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Abstract The cluster analysis problem of partitioning a set of objects from
dissimilarity data is here handled with the statistical model-based approach of fit-
ting the “closest” classification matrix to the observed dissimilarities. A classification
matrix represents a clustering structure expressed in terms of dissimilarities. In clus-
ter analysis there is a lack of methodologies widely used to directly partition a set of
objects from dissimilarity data. In real applications, a hierarchical clustering algorithm
is applied on dissimilarities and subsequently a partition is chosen by visual inspec-
tion of the dendrogram. Alternatively, a “tandem analysis” is used by first applying
a Multidimensional Scaling (MDS) algorithm and then by using a partitioning algo-
rithm such as k-means applied on the dimensions specified by the MDS. However,
neither the hierarchical clustering algorithms nor the tandem analysis is specifically
defined to solve the statistical problem of fitting the closest partition to the obser-
ved dissimilarities. This lack of appropriate methodologies motivates this paper, in
particular, the introduction and the study of three new object partitioning models for
dissimilarity data, their estimation via least-squares and the introduction of three new
fast algorithms.
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1 Introduction

When dissimilarity data are observed or computed on a finite set of multivariate
objects, one of the most frequently applied statistical analyses for mining relevant
information is unsupervised classification. Objects are clustered into classes with the
property that those belonging to the same class have “small” observed pairwise dissimi-
larities and are perceived as similar to one another; while pairs of objects, belonging to
different classes, have “large” observed dissimilarities and are recognized as separate
and dissimilar. Such classes generally form partitions of objects and can be detected
via clustering methods.

In real applications, analysts normally use two common alternative approaches for
partitioning objects from dissimilarities. In the first, a hierarchical clustering technique
is applied (Bock 1974; Hartigan 1975; Jain and Dubes 1988; Kaufman and Rousseeuw
1990; Gordon 1999), and subsequently a partition is chosen by visual inspection of the
resulting dendrogram or by considering a cluster validity index for assessing the best
partition from the dendrogram. However, hierarchical clustering algorithms are not
specifically designed for the identification of a partition in the observed dissimilarities,
since they detect a possibly optimal indexed hierarchy (i.e., a set of nested partitions)
and thus a single partition may be chosen only as a byproduct of the hierarchical
method. The second common approach uses a tandem analysis for dissimilarity data,
by applying first a Multidimensional Scaling (MDS) method on dissimilarities and sub-
sequently a partitioning algorithm such as k-means or Gaussian mixture model, that is
applied to the (low-)dimensional point configuration resulting from MDS. However,
in this case also there is no direct identification of a partition from the observed dissi-
milarities. This implies that the dimensions detected by the MDS for approximating
dissimilarities via Euclidean distances are not necessarily the best ones for the follo-
wing partitioning step for objects, because MDS optimizes a loss function that is not
directly connected with the underlying clustering problem. The lack of appropriate
and widely employed methodologies for partitioning objects directly from dissimila-
rity data motivates this work. Besides, we intend to propose new clustering methods
following the model-based approach that has received attention, becoming popular
and attractive in the case of the usual two-mode (objects × variables) data, i.e., when
objects coordinates, (data vectors) are given (for reviews see Bock 1998; McLachlan
and Peel 2000; Fraley and Raftery 2002).

Model-based clustering in the case of dissimilarity data is the statistical approach of
fitting the “closest” classification matrix to data. A classification matrix is a clustering
model for dissimilarities, i.e., a special dissimilarity matrix with a semiparametric form
representing a partition described by two characteristics: heterogeneity for each class
and isolation between classes (see the beginning of Sect. 3 for a complete description).
The estimation of the parameters of the model (heterogeneities and isolations), in
this paper, is based on the Least-Squares (LS) method, while Maximum Likelihood
estimation is the topic of a following paper. This implies that the partitions obtained via
model-based clustering have optimality properties connected with these two widely
used statistical estimation methods and give a framework for putting cluster analysis
on a principled statistical footing (Oh and Raftery 2007).

Specifically, three new clustering models for dissimilarity data are proposed here.
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The first classification matrix hypothesizes the most parsimonious semiparametric
model with equal heterogeneities for each class of the partition and equal isolations
between classes; while the second relaxes these constraints allowing for different
heterogeneities and isolations. The third classification matrix is equal to the second
one with the additional property of estimating a supposing existing hierarchical rela-
tionship between classes.

It can be noted that the LS estimation of the first classification matrix where equal
heterogeneity and equal isolation are assumed is linked, in the special case discussed
in Sect. 4, to the well-known clique partitioning problem (Régnier 1965). Further-
more, it is useful to notice that when the classification matrix is a general ultrametric
the semiparametric approach of fitting an ultrametric matrix to dissimilarity data in a
least-squares sense has been discussed in Chandon et al. (1980), Carroll and Pruzansky
(1975, 1980) and De Soete (1984); Hubert et al. (1997), even though these metho-
dologies cannot be directly used to fit a partition as it is assumed in this paper. In
particular, Chandon et al. (1980); Hubert et al. (1997) obtained optimal solutions
for general indexed hierarchies for relatively small data sets by using branch-and-
bound and dynamic programming methods. Carroll and Pruzansky (1975, 1980) and
De Soete (1984) added to the least-square loss function a second function that penalizes
the triplets of dissimilarities failing to satisfy the ultrametric inequality.

An outline of this paper is as follows. In Sect. 2 some basic notions necessary to
describe the modeling approach to cluster analysis are discussed. Section 3 defines the
modeling approach of clustering when the observed data are dissimilarities and three
classification matrices defining three partitioning structures are described. Section 4
shows the semi-parametric LS estimation of the three proposed classification matrices
together with details on the corresponding algorithms.

The proposed algorithms have been tested in a simulation study reported in Sect. 5,
and with a data set analyzed in the literature, in Sect. 6. A final discussion follows in
Sect. 7.

1.1 Motivating and illustrative examples

Before we discuss in detail the different partitioning models we wish to present syn-
thetic experimental examples, including Monte Carlo simulations, showing how the
models behave in comparison with some known clustering methods and approaches
for partitioning objects from dissimilarity data.

Example (1). The first model (classification matrix) describes a clustering (parti-
tion), where equal heterogeneities α1 for each class and equal isolations α2 between
classes are hypothesized (for details see Sect. 3.1). Rubin (1967) defines such parti-
tions as well-structured perfect in K clusters. Note that when a partition is selected
from a dendrogram at a fixed level (height) α1, without preserving the levels below
α1, a well-structured perfect partition is implicitly chosen with heterogeneity α1 and
isolation α2 equal to the highest height of the dendrogram. Therefore, the LS estima-
tion of the first clustering model represents the model-based formal direct solution to
the common practice of choosing a partition by visual inspection of the dendrogram
obtained by an agglomerative hierarchical clustering method applied on the observed
dissimilarity data.
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An example can help to motivate and understand the use of the method proposed in
this paper. A well-structured perfect partition of n = 20 objects into K = 3 clusters
(C1, C2, C3) has been generated with classes C1 = {1, 2, 5, 10, 11, 12, 19, 20},
C2 = {3, 7, 8, 9, 13, 16, 18} and C3={4, 6, 14, 15, 17}. The heterogeneities for classes
and isolations between classes have been fixed all equal to α1 = 40 and α2 = 50,
respectively. The associated classification matrix has been perturbed by adding a left-
truncated normal random error, like in Oh and Raftery 2007 (µ = 0, σ = 9) to pre-
serve non-negativity (i.e., dil = (α1 + N (0,9): dil ≥ 0) if (i, l) ∈ Ck for k = 1, 2, 3;
otherwise dil = (α2 + N (0,9): dil ≥ 0) if i ∈ Ck and l ∈ Cm for k, m = 1, 2, 3;
k �= m). The obtained dissimilarity matrix is represented by a heat map in Fig. 1a.
The least-squares estimation of the well-structured perfect partition proposed in this
paper gives the correct partition described above (represented in Fig. 1b as a den-
drogram with only two different heights). Suppose that a researcher would try to
find the well-structured perfect partition by cutting the dendrogram from the agglo-
merative group average linkage (UPGMA), method (see Fig. 1c). For 3 clusters the
following partition is obtained: C1 = {1, 3, 19}, C2 = {7, 8, 9, 13, 16, 17, 18} and
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Fig. 1 a Heat map of the (20 × 20) dissimilarity matrix obtained by perturbing the classification matrix
associated to a well-structured perfect partition in three clusters with heterogeneity within classes equal to
α1 = 40 and isolation between classes equal to α2 = 50 (note that within highlighted squares, dissimilarities
are generally yellow or light blue (light grey in print), while outside squares are generally light or dark red
(dark grey in print). b Estimated least-squares well-structured partition. c Dendrogram from the UPGMA
applied on dissimilarity matrix represented in a. d Partition obtained by cutting the dendrogram in c
to obtain a partition in three clusters
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C3 = {2, 4, 5, 6, 10, 11, 12, 14, 15, 20}, (see Fig. 1d) which is quite different from the
original one above. Therefore, the UPGMA fails to identify the correct well-structured
perfect partition present in the dissimilarity data.

One may think that this is only limited to one artificial example, but by repeating the
experiment with a Monte Carlo simulation on other 100 sampled dissimilarity matrices
with a well-structured perfect partition generated as in the previous example (three
classes with about equal size on average, and α1 = 40 and α2 = 50) plus left-truncated
normal error, our least-squares estimation of the well-structured perfect partition has
found exactly the true generated one in 85 cases, with a very satisfactory average
Modified Rand index MRand = 0.97 (Hubert and Arabie 1985) between the generated
well-structured perfect partition and the partition estimated by our method. Similarly,
UPGMA was applied on the same 100 sampled dissimilarity matrices, but not sur-
prisingly the true partition was found only 42 times with an average MRand = 0.84.
Therefore, it can be concluded that the common practice of choosing a partition in the
dendrogram from the UPGMA is not very appropriate to find a well-structured perfect
partition in the dissimilarity data and in this situation it is better to use our proposed
method.

