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is adapted to edges weighted by intensity or strength. We show on simulated graphs
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to unweighted edges. Finally, an application to a drosophila protein network illus-
trates the fact that using these new formulas improves the ’biological accuracy’ of
partitioning.
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4 J.-B. Angelelli et al.

1 Introduction

Biological protein–protein interaction networks are modelled by simple undirected
graphs; nodes correspond to proteins and edges to physical contact between them.
Since proteins interact specifically with each other to insure their function, highlight-
ing groups of nodes in the graph corresponds to identifying classes of proteins involved
in the same pathway(s) or cellular process(es). For this, we have previously proposed
two clustering methods for the partitioning of large unweighted biological networks
(Prodistin: Brun et al. 2003; Baudot et al. 2006 and ClasDens: Brun et al. 2004). First
the Czekanowski-Dice dissimilarity measure (Dice 1945) between vertices is com-
puted. Second, a clustering algorithm is applied to the resulting dissimilarity matrix
to identify clusters having an edge density higher than in the whole graph. The princi-
ples of this algorithm are different according to the methods: hierarchical for Prodistin
(BioNJ, Gascuel 1997), density based clustering for ClasDens (Guénoche 2004). Both
methods have permitted the identification of classes of proteins, the prediction of the
function of proteins with an unknown function, and the studies of the modular structure
of interaction networks (Baudot et al. 2004; Zhong and Sternberg 2006).

In order to improve the biological meaning of the identified node groups, we propose
two natural extensions of the Czekanowski-Dice dissimilarity measure for weighted
graphs. The weight of an edge may represent either the probability for the existence
of the interaction (determined experimentally), or the intensity of an existing interac-
tion. The two extensions we present here are adapted to the semantic of the weights.
They allow us to go beyond the study of the graph structure by integrating additional,
secondary information to the graph. We may then expect to refine the relevance of our
biological results.

Other computing methods proposed to identify protein clusters in protein-protein
interaction networks have already been proposed. They are based on principles deriv-
ing from graph partitioning theory: the search for densely connected regions of a graph
(Bader and Hogue 2003), the progressive disconnection of the graph using a evalua-
tion of edge betweenness (Girvan and Newman 2002), random walks in the graph (van
Dongen 2000; Pons and Latapy 2006) or spectral decomposition (Brandes et al. 2003;
Nemwan 2006). Initially they were proposed to unweighted graphs and some of them
have also been extended to weighted ones. None of them seems to prove that taking
weights into account improves the partitioning process. Recently, Chen et al. (2006)
and Chua et al. (2006) also consider a ’functional similarity weight’ derived from the
Czekanowski-Dice index. They use the product of weight values for edges in the com-
mon neighborhood of two vertices and come to a complicated formula, introducing a
parameter to correct the situation where the proteins have too few neighbors. More-
over, they do not realize clusters using their formula, but only mention that known
functional classes receive an index value larger than the Czekanowski-Dice index.

This article is organized as follows: in Sect. 2, we recall the basic definition of the
Czekanowski-Dice dissimilarity, underlining the role and effect of an edge between
two vertices. In Sect. 3, we extend this definition in two ways, corresponding to both
interpretations of the weights. In Sect. 4, we describe some properties of these dissim-
ilarities and show, by simulation on weighted random graphs, that taking the weights
into account permits to recover eventually existing clusters more precisely. In Sect. 5,

123



Two local dissimilarity measures for weighted graphs 5

two biological examples on a real fly protein interaction network are presented. They
illustrate the resulting improvement, and help understanding the effect of weights for
the partitioning of protein-protein interaction networks.

2 The Czekanowski-Dice dissimilarity

Let X be a set of n vertices, E a set of m edges (x, y) and � = (X, E) the corre-
sponding non-directed graph. We assume it is connected; if not, each component will
be treated separately. For each subset Y of X , let �(Y ) be the set of vertices outside
of Y which are connected to Y :

�(Y ) = {x ∈ X \ Y | ∃y ∈ Y, (x, y) ∈ E}

and �(Y ) = Y
⋃

�(Y ). The neighborhood of x is denoted by �(x) := �({x}), the
degree of x by Dg(x) = |�(x)| and δ is the maximum degree in the graph. Let E(Y )

be the set of internal edges in Y ⊂ X :

E(Y ) = {(x, y) ∈ E | x ∈ Y and y ∈ Y }.

