of admissible data sets. The restricted breakdown point of δ w.r.t. K, cf. Gallegos and
Ritter (2005), is

β(δ,K) = min
D∈K

β(δ, D).

The restricted breakdown point depends only on δ and the subclass K. It provides
information about the robustness of δ if the hypothetic “clean” data set D that should
have been observed instead of the contaminated data set M had been a member of K.
Finally, we call Donoho and Huber’s breakdown point the universal breakdown point

β(δ) = β(δ,A).

It depends solely on the estimator. The restricted breakdown value may be seen as a
relaxed version of it. We have the chain of inequalities

β(δ) ≤ β(δ,K) ≤ β(δ, D), D ∈ K.

We deal here with breakdown points of the estimates of the parameters m j ∈ R
d

and Vj ∈ PD(d) obtained from (minimizing) the TDC w.r.t. �, m, and V. The rel-
atively compact subsets of the parameter space R

d of the means are the bounded
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subsets of R
d . A subset of PD(d) is relatively compact if the eigenvalues of its ele-

ments are bounded and bounded away from zero. This is equivalent to saying that
the subset is bounded above and below by positive definite matrices in the Löwner
ordering �.

We first show that the minimum of the TDC, with any 0 < c ≤ 1, provides
an asymptotically robust estimate of the covariance matrices Vj and compute the
universal breakdown point. We need a lemma. It exploits the pooled SSP matrix W (�)

of an admissible assignment �.

Lemma 2 Let V = (V1, . . . , Vg) ∈ Vc, let m = (m1, . . . , mg) ∈ R
gd , let � be an

admissible labelling, and let R be the set of retained objects w.r.t. �. We have for all
�, 1 ≤ � ≤ g,

2 ln f [R | �, m, V] ≤ −r ln det(2πcV�) − c tr
(

W (�)V −1
�

)
.

Proof By the HDBT constraints, we have

2 ln f [R | �, m, V] = −
∑

1≤ j≤g

{
n j (�) ln det(2πVj ) +

∑
i∈C j (�)

(xi − m j )
T V −1

j (xi − m j )

}

≤ −
∑

1≤ j≤g

{
n j (�) ln det(2πcV�) + c tr

∑
i∈C j (�)

(xi − m j )(xi − m j )
T V −1

�

}

≤ −r ln det(2πcV�) − c tr
∑

1≤ j≤g

∑
i∈C j (�)

(
xi − x j (�)

) (
xi − x j (�)

)T
V −1

�

= −r ln det(2πcV�) − c tr
(

W (�)V −1
�

)
.

The following theorem deals with the universal breakdown point of the TDC estimates
of the covariance matrices. �
Theorem 1 Let the data D be in general position and assume r ≥ gd + 1.

(a) If 2r ≥ n + g(d + 1) then the TDC estimates of the covariance matrices remain
in a compact subset of PD(d) that depends only on the original data set D as
at most n − r + g − 1 data points of D are replaced in an arbitrary way.

(b) It is possible to replace n − r + g elements of D in such a way that the largest
eigenvalue of the TDC estimate of some covariance matrix (and hence of all
covariance matrices) exceeds any given number.

(c) If 2r ≥ n + g(d + 1) then βvar(n, r, g) = n−r+g
n .

Proof (a) We first note that, no matter what the admissibly modified data set M is,
the constrained maximum posterior density and, hence, the constrained maximum
likelihood f [R∗ | �∗, m∗, V∗] remains bounded below by a strictly positive constant
that depends only on the original data set D. To this end, we compare the optimal
solution with one that is constrained irrespective of the constant c. Indeed, let � be the
labelling that assigns the remaining r − g + 1 original points to the first cluster C1
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and g − 1 replacements y j to one-point clusters C j = {y j }, 2 ≤ j ≤ g. Moreover, let
m = (0, y2, . . . , yg), and let Vj = Id for all 1 ≤ j ≤ g. By optimality, we have

− rH

(
n1(�

∗)
r

, . . . ,
ng(�

∗)
r

)
+ ln f

[
R∗ | �∗, m(�∗), V(�∗)

]

≥ −rH

(
r − g + 1

r
,

1

r
, . . . ,

1

r

)
+ln f [R | �, m, Id ]=const − 1

2

∑
�i =1

‖xi‖2.

The right side of this expression does not depend on the replacements.
Now, by assumption, we replace at most n − r + g − 1 ≤ r − (gd + 1) (≥ 0) data

points of D so that, for any assignment, at least one cluster contains at least d + 1
original points T ⊆ D. This is in particular true for an optimal assignment �∗. By
general position, it follows W (�∗) � WT � ε Id for some ε > 0. Lemma 2 and the
initial remark imply

−r ln det
(
2πcV ∗

1

) − c tr
(

W (�∗)V ∗
1

−1
)
≥2 ln f

[
R∗ | �∗, m∗, V∗] ≥ const > −∞.