Example (2). The second clustering model, discussed in this paper, relaxes the
equality of heterogeneity for each class and isolation between classes, respectively,
insofar as it allows for defining different heterogeneities and isolations so as to specify
a well-structured partition in K clusters (Rubin 1967). The least-squares estimation
of the well-structured partition in K clusters specifies a new algorithm called square
K-means (see Sect. 4.3) that resembles the K -means algorithm (Ball and Hall 1967;
MacQueen 1967) except that it can be applied on dissimilarity data.

Also in this case an example can help to understand this new clustering model
proposed in the paper and motivate its usage. We generated a well-structured par-
tition of n = 20 objects into K = 3 classes C1 = {2, 3, 4, 6, 10, 12, 16}, C2 =
{1, 5, 8, 9, 11, 14, 15, 18} and C3 = {7, 13, 17, 18, 20}. The heterogeneities for
classes C1, C2 and C3 are chosen to be equal to Wd11 = 39.8, Wd22 = 41.1 and
Wd33 = 43.7, respectively, and the isolations between classes (C1, C2), (C1, C3) and
(C2, C3) are equal to Bd12 = 52.2, Bd13 = 51.5, Bd23 = 48.8, respectively. The asso-
ciated classification matrix has been perturbed by a left-truncated normal random error
(µ = 0, σ = 10); it is illustrated by a heat map in Fig. 2a. The least-squares estimation
of the well-structured partition proposed in this paper (via square K-means) reproduces
the true partition described above (see Fig. 2b). Suppose an analyst would try to find the
well-structured partition more simply by using the tandem analysis described above
and frequently used in practice. First, the classical MDS (Torgerson 1958; Gower
1966) on the dissimilarity matrix in Fig. 2a is applied. This matrix is not Euclidean, in
fact its doubly centered version is not positive definite, and has 3 negative eigenvalues.
The optimal LS reconstruction and the corresponding configuration in �17 is obtained
by replacing the negative eigenvalues with zeros (Keller 1962; Mathar 1985). Subse-
quently, K -means has been applied on the 17 dimensions with positive eigenvalues
which results in the partition C1 = {2, 3, 4, 6, 10, 12, 16}, C2 = {1, 5, 9, 11, 15, 19}
and C3 = {7, 8, 13, 14, 17, 18, 20}. Obviously it has two misclassified objects in
comparison with the generated well-structured one.
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Fig. 2 a Heat map of the (20 × 20) dissimilarity matrix obtained by perturbing the classification matrix
associated to a well-structured partition in three clusters with different heterogeneities for the three classes
and different isolations between classes. b Square K -means partition in three classes represented as a
dendrogram with four levels, the first three corresponding to the values of heterogeneity for the three
clusters

By repeating the experiment, via Monte Carlo simulations, on other 100 dissimi-
larity matrices, generated as in the second example, our least-squares estimation of
the well-structured partition via square K-means has found the correct partition
72 times with an average Modified Rand index MRand = 0.92. In addition, the tandem
analysis was applied on the same 100 sampled dissimilarity matrices to identify the
well-structured partition, but it was found only 62 times with an average MRand=0.88.
Therefore, the common practice to apply MDS followed by K -means is less appro-
priate to identify well-structured partitions than the square K-means proposed here.
This is due to the fact that MDS in any case only attains approximations to the given
dissimilarities, unless they are already Euclidean, and the dimensions found are not
necessarily the best for K-means to detect the optimal partition in the data.

Example (3). Our third clustering model (classification matrix), is equal to the
second one with the additional property to assume a hierarchical relationship between
clusters (hierarchical isolation). In other terms, it is required that the isolations between
classes satisfy the ultrametric inequality and specify a hierarchy into at most 2K − 1
nested classes.

This third clustering model is called hierarchical partition and can be conside-
red to construct a parsimonious tree, i.e. a hierarchy containing a limited number of
internal nodes (Gordon 1999). Some algorithms have been proposed for seeking parsi-
monious trees directly from (dis)similarity data (Hartigan 1967; Sriram 1990) and by
simplifying complete hierarchical classifications (Gordon 1987). Also in this case, an
example may help to motivate and understand our third model for clustering objects
from dissimilarity data. A hierarchical partition of n = 20 objects into K = 3 clus-
ters has been generated C1 = {1, 2, 3, 7, 10, 11, 12, 13}, C2 = {8, 14, 19, 20}, C3 =
{4, 5, 6, 9, 15, 16, 17, 18}, with heterogeneities for classes C1, C2 and C3 equal to
Wd11 = 38.6, Wd22 = 40.6 and Wd33 = 39.5, respectively and isolations between
pairs of classes: (C1, C2), (C1, C3) and (C2, C3) equal to Bd12 = 47.6, Bd13 =
48.4, Bd23 = 48.4, respectively. Since two isolations values are equal they satisfy
the ultrametric inequality and specify a hierarchical relation between classes. The
associated classification matrix has been perturbed by a left-truncated normal random
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error (µ = 0, σ = 9) and represented in Fig. 3a. The least-squares estimation of the
hierarchical partition proposed in this paper, via a specific algorithm named square
hierarchical K -means gives the same partition above described (see in Fig. 3b as a
dendrogram with 2K − 1 = 5 heights). A researcher could try to find the hierarchi-
cal partition by cutting the dendrogram of the group average linkage (UPGMA), (see
Fig. 3c) at the height of the partition in three clusters and retaining the linkages above
this height, thus obtaining: C1 = {1, 2, 3, 7, 10, 11, 12, 13, 15}, C2 = {19}, C3 =
{4, 5, 6, 8, 9, 14, 16, 17, 18, 20} (see Fig. 3d, by considering also the heights above
the cut of the dendrogram in Fig. 3c) which is different from the one above generated.
Therefore, the UPGMA fails to identify the correct hierarchical partition given in the
dissimilarity data.

By repeating, via Monte Carlo simulation, the experiment on other 100 sampled dis-
similarity matrices, generated as in the previous example, our least-squares-estimation
of the hierarchical partition has found the true one exactly 74 times, with a satisfactory
average Modified Rand index MRand = 0.95. The UPGMA has been applied on the
same 100 sampled dissimilarity matrices, but the given true partition has been found
only 42 times with an average MRand = 0.83. Therefore, also in this hierarchical case,
it can be concluded that the practice of choosing a partition in the dendrogram of the
UPGMA retaining also the heights above the chosen cut is not appropriate to find
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Fig. 3 a Heat map of the (20×20) dissimilarity obtained by perturbing the classification matrix associated to
a hierarchical partition in three clusters with different heterogeneity within classes and hierarchical isolation
between classes. b Estimated least-square hierarchical partition obtained via square hierarchical K -means.
c Dendrogram of the UPGMA applied on dissimilarity matrix represented in a. d Partition obtained cutting
the dendrogram in Fig. 1c to obtain a partition in three clusters
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a hierarchical partition existing in the dissimilarity data, and even in this situation a
more appropriate method is needed.

2 Basic clustering notions

For the convenience of the reader some basic notions necessary for the modeling
approach to cluster analysis are briefly listed here.

A partition C = {C1, . . ., Ck, . . ., CK } of the set of n objects O = {o1, . . ., on} is
a set of K disjoint non-empty subsets, such that their union is O itself. Each class Ck

has a cardinality nk .
The identification of the clustering structures in the data is strictly connected to the

notion of dissimilarity between objects. In general, a dissimilarity between objects
oi , ol is a function d satisfying the following properties: (i) dil ≥ 0, (i, l = 1, . . ., n);
(ii) dii = 0 for (i = 1, . . ., n); (iii) dil = dli for (i, l = 1, . . ., n). Several dissimilarity
measures have been proposed in cluster analysis literature, but this problem does not
concern this paper (for an extensive discussion, see for example Gordon 1999). A
dissimilarity matrix D on O is a (n × n) matrix D = [dil ], whose elements represent
dissimilarities between oi , ol(i, l = 1, . . ., n). The matrix D is a metric matrix, if its
triplets satisfy the triangle inequality: (iv) dil ≤ dik + dlk∀(i, l, k) ∈ O × O × O .

Two well-known properties characterize the classes Ck(k = 1, . . . , K ) of a par-
tition: isolationand heterogeneity. The isolation between classes Ck and Ch is the
extent to which Ck is dissimilar or separate from Ch . The isolation in this paper is
evaluated as a function of the dissimilarities between all pairs of objects, where one
belongs to Ck and the other to Ch . The heterogeneity or lack of cohesion within a class
Ck is the extent to which, objects within Ck are dissimilar or separate one from the
other. Similarly to isolation the heterogeneity of a class is here estimated as a function
of dissimilarities between objects belonging to Ck . These concepts of heterogeneity
and isolation are related to the internal cohesion and external isolation described by
Cormack (1971).

For a partition C in K classes there are K (K − 1) measures of isolation for pairs
of classes Ck and Ch(k, h = 1, . . ., K ) that can be arranged in a square dissimilarity
matrix DB = [Bdkh] of order K , where Bdkh ≥ 0 denotes the measure of isolation
between pairs of classes (Ck, Ch)k, h = 1, . . ., K of the partition C ; hence, Bdkk = 0
for all k. For the same partition C in K classes there is a measure of heterogeneity
for each class Ck(k = 1, . . ., K ), that can be arranged on the main diagonal of a
diagonal matrix DW, where Wdkh=0 for all k �= h and Wdkk ≥ 0 is the measure of
the heterogeneity of class Ck, k = 1, . . ., K . We are now in position to formulate the
statistical modelling approach to cluster analysis.

3 Clustering models for dissimilarity data

Suppose that a dissimilarity matrix D has been observed or computed on pairs of
objects belonging to the set O . Cluster analysis through matrix D is here handled by
the statistical model-based approach of fitting an expected clustering model (e.g., a
partition, hierarchy, pyramid, etc.) which is characterized by a specific dissimilarity
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Fitting semiparametric clustering models to dissimilarity data 129

classification matrix Dc = [cdil ] to the dissimilarity matrix D. Formally, the clustering
problem can be statistically specified by the following “error model”

D = Dc + E, (1)

where E = [ei j ] is a (n × n) random error matrix describing the part of the obser-
ved dissimilarity matrix D which is not explained by the classification matrix Dc. It
represents the extent to which an observed dissimilarity matrix D differs from its clas-
sification model represented by Dc. In order to complete the model description, the
random matrix E needs to be specified. Customary specifications are that the expected
value of eil is zero, i.e., E(eil)= 0. Then E(D) = Dc is the expected model for the
dissimilarity data. In this paper, the semi-parametric least-squares estimation method
will be adopted to estimate Dc (insofar, the distribution of E will not be specified).