The Czekanowski-Dice dissimilarity of two vertices x and y takes into account the
numbers of common adjacent vertices and those which are only connected to x or y.
It is defined by

D(x, y) = |�(�(x), �(y))|
|�(x)| + |�(y)| = |Pspe(x, y)|

|Ptot (x, y)| (1)

where � is the symmetric difference between two sets. It is a dissimilarity measure but
not a true distance (Fichet and Le Calvé 1984): two connected vertices having only
common adjacent vertices have a dissimilarity equal to 0 and this is not consistent
with the triangular inequality.

Note that � is used in formula (1) (and not �), which is equivalent to add a loop to
each vertex. The value of D(x, y) is the ratio of two quantities quantifying the specific
part to x and y, denoted Pspe(x, y), and the total part, denoted Ptot (x, y). If x and y
are connected, both vertices are only counted in Ptot (x, y), but if not, they are also
counted in Pspe(x, y). Remark that �(x)

⋂
�(y) is counted twice in the total part.

Dissimilarity D provides different values if x and y are adjacent or not.
We retain this dissimilarity for several reasons:

– It is very effective in graph partitioning (Kuntz 1992; Guénoche 2005), far better
than the shortest path metric;

– It is a local dissimilarity since D(x, y) can be computed only from the vertices
connected to x or y;

– Each pair of vertices separated by more than 2 edges gets value 1;
– Therefore, it can be computed in time O(nδ3).

Example 1 All along this text, we consider the graphs �+(x, y) and �−(x, y) dis-
played in Fig. 1 which only differ by the presence/absence of the edge (x, y). In each
example, we compute the two corresponding dissimilarity measures, D+ and D−, both
printed in the same array (Table 1). The diagonal values, equal to 0.0, are not printed.
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Fig. 1 Two simple graphs �+(x, y) and �−(x, y) differentiated by pair (x, y)

Table 1 The Czekanowski-Dice dissimilarities for both graphs in Fig. 1, D+ (lower left part) and D−
(upper right part)

t u v w x y z

t : 0.60 0.60 0.60 0.43 0.50 0.33

u: 0.60 1.00 1.00 0.33 1.00 0.60

v: 0.60 1.00 0.50 1.00 0.43 0.60

w: 0.60 1.00 0.50 1.00 0.43 0.60

x : 0.25 0.43 0.71 0.71 0.56 0.43

y: 0.33 0.75 0.50 0.50 0.27 0.50

z: 0.33 0.60 0.60 0.60 0.25 0.33

When (x, y) is absent, �(x) = {x, z, t, u} and �(y) = {y, z, t, v, w}. We have
Pspe(x, y) = {x, y, u, v, w} and D−(x, y) = 5

9 = 0.556. When (x, y) is present,
�(x) = {x, y, z, t, u} and �(y) = {y, x, z, t, v, w}. We have Pspe(x, y) = {u, v, w}
and D+(x, y) = 3

11 = 0.273. One can see that all the values linked to x or y are
different.

3 Two weighted dissimilarities

As we wrote in the introduction, in protein-protein interaction graphs, an edge (x, y)

means that there is a contact between the proteins x and y. These interactions are
often revealed by experiments which provide for each edge a confidence score that
can be interpreted as a probability of existence. Other types of data permit to quantify
the intensity of the interaction. In both cases, the value is high when interaction is
likely or strong. This information can be coded as a weight function w : E → [0, 1],
admitting that value 0 corresponds to an absence of edge or a null intensity and value
1 to a maximum probability or intensity.

From now on, we consider graphs weighted by a function w and we propose two
methods for evaluating the dissimilarity on X . The first one relates to weights that
can be interpreted as probabilities, the second one considers that w(x, y) quantifies
the intensity of the interaction between x and y. Both are not distance functions since
they extend the Czekanowski-Dice formula.