Now, it is well known that the set of matrices V ∗
1 for which the left side is bounded

below is a compact subset of PD(d). The HDBT constraints finally imply that the
associated set of g-tuples (V ∗

1 , . . . , V ∗
g ) is a compact subset of PD(d)d . This proves

Claim (a).
(b) Modify D by n − r + g replacements at a large distance from each other and

from all original data points to obtain M . Each r -element subset of M contains at least
g replacements. Moreover, there is a cluster C of size at least two that contains at least
one replacement. Indeed, if no cluster contains two replacements then each cluster
contains at least one and, by r ≥ gd + 1, one of them contains another element. Now,
let C� be such a cluster, let y ∈ C� be a replacement, and let x ∈ C�, x �= y. We have

W�(�) ≥
{(

x − x + y

2

) (
x − x + y

2

)T

+
(

y − x + y

2

)(
y − x + y

2

)T
}

= 1

2
(y − x)(y − x)T.

Now let
(
�∗, (m∗

j ) j , (V ∗
j ) j

)
be optimal parameters of the TDC. Comparing them with

the inferior parameters
(
�∗, (m∗

j ), (2V ∗
j )

)
and noting that the entropy terms coincide,

we infer

0 ≤
∑

j

n j (�
∗)

{
ln det 2V ∗

j + tr
(
(2V ∗

j )−1S j (�
∗)

)
−

[
ln det V ∗

j +tr
(

V ∗
j
−1S j (�

∗)
)]}

=
∑

j

n j (�
∗)

{
d ln 2 − 1

2
tr

(
V ∗

j
−1S j (�

∗)
)}

≤ dr ln 2 − 1

2
tr

(
V ∗

�
−1W�(�

∗)
)

≤ dr ln 2 − 1

4
(y − x)TV ∗

�
−1

(y − x).
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The resulting inequality (y − x)TV ∗
�

−1(y − x) ≤ 4dr ln 2 implies that at least one
eigenvalue of V ∗

� exceeds any positive number as the distance between x and y is
chosen large enough.

Claim (c) follows from (a) and (b). �
It is interesting to remark that the TDC estimates of the covariance matrices

withstand g − 1 more outliers than there are discarded elements, n − r . Outliers
that are spread out may be assigned to one-point clusters and outliers located close
together may form a cluster of their own. In each case the optimal assignment does
not completely destroy the estimates.

The asymptotic breakdown point of an estimator is its limit as n → ∞.

Corollary 1 If r = �αn� for some α > 1/2 then the universal asymptotic breakdown
point of the TDC estimates of the covariance matrices is 1 − α.

As noted after Lemma 1, the TDC estimates of the means are the sample means defined
by the optimal assignment. Contrary to the covariance matrices their universal break-
down point is low. In order to show this, we need a lemma and denote (univariate)
scatter values and sums of squares by the letters s and w, respectively.

Lemma 3 Let F ∪ {z1, . . . , zg−2} ∪ {y1, y2} ⊆ R be a data set of r pairwise dis-
tinct elements. If w{y1,y2} ≤ 2c

r−2wF then the constrained normal m.l.e.’s v j (�) of the
variances v j for the partition � = {F, {z1}, . . . , {zg−2}, {y1, y2}} are

v1(�) = wF + w{y1,y2}/c

r
and v j (�) = c v1(�), 2 ≤ j ≤ g.

Proof Putting s1 = sF and sg = s{y1,y2}, the TDC requires minimizing the expression

h(v1, . . . , vg) := n1

(
ln v1 + s1

v1

)
+

∑
2≤ j≤g−1

ln v j + 2

(
ln vg + sg

vg

)

w.r.t. (v1, . . . , vg) ∈ Vc. We start with the minimum of h on the larger set
V ′

c = {(v1, . . . , vg) ∈ R
g
> | cv1 ≤ v j ≤ v1/c, 2 ≤ j ≤ g} ⊇ Vc. Since

mincv1≤v j ≤v1/c ln v j = ln cv1, dynamic optimization shows

min
v∈V ′

c

h(v1, . . . , vg)

= min
cv1≤vg≤v1/c

{
n1

(
ln v1 + s1

v1

)
+

∑
2≤ j≤g−1

min
cv1≤v j ≤v1/c

ln v j + 2

(
ln vg + sg

vg

) }

= (g − 2) ln c + min
cv1≤vg≤v1/c

{(
(r − 2) ln v1 + w1

v1

)
+

(
2 ln vg + wg

vg

)}
.

This is a virtual two-cluster problem. The second line of the three cases in Proposi-
tion 1 shows that, under the assumption wg

2 ≤ c w1
r−2 stated in the lemma, its solu-

tion is indeed given by the values claimed for v1(�) and vg(�). Finally, the vector
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(v1(�), cv1(�) . . . , cv1(�)) is even located in Vc so that it is the minimum w.r.t. the
smaller parameter set, too. �

Our next theorem deals with the universal breakdown point of the TDC estimates
of the means.