The classification matrix Dc is a dissimilarity matrix that specifies the details of
the clustering structure and generally satisfies some further constraints on the triplets
cdil ,c dik,c dlk of its elements. The constraints are necessary to guarantee that the clas-
sification matrix is associated to a specific clustering model (e.g., partition, covering,
hierarchy, etc.).

3.1 Well-structures perfect partition: equal heterogeneity and isolation

The most parsimonious model for describing a clustering by using dissimilarities
assumes equal heterogeneity for each class of C and equal isolation between pairs of
classes (see Fig. 4). Suppose that value α1 measures the heterogeneity of the objects
within each class of C ; while α2 evaluates the isolation between classes. Of course,
it is suitable that α1 ≤ α2, because this implies that a function of the within cluster
dissimilarities is smaller than a function of the between cluster dissimilarities. Rubin
(1967) denotes data specifying such model a well-structured perfect partition and
Fisher and Van Ness (1971) provide a form of admissibility for this type of partitioning
model. Thus, this classification model will be called well-structured perfect partition.

Equal Isolation 
Between Clusters 

Equal Heterogeneity 

Within Clusters 

1

1

1

α

α

2

αα α2

Fig. 4 Well-structured perfect partition with equal heterogeneity and isolation
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The dissimilarity classification matrix Dc, associated to a well-structured perfect
partition is denoted by P and can be written as a function of α1, α2 and a (n × n) joint
membership matrix S identifying the partition. S is a similarity matrix, where entries
sii = 1, (i = 1, . . ., n), and sil=1 (resp., 0), if the i th and the lth objects belong (resp.,
do not belong) to the same class of the partition C (i, l = 1, . . . , n).

Thus, formally, the semiparametric well-structured perfect classification matrix P
is given by

Dc = P = α2(1n1′
n − S) + α1(S − In) = α2(1n1′

n − MM′) + α1(MM′ − In).

(2)

where 1n is a vector of n ones, In is the identity matrix of order n and 0 < α1 ≤ α2
and matrix M is a (n × K ) membership matrix, binary and row-stochastic, i.e., with
one nonzero element per row specifying a partition C of objects in K classes. In fact,
mik = 1 if the i th object oi belongs to the kth class Ck , mik = 0 otherwise.

In this model all the within clusters dissimilarities are supposed equal to α1 while
all the between clusters dissimilarities are hypothesized equal to α2. Thus, P is cha-
racterized by (M, α1, α2).

Definition 1 (Vicari and Vichi 2000) A 2-ultrametric matrix, is an ultrametric matrix
with off-diagonal elements that can assume one of at most 2 different values 0 <

α1 ≤ α2. Formally, P = [pil ], pil ≥ 0, pil = pli , pil ≤ max(pik, plk) ∀(i, l, k) and
pil ∈ {0, α1, α2} ∀(i, l), with 0 < α1 ≤ α2.

Remark 1 Matrix P is a metric matrix and in particular a 2-ultrametric matrix.

Example 1 Given a partition C = {C1 = {1, 2, 3}, C2 = {4}, C3 = {5, 6}} of 6
objects in 3 clusters, the following P is associated to C by fixing pi j = α1 if objects
oi and ol belong to the same class or pil = α2 if objects oi and ol belong to different
classes. This is a 2-ultrametric matrix where all triplets satisfy ultrametric inequality.

P =

1 2 3 4 5 6
1 0 α1 α1 α2 α2 α2

2 0 α1 α2 α2 α2

3 0 α2 α2 α2

4 0 α2 α2

5 0 α1

6 0

Any 2-ultrametric matrix can be represented by a parsimonious tree, i.e., a dendro-
gram with at most two levels (heights of the tree), briefly named 2-dendrogram. For
example in Fig. 5 the partition for n = 15 objects in five clusters C1 = {4, 13, 15},
C2 = {2, 5, 9, 14}, C3 = {7, 8, 11}, C4 = {6, 10, 12}, C5 = {1, 3} is represented.
The heterogeneity for each cluster is equal to 40.5 and the isolation between clusters
is equal to 50.2.
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Fig. 5 Representation of a 2-dendrogram. Five clusters (C1, . . ., C5) form a partition C . The values
α1 = 40.5 and α2 = 50.2

Lemma 1 A well-structured perfect partition C of O with heterogeneity α1 for each
class and isolation α2 for each pair of classes of C (with α1 ≤ α2) has associated
one-to-one a 2-ultrametric matrix P with values {0, α1, α2 : α1 ≤ α2}.
Proof In a well-structured perfect partition C with heterogeneity α1 and isolation
α2, every element oi of O belongs to only one class. Thus, any triplet (oi , ol , ok)

belongs, alternatively, to: (a) single set of C ; (b) two distinct sets, e.g., two elements
(oi , ol) belong to a set of C and ok to another set of C ; (c) three distinct sets of
C . Cases (a), (b), and (c) determine only three types of distance triplets, respectively:
(α1, α1, α1), (α1, α2, α2) and (α2, α2, α2), which, all verify the ultrametric inequality.
Thus, P is a 2-ultrametric matrix. Conversely, P obviously specifies a covering, (i.e., a
set of classes not necessarily disjoint), because pil = α1 is the distance between objects
oi and ol belonging to the same class; while pil = α2 is the distance between objects
oi and ol belonging to different classes. Moreover, since P is an ultrametric matrix
with values {0, α1, α2} and no distance triplets of type (α1, α1, α2) can be observed,
(implying classes with elements in common), thus it follows that the covering is
actually a partition C with heterogeneity α1 and isolation α2 �	
Lemma 2 (Bijection between well-structured perfect partitions and 2-ultrametric
matrices) Let C be the set of well-structured perfect partitions of O with hetero-
geneity α1 and isolation α2 and let DP be the set of 2-ultrametric matrices P with
values {0, α1, α2} then, there exists a bijection between C and DP .

Proof Lemma 1 can be applied to any partition C ∈ C with heterogeneity α1 and
isolation α2 and classification matrix P ∈ DP with values {0, α1, α2 : α1 ≤ α2}.
Thus, each element of C has associated one element of DP and vice versa. �	
Remark 2 It is worth to note that there is a dimensional restriction for the data vectors
that represent the dissimilarity matrix corresponding to the well-structured perfect
partition in a J dimensional space. The n objects representing a well-structured perfect
partition must lie in a at least J dimensional space where

J ≥ max(nk : k = 1, . . ., K ) − 1. (3)
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In fact, the nk units of each class Ck need at least J = nk − 1 dimensions to be
represented with pairwise distance equal to α1. Indeed, the nk units represent vertices
of a regular polytope if and only if they lie in (at least) a nk − 1-dimensional space
(e.g., three points are vertices of an equilateral triangle with side α1, that lies in a
two-dimensional space).

Remark 3 It is also useful to note that when a partition is selected from an arbitrary
dendrogram, by cutting it at a fixed level α1, and no other information is retained
on the partitions below and above α1, a well-structured perfect partition is implicitly
chosen with heterogeneity α1 and isolation α2 equal to the maximum level (height) in
the dendrogram.

Therefore, it is important to note that the LS estimation of a well-structured per-
fect partition directly from the observed dissimilarity data represents the model-based
formal direct solution to the common practice of choosing a partition by visual inspec-
tion of the dendrogram associated to an agglomerative hierarchical clustering method
applied on the observed dissimilarity data.

3.2 Well-structured partition: different heterogeneities and isolations

Let us now relax the hypothesis of equal heterogeneities for all classes and equal
isolations between classes of the partition. A second more flexible classification matrix
allows for specifying different heterogeneities and isolations (Fig. 6). This model has
some similarities with the one described by Bock (1998) in section 2.1.4. Given a par-
tition C = {C1, . . ., Ck, . . ., CK } of O such that objects within Ck have heterogeneity
Wdkk > 0 ∀k, while objects between Ck and Ch have isolation Bdkh > 0 ∀k, h(k �= h),
a dissimilarity classification matrix Q—defined as a function of the square matrices
of order K , DB = [Bdkh >0 : Bdkk =0, h, k =1, . . . , K (k �= h)], and DW =[Wdkk >

0 : Wdkh = 0, h, k = 1, . . . , K (k �= h)], and a membership matrix M—can be

Fig. 6 Well-structured partition
with different heterogeneity
measures and different isolation
measures

Different Isolations 
Between Clusters 

Different Heterogeneities 
Within Clusters 
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one-to-one associated to C . The semiparametric well-structured classification matrix
Q has the form,

Dc = Q = MDBM′ + MDWM′ − diag(MDWM′). (4)

Therefore, the classification matrix Q specifies a more flexible kind of partition, where
both the expected clusters heterogeneities and the expected between clusters isolations
may differ.

If we define DB = α2(1K 1′
K − IK ), and DW = α1IK , and α1 ≤ α2, then matrix

(4) coincides with matrix (2), i.e., Q = P and therefore matrix Q has associated a
well-structured perfect partition.

If K = n, i.e., there are n singletons, it follows that DB = D and DW = 0, and,
trivially, model (4) perfectly fits data. Model (4) can be rewritten in a form that does
not involve a classification matrix, but that can be still used to fit the dissimilarity data,

R = M(DB + DW)M′. (5)

Matrix R is not a classification matrix because it is not a dissimilarity matrix. In fact, on
the diagonal non null values representing within classes heterogeneities are reported.

However, as we will see in the following section, and we have anticipated in the
introduction, fitting this matrix to dissimilarity data will allow for defining a fast
clustering algorithm for fitting a partition to dissimilarity data. The classification matrix
Q and the matrix R specify a well-structured partition in K clusters if the largest
heterogeneity of a class of C is smaller than or equal to the smallest isolation between
two classes of C , i.e., if

max{Wdkk : k = 1, . . . K } ≤ min{Bdkh : h, k = 1, . . ., K , (h �= k)}, (6)

that is, within clusters heterogeneity values are not greater than between clusters
isolation values. Condition (6) could be considered to be too restrictive; consequently,
it can be replaced by less stringent conditions such as

mean{Wdkk : k = 1, . . . K } ≤ mean{Bdkh : h, k = 1, . . ., K , (k �= h)}; (7)

median{Wdkk : k = 1, . . . K } ≤ median{Bdkh : h, k = 1, . . ., K , (k �= h)}. (8)

3.3 Hierarchical partitioning model

Also the third classification matrix has associated a partition with the interesting and
useful property to include the hierarchical relationship between classes as shown in
Fig. 7. Thus, this classification matrix specifies a partition in K classes together with
the hierarchical structure among classes and, this implies also the knowledge of the
nested partitions in K − 1, K − 2, . . ., 1 classes.