3.1 Weights are probabilities

If weights are probabilities, the dissimilarity, denoted Dp, between each pair (x, y) is
linked to the weight of the edge (x, y). It should be a weighted sum of the dissimilarity
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Table 2 Dissimilarities Dp+ (lower left part) and Dp− (upper right part) corresponding to the graphs in
Fig. 2

t u v w x y z

t : 0.60 0.78 0.78 0.35 0.40 0.63

u: 0.60 1.00 1.00 0.23 1.00 0.90

v: 0.78 1.00 0.67 1.00 0.68 0.71

w: 0.78 1.00 0.67 1.00 0.68 0.71

x : 0.24 0.31 0.81 0.81 0.65 0.88

y: 0.29 0.81 0.71 0.71 0.43 0.55

z: 0.63 0.90 0.71 0.71 0.68 0.52

D∗− corresponding to the graph �∗−(x, y) = �−(x, y) where there is no edge between
x and y, and the dissimilarity D∗+ corresponding to the graph �∗+(x, y) where edge
(x, y) has weight 1.

Dp(x, y) = (1 − w(x, y)) × D∗−(x, y) + w(x, y) × D∗+(x, y)

But the graphs �∗+(x, y) and �∗−(x, y) are themselves depending on probabilities
of edges in E(Y ), with Y = �(x) ∪ �(y), and so are D∗+(x, y) and D∗−(x, y). Conse-
quently, the calculation should be done by summing over all the subsets of E(Y ), each
combination being weighted by the product of edge weights in the subset. For com-
putational complexity reasons (enumerating subsets of E(Y )), we consider a simpler
formula.

1. For �∗−(x, y), the specific part contains:
(a) weights of edges corresponding to vertices exclusively connected to x or y,
(b) for a vertex s connected to x and y, the difference |w(x, s)−w(y, s)|, which

corresponds to cases where s is connected to only one vertex,
(c) both loops on x and y, whose weights are implicitly equal to 1, in order to

comply with the Czekanowski-Dice formula.
Therefore, the weight of the specific part is |Pspe(x, y)| = 2 + ∑

s∈Y |w(x, s) −
w(y, s)|. For the total part, we must count |Ptot (x, y)| = 2 − 2 × w(x, y) +∑

s∈Y w(x, s)+w(y, s), where the value 2 corresponds to loops and 2 ×w(x, y)

corresponds to the fact that edge (x, y) is counted twice in the sum even if absent
in this graph (Table 2).

2. For �∗+(x, y), the specific part to x and y yields |Pspe(x, y)| = ∑
s∈Y |w(x, s) −

w(y, s)| because loops are not counted since x and y are connected. For the total
part |Ptot (x, y)| = ∑

s∈Y w(x, s)+w(y, s)+2+2× (1−w(x, y)), the last term
corresponds to the edge (x, y).

Denoting S(x, y) = ∑
s∈Y |w(x, s) − w(y, s)| and T (x, y) = ∑

s∈Y |w(x, s) +
w(y, s)| we obtain a probability-weighted dissimilarity:
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8 J.-B. Angelelli et al.

Fig. 2 Weighted graphs �+(x, y) and �−(x, y)

Dp(x, y) = (1 − w(x, y)) × S(x, y) + 2

T (x, y) + 2 − 2w(x, y)

+w(x, y) × S(x, y)

T (x, y) + 4 − 2w(x, y)
. (2)

Example 2 We use the same graphs as in Fig. 1, weighted as indicated in Fig. 2. We
evaluate the Dp+ and Dp− values for both graphs.