Theorem 2 Let the data D be in general position and let g ≥ 2.

(a) If n ≥ r + 1 and r ≥ gd + 2 then the TDC estimates of all means remain
bounded by a constant that depends only on the data set D as one observation
is arbitrarily replaced. (In the case of ties the solution is returned that has the
largest discarded element.)

(b) Under the standard assumption r ≥ gd + 1, there is a data set such that the
TDC estimate of one sample mean breaks down as two particular observations
are suitably replaced.

(c) Under the assumptions of (a) we have βmean(n, r, g) = 2
n .

Proof (a) We show by contradiction that an optimal assignment �∗ discards a remote
replacement. Thus, assume that the replacement y lies in cluster �. The cluster must
contain a second (original) element x since, by the convention, y would otherwise
be swapped with a discarded original element without change of the TDC. Now, by
the assumption r ≥ gd + 2, the retained data points contain at least gd + 1 original
elements so that one cluster has at least d + 1 of them. Whether this is cluster � or not,
general position of D and this remark imply det W (�∗) → ∞ as ‖y‖ → ∞. We now
use Lemma 2 which says that

2 ln f
[
R∗ | �∗, m∗, V∗] ≤ −r ln det(2πcV ∗

� ) − c tr
(

W (�∗)V ∗
�

−1
)

.

It is well known that, given a positive-definite matrix W , the minimum of the func-
tion V �→ ln det V + trW V −1 is ln det W + d. Hence, the right side of the inequality
tends to −∞ as ‖y‖ → ∞ and so does the left side. On the other hand, by the assump-
tion r < n, there exists an assignment � such that y /∈ R. Optimality of �∗, m∗, V∗
implies

−rH

(
n1(�

∗)
r

, . . . ,
ng(�

∗)
r

)
+ln f

[
R∗ | �∗, m∗, V∗]

≥ −rH

(
n1(�)

r
, . . . ,

ng(�)

r

)
+ ln f [R | �, 0, Id ].

Since the entropies are bounded, this means that ln f [R∗ | �∗, m∗, V∗] has a finite
lower bound that does not depend on y, a contradiction to what was found before.

(b) A proof in the multivariate case requires a subtle construction of a data set.
It must secure that the optimal solution retains at least one outlier. As a main
hurdle one has to avoid point patterns that are almost degenerate and mask the
desired solution just as in Fig. 1. A construction for the case c = 1 appears in
Gallegos and Ritter (2005). For the sake of illustration, we treat here general c con-
fining ourselves to the univariate case. Since Claim (b) is plainly true if r ≥ n − 1,
we assume r ≤ n − 2 and proceed in three steps.
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(α) Construction of the modified data set M :
Let xi , 1 ≤ i ≤ r − g, be strictly increasing and put F = {x1, . . . , xr−g}, let
K > 0, and choose z1 < z2 < · · · < zn−r+g−2 such that

(i) z1 − xr−g ≥ K and z�+1 − z� ≥ K for all 1 ≤ � < n − r + g − 2.

Let 0 < ε ≤
√

c wF
r−2 , let y > zn−r+g−2+ε, define the replacements y1,2 = y±ε,

and put M = {x1, . . . , xr−g, z1, . . . , zn−r+g−2, y1, y2}. Plainly, M is in general
position.
Let �̃ be the assignment associated with the clustering {F, {z1}, . . . , {zg−2},
{y1, y2}} (zg−1, . . . , zn−r+g−2 discarded).

(β) The maximum a posteriori density for �̃ does not depend on K and y:

Since w{y1,y2} = 2ε2 ≤ 2c
r−2wF , Lemma 3 shows v1(̃�) = wF +w{y1,y2}/c

r and

v2(̃�) = · · · = vg (̃�) = cv1(̃�). Twice the logarithm of the corresponding
posterior density equals

2

(
(r − g) ln

(
r − g

r

)
+ 2 ln

(
2

r

))
− r ln v1(̃�) − g ln c − r(1 + ln 2π).

(γ ) If K is large enough then no assignment � of r points from the set F ∪
{z1, . . . , zn−r+g−2} is optimal:
By r ≤ n − 2, the set contains at least r elements. Since |F | = r − g and since
r > g, any such assignment � creates a cluster C�(�) which contains some zk

and some other point. From (i), it follows

w(�) ≥ wC�(�) −→
K→∞ ∞. (10)

By Lemma 2, twice its log-likelihood is bounded above by

−r ln(2πc v j (�)) − c
w(�)

v j (�)
≤ −r

(
ln 2πc2/r + ln w(�) + 1

)
−→

K→∞−∞, 1≤ j ≤g;

here we have used the maximum of the left side as a function of the TDC estimate
v j (�) and (10). The claim follows from (β) since there are only finitely many �’s.