Formally a partition with hierarchical structure between clusters, that will be brie-
fly called hierarchical partition, is specified by the set CH = {Ck, (k = 1, . . ., K ),
CK+1, . . ., C2K−1} = {C, CK+1, . . ., C2K−1}, formed by 2K − 1 classes, where
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Fig. 7 Hierarchical partition
with different heterogeneities
within clusters and different
isolations between clusters

Different Heterogeneities 
for each cluster 

Hierarchical structure Between 
Clusters  

Different Isolations 
Between Clusters 

the first C1, . . . , Ck represent the subsets of a partition C with heterogeneities Wdkk

(k = 1, . . ., K ) and the remaining CK+1, . . ., C2K−1 are obtained by K − 1 pairwise
possible amalgamations of subsets of C with isolations between classes Bdhk(h, k =
1, . . ., K ; h �= k), such that (6) is verified. Therefore, for each pair Ch, Cm ∈ CH ⇒
(Cm ∩ Ch) ∈ {Cm, Ch,∅}, i.e., for each pair of classes, belonging to a hierarchical
partition, either one is included in the other or they are disjoint. To define a hierarchical
partition in terms of Eq. (4) it is necessary that:

(i) the two matrices DW and DB specify a well-structured partition in K clusters
(i.e., satisfying (6));

(ii) matrix DB of order K is an ultrametric matrix (hence, it has at most K − 1
different off-diagonal values).

When conditions (i) and (ii) are satisfied the square matrix Q of order n is termed
(2K − 1)-ultrametric matrix. It is formally defined as follows.

Definition 2 A (2K − 1)-ultrametric matrix is a square ultrametric matrix of order n,
with off-diagonal elements that can assume one of at most (2K − 1) different values:
0 <W dkk ≤B dkh (k, h = 1, . . ., K ; h �= k). In fact, formally: Q = [qil ], qii = 0,

qil ≥ 0, qil = qli , qil ≤ max(qik, qlk) ∀(i, l, k); furthermore qil ∈ {0,Wdk,Bdkh},
with 0 <W dkk ≤B dkh ∀(k, h : h �= k).

Remark 4 The metric matrix Q satisfying (i) and (ii) is a (2K −1) -ultrametric matrix.
Matrix Q includes the diagonal values of DW that, for the well-structured property (6),
are the smallest K values identifying the first K levels of the ultrametric matrix Q.
Furthermore, matrix DB has K −1 different values identifying the remaining levels of
the ultrametric matrix. Therefore, DB controls the hierarchical relationship between
classes of the partition.

Lemma 3 A hierarchical partition in K classes CH of O with heterogeneities Wdkk

(k = 1, . . . , K ) and isolations Bdkh (k, h = 1, . . ., K , with 0 <W dkk ≤B dkh) is one-
to-one associated to a (2K − 1)-ultrametric matrix Q with values {0,Wdkk,Bdkh}.
Proof In a hierarchical partition CH , every element oi of O belongs to only one class
because a partition C is included in CH . Thus, any triplet (oi , ol , ok) belongs, alter-
natively, to: (a) single set Ck of C in CH ; (b) two distinct sets; (c) three distinct sets
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Ck, Ch, Cm of C in CH . Cases (a), (b) and (c) determine only three types of distance
triplets, respectively: (Wdkk,Wdkk,Wdkk), (Wdkk,Bdkh,Bdkh) and (Bdkh,Bdkm,Bdhm),
all verifying the ultrametric inequality. In fact, the first triplet satisfies the ultrametric
inequality because identifies an equilateral triangle. The second triplet is ultrametric
because Wdkk ≤B dkh , and the third triplet belongs to DB which is ultrametric by defi-
nition. Therefore, the (2K − 1)-ultrametric matrix has K levels Wdkk (k = 1, . . ., K )
associated to the classes Ck of the partition C in CH , while the remaining K -1 levels
of the ultrametric matrix DB are associated to the classes CK+1, . . ., C2K−1.

Conversely, each matrix Q has associated a hierarchical partition. In fact, Q specifies
a covering, because qil =Wdkk is the distance between objects oi and ol when they
belong to the same class Ck of C in CH ; while qil =Bdkh is the distance between objects
oi and ol when they belong to different classes Ck and Ch of C in CH . Moreover, since
Q is an ultrametric matrix and no triplets of type (Wdkk,W dhh,B dkh) can be observed,
it follows that classes of the covering do not have elements in common and form a
partition C in CH . Furthermore, classes CK+1, . . ., C2K−1 have a hierarchical structure
which is specified by the ultrametric matrix DB. �	
Lemma 4 (Bijection between hierarchical partitions and (2K − 1)-ultrametric
matrices) Let CH be the set of hierarchical partitions of O and let DPH be the set
of (2K − 1)-ultrametric matrices Q, then, there exists a bijection between CH and
DPH , i.e., each hierarchical partition has associated a matrix Q of the form (4) which
satisfies (i) and (ii), and vice versa.

Proof Lemma 3 can be applied to any hierarchical partition CH ∈ CH with heteroge-
neity α1 and isolation α2 and classification matrix Q ∈ DPH with values
{0, Wdk,B dkh}. Thus it follows that each element of CH has associated one element
of DPH and vice versa. �	

Any (2K −1)-ultrametric matrix can be represented by a dendrogram with at most
(2K − 1) levels (heights of the tree), briefly named (2K − 1)-dendrogram (see Fig. 8
and Example 2).

Example 2 Given the partition C ={C1 ={1, 2, 4, 5, 6}, C2 ={7, 9}, C3 ={3, 8, 10}}
of 10 objects in 3 classes with associated matrices DB, DW, and M

DB =
C1 C2 C3

0 4 5

0 5

0

DW =
C1 C2 C3

1 0 0

0 3 0

0 0 2

M′ =
o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

C1 1 1 0 1 1 1 0 0 0 0

C2 0 0 0 0 0 0 1 0 1 0

C3 0 0 1 0 0 0 0 1 0 1

.

It can be observed that property (6) is satisfied; thus, C is a partition in 3
well-structured clusters. In fact, 4 = min{dkh : h, k = 1, . . . , 3} > max{dkk : k =
1, . . . , 3} = 3. Furthermore, it can be verified that matrix DB is ultrametric, thus
matrix Q is ultrametric. It has associated the following 5-dendrogram with 5 different
nodes.
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C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

  0 Bd12 Bd13 Bd14 Bd15 Wd11 0 0 0 0 
DB= Bd12 0 Bd23 Bd24 Bd25 DW= 0 Wd22 0 0 0

Bd13Bd23 0 Bd34 Bd35   0 0 Wd33 0 0 
Bd14Bd24 Bd34 0 Bd45   0 0 0 Wd44 0
Bd15Bd25 Bd35 Bd45 0   0 0 0 0 Wd55

Wd33

Wd22

Wd44
Wd55

Wd11

Bd25Bd14

Bd13= Bd34

Bd12= Bd15= Bd24= Bd45= Bd23= Bd35

           

C6

C2

C1

C5

C3

C4

C7

C9

C8

Fig. 8 Representation of a (2K − 1)-dendrogram when K = 5, together with matrices DW and DB .

A 9-dendrogram is shown; the first five clusters (C1, . . ., C5) form a partition C ; clusters C6 =
{C1, C4}, C7 ={C2, C5}, C8 ={C6, C3}, C9 ={C8, C7}, specify the hierarchical structure of the partition

Q= o6 1 1 5 1 1 0 4 5 4 5 
o7 4 4 5 4 4 4 0 5 3 5 
o8 5 5 2 5 5 5 5 0 5 2 
o9 4 4 5 4 4 4 3 5 0 5 
o10 5 5 2 5 5 5 5 2 5 0 

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

o1 0 1 5 1 1 1 4 5 4 5 
o2 1 0 5 1 1 1 4 5 4 5 
o3 5 5 0 5 5 5 5 2 5 2 
o4 1 1 5 0 1 1 4 5 4 5 
o5 1 1 5 1 0 1 4 5 4 5 

Now it is necessary to estimate the unknown parameters of the three classification
matrices introduced in Sects. 3.1, 3.2, and 3.3. A least-squares estimation will be
adopted.

4 Least-squares estimation of the partitioning models and Algorithms

4.1 LS estimation of the well-structured perfect partition

The Least-Squares (LS) estimation of model (1), when the classification matrix is the
2-ultrametric matrix (2) identifying a well-structured perfect partition, is defined to be
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the mathematical program (indicated by (P1)) of finding P minimizing the following
quadratic constrained problem with respect to matrix S, the heterogeneity α1 and
isolation α2

F(S, α1, α2) = ||D − P||2 = ||D − α2(1n1′
n − S) − α1(S − In)||2 → min

S,α1,α2

subject to (P1)

P is 2-ultrametric matrix as in (2) with 0 < α1 ≤ α2 and

S is a joint membership matrix

(with sii = 1; sil = 1 (resp., 0) if oi , ol ∈ Ch (resp., oi , ol /∈ Ch)∀i, l).

Remark 5 If in Eq. (2), α2 = 1 and α1 = 0, then matrix P becomes: P = 1n1′
n−S. In

this case, it is interesting to see that problem (P1) is equivalent to the linear 0/1-integer
programming clique-partitioning problem (Régnier 1965),

Min
n−1∑

i=1

n∑

l=i+1

bil sil

subject to (P1′)

sil ∈ {0, 1} ∀(i, l); sik +slk −sil ≤1, sil +slk −sik ≤1, sik +sil −slk ≤1,∀(i, l, k);

where bil = 2dil − 1. The equivalence is a consequence of the following remarks
(Régnier 1965; Marcotorchino and Michaud 1982) due to pil = 1 − sil and

(i)
∑

1≤i<l≤n

(dil − pil)
2 =

∑

1≤i<l≤n

(dil − 1)2 +
∑

1≤i<l≤n

sil (2dil − 1)

= const +
∑

1≤i<l≤n

bil sil .