For �+(x, y) weighted by probabilities:

1. If (x, y) is absent, |Pspe(x, y)| = 2 +w(u, x)+w(y, v)+w(y, w)+ |w(x, z)−
w(y, z)| + |w(x, t)−w(y, t)|, |Ptot (x, y)| = 2 +w(x, u)+w(x, z)+w(x, t)+
w(y, v) + w(y, w) + w(y, z) + w(y, t) and D∗−(x, y) = 4.5

6.9 = 0.652.
2. If (x, y) is present, D∗−(x, y) = 4.5

6.9 as before and for D∗+(x, y), we have
|Pspe(x, y)| = w(u, x) + w(y, v) + w(y, w) + |w(x, z) − w(y, z)| + |w(x, t) −
w(y, t)|, |Ptot (x, y)| = 4 + w(x, u) + w(x, z) + w(x, t) + w(y, v) + w(y, w) +
w(y, z) + w(y, t); D∗+(x, y) = 2.5

8.9 = 0.281.

Consequently Dp+(x, y) = 0.4 × 4.5
6.9 + 0.6 × 2.5

8.9 = 0.429 and Dp−(x, y) as been
calculated as D∗−(x, y) = 4.5

6.9 = 0.652.

3.2 Weights are intensities

If weights are considered to be intensities, the interactions are interpreted as strengths.
The specific interactions to x or y move them apart and common interactors bring
them closer. Therefore, connections between x and y are divided into two categories:

– attractive strength corresponding to the possible edge (x, y) and, for each vertex s
connected to both x and y, the sum of weights w(x, s) + w(y, s);

– repulsive strength corresponding to vertices only connected to x or y, and also
loops when x and y are not connected (Table 3).

Let R(x, y) be the repulsive part and A(x, y) the attractive part of pair (x, y). We
have

R(x, y) =
∑

s∈�(x)\�(y)

w(x, s) +
∑

s∈�(y)\�(x)

w(y, s),

A(x, y) =
∑

s∈�(x)∩�(y)

w(x, s) +
∑

s∈�(x)∩�(y)

w(y, s).

R(x, y) corresponds to the symmetric difference �(�(x), �(y)), as in the numera-
tor in formula (1) and A(x, y) to the union �(x)

⋃
�(y). We note that when (x, y) ∈ E ,
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Table 3 Dissimilarities Di+ (lower left part) and Di− (upper right part) corresponding to the graphs in
Fig. 2

t u v w x y z

t : 0.60 0.67 0.67 0.36 0.40 0.41

u: 0.60 1.00 1.00 0.23 1.00 0.69

v: 0.67 1.00 0.67 1.00 0.42 0.65

w: 0.67 1.00 0.67 1.00 0.42 0.65

x : 0.18 0.31 0.79 0.79 0.58 0.53

y: 0.23 0.75 0.48 0.48 0.25 0.39

z: 0.41 0.69 0.65 0.65 0.35 0.32

w(x, y) is counted twice in A(x, y). Hence we define a dissimilarity Di as a simple
quantified version of the Czekanowski-Dice dissimilarity:

Di (x, y) = R(x, y) + 2

R(x, y) + A(x, y) + 2
if (x, y) /∈ E (3)

Di (x, y) = R(x, y)

R(x, y) + A(x, y) + 2
if (x, y) ∈ E (4)

We note that if vertices x and y are more than two edges away from each other,
formula (3) is used and the dissimilarity value is always equal to 1, whatever the path
length may be.

Example 3 We evaluate the Di values for both weighted graphs in Fig. 2.
For the graph weighted by intensities:

1. In case (x, y) /∈ E , R(x, y) = w(u, x)+w(v, y)+w(w, y), A(x, y) = w(x, z)+
w(x, t) + w(y, z) + w(y, t) and Di−(x, y) = 4

6.9 = 0.580.
2. In case (x, y) ∈ E , R(x, y) in unchanged and A(x, y) = w(x, z) + w(x, t) +

w(y, z) + w(y, t) + 2w(x, y) and Di+(x, y) = 2
8.1 = 0.247.

4 Properties and efficiency

Since the dissimilarities Dp and Di are expected to extend the Czekanowski-Dice dis-
similarity to weighted graphs, we have to check if both dissimilarity measures return
the classical Czekanowski-Dice values when applied to unweighted networks.

Proposition 1 When each edge has a weight equal to 1, values provided by Di and
Dp coincide with the Czekanowski-Dice dissimilarity.