Finally, choose K as in (γ ). The optimal solution retains at least one yh causing at
least one sample mean to break down as y → ∞. This proves Part (b) in the special
case and Part (c) follows from (a) and (b). �

As a consequence, the asymptotic universal breakdown value of the TDC estimates
of the means is zero. More cannot be expected. The reason is that the universal break-
down point makes a statement on any data set for any g, even if these two do not fit
together. On the other hand, García-Escudero and Gordaliza (1999), carried out exper-
iments with trimmed k-means observing that the means of a clear cluster structure are
hard to break down with the algorithm. We offer next an analysis of this phenomenon
in the present situation.
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4 Restricted breakdown point of the TDC estimates of the means

Dealing with the homoscedastic case, we computed in Gallegos and Ritter (2005) the
restricted breakdown point of the TDC estimates of the means w.r.t. a class of data
sets with a certain separation property thus defining what we mean by a “clear cluster
structure.” The separation property defined there is not satisfied for large data sets so
that asymptotic robustness does not follow. Besides carrying over the theory to the
heteroscedastic case we will also remove this weakness here.

The proof of the main result of this section, Theorem 3, depends on lemmas which
we first state and prove. Let P = {P1, . . . , Pg} be a partition of D and let ∅ �= T ⊆ D.
The partition T ∩ P = {T ∩ P1, . . . , T ∩ Pg} is the trace of P in T . Let g′ ≥ 1 be
a natural number and let T = (T1, . . . , Tg′) be some partition of T . The common
refinement of T and P is denoted by T � P = {Tk ∩ Pj | k ≤ g′, j ≤ g}, a partition
of T (some clusters may be empty ). The pooled SSP matrix of T w.r.t. some partition
T is defined by

WT =
∑
j≤g′

WTj .

The following proposition states a basic condition which implies robustness of the
TDC estimates of the means.

Proposition 2 Let the data D be in general position, let g ≥ 2 and gd + 1 < r < n,
and let q be an integer such that max{2r − n, gd + 1} ≤ q < r . Assume that D
possesses a partition P in g clusters such that, for all T ⊆ D, q ≤ |T | < r , and
all partitions T of T in g − 1 clusters (some clusters may be empty), the pooled SSP
matrix satisfies

det WT ≥ g2 max
R∈(D

r ),R⊇T
det

(
1

c2 WR∩P

)
. (11)

Then the individual breakdown point of the TDC estimates of the means satisfies

βmean(n, g, r, D) ≥ 1

n
(r − q + 1).

Proof Let M be any admissible data set obtained from D by modifying at most r − q
elements and let (R∗, �∗, (m∗

j )
g
j=1

, (V ∗
j )g

j=1
) be a TDC estimate for M . We will show

that its sample means m∗
j are bounded by a number that depends solely on the original

data D. Our proof proceeds in several steps.

(α) The matrices V ∗
j are bounded above and below by positive-definite matrices that

depend only on D, not on the replacements:

Let R∗
j be the j th cluster generated by �∗. Since |R∗| = r, R∗ = ⋃g

j=1 R∗
j has at least

q ≥ gd + 1 original observations so that some R∗
j contains at least d + 1 original

observations. The proof now finishes as that of Theorem 1 (a).
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(β) If R∗
j contains some original observation, then m∗

j is bounded by a number that
depends only on D:

By (α), tr W (�∗) remains bounded above by a constant which depends solely on the
original data D. Now, let x ∈ R∗

j ∩ D. We have W (�∗) � (x − m∗
j )(x − m∗

j )
T and,

hence, ‖x − m∗
j‖2 ≤ trW (�∗) and the claim follows.

(γ ) If R∗
j contains some replacement then ‖m∗

j‖ → ∞ as the replacement tends
to ∞:

This is proved like (β) where x is now the replacement.
From (β) and (γ ) it follows: as the replacements tend to ∞ then, in the long run,

each R∗
j , 1 ≤ j ≤ g, consists solely of original observations or solely of modifications.

We next put cd,r = − dr
2 (1 + ln 2π) and state:

(δ) −rH

(
n∗

1

r
, . . . ,

n∗
g

r

)
+ln f

[
R∗ | �∗, m∗, V∗] < cd,r −dr ln c− r

2
ln det

W (�∗)
r

,

whenever 0 < n∗
j < r for some j :

On account of Lemma 2 and of the assumption, the left side is strictly bounded above
by

−dr ln c − dr

2
ln 2π − 1

2

[
r ln det(V ∗

1 /c) + tr
(

W (�∗)(V ∗
1 /c)−1

)]
.

Part (α) and normal estimation theory now show that the function A �→ r ln det(A/c)+
tr

(
W (�∗)(A/c)−1

)
, A � 0, attains its minimum value r

[
ln det

(
W (�∗)

r

)
+ d

]
at

cW (�∗)
r and the claim follows.