(ii) the O(n3) inequality constraints on S specify a joint membership matrix
identifying a partition C of O .

If integer variables si j are replaced by continuous variables: 0 ≤ sil ≤ 1, (1 ≤ i <

l ≤ n) the relaxation of (P1′) is a linear programming problem whose solution, when
all sil ∈ {0, 1}, is also the solution of (P1′). In practice, it appears that the relaxation of
(P1′) has often, but not invariably, a 0/1 solution (Grötschel and Wakabayashi 1989).
There can be more than one optimal solution and different solutions can be identified
by solving a series of linear programming problems in which different small random
quantities are added to the right hand sides of inequalities in (P1′). If the solution
that is obtained is not integral, more elaborate algorithms are required to provide
heuristic solutions to the clique-partitioning problem; several algorithms of this type
are reviewed by Hansen et al. (1994).
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Including the second formula in (2) in problem (P1) and rewriting constraints on
the membership matrix M, problem (P1) needs to be minimized, with respect to α1, α2
and M

F1(α1, α2, M) = ||D − α2(1n1′
n − MM′) − α1(MM′ − In)||2 → min

M,α1,α2
(9)

subject to (P2)

0 < α1 ≤ α2; (10)

mik ∈ {0, 1} (i = 1, . . ., n; k = 1, . . ., K ), (11)

P∑

p=1

mip = 1 (i = 1, . . ., n). (12)

Problem (P2) can be solved by considering a coordinate descent algorithm (see
Zangwill 1969) that will be described in Sect. 4.5, which alternates between the
updates of α1, α2 and M while decreasing the loss function (9). In this algorithm,
to update α1 and α2, let us first rewrite function F1(α1, α2, M) as

F1(α1, α2, M) = tr(DD) + α2
2 tr(1n1′

n − MM′)2 + α2
1 tr(MM′ − In)2

−2α2tr(D(1n1′
n − MM′)) − 2α1tr(D(MM′ − In)),

because it can be easily shown that tr((1n1′
n − MM′)(MM′ − In)) = 0.

4.1.1 Estimation of α1 and α2

By differentiating F1(α1, α2, M) with respect to α1 and α2, for a fixed M̂, we derive
the two normal equations,

∂ F1(α1, α2, M̂)/∂α1 = α1tr(M̂M̂ ′ − In)
2 − tr(D(M̂M̂ ′ − In)) = 0

∂ F1(α1, α2, M̂)/∂α2 = α2tr(1n1′
n − M̂M̂′)2 − tr(D(1n1′

n − M̂M̂′)) = 0,
(13)

which can be solved with respect to α1 and α2,

α1(M̂) = tr(M̂′DM̂)/tr(M̂M̂ ′ − In)
2 = 2

∑K
k=1

∑
i,l∈Ck ,i<l di j

∑K
k=1 n2

k − n
, (14)

α2(M̂) = (tr(1′
nD1n) − tr(M̂′DM̂))/tr(1n1n ′ − M̂M̂ ′)2

= 2
∑K−1

k=1
∑K

h=k+1
∑

i∈Ck ,l∈Ch ,i<l dil

n2 − ∑K
k=1 n2

k

, (15)

where nk denotes the cardinality of Ck .
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Such values minimize F1(α1, α2, M̂) without taking into account the constraint
0 < α1 ≤ α2 which is automatically satisfied (see Remark 6) if we start from a
feasible solution (i.e., an initial (α1, α2) such that 0 < α1 ≤ α2).

It is important to note that the estimator of the heterogeneity α1 is the arithmetic
mean of the within class dissimilarities of the partition C , while the estimator of the
isolation α2 is the arithmetic mean of the between class dissimilarities of C . In fact,
function (9) can be written as

F1(α1, α2, M) =
n∑

i=1

n∑

l=1
i �=l

(dil − α1)
2

K∑

k=1

mikmlk

+
n∑

i=1

n∑

l=1
i �=l

(dil − α2)
2

(
1 −

K∑

k=1

mikmlk

)
, (16)

where the first part in the right hand side is the deviance of the dissimilarities of
the objects belonging to a class of the partition C , while the second part is the
deviance of the dissimilarities between objects belonging to different classes of the
partition C .

4.1.2 Estimation of M

When α̂1 and α̂2 are fixed, function (16) can be minimized row by row for each mi of
M when all the remaining rows are fixed, i.e. when M = [m̂1, . . . , mi , . . . , m̂n]′.

Thus, the i th unit belongs to the kth class, i.e., mik = 1, if function (16) reaches
the minimum with respect to the assignment of the i th unit to any other vth class
v = 1, . . . , K (v �= k). Otherwise mik = 0. In formulas: for each row mi of M,
i = 1, . . . , n,

mik = 1, if F1(α̂1, α̂2, [m̂1, . . . , mi = ik, . . . , m̂n]′)
= min{F1(α̂1, α̂2, [m̂1, . . . , mi = iv, . . . , m̂n]′]) : v = 1, . . ., K (v �= k)}

mik = 0 otherwise.

where iv is the vth row of the identity matrix of order K .

4.2 LS estimation of the well-structured partition

The Least-Squares estimation of the parameters of the error model (1) when the clas-
sification matrix Q has the form (4) associated to a well-structured partition, defines
an optimization quadratic problem minimizing the following function with respect to
matrices M, DB and DW
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F2(M, DB, DW) = ||D − MDBM′ − MDWM′ + diag(MDWM′)||2

=
K∑

k=1

n∑

i=1

n∑

l = 1
i �= l

(dil − Wdkk)
2 mikmlk

+
K∑

h=1

K∑

k=1
k �=h

n∑

i=1

n∑

l=1
i �=l

(dil − Bdhk)
2 mikmlh → min

M,DB,DW
(17)

subject to (P2)

M binary and row stochastic, i.e., with constraints (11) and (12), (18)

well-structured partition, i.e., max{Wdkk : k = 1, . . . , K }
≤ min{Bdkh : h, k = 1, . . ., K , (h �= k)}, (19)

As noted before only constraints (18) are necessary to specify a partition of the objects
and they are the only ones really needed. The constraint (19) can be omitted in the
case the researcher does not necessarily require a partition with the well-structured
property (6), as it is common practice with cluster analysis methodologies.

4.2.1 Estimation of Dw

By differentiating (17) with respect to Wdkk(k = 1, . . . , K ) for a fixed M̂, and equating
to zero, the estimators are

Wdkk =
∑n

i=1
∑n

l=1,i �=l dil m̂ikm̂lk∑n
i=1

∑n
l=1,i �=l m̂ikm̂lk

= 2
∑

i,l∈Ck ,i<l di j

n2
k − nk

, (k = 1, . . ., K ). (20)

In fact, when D̂B and M̂ are fixed, the residual matrix
...
D = D − M̂ D̂B M̂′ is known

and function (17) can be written as

F2(M̂, D̂B, DW) = || ...
D − M̂DWM̂′ + diag(M̂DWM̂′)||2, (21)

which is minimized by

DW = diag(M̂′DM̂)[(M′M̂)2 − M′M̂)]+, (22)

where A+ denotes the Moore-Penrose inverse of matrix A.
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4.2.2 Estimation of DB

By differentiating (17) with respect to Bdkh (k, h = 1, . . . , K ) for a fixed M̂ and
equating to zero, the estimators are

Bdkh =
∑n

i=1
∑n

l=1,i �=l dil m̂ikm̂lh∑n
i=1

∑n
l=1 m̂ikm̂lh

= 2
∑

i∈Ck ,l∈Ch ,i<l dil

nknh
, (k, h = 1, . . ., K ). (23)

In fact, when D̂W and M̂ are fixed, matrix D̃ = D − M̂D̂WM̂′ + diag(M̂D̂WM̂′) is
known and function (17) can be written as

F2(M̂, DB, D̂W) = ||D̃ − M̂DBM̂′||2. (24)

The minimization of (24) is a Penrose multivariate regression problem with solution

DB = (M̂′M̂)−1M̂′D̃M̂(M̂′M̂)−1

= (M̂′M̂)−1M′[D − M̂D̂WM′ + diag(M̂D̂WM′)]M̂(M̂′M̂)−1

= (M̂′M̂)−1M̂′DM̂(M̂′M̂)−1 − diag((M̂′M̂)−1M̂′DM̂(M̂′M̂)−1), (25)

which corresponds, element by element, to the solution (23).

4.2.3 Estimation of M

When D̂W and D̂B are fixed, function (17) can be minimized row by row for each mi

of M, when all remaining rows are fixed, i.e., when: M = [m̂1, . . . , mi , . . . , m̂n]′.
Thus, the i th unit belongs to the kth class, i.e., mik=1, if function (17) reaches
its minimum with respect to the assignment of the i th unit to any other vth class
v = 1, . . . , K (v �= k). Otherwise mik = 0. In formulas, for each row mi of M, i =
1, . . . , n,

mik = 1, if F2(D̂W, D̂B, [m̂1, . . . , mi = ik, . . . , m̂n]′)
= min{F2(D̂W, D̂B, [m̂1, . . . , mi = iv, . . . , m̂n]′]) : v = 1, . . ., K (v �= k)}

mik = 0 otherwise.

where iv is the vth row of the identity matrix of order K .

4.3 The square K-means for dissimilarity data

The Least-Squares estimation of the parameters of the error model (1) when the matrix
used for modelling the partition is R, as given in (5), specifies the following quadratic
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constrained problem to be minimized with respect to matrices M, DB and DW

F3(M, DB, Dw) = ||D − M(DB + DW)M′||2

=
K∑

k=1

n∑

i=1

n∑

l=1

(dil − Wdkk)
2 mikmlk

+
K∑

h=1

K∑

k=1
k �=h

n∑

i=1

n∑

l=1

(dil − Bdhk)
2 mikmlh → min

M,DB,DW
(26)

subject to (P2*)

M binary and row stochastic, i.e., constraints (11) and(12), (27)

well-structured partition,

i.e., max{Wdkk : k = 1, . . . , K } ≤ min{Bdkh : h, k = 1, . . ., K , (h �= k)}.
(28)

Problem (P2*) is quite similar to problem (P2) with the distinction that the difference
between the main diagonal entries of matrices D and R is estimated. Again, constraint
(28) is imposed only if we are interested to obtain a well-structured partition.

