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Abstract Non-parametric smoothing of the location model is a potential basis for
discriminating between groups of objects using mixtures of continuous and categorical
variables simultaneously. However, it may lead to unreliable estimates of parameters
when too many variables are involved. This paper proposes a method for performing
variable selection on the basis of distance between groups as measured by smoothed
Kullback–Leibler divergence. Searching strategies using forward, backward and step-
wise selections are outlined, and corresponding stopping rules derived from asymptotic
distributional results are proposed. Results from a Monte Carlo study demonstrate the
feasibility of the method. Examples on real data show that the method is generally
competitive with, and sometimes is better than, other existing classification methods.
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1 Introduction

In this paper we consider the problem of classifying an individual into one of two
classes (populations) π1, π2, on the basis of a data vector z that contains both
continuous and categorical variables. The location model was introduced by Olkin
and Tate (1961) to handle such vectors, and this model was later used by Chang and
Afifi (1974) and Krzanowski (1975) to form a suitable classification rule in the context
of discriminant analysis.

To conduct discriminant analysis based on the location model, cells of a multinomial
table must be generated from the categorical values in each group. Then, the
conditional distributions of the continuous variables given values of the categorical
variables are estimated from the data and an object is allocated to a group on the basis
of these distributions. The number of cells grows exponentially with the number of
categorical variables. Therefore in practice, unless the size of samples is large, some
cells may be empty. This prevents the use of maximum likelihood estimation and lim-
its the feasibility of the linear model approach to cases with few categorical variables.
Asparoukhov and Krzanowski (2000) proposed non-parametric smoothed estimation
that rectifies these weaknesses and Mahat (2006) conducted further investigations on
different smoothing procedures. However, this method may obtain inaccurate esti-
mated parameters when too many variables have been used.

This problem can be overcome by performing variable selection where a subset
of variables is selected from all the observed variables, and then using the subset
to construct a classification rule. Using fewer variables may be beneficial to avoid
estimation problems, to improve classification performance (McLachlan 1992, p. 389),
to save some costs of computation and to facilitate the interpretation of the constructed
rule.

Some available criteria that have been used in previous studies for distinguishing
between useful and poor variables are rule performance criteria (Krusińska 1987;
Snapinn and Knoke 1989; Ganeshanandam and Krzanowski 1989), group separation
criteria (McKay and Campbell 1982; Krzanowski 1983; Daudin and Bar-Hen 1999),
model goodness-of-fit criteria such as AIC and BIC (Daudin 1986) and other criteria
including R2, Hotelling’s T 2 and Wilk’s � (see Rencher 1993). Choice among these
criteria depends on the initial aims of the classification rule, but rule performance
and group separation criteria are generally popular. In the context of the location
model, Bar-Hen and Daudin (1995) derived the distance between groups for mixed
variables using Kullback–Leibler divergence, and obtained a test for the null hypothesis
of equality of two groups. Subsequently, Daudin and Bar-Hen (1999) showed the
capability of this measure to identify some variables that give significant separation of
two groups. However, the study was limited to one continuous and one binary variable,
and there may be problems with the use of linear model approach for parameter
estimation purposes.

This paper proposes a strategy for performing variable selection in discriminant
analysis using the location model. The strategy is also based on the Kullback–Leibler
divergence, but it works with multivariate continuous and binary variables. The non-
parametric smoothing procedures in Mahat (2006) are used for estimating the
parameters as they are feasible with large numbers of binary variables. Backgrounds
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of the location model for discriminant analysis and for measuring the separation of
two groups are given in Sect. 2. The proposals for performing variable selection are
described in Sect. 3. These proposals are evaluated on simulated data sets, the details
about generating the data being given in Sect. 4 and results on them in Sect. 5. Section 6
reports the application to three real data sets, which show that the proposed method
is competitive, and sometimes is better than other existing classification methods.
Finally, some discussion and conclusions are presented in Sect. 7.

2 The location model

We first review the use of the location model for discriminant analysis and for
measuring the differences between two groups.

2.1 Classification rule and parameter estimation

Suppose that n objects have come from two groups, n1 being from π1 and n2 from
π2 with n = n1 + n2. A vector zT = (xT , yT ) is observed on each object, where
xT = (x1, . . . , xq) is a vector of q binary variables each having values 0 or 1 and
yT = (y1, . . . , yp) is a vector of p continuous variables. More general categorical
variables are included in this formulation, as a nominal variable with c categories
can be represented by c − 1 dummy binary variables, and x is identified with cell
number 1 + ∑q

b=1 xb2b−1 of an m-cell multinomial where m = 2q . Suppose that
pis = P(x ∈ s|πi ) is the probability of observing an object of πi in cell s for i = 1, 2
and s = 1, . . . , m. We assume that the p continuous variables have a multivariate
normal distribution in each cell, with mean µis in cell s and class πi and a homogeneous
covariance matrix, �, across all cells and classes so that yis ∼ N(µis,�). This
assumption is similar to the one routinely made in multivariate analysis of variance
(MANOVA). It is possible to relax it (see, e.g., Krzanowski 1994), but this will be
unnecessary in most practical applications.