(ε) R∗ contains no modification with a sufficiently large norm:

Assume on the contrary that R∗ contains a large replacement. In view of the remark
right after (γ ), some cluster, say R∗

g , consists solely of replacements. Note that r >

|R∗ ∩ D| ≥ q. Let T = R∗ ∩ D and let T = {R∗
1 ∩ D, . . . , R∗

g−1 ∩ D}. From Steiner’s
formula we have the relation W (�∗) � WT between the pooled SSP matrices and
hypothesis (11) implies

det W (�∗) ≥ det WT ≥ g2 max
R∈(D

r ),R⊇T
det

(
1

c2 WR∩P

)
.

Hence,

2d ln c + ln det
W (�∗)

r
≥ 2 ln g + max

R∈(D
r ),R⊇T

ln det
1

r
WR∩P . (12)
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Now, denoting the assignment associated with R ∩ P by �R∩P , and writing mR∩P =
(m R∩P1, . . . , m R∩Pg ) and SR∩P = 1

r WR∩P , the pooled scatter matrix, we have

r ln g + min
R∈(M∩D

r )
− ln f [R | �R∩P , mR∩P , SR∩P ]

= −cd,r + r ln g + r

2
min

R∈(M∩D
r )

ln det SR∩P

≤ −cd,r + r ln g + r

2
min

T ⊆R∈(M∩D
r )

ln det SR∩P

≤ −cd,r + r ln g + r

2
max

T ⊆R∈(D
r )

ln det SR∩P

≤ −cd,r + dr ln c + r

2
ln det V (�∗)

< rH

(
n∗

1

r
, . . . ,

n∗
g

r

)
− ln f

[
R∗ | �∗, m∗, V∗] , (13)

where the last two inequalities follow from (12) and (δ), respectively. Note that Part
(δ) is applicable since R∗ ∩ D �= ∅ implies n∗

j > 0 for some j < g and since n∗
g > 0

as well. The last expression above is the minimum of the TDC. It is no larger than its
value at the clustering R ∩P with the parameters mR∩P and SR∩P for all R ∈ (M∩D

r

)
.

By an elementary property of the entropy, the latter value is no larger than the first
line of (13). This contradiction proves Claim (ε).

Finally, Part (β) shows that all sample means m∗
j remain bounded by a number that

depends only on D. This proves the proposition. �

In the remainder of this section, we show that the hypothesis of Proposition 2 actu-
ally states a separation property. We need more notation. Let g ≥ 2. Given an integer
u ≥ 1 and a real number , 0 <  < 1, we define the number

qu, = max

{
2r − n, (g − 1)gd + 1,

n − u

1 − 

}
.

If n > r > (g − 1)gd + 1 and u ≥ n − (1 − )(r − 1) then q = �qu,� satisfies the
assumption in Proposition 2.

Let P, T , and T be as in Proposition 2. Our next, combinatorial, lemma gives con-
ditions that secure the existence of sufficiently many elements of T in each class Pj

and a large intersection Tk ∩ Pj for some pair (k, j).

Lemma 4 Let P = {P1, . . . , Pg} be a partition of D in g ≥ 2 clusters of size ≥ u,
let T ⊆ D such that qu, ≤ |T | < r , and let T = {T1, . . . , Tg−1} be a partition of T
(some Tk’s may be empty). Then:
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(a) For all j , we have |T ∩ Pj | ≥ |T |.
(b) At least one Tk contains elements of two differentPj ’s.
(c) There are clusters Tk and Pj such that |Tk ∩ Pj | ≥ qu,

(g−1)g (> d).

Proof (a) Assume on the contrary that |T ∩ Pj | < |T | for some j . From D ⊇ T ∪ Pj

we infer

n ≥ |T | + |Pj | − |T ∩ Pj | > |T | + u − |T | = u + (1 − )|T |
≥ u + (1 − )qu, ≥ u + n − u

by definition of qu,, a contradiction.
(b) Since |T | > 0 and since there are more Pj ’s than Tk’s, this follows from the

pigeon hole principle with (a).
(c) The observations in T are spread over the (g − 1)g disjoint sets of the form

Tk ∩ Pj . If (c) did not hold, we would have |T | < qu,, contradicting one of the
assumptions. �
The theorem on the breakdown point of the TDC estimates of the means presented in
this section applies to a class of clustered data sets with a certain separation property
which we now present. We put

κ =
{

(1 − ), g = 2,

/2, g ≥ 3.