4.3.1 Estimation of DB + DW

When M̂ is fixed the minimization of (26) is again a Penrose multivariate regression
problem with solution

DB + DW = (M̂′M̂)−1M̂′DM̂(M̂′M̂)−1. (29)

By substituting (29) into (26) it remains to minimize,

F3(M) = ||D − M̂(M̂′M̂)−1M̂′DM̂(M̂′M̂)−1M̂′||2 = ||D − HMDHM||2, (30)

where HM = M̂(M̂′M̂)−1M̂′ is the n × n idempotent orthogonal projection matrix on
the subspace spanned by the columns of M̂.

4.3.2 Estimation of M

The estimation of M can be achieved by a similar procedure as defined in Sect. 4.2.1
by using function (30). Thus, for each row mi of M, i = 1, . . . , n,

mik = 1, if F3(D̂W, D̂B, [m̂1, . . . , mi = ik, . . . , m̂n]′)
= min{F3(D̂W, D̂B, [m̂1, . . . , mi = iv, . . . , m̂n]′]) : v = 1, . . ., K (v �= k)}

mik = 0 otherwise.

where iv is the vth row of the identity matrix of order K .
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The algorithm shown in this section is named square K-means because it resembles
the well-known technique for partitioning data (Ball and Hall 1967; MacQueen 1967)
as explained below. The term “square” is used to distinguish our method, applied
on a square dissimilarity matrix from the usual “rectangular” K -means applied on
rectangular data matrices (units × variables).

In classical MDS (Torgerson 1958; Gower 1966), dissimilarities (squared euclidean)
are converted into scalar products, by the transformation S = −1/2JDJ, where matrix
J = In − (1/n)1n1′

n is the n × n centering operator. The scalar products, as given by
XX′, are reconstructed in a LS sense by J dimensions by using the n × J (J ≤ n − 1)
matrix of objects coordinates X = VL1/2, where the columns of the n × J matrix V
are the orthonormal eigenvectors corresponding to the J largest positive eigenvalues
which themselves are the diagonal entries of the J × J diagonal matrix L. When S
is not positive definite, the optimal J -dimensional LS reconstruction is obtained by
replacing the negative eigenvalues with zeros (Keller 1962; Mathar 1985).

Thus, if D is a square Euclidean distance matrix then it can be converted into the
scalar product matrix XX′ or if X is directly observed then function (30) and the
problem (P2*) can be rewritten

F4(M) = ||XX′ − HMXX′HM||2 = ||XX′ − MX̄X̄′M′||2 → min
M

(31)

subject to (P2**)

M binary and row stochastic, i.e., constraints (11) and(12), (32)

which represents the loss function of the problem called here square k-means for scalar
product matrices, where X̄ = (M′M)−1M′X is the centroid matrix also obtained in
the usual K -means algorithm for data matrices X.

In fact, the K -means algorithm (Ball and Hall 1967; MacQueen 1967) has associa-
ted the error model

X = MX̄ + E1, (33)

where E1 is the matrix of error terms of dimension n × J . The LS solution of the
K -means model is obtained by minimizing the loss function tr(E′

1E1) = ||X−MX̄||2,
subject to binary and row stochastic constraints on M.

In terms of scalar products, the direct modeling formulation of the squared k-means
is

XX′ = MX̄X̄′M′ + E2, (34)

where E2 is a square matrix of error terms of dimension n. The LS solution of the
square k-means is given by minimizing problem (P2**) with loss function (31).

Thus, problem (P2*) can be considered the squared k-means for dissimilarity
matrices, with error model: D = R + E3.
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4.4 LS estimation of the hierarchical partition model—square hierarchical K -means

Here the same problem of the previous section has to be solved with the additional
constraints that matrix DB has to be ultrametric. Formally, it is necessary to define the
following quadratic constrained problem to be minimized with respect to matrices M,
DB and DW

F2(M, DB, Dw) = ||D − MDBM′ − MDWM′ + diag(MDWM′)||2 (35)

subject to (P3)

M binary and row stochastic, i.e., constraints (11) and (12), (36)

well-structured partition, i.e., max{Wdkk : k = 1, . . . , K }
≤ min{Bdkh : h, k = 1, . . ., K , (h �= k)}, (37)

DB ultrametric. (38)

The ultrametricity constraint of matrix (38) actually implies the O(K 3) constraints on
the triplets of DB ,

Bdkh ≤ max(Bdkq ,B dhq),

Bdhq ≤ max(Bdkh,B dkq), k = 1, . . ., K , h = k, . . ., K , q = h, . . ., K ;
Bdkq ≤ max(Bdkh,B dhq).

(39)

Such constraints can be synthesized into a single (Carroll and Pruzansky 1980) one
by requiring

∑

(k,h,q)∈�(DB)

(Bdkq − Bdhq)2 = 0, (40)

where �(DB) = {(k, h, q) : 1 ≤ k, h, q ≤ K , k ≤ h ≤ q : Bdkh ≤ min(ukq , uhq)},
since for each triplet the largest two values must be equal and their squared difference
null.

4.4.1 Estimation of DB

When D̂W and M̂ are fixed, matrix D̃ = D − M̂D̂WM̂′ + diag (M̂D̂WM̂′) is known
and function (35) can be written as

F2(DB) = ||D̃ − M̂DBM̂′||2 = ||(M̂′M̂)−1M̂′D̃ M̂(M̂′M̂)−1 − DB||2. (41)

subject to (P3a)

DB ultrametric. (42)

This corresponds to find the closest, in the LS sense, ultrametric matrix to the true DB
matrix.

The objective function (41) subject to ultrametric constraints (39) has been refor-
mulated by Carroll and Pruzansky (1980) as an unconstrained problem by adding to
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(41) the penalty function (40) multiplied by a penalty parameter. Then, a sequence
of parameterized unconstrained optimizations, for increasing values of the penalty
parameter, by using originally a gradient-based procedure, or the conjugate gradient
(De Soete 1984) or later the truncated-Newton or the quasi-Newton (Vichi 1993) is
solved. Vichi (1994) solved (P3a) more efficiently by rewriting constraints (39) and
permuting indices (h, k, q) so as:

Bdhq −Bdkq = 0,

for Bdhk ≤ min(Bdhq ,B dkq)h = 1, . . . , K − 2; k = h + 1, . . . , K − 1;
q = k + 1, . . . , K , (43)

and using a sequential quadratic programming algorithm (SQP) (Powell 1983), or
grouping the constraints into more than one quadratic as in (40) (Vichi 1996). This
last approach allows for bounding correctly the feasible region and consequently redu-
cing the computational complexity as found in several simulated and observed data. A
reduction of time and space complexity for solving (P3a) can be achieved by recogni-
zing matrix DB as ultrametric with O(K 2 log K ) time complexity instead of O(K 3).
This is accomplished via the recognition procedure suggested by Bandelt (1990), for
sequential algorithms and by Dahlhaus (1993) for parallel algorithms: sorting Bdhk in
O(K 2 log K ) with heap-sort; taking the minimum Bdhk of the ordered list; verifying
if Bdhq – Bdkq = 0, for all k ∈ {1, . . . , K } − {h, k}; deleting h; and proceeding in the
ordered list with the smallest Bdkqk, q �= h, until only two objects are left. Already for
small data sets this procedure reduces significantly the time complexity as observed
in our experiments.

When such heuristic algorithms are not at hand, a solution to problem (P3a) can
be achieved by applying the hierarchical group average link clustering (UPGMA) on
matrix

(M̂′M̂)−1M̂′D̃M̂(M̂′M̂)−1.

Since (P3a) has a closed non-convex feasible region (ultrametric cone) (Critchley
and Fichet 1994) and it is known to be an NP-hard classification problem (Krivánek
and Morávek 1986), its global minimum solution cannot be always guaranteed and
the convergent sequence of ALS can be broken by a local minimum for (P3a). This
problem is overcome by retaining for (P3a) only solutions where the objective function
does not increase.

After describing the LS estimation of the parameters of the models proposed in
Sect. 3 we are now in position to describe the steps of the necessary coordinate descent
algorithms.

4.5 Algorithm for the well-structured perfect partition

The Least-Squares estimates of the loss function F(α1, α2, M) are computed by a
coordinate descent algorithm also known as alternating least-squares algorithm, where

123



146 M. Vichi

parameters α1, α2 and matrix M are updated in turn by minimizing the loss func-
tion F(α1, α2, M), conditionally upon the other fixed parameters. At each updating
F(α1, α2, M) does not increase and generally decreases, generating a sequence of
solutions monotonically converging to a stationary point, which in the applications is
usually at least a local minimum of the problem.

The ALS algorithm can be described by two basic steps (steps 1 and 2) that are
sequentially repeated after an initialisation step and until a stopping rule is satisfied.

Step 0: Initialisation: a small non negative arbitrary convergence tolerance value
(threshold) ε is chosen and an initial feasible partition M is given, i.e., such that
α1(M) ≤ α2(M). Note that initializing α1(M) ≤ α2 (M) guarantees to obtain a final
solution with α1(M) ≤ α2(M) as shown in Remark 6 below.

Step 1: Updating α1 and α2 for fixed M̂.
For the current matrix M̂, the update of α1 and α2, as described in Sect. 4, is given

by

α1 = trM̂′DM̂/tr(M̂M̂ ′ − I)2

α2 = (tr1′D1 − trM̂′DM̂)/tr(11′ − M̂M̂ ′)2.

Step 2: Updating M for fixed α̂1 and α̂2.
For the current values α̂1 and α̂2, the updates of M is given by solving an assignment

problem where, for the i th row of M

mik = 1, if F1(α̂1, α̂2, [m̂1, . . . , mi = ik, . . . , m̂n]′)
= min{F1(α̂1, α̂2, [m̂1, . . . , mi = iv, . . . , m̂n]′)} : v = 1, . . ., K (v �= k)}

mik = 0 otherwise.