Proof Two cases:

– When weights are probabilities, Dp formula becomes:

S(x, y) + 2

T (x, y) + 2
if (x, y) /∈ E and

S(x, y)

T (x, y) + 2
if (x, y) ∈ E,
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10 J.-B. Angelelli et al.

where S(x, y) is the number of edges specific to x or y and T (x, y) the number of
edges in �(x) plus those in �(y), which corresponds to Czekanowski-Dice formula
since the edge (x, y) is counted twice;

– When weights are intensities, in the computation of Di ,

R(x, y) = S(x, y) and R(x, y) + A(x, y) = T (x, y),

providing the same formulas as in the probability case.

Another important fact is the efficiency of this computation. Often interaction net-
works have several thousands of vertices but O(n) edges, and it is essential to maintain
a time complexity linear in n. The main parameter is the maximum degree (for the
worst case) or the average degree in practice. The maximum degree δ can be pretty
large (δ ≈ 100) but it is very small compared to n and the average degree is always
≤10.

Proposition 2 The Dp and Di dissimilarities can be calculated in time O(nδ3).

Proof To calculate the Czekanowski-Dice dissimilarity in time O(nδ3), the graph
must be coded by its adjacency lists. For each vertex x , we have to evaluate a max-
imum of δ2 values since for a path longer than 2 we have seen that the dissimilarity
values are always equal to 1. To determine Dp(x, y) or Di (x, y), we first establish
their specific and common sets of vertices examining at most 2δ vertices connected to
x or y. So, the dissimilarity value can be established in O(δ) and all the values strictly
lower than 1 are calculated in time O(nδ3). In the case of weighted graphs, we add the
corresponding weight lists to the adjacency lists and the same operations (sums and
ratios) are performed with the weights. Therefore, the time complexity is identical.

A computer program in C can be requested from the corresponding author. The file
graph is just a list of edges, given by a pair of labels with a weight value; the generated
distance file is in the standard Phylip format. Vertices can be labelled with any ascii
string.

4.1 A simulation process

The classes are built by optimizing the clustering criterion (5) below that is based on
dissimilarity values. We want to show that by using weights the existing classes are
more accurately reproduced. For generating data, we use a simulation process which
has been developed to compare partitioning algorithms in graphs (Guénoche 2005).
A precise comparison protocol have been defined. It comprises mainly three tools:

1. A generator of Erdös–Reyni random graphs. Let P be a random partition on X in
p classes. Linking randomly and independently some pairs of vertices with larger
probabilities within the classes than between them, makes natural classes in the
graph. The respective probabilities are denoted pi and pe and the partition is more
or less evident according to their difference |pi − pe|.

123



Two local dissimilarity measures for weighted graphs 11

2. A graph partitioning algorithm optimizing a criterion, denoted PartOpt in the fol-
lowing. It belongs to the centroid methods in clustering, but it does not require the
definition of centers for classes. Let P = (P1, . . . , Pp) be a partition of X in p
classes and P(x) denotes the class containing x . Given a partition, the 
 inertia
function is the sum, for all the elements x in X , of the squares of the average
dissimilarity values D(x, y) to the other elements y belonging to P(x):


(P) =
∑

x∈X

(∑
y∈P(x) D(x, y)

|P(x)| − 1

)2

. (5)

Our algorithm for minimizing 
(P) over the set of all the partitions P of X in p
classes, is a simple tabu search heuristic. A very recent article (Guénoche 2008)
shows that this simple algorithm gives better average results than many methods
cited in the introduction. Starting with an initial random partition, it returns a
partition Q.