Definition (Separation property) Let u ∈ N such that 1 ≤ u ≤ n/g and let 0 <  < 1.
We denote by Lu,,c the system of all d-dimensional admissible data sets D of size n
which have the following separation property:

D possesses a partition P in g subsets of size at least u such that, for all subsets
T ⊆ D, qu, ≤ |T | < r and for all partitions T = {T1, . . . , Tg−1} of T in g − 1
clusters, we have

1 + κ · min
k, j �= � :

Tk ∩ Ph �= ∅, h = j, �

(
xTk∩Pj − xTk∩P�

)T
(

WT �P
|T |

)−1 (
xTk∩Pj − xTk∩P�

)

≥ g2
maxR∈(D

r ),R⊇T det 1
c2 WR∩P

det WT �P
. (14)

According to Lemma 4 (b), the minimum extends over at least one triple (k, j, �), j �=
�, and by Lemma 4 (c), the pooled scatter matrix ST �P is bounded below by a positive-
definite matrix which depends only on D. Condition (14) is affine equivariant. We
require the minimum of the Mahalanobis distances of the submeans xTk∩Pj and xTk∩P�

of Pj and P� appearing on its left-hand side to be large. Thus, condition (14) means
that the partition P subdivides the data set in well-separated clusters, it is the “natural”
partition of D. The set Lu,,c increases with decreasing u and with increasing  ≤ 1/2.

We show next that any data set D in Lu,,c satisfies the hypotheses of Proposition 2.
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Lemma 5 Let g ≥ 2, let n > r > (g − 1)gd + 1, let u ∈ N and 0 <  < 1 satisfy
n−(1−)(r −1) ≤ u ≤ n/g. Let D ∈ Lu,,c, let T ⊆ D be such that qu, ≤ |T | < r ,
and let T = {T1, . . . , Tg−1} be a partition of T (some Tk’s may be empty). We have

det WT ≥ g2 max
R∈(D

r ),R⊇T
det

1

c2 WR∩P .

Proof An application of Gallegos and Ritter (2005), Lemma A.3, to each Tk, 1 ≤ k <

g, with partition {Tk ∩ P1, . . . , Tk ∩ Pg}, 1 ≤ j ≤ g, shows first

WT =
g−1∑
k=1

WTk

=
∑

k:Tk �=∅

{ g∑
j=1

WTk∩Pj +
∑

1≤ j<�≤g

ak j ak�

|Tk |
(
xTk∩Pj − xTk∩P�

) (
xTk∩Pj − xTk∩P�

)T
}
,

where akj = |Tk ∩ Pj |, 1 ≤ j ≤ g, 1 ≤ k < g. Now use Gallegos and Ritter (2005),
Lemma A.1(b), and Lemma A1 to obtain

det WT

≥ det WT �P ·
{

1+
∑

k:Tk �=∅

∑
1≤ j<�≤g

ak j ak�

|Tk |
(
xTk∩Pj −xTk∩P�

)T
W −1

T �P
(
xTk∩Pj −xTk∩P�

) }

≥ det WT �P ·
{

1 + κ min
k, j �= � :

Tk ∩ Ph �= ∅

(
xTk∩Pj − xTk∩P�

)T
(

WT �P
|T |

)−1 (
xTk∩Pj − xTk∩P�

) }

and the claim follows from the separation property. �

The conditions on r and u imply that the interval [qu,, r [ contains some integer so
that a set T as in Lemma 5 exists. A simple reasoning shows that the bounds on u
imply  < 1

g .
We finally state and prove the main result of this section: the restricted breakdown

point of the TDC estimates of the means. If a data set has the separation property then
the TDC estimates of the means are much more robust than predicted by Theorem 2.

Theorem 3 Let the data D be in general position, let g ≥ 2, and let r < n.

(a) Assume r ≥ (g−1)gd +2 and n−(1−)(r −1) ≤ u ≤ n/g. Then the restricted
breakdown value of the TDC estimates of the means w.r.t. Lu,,c satisfies

βmean(n, g, r,Lu,,c) ≥ 1

n
min

{
n − r + 1, r − (g − 1)gd, r + 1 − n − u

1 − 

}
.
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(b) For any data set D ∈ Lu,,c, the individual breakdown point of the TDC estimates
of the means satisfies

βmean(n, g, r, D) ≤ 1

n
(n − r + 1).

(c) Let 2r − n ≥ (g − 1)gd + 1, let u ∈ N such that 2(n − r) < u ≤ n/g, and put
 = u−2(n−r)

2r−n . Then

βmean(n, g, r,Lu,,c) = 1

n
(n − r + 1).

(A necessary condition for the existence of such a u is the inequality 2(n − r) ≤
n/g − 1.)

(d) Under the assumptions of (a), the TDC discards all sufficiently large replace-
ments in a data set that satisfies the separation property (with any parameters).

Proof Part (a) is a direct consequence of Proposition 2 and Lemma 5.
(b) Let M be a data set obtained from D by replacing n − r + 1 of its elements

with a narrow and distant cluster. The modified data set contains only r − 1 original
observations so that the optimal set R∗ contains some modification. Then so does
C∗

j = C j (�
∗) for some j . Lemma A2 shows that the norm of m∗

j tends to infinity
together with the narrow cluster of replacements.