Therefore, for each row of M the unique element equal to 1 is set in the column
that minimizes the loss function F(α1, α2, M), for a fixed α̂1 and α̂2. Passing to the
following row, the loss function never increases and generally decreases.

Stopping rule. The function value F(α1, α2, M) is computed for the current values
of α̂1, α̂2 and M̂. When such updated values have decreased considerably the function
value (more than the threshold ε), α1, α2 and M are updated further according to
Steps 1 and 2. Otherwise, the process is stopped. Since α̂1 and α̂2 can be directly
included in F(α1, α2, M) it remains to minimize F with respect to matrix M, which is
a discrete optimization problem. Thus the final solution is obtained when no changes
are observed from one step to the following or when a maximum number of iterations
has been reached.

Since the algorithm does not necessarily attain the global optimal solution of the
optimization problem, it is advisable to start the algorithm from different random
configurations and retain the best solution in terms of minimum function value among
the different runs.
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Remark 6 If the algorithm is started from a feasible solution (i.e., α1 ≤ α2), the
algorithm will produce new values α1, α2, such that 0 < α1 ≤ α2, according to
formulas (14) and (15). This can be proved if we consider that the total deviance
T = ||D − d̄1n1′

n||2 can be decomposed as

T = ||D − d̄1n1′
n||2

= F1(α1, α2, M̂) + ||(d̄ − α1)(M̂M̂′ − I)||2
+||(α2 − d̄)(1n1′

n − M̂M̂′)||2,
where d̄ = 1

n(n−1)

∑n
i=1

∑n
l=1,i �=l dil , that is

T =
n∑

i=1

n∑

l=1
i �=l

(
dil − d̄

)2

= F1(α1, α2, M̂) + (
α1 − d̄

)2
n∑

i=1

n∑

l=1
i �=l

K∑

k=1

m̂ikm̂lk

+ (
α2 − d̄

)2
n∑

i=1

n∑

l=1
i �=l

(
1 −

K∑

k=1

m̂ikm̂lk

)
.

Now, T is constant, hence the minimization of F1(α1, α2, M̂) with respect to α1 and
α2 is equivalent to the maximization of

B = (d̄ − α1)
2||(M̂M̂′ − I)||2 + (α2 − d̄)2||(1n1′

n − M̂M̂′)||2

= (d̄ − α1)
2

(
K∑

k=1

n2
k − n

)
+ (α2 − d̄)2

(
n2 −

K∑

k=1

n2
k

)
.

Furthermore,

d̄ =
α1

(∑K
k=1 n2

k − n
)

+ α2

(
n2 − ∑K

k=1 n2
k

)

n2 − n
.

Hence, d̄ is the weighted arithmetic mean of the current α1 and α2, and therefore
0 < α1 ≤ d̄ ≤ α2, if α1 ≤ α2. Now at the pth step, let us suppose that the updated
alpha’s fulfill 0 < α̂

(p)
1 ≤ α̂

(p)
2 and that function (17) has value B(p). Thus if:

B(p+1) =
(
α̂

(p+1)
1 − d̄

)2 n∑

i=1

n∑

l=1
i �=l

K∑

k=1

m̂(p+1)
ik m̂(p+1)

lk

+
(
α̂

(p+1)
2 − d̄

)2 n∑

i=1

n∑

l=1
i �=l

(
1 −

K∑

k=1

m̂(p+1)
ik m̂(p+1)

lk

)
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B(p) =
(
α̂

(p)
1 − d̄

)2 n∑

i=1

n∑

l=1
i �=l

K∑

k=1

m̂(p+1)
ik m̂(p+1)

lk

+
(
α̂

(p)
2 − d̄

)2 n∑

i=1

n∑

l=1
i �=l

(
1 −

K∑

k=1

m̂(p+1)
ik m̂(p+1)

lk

)

the sum of the squared Euclidean distance between d̄ and α̂
(p+1)
1 and between α̂

(p+1)
2

d̄ does not decrease with respect to the previous step and always remains non-negative;
it follows that α̂

(p+1)
1 ≤ α̂

(p+1)
2 still holds.

4.6 Algorithms for the well-structured partition and the hierarchical partition models

Even in this case, a coordinate descent algorithm can be described by two basic steps
which are sequentially repeated, after the initialisation of the parameters and until a
stopping rule is satisfied.

Step 0: Initialisation: a small convergence tolerance value ε is fixed and an initial
feasible partition M is given, i.e., such that max {Wdkk k = 1, . . . K } ≤ min{Bdkh :
h, k = 1, . . ., K , (h �= k)}. However, if we are not necessarily interested to find a
well-structured partition, M can be randomly chosen.

Step 1: Updating DW and DB.
For the current matrix M̂, the updates of DW and DB are given by

DW = diag(M̂′DM̂)[(M̂′M̂)2 − M̂′M̂)]+,

DB = (M̂′M̂)−1M̂′[D − M̂D̂WM̂′ + diag(M̂D̂WM̂′)]M̂(M̂′M̂)−1.

For the Square Hierarchical K -means algorithm the following step has to be added

Step 1′: Second Update of DB (Only for the Square hierarchical K -means).
The UPGMA algorithm is applied to DB to obtain a new DB satisfying the ultra-

metric inequalities.

Step 2: Updating M
For the current matrices D̂W and D̂B, the update of M is given by solving an

assignment problem.
For each row mi of M, i = 1, . . . , n,

mik = 1, if F2(D̂W, D̂B, [m̂1, . . . , mi = ik, . . . , m̂n]′)
= min{F2(D̂W, D̂B, [m̂1, . . . , mi = iv, . . . , m̂n]′]) : v = 1, . . ., K }

mik = 0 otherwise.

where iv is the vth row of the identity matrix of order K .
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Therefore, for each row i th of M the unique element equal to 1 is set in the column
(class of the partition) that minimizes the loss function F2(D̂B, D̂W, [m̂1, . . . , mi =
ik, . . . , m̂n]′), for a fixed D̂B, D̂W. Passing to the next row, the loss function never
increases and generally decreases.

Stopping rule. The function value F2(DB, Dw, M) is computed for the current values
of D̂B, D̂W and M̂. When such updated values have decreased considerably the function
value (more than an arbitrary small convergence tolerance value ε), DB , Dw and M
are updated once more according to Steps 1 and 2.

Otherwise, the process is considered to have converged.

Remark 7 The following decomposition of the total deviance of the dissimilarities
holds

T =
n∑

i=1

n∑

l=1
i �=l

(
dil − d̄

)2

= F(M̂, DB, Dw) +
K∑

k=1

(
Wdkk − d̄

)2
(

n2
k − nk

)

+
K∑

k=1

K∑

h=1
k �=h

(
Bdkh − d̄

)2
nknh .

where

d̄ =
∑K

k=1 Wdkk
(
n2

k − nk
) + ∑K

k=1
∑K

k=1,k �=h Bd
kh

nknh

n2 − n
.

Hence, d̄ is the weighted arithmetic mean of the current Wdkk and Bdkh , and the-
refore Wdkk ≤ d̄ ≤B dkh , if Wdkk ≤B dkh,∀h, k. Furthermore, since T is constant
the minimization of F2(M̂, DB, Dw) with respect to Wdkk,B dkh , is equivalent to the
maximization of

B =
K∑

k=1

(
Wdkk − d̄

)2
(

n2
k − nk

)
+

K∑

k=1

K∑

h=1
k �=h

(
Bdkh − d̄

)2
nknh . (44)

If the solution at the pth step satisfies the well-structured partition property Wd(p)
kk ≤

Bd(p)
kh ∀h, k, and function (44) has value B(p), the algorithm produces, at (p+1)th step,

new values Wd(p+1)
kk ,Bd(p+1)

kh , still satisfying the well-structured partition property. In
fact, B(p+1) ≥ B(p) and therefore the sum of the squared Euclidean distance between
d̄ and Wd(p+1)

kk and between Bd(p+1)
kh and d̄ does not decrease with respect to the

previous step and always remains non negative; it follows that Wd(p+1)
kk ≤ Bd(p+1)

kh
still holds.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9 Generated dendrogram with low, medium and high error levels. The cases a–c refers to n = 50
objects; the cases d–f refers to n = 200 objects

5 Simulation studies

In order to check the performance of the proposed algorithms, a simulation study has
been considered to test the ability in recovering the true partitions and the sensitivity
of the algorithms to the problem of local minima.

The dissimilarity matrices D have been generated according to the general error
model (1), where the classification matrix Dc has one of the three semiparametric
forms (2), (4) or (4) with DB ultrametric, i.e., the well-structured perfect partition, the
well-structured partition in K clusters, and the hierarchical partition, respectively.

The number of clusters has been fixed to K = 3 and our data sets have n = 50 or
200 objects with approximately equal-sized clusters.
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Three error levels have been considered by adding to the model left truncated
and centered normal random values. The low perturbation of the first level (0.2% of
the Residual Sum of Squares (RSS)), can be observed in Fig. 9a and d where the
well-structured partition in three separated clusters is still clearly observable. On the
other hand, when the error level is high (8.5% RSS), the three clusters are hardly
recognizable, as is shown in Fig. 9c and f. The proposed algorithms have been applied
on the perturbed dissimilarity matrices to recover the clusters and, specifically, the
original partitions.

Two starting point configurations have been proposed. The generated dissimilarity
data values dil are sorted in ascending order (considering only the upper triangle of
the matrix, i.e., excluding dii = 0) and subsequently split into two sets dW , dB. The
first set is formed by the 0.8 × n(n − 1)/4 smallest dissimilarities, i.e., the 80% of
those that potentially are the within clusters dissimilarities; while the second set is
formed by the 80% of the largest dissimilarities that should represent the between
classes dissimilarities.

In the first random starting procedure the elements of matrices DW and DB are
sampled from normal distributions with mean equal to mean(dW) and mean(dB) for
DW and for DB, respectively and standard deviation equal to 2, for both cases.

In the second random starting procedure the elements of matrices DW and DB are
sampled from dW, dB, respectively.

Combining, the two sizes of the dissimilarity matrices, the two different starting
procedures and the three error levels, there are 12 different experimental situations.
For each one, 100 data sets have been generated.