The classification rule based on the location model can be derived easily using these
population parameters (Krzanowski 1975). We allocate a future object zT = (xT , yT )

to π1 if its x falls in cell s and its y satisfies

(
µ1s − µ2s

)T
�−1

{
y − 1

2

(
µ1s + µ2s

)} ≥ log
( p2s

p1s

)
+ log(a), (1)

otherwise to π2. In this allocation rule, the constant a depends on costs due to mis-
allocation and prior probabilities for the two groups. We will assume equal costs and
equal priors in both groups, hence log(a) = 0.

The sample-based classification rule is obtained by replacing all the population
parameters in (1) with their estimates computed from the n = n1 + n2 sample obser-
vations. By using non-parametric smoothing procedures to obtain the estimates, each
cell mean µis is fitted by a weighted average of all continuous variables from the data
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in the relevant group πi . The vector of means of the p continuous variables y for cell
s of πi is

µ̂is =
{ m∑

k=1

nikw(s, k)
}−1 m∑

k=1

{
w(s, k)

nik∑

r=1

yrik

}
(2)

subject to

0 ≤ w(s, k) ≤ 1; and
{ m∑

k=1

nikw(s, k)
}

> 0

where s, k = 1, . . . , m and i = 1, 2. Here, nik is the number of objects of πi that fall
in cell k (

∑m
k=1 nik = ni ), yrik is the vector of the continuous variables of the r th

object falling in cell k of πi and w(s, k) is a weight with respect to cell s of objects
that fall in cell k.

In this paper the weights are chosen in the form w(s, k) = λd(s,k). They incorporate
a smoothing parameter, λ (0 < λ < 1), that is the same for all p continuous variables,
cells and groups to avoid having too many parameters to be estimated. In this definition,
d(s, k) is the dissimilarity coefficient between the sth cell and the kth cell of the binary
vectors, given by the number of binary variables whose values differ between the two
cells. Thus if we let xs denote the vector of binary variable values defining the sth cell,
then we can formally write d(s, k) = d(xs, xk) = (xs − xk)

T (xs − xk). All cells that
have equal dissimilarity with respect to cell s will have equal weight in the estimation
of cell means, and w(s, k) decreases as d(s, k) increases for a given value of λ.

The obtained vectors of estimated cell means, µ̂1s and µ̂2s , are then used to compute
a smoothed pooled covariance matrix

�̂ = 1

(n1 + n2 − g1 − g2)

2∑

i=1

m∑

s=1

nis∑

r=1

(
yris − µ̂is

)(
yris − µ̂is

)T
(3)

where nis is the number of objects that fall in cell s of πi , yris is the vector of continuous
variables of the r th object in cell s of πi and gi is the number of non-empty cells in
the data from πi .

Finally, estimates p̂is for the cell probabilities pis can be obtained using exponential
smoothing

p̂is =
∑m

k=1 w(s, k)nis
m∑

s=1

∑m
k=1 w(s, k)nis

. (4)

This is an easy method and suitable if both groups can be smoothed by a single
parameter (Mahat 2006), otherwise the following smoothing methods can also be
considered.
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• Kernel smoothing (Aitchison and Aitken 1976):

p̂is = n−1
i λq

q∑

b=0

Nib(s, k)
{1 − λ

λ

}b; 1

2
≤ λ ≤ 1. (5)

Here, Nib(s, k) is the number of objects that fall in cell k of πi whose binary vector
x is b binary variables distant from the cell s (d(s, k) = b), and λ is a smoothing
parameter for both π1 and π2.

• Nearest neighbour smoothing (Hall 1981):

p̂is = n−1
i

L∑

b=0

wib Nib(s, k); 0 ≤ L ≤ q − 1 (6)

where weights, wib, are chosen to minimise the mean squared error

�i
(
wi0, wi1, . . . , wi L

) =
m∑

k=1

E
(

p̂ik − pik
)2

,

the expectation being with respect to repeated sampling from a multinomial
distribution.

Considering different methods for obtaining p̂is in (4)–(6), three classification rules
can be constructed. These rules give similar results in general (Mahat 2006), but for
simplicity, this paper focuses on constructing a rule using exponential smoothing for
estimating parameters of continuous and binary variables, unless stated otherwise.