(c) The hypotheses imply min
{

n − r + 1, r − (g − 1)gd, r + 1 − n−u
1−

}
= n −

r + 1. (Note that  is maximum so that the first term does not exceed the last for
a given u.) Furthermore, the first condition in (a) follows from the first condition,
whereas the second condition in (a) follows from the choice of  and from second
condition. Finally, the condition 2(n − r) < u implies  > 0. The claim now follows
from Parts (a) and (b).

Claim (d) follows from Part (ε) of the proof of Proposition 2. �

The inequality n − (1 − )(r − 1) ≤ u implies u ≥ n − r + 2. I.e., the sizes
of the natural clusters must exceed the number of discarded elements in Part (a) of
Theorem 3. Moreover, the assumptions of Part (c) imply that these sizes exceed twice
the number of discarded elements.

The following corollary of Theorem 3 says that the TDC estimates of the means
are asymptotically robust on well-separated, balanced data sets if the parameter g is
set to its natural number of clusters.

Corollary 2 Let g ≥ 2, let 0 < η < δ < 1/g, let r =
⌈

n(1 − 1
2g + δ

2 )
⌉

, let

u =
⌈

n
(

1
g − η

)⌉
, and let  = δ−η

1− 1
g +δ

. Then, asymptotically,

βmean(n, g, r,Lu,,c) −→ 1

2

(
1

g
− δ

)
, as n → ∞.
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Fig. 3 Synthetic data set of Fig. 1: negative double-logarithmic HDBT-ratio-posterior-density plot for a
large number of minimum distance partitions with two clusters and no discarded elements

5 Two studies

We illustrate the method described in Sects. 2.3–2.5 with two examples and first recall
the simple data set of Fig. 1. As already seen there may exist minimum distance
partitions the maximum posterior densities (3) of which exceed that of the desired
partition. Figure 3 shows the negative double-logarithmic HDBT-ratio-posterior-den-
sity plot of the MDP’s found for the heteroscedastic full normal model with two
clusters, no discarded elements, and unknown cluster sizes for the synthetic data set
of Fig. 1. According to the method of Sect. 2.4, the most plausible MDP is the one
in the left lower region close to (66, 0.2). It belongs indeed to the desired partition of
the data set in two clusters of ten elements, each. The solution close to (61, 4.8) in
Fig. 3 with the largest posterior density represents the uppermost horizontal cluster in
Fig. 1.

Our second example is the Tiles data set, see Mucha et al. (2002), from archeometry.
It can be found under the URL www.uni-passau.de/ritter. Its objects consist presently
of 660 antique roman tiles collected in the Rhine valley between Strasbourg/France and
Frankfurt/Germany. Our questions are: which tiles originate from the same clay pits
and how many clay pits are represented? Feature data from X-ray Fluorescence Anal-
ysis about the contents of nineteen minerals and metals are available to this end, viz.,
flint SiO2, Titanium dioxide (titania) TiO2, Aluminium oxide (aloxite) Al2O3, Fer-
ric oxide (rust) Fe2O3, Manganese oxide MnO, Magnesium oxide (magnesia) MgO,
burnt lime CaO, Sodium oxide Na2O, Potassium oxide K2O, vanadium V, chromium
Cr, nickel Ni, zinc Zn, rubidium Rb, strontium Sr, yttrium Y, zirconium Zr, niobium
Nb, and barium Ba.

Although we expect cluster sizes of a hundred or less which are not sufficient for
safely estimating more than a hundred real parameters for each cluster, we used the
heteroscedastic full normal model with unknown cluster sizes (maximum a posteri-
ori) and unknown number of clusters. A look at the 2D scatter plots suggests marked
correlation between some of the features: SiO2 with MnO, CaO, Sr, and Zr, TiO2
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Fig. 4 Tiles data: scatter plot of the features Zn and Fe2O3 displaying outliers
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Fig. 5 Tiles data: negative double-logarithmic HDBT-ratio-posterior-density plot for the minimum dis-
tance clusterings of 1,100 replications for the heteroscedastic, full normal model with six clusters and 66
discarded points. The encircled solution in the left lower part is most promising

with Cr and Nb, CaO with Sr, and K2O with Rb. This fact allows us to reduce the
dimension of the sample space by deleting SiO2, TiO2, CaO, and K2O from the fea-
ture list so that d = 19 − 4 = 15. Like almost any real data set, the present one
contains outliers, see Fig. 4, and we apply the algorithm proposed in Sects. 2.3, 2.4,
and 2.5 with ten percent of discarded elements. The minimum cluster size was set to
d + 1 = 16.