The performance of each algorithm has been evaluated by computing the following
measures for each cell of the experiment (Tables 1, 2, 3, 4):

1. Average MRand(M,M̂t ); where MRand is the Modified Rand Index (Hubert and
Arabie 1985) between the true M and the fitted matrix M̂t t = 1, . . ., 100.

2. Percentage of times the fitted partition gives a loss function value smaller or
equal to the loss function value of the true partition, and, in parentheses, the
percentage of times the fitted partition is equal to the true partition (i.e., such that
MRand(M,M̂t ) = 1).

3. Percentage of times where the fitted partition has the loss function value greater
than the value of the true partition (“sure” local optima).

4. Average number of iterations of the algorithm.

The first two measures are computed to evaluate the goodness of the algorithms in
recovering the true clustering. The third measure is introduced to study the local
minima problem, because it represents the number of times the algorithm is trapped
into a local minimum. Of course, this is only a lower bound of the true number. The
fourth measure concerns the computational complexity.

All measures depend on the number of times the algorithm is run. To study the
sensitivity of the performance of the algorithms to the number of random starts, we
have considered 1, 5, 10, 20 and 30 random starts for each algorithm. They are nested,
in the sense that the algorithm was run 30 times with different random starts and: the
first solution, the best of first 5, 10, 20 and 30 solutions has been retained. In this way,
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Table 5 Comparison of K -means, UPGMA, square K -means and square hierarchical K -means

Methods MRand (K = 6) MRand (K = 7)

K -Means 0.6335 0.6843

UPGMA with cut at K clusters 0.9024 0.7959

Square K -means 0.9301 0.7936

Square hierarchical K -means 0.7329 0.8277

MRand has been computed between the best partition in K = 6 and K = 7 classes and the expected
partition in seven classes
The largest MRand is highlighted in bold

the comparability among results corresponding to algorithms with different numbers
of random starts is guaranteed and some computational time saved.

Of course, the same starting configurations have been used for all the algorithms.
The simulation results for 50 objects are reported in Tables 1, 2 and 3 for the

three classification matrices. The average performance measures show a significant
improvement in the identification of the true partition when the solution is obtained
from a large number of random initial solutions.

The first procedure for random initial starts seems to give generally better results
with respect to the second one.

Table 4 shows the results of the simulation study for 200 objects with model (4)
with the well-structured partition in 3 clusters. Similar considerations to the cases
above follow, even for this size of the data.

6 Application on a real data set

The Richard Forsyth’s zoological data set (UCI repository of machine learning data-
bases, Asuncion and Newman 2007) refers to 101 animals characterized by 15 Boolean
attributes evaluating the presence/absence of hair, feathers, eggs, milk, airbone, aqua-
tic, predator, toothed, backbone, breathes, venomous, fins, tail, domestic, catsize. The
numeric variable for the number of legs has not considered in this application. The
squared Euclidean distance was computed on the 15 binary variables.

An additional supplementary variable denoting which of seven different classes
each animal belongs to, corresponding to mammals, birds, reptiles, fishes, amphibians,
insects, mollusks and arthropods has been used to validate the results of the compared
clustering methodologies. The applied methods are: K -means (directly on the data),
the group average linkage (UPGMA) cutting its dendrogram to the height of K clusters,
the square K -means, and the square hierarchical K -means. The MRand has been used
to evaluate the similarity between each partition of the compared methods with the
one defined by the supplementary variable.

The compared algorithms were run from 100 random starts (unless UPGMA) by
setting the number of classes equal to 7, just as the number of groups of animals des-
cribed by the supplementary variable. For each algorithm the best solution in terms
of objective functions was retained. We also examined the partitions in 6 classes
because reptiles and amphibians cannot be easily distinguished (also because the
variable # of legs has not been considered). The partition in 6 classes which is the
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Fig. 10 Partition and hierarchical partition of the zoo data

most similar to the one of the supplementary variable is given by the square K-means
(Table 5; Fig. 10a). There are six misclassified animals. The most similar partition
in seven classes is given by the square hierarchical K -means because it takes into
account the hierarchical evolutionary information included in the zoo data. In fact,
by cutting the hierarchical partition in Fig. 10b at the level of two classes emerges
the distinction between the 41 mammals and the 60 remaining oviparous animals
which is detected by presence/absence of the variable “milk”. The partition into 3
classes is obtained by splitting the largest class into two groups: 21 animals including
most reptiles, amphibians and fishes, all toothed, mostly vertebrates, non-domestic,
aquatic, with no hair, no-feathers, and 39 animals including birds, mollusks, insects,
all non-toothed, non-fins, mostly non-venomous, terrestrial, with no hairs. Successi-
vely, mollusks-insects split from birds because for variables: “feathers”, “backbone”
and “tail”. Then, reptiles+amphibians and fishes break into two classes according to
the variables: “breathes” and “fins”. Finally in the mammals cluster the six aquatic
mammals (dolphin, mink, platypus, porpoise, seal and sealion) are detected.

7 Discussion

In this paper, the taxonomic problem to partition a finite set of objects, when a dissimi-
larity matrix D has been observed is formalized with the statistical modeling approach
of fitting an expected clustering model (here a partition), specified by a classification
matrix Dc, to the observed D. A classification matrix represents a clustering model
expressed in terms of dissimilarities and characterized by heterogeneity or lack of
cohesion for classes and isolation between classes. There is a lack of methodologies
appropriate and widely employed to directly partition a set of objects from dissimila-
rity data, which motivates our study on three new partitioning models for dissimilarity
data, their estimation via least-squares and the introduction of three new fast algo-
rithms.

The first partitioning model specifies the well-structured perfect partition in K
classes, which is characterized by equal heterogeneity and isolation within and bet-
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158 M. Vichi

ween classes, respectively. This partitioning model has been defined by Rubin (1967)
and discussed by several authors (see Gordon 1999 for a review). It is implicitly used
when one chooses a partition by cutting a dendrogram. In fact, the cutting level iden-
tifying the partition represents the value of heterogeneity within classes, while the
isolation between classes is specified by the highest level of the dendrogram. In this
paper we have shown that if a well-structured partition in K clusters is present in
the dissimilarity data, the common practice of choosing a partition in the dendrogram
frequently fails to recover this partition. On the other hand the appropriate algorithm
performs better because it is specifically designed for detecting well-structured parti-
tions.

The second classification model for dissimilarity data proposed in this paper allows
for fixing different lacks of cohesion within classes and different isolations between
classes, so to have that the largest heterogeneity is smaller than the smallest isolation.
This is a well-structured partition in K classes.

We have verified if suitable standard procedures such as tandem analysis (i.e., MDS
on D with the subsequent application of K -means on the dimensions of MDS) can
detect a well-structured partition with the same performances of an appropriate method
such as square K -means. This last technique is a new algorithm resembling K -means,
but it can be used on dissimilarity data. The performances of square K -means are
better than tandem analysis when dissimilarities are not Euclidean (as the simulated
experiments have shown in Sect. 1.1) which is quite frequent in real applications. In
the application on zoo data, K -means applied directly on the data has recovered the
expected classification less properly in terms of MRand than square K -means (see
Table 5).

The third classification matrix identifies a well-structured partition in K classes
with the additional property to evaluate the hierarchical relationship between clusters
and for this reason is called hierarchical partition. In fact, the well-structured partition
is fitted to the dissimilarity data and the hierarchical structure between clusters is also
required. The classification matrix associated to a hierarchical partition represents
mainly a partition that in addition describes a particular hierarchy of nested partitions
from K to 1 levels. This partition identifies a parsimonious tree. Even in this case
we have shown that a suitable standard hierarchical method has lower performances
with respect to the square hierarchical K -means, that represents the the algorithm for
detecting hierarchical partitions.

It may be noted that the algorithms given to solve the quadratic constrained problems
necessary to evaluate the LS estimated parameters of the three models are in the class
of coordinate descent algorithms type (Zangwill 1969).

The initial partition used to start the algorithms can be chosen at random or accor-
ding to a rational procedure. In any case, different starting partitions and parameter
values should be considered to increase the chance to obtain the global optimum
partition since the clustering problem of optimally partitioning a set of multivariate
objects is known to be an NP-hard problem and therefore the optimal solution cannot
be guaranteed.

The algorithms generally stop after a few iterations and therefore are computa-
tionally fast. However, according to the simulation study, the algorithms tend to be
trapped into local minima at least in about 25% cases even when data have a well-
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defined clustering structure (low error), rising to about 50% when data are no so well
clustered (high error). According to the simulation study the impact of local minima
is drastically reduced when at least 30 initial random starts are used; however, again
it has to be noted that we may be confident, but not sure the global optimal solution
has been found.

Two random procedures for starting within and between classes heterogeneities and
isolations matrices DW and DB have been proposed and from a simulation study it has
been observed that it is more useful to sample DW and DB from normal distributions
with means equal to the 80% of the smallest and largest observed dissimilarities
respectively and variance equal to 2.

The choice of K is an open problem even for a classical clustering problem and
consequently also for our proposed methodologies; it deserves a further successive
investigation.

When a well-structured perfect partition is fitted (model (2)) K can be fixed equal
to the maximum number of classes are hypothesized in the data. In this case the best
solution will be with the correct number of clusters K ∗ (K ∗ ≤ K ) for the given data,
leaving K − K ∗ empty classes. In fact, these last do not modify and in particular
reduce the value of the loss function (9) used to fit a well structured perfect partition.

For the other two partitioning models the situation is different because increasing
the number of classes in the fitted partition also the number of parameters to estimate in
DB and DW increases and consequently the loss-function used to fit the model generally
decreases. In this case criteria for assessing the number of clusters have to take into
account both the loss-function values and the number of estimated parameters of the
model and these last should in some way penalize the loss-function. Without such
“information criteria”, we suggest to use the final partition that gives a “reasonable”
interpretability, by considering the smallest K that produces the strongest change of
the loss function (this strategy of choice has been introduced by Cattell (1966) for
choosing the number of factors, in a factorial analysis).

An important aspect of the cluster validation is the cluster stability (Hennig 2007),
i.e., the propensity of a cluster to appear in the classification if the data set is changed in
a non-essential way (addition of outliers, jittering, etc.) we will also deserve a further
successive investigation on this relevant characteristic.
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