3. Four criteria to measure the closeness of Q to P . The three first ones are evaluated
comparing the classes of Q to those of P . A correspondence σ : Q → P is
first established and Pσ( j) denotes the class in P corresponding to class Q j in Q.
The last criterion is based on an editing distance between partitions defined as the
minimum number of transfers of an element from one class to another, to turn Q
into P .
(a) τa : the percentage of internal edges in P that remain internal in Q:

τa =
∑

j=1,...,p |(x, y) ∈ E(Pj ) such that Q(x) = Q(y)|
∑

j=1,...,p |(x, y) ∈ E(Pj )|

(b) τe: the percentage of elements in Q which also belong to their corresponding
class in P:

τe =
∑

j=1,...,p

|Q j
⋂

Pσ( j)|
|Q j |

(c) τp: the percentage of joined pairs in Q which are also joined together in P:

τp = 1

p

∑

j=1,...,p

|(x, y) ∈ Q j such that P(x) = P(y)|
|Q j |

(d) τt is the transfer distance value θ(P, Q) divided by n. The transfer distance
counts the minimum number of single-element transfers from one class to
another one that are necessary to transform P into Q. This distance between
partitions has been first proposed by Régnier (1965) then by Day (1981).
Recently it has been studied (and bounded according to class cardinality)
by Charon et al. (2006). It is well adapted to very close partitions because
a small number of transfers reveals partitions that are practically identical.
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Table 4 The quality criteria τa , τe , τp , and τt for the computed partitions according to the weight average
values of the internal and external edges

wi we Probability-based Dp Intensity-based Di

τa τe τp τt τa τe τp τt

1.0 0.75 0.99 0.99 0.98 0.02 0.95 0.95 0.91 0.07
1.0 0.90 0.96 0.96 0.93 0.06 0.92 0.93 0.87 0.11
1.0 1.0 0.88 0.90 0.81 0.16 0.88 0.90 0.81 0.16
0.90 1.0 0.86 0.89 0.80 0.18 0.85 0.88 0.78 0.18
0.75 1.0 0.72 0.75 0.63 0.37 0.72 0.75 0.62 0.37

The transfer distance value is obtained realizing a matching of the classes
of P onto those of Q which minimizes the sum of symmetrical differences
between matched classes.

4.2 Results

To evaluate the influence of weights in our clustering process, we consider graphs
with 100 vertices randomly spread among 3 classes with an internal edge probability
pi = 0.3 and an external one pe = 0.15. Initially, all the edges get the same weight
value wi = we = 1. In agreement with our previous results, the four criteria τa , τe,
τp, and τt yield satisfactory average values over a set of 100 trials, that can be seen in
the median row of Table 4.

To measure the weight effect, we let the weights vary successively in the internal
and external edges. Let wi and we be the weight average values of the two kinds of
edges. When external edges are given a weight we < 1 = wi , we hope it will be
easier to recover initial clusters of the initial random partition P than with we = 1.
Conversely, if we give to the internal edges the weights wi < 1 = we, the cohesion
of the classes is weakened and we expect it will be more difficult to recover P .

We first considered the values we = 0.9 and we = 0.75, leaving wi = 1 unchanged.
In Table 4 we observe that the computed clusters get closer to the clusters of the ini-
tial partition. Then we fix we = 1, and decrease wi ; the predicted effect is that the
computed partitions move away from the initial ones.

For weights with an interpretation as probabilities (left part of Table 4) or as inten-
sities (right part), we observed that the difference between initial and computed parti-
tions decreases and the transfer distance increases. Thus, this simulation study tends
to prove that clusters established by using weights are more accurate when weights
are larger within the classes than between them, and also that the neighborhoods are
strengthened in that case.

5 Applications to the drosophila interactome

The edges are weighted with probabilities

Here, we used a Drosophila protein-protein interaction network of 1906 interac-
tions (Formstecher et al. 2005) provided with a confidence score based which is on
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Fig. 3 Interactions around the fu, Su(fu) and cos proteins. Edges are enlarged according to their weight

different statistical parameters. These interactions are subdivided into five categories
of decreasing confidence, namely A, B, C, D and E. For our experiment, we weighted
the edges of the graph that correspond to interactions scored A with a (maximum)
probability of 1, the edges corresponding to an interaction scored B with a proba-
bility of 0.8, C with 0.6, D with 0.4 and E with 0.2. These first scores have been
empirically chosen for sake of illustration. Then we computed the Dp dissimilarity
for a graph weighted with probabilities and obtained a partition using the PartOpt
method. For comparison purposes, this method has also been applied to the classical
C D dissimilarity ignoring the weights. In both cases, we only classified proteins hav-
ing more than three interactions. From this experiment, we chose an example showing
that considering the interaction probabilities may increase the biological relevance of
the partition: the proteins cos, fu and Su(fu) are actors of the cytoplasmic part of the
Hedgehog signalling pathway. Altogether, they regulate the nuclear translocation and
activity of ci protein. Interestingly, we noticed that the fu, Su(fu) and cos proteins were
not classified together when the non-weighted graph was analyzed, whereas they were
joined together, as expected from their biological role, when the weighted graph was
studied.