Figure 5 shows the negative double-logarithmic HDBT-ratio-posterior-density plot
of the MDP’s of 1,100 replications for six clusters. The favorite solution at the left
end of the almost horizontal support line is encircled. A 2D representation of this
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Fig. 6 Tiles data: MnO–Y plot of the favorite MDP. The ellipses indicate the 0.8-quantiles of the clusters
and crosses stand for discarded points

Fig. 7 Tiles data: the BIC curve
for the favorite solutions with
three to nine clusters suggested
by the posterior-density-HDBT
ratio plots

clustering is shown in Fig. 6. Its cluster sizes are 145, 111, 111, 105, 61, and 61,
its HDBT ratio is 1/158. One or a few small clusters that cannot be detected by the
full normal model may be hidden in the set of discarded elements (crosses). Figure 6
shows that the assumed number of outliers is too small. The oblong shape of the left
lower ellipse points to two distant elements in the upper part of the figure which are
assigned to this cluster but do not fit in it.

The BIC curve for the favorite solutions obtained with three to nine clusters is
presented in Fig. 7. It clearly pleads for six clusters. It turns out that increasing the
number of clusters by one essentially splits one group in the preceding solution.

Acknowledgments We thank H.-H. Bock for a number of hints that improved the presentation. We also
thank the referees for their constructive suggestions.

Appendix

Lemma A1 Let g ≥ 2, let 0 <  ≤ 1/g, let a = (akj ) 1 ≤ k < g
1 ≤ j ≤ g

∈ N
(g−1)×g be

such that ‖a‖1 = ∑
k, j ak j > 0, let

∑
k ak j ≥ ‖a‖1 for all 1 ≤ j ≤ g, and put
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ak ··· = ∑
j ak j . Then

∑
k:ak ···>0

1

ak ···

∑
1≤ j<�≤g

ak j ak� ≥ κ‖a‖1. (15)

Proof Write the left hand side of (15) as

‖a‖1

∑
k:ak ···>0

ak ···
‖a‖1

∑
1≤ j<�≤g

ak j

ak ···
ak�

ak ···
= ‖a‖1

∑
k:ak ···>0

βk

∑
1≤ j<�≤g

Ak, j Ak,�.

Since β = (ak ···/‖a‖1)k:ak ···>0 is a probability vector and since A = (ak, j/ak ···)k:ak ···>0, j

is a stochastic matrix s.th. β A ≥  elementwise, the claim follows from an elementary
reasoning. �
Lemma A2 Let h ≥ 0 and let k ≥ 1. Let C = {x1, . . . , xh, y1, . . . , yk} consist of
h original data points and k replacements. Then the norm of the sample mean of C
tends to infinity as ‖y1‖ → ∞ and as yi − y1, 2 ≤ i ≤ k, remain bounded.

Proof The sum of C is
∑h

i=1 xi +ky1+∑k
i=2(yi − y1) from which the lemma follows.

�

References

Barnett V, Lewis T (1994) Outliers in statistical data. Wiley, Chichester
Becker C, Gather U (1999) The masking breakdown point of multivariate outlier identification rules. JASA

94:947–955
Bezdek JC, Keller J, Krisnapuram R, Pal NR (1999) Fuzzy models and algorithms for pattern recognition

and image processing. The handbooks of fuzzy sets series. Kluwer, Boston
Bock H-H (1985) On some significance tests in cluster analysis. J Class 2:77–108
Chen H, Chen J, Kalbfleisch JD (2004) Testing for a finite mixture model with two components. J R Stat

Soc Ser B 66:95–115
Cuesta-Albertos JA, Gordaliza A, Matrán C (1997) Trimmed k-means: an attempt to robustify quantizers.

Ann Stat 25:553–576
Dennis JE Jr (1981) Algorithms for nonlinear fitting. In: Powell MJD (ed) Nonlinear optimization 1981.

Procedings of the NATO Advanced Research Institute held at Cambridge in July 1981, Academic
Press, London

Donoho DL, Huber PJ (1983) The notion of a breakdown point. In: Bickel PJ, Doksum KA, Hodges JL Jr
(eds) A Festschrift for Erich L. Lehmann, The Wadsworth Statistics/Probability Series. Wadsworth,
Belmont, pp 157–184

Gallegos MT, Ritter G (2005) A robust method for cluster analysis. Ann Stat 33:347–380
Gallegos MT, Ritter G (2009) Using combinatorial optimization in model-based clustering under spurious

outliers and cardinality constraints. Comput Statist Data Anal (to appear)
García-Escudero LA, Gordaliza A (1999) Robustness properties of k-means and trimmed k-means. J Am

Stat Assoc 94:956–969
García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2008) A general trimming approach to robust

cluster analysis. Ann Stat 36:1324–1345
Gordon AD (1999) Classification. Monographs on statistics and applied probability, vol 82, 2nd edn. CRC

Press, New York
Hathaway RJ (1985) A constrained formulation of maximum-likelihood estimation for normal mixture

distributions. Ann Stat 13:795–800

123



Trimming algorithms 167

Hodges JL Jr (1967) Efficiency in normal samples and tolerance of extreme values for some estimates of
location. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability.
University of California Press, Berkeley, pp 163–186

Kéribin C (2000) Consistent estimation of the order of mixture models. Sankhyā 62(Series A):49–66
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