Looking in detail to the network around these three proteins (Fig. 3), it appears that
cos has 14 interactors (neighbours), among which one is fu and only one (ci) is shared
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14 J.-B. Angelelli et al.

Fig. 4 Interactions between proteins belonging to the cell death class (a) without or (b) with weights.
In b, thickness of the edges corresponds to their weight

with Su(fu). When the classical C D dissimilarity is computed from the unweighted
graph, the large number of specific interactors of fu, Su(fu) and cos explains the fact
that they are separated. When the probabilistic version (with confidence scores) is
adopted, the influence of the 12 edges which were previously scattering cos, fu and
Su(fu) in different functional clusters, is decreasing because they are poorly weighted
(a majority of them have a weight equal to 0.4). The 3 proteins are then classified
together according to their biological role. Interestingly, when the edges are weighted
with only two values (1 for A, B and C categories, 0.2 for D and E) then the ci
protein is also found in the cluster. Finally, when the weights are randomly distrib-
uted the 4 proteins are, as expected, not clustered together anymore. Altogether, these
results suggest that the use of edge weights increases the reliability of the classification
result.

The edges are weighted with intensities

Here, a drosophila protein-protein interaction network containing 2849 interactions,
has been compiled. The edges were weighted with the results of a transcriptome exper-
iment (kindly provided by L. Perrin, IBDML, Marseille, France). Since the design of
a scoring scheme to weight network edges is a research subject on its own, we empir-
ically choose weights reflecting the functional data, for sake of illustration. When
the mRNA expression (taken here as intensity) of both interacting proteins is varying
significantly in the transcriptome experiment, the edge is weighted with 1, when the
mRNA expression of only one out of the two interacting proteins is varying, the edge
is weighted with 0.2 and when none of them vary, the edge is weighted with 0.1.
The Di dissimilarity was computed and the PartOpt method was used to partition the
graph. Here, with an average overlap of 73% between classes, classification changes
are noticed compared to the non-weighted graph.

For instance, proteins involved in cell death such as the pro-apoptotic proteins W,
rpr and grim, the caspase inhibitors Iap2 and th and the initiator caspase Nc are all
grouped in the same ’cell death’ class (displayed in Fig. 4a) when the non-weighted
graph is analyzed. However, the final effector caspase, Ice, does not belong to this
cluster but is found in another class (not shown) that controls the establishment of
cellular localization. When the transcriptome data are taken into account, Ice is added
to the cell death class because the edge between Nc and Ice is weighted with 1 (they
are co-expressed). So here again, the result suggests that the use of weighted edges has
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increased the reliability of the cluster. Furthermore, another protein, LanA, is classified
in the cell death class only when weights are taken into consideration. Whereas this
protein is not known to be involved in cell death in drosophila, its human ortholog
was shown to be involved in down-regulation of IAPs proteins (Andjilani et al. 2006).
Therefore, this result suggests that as in humans, LanA might play the role of a cell
death regulator in drosophila.

6 Conclusions

The new dissimilarity measures presented in this work allow to analyze weighted net-
works with distance methods. As shown by the simulations, using weights on graph
edges improves the accuracy of the class recovery. Therefore, their use for the analysis
of weighted biological networks should improve the quality and the accuracy of the
identified functional classes, on the one hand by taking into account the confidence
score of the provided interactions, and on the other hand by allowing to integrate
additional functional information into the interaction graph. Finally, our proposed
modifications may motivate the design of novel partitioning methods for weighted
biological networks.
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