The smoothing parameter, λ, must be obtained before parameters can be estimated.
It can be estimated in many ways, but we suggest choosing the value λ that gives
good performance of a classification rule. One characteristic of good performance is
minimum error rate, but error rate takes discrete values and its function has a non-
smooth curve with several local minima. An alternative measure that has a continuous
function is Brier score (see Hand 1997, p. 101), so this is our preferred measure (to
be minimized w.r.t. λ):

1

n

n∑

r=1

2∑

i=1

{
δ
(
πi |gr , xr , yr

) − f
(
πi |xr , yr

)}2
. (7)

In fact, suppose we have a classification rule based on p + q measurements and gr

is the group that object r with vectors of measurement xr and yr originally comes
from (either from group 1 or group 2). Then, δ

(
πi |gr , xr , yr

)
is the indicator function

characterizing the true group of object r in the training set, so it takes value 1 if πi = gr

and 0 otherwise, while f
(
πi |xr , yr

)
is the posterior probability of object r belonging
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to the class πi given the observed values xr and yr . f
(
πi |xr , yr

)
is given by Bayes’

formula

f (πi |xr , yr ) = pi f (xr , yr |πi )
∑2

i=1 pi f (xr , yr |πi )
(i = 1, 2) (8)

where pi is the prior probability of obtaining an object from πi and

f
(
xr , yr |πi

) = pis

(2π)p/2|�|1/2 exp
[

− 1

2
(yr − µis)

T �−1(yr − µis)
]
. (9)

The prior probabilities p1, p2 may be known from previous experience, or may be
estimated by n1/n and n2/n if the training data have arisen from mixture sampling
of the two classes, or may be set equal to each other (at 0.5) if neither of these
conditions holds. We used the last option in the applications described below. All the
other parameters can be estimated through leave-one-out cross-validation in order to
obtain unbiased estimates: omit object r from the sample; use the remaining objects
to obtain smoothed estimators (µ̂is , �̂ and p̂is); insert these estimators into (9), then
into (8) to obtain f̂

(
πi |xr , yr

)
; repeat for all objects r in the sample.

Finally, error rate is estimated using leave-one-out for measuring performance of
the constructed rule. To avoid having biased estimates and assessment, the whole
analysis is performed using a double leave-one-out arranged in a nested fashion: omit
each object r from the samples in turn for r = 1, . . . , n = n1 + n2; obtain a value
of λ that minimises the leave-one-out Brier score from the sample of size n − 1
without object r ; compute the smoothed estimators µ̂is,−r , �̂−r and p̂is,−r using the
obtained value of λ and the sample without object r ; use the estimators to construct
the classification rule; predict the group of the omitted object r ; if the prediction is
correct, then errorr = 0 otherwise errorr = 1; repeat for all objects r in the sample;
compute the leave-one-out error rate using

∑n
r=1 errorr/n.

2.2 Distance between groups

Bar-Hen and Daudin (1995) derived the Kullback-Leibler divergence that measures
separation of two groups when variables are mixed as

�J = �J1 + �J2 (10)

where

�J1 =
m∑

s=1

(p1s − p2s)log
[ p1s

p2s

]
(11)

and

�J2 = 1

2

m∑

s=1

(p1s + p2s)(µ1s − µ2s)
T �−1(µ1s − µ2s). (12)
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They obtained the sample-based divergence, DJ , by replacing all the parameters in
(11) and (12) with the respective estimators using the linear model, and derived the
asymptotic distribution of DJ under the null hypothesis that both groups are equal,
H0 : �J = 0 as

X J = n1n2

(n1 + n2)
DJ ∼ χ2(θ1 + θ2)

when n1 → +∞, n2 → +∞ and
n1

n2
→ u. (13)

Here DJ is the estimate of �J ; θ1 and θ2 are the degrees of freedom in relation to
binary and continuous variables separating the two groups (see also Sect. 3.1); n1 and
n2 are the size of the sample from π1 and π2; and 0 < u < ∞.

The null hypothesis is rejected if X J > χ2(θ1 + θ2, 1 − α) for type I error α.
As mentioned in Sect. 1, this measure is capable of identifying variables that give
significant separation of two groups. We therefore propose using this measure for
variable selection with multivariate situations.

3 The procedure

The overall procedure can be summarised in three steps: (i) select useful variables
that give maximum separation of two groups from p + q variables, (ii) construct a
classification rule using the selected variables and finally, (iii) evaluate the constructed
rule. The variable selection process requires a criterion for identifying useful variables,
and a search process for selecting useful variables that optimises the chosen criterion.

3.1 Criterion for selecting useful variables

We use the Kullback–Leibler divergence in (10) to identify useful variables. The non-
parametric estimators in Sect. 2.1 are employed to obtain a sample-based Kullback–
Leibler divergence, DJ , by replacing the parameters in functions (11)–(12) with the
relevant smoothed estimators, i.e. µ̂is , �̂ and p̂is so that more variables can be con-
sidered.

Initially, Bar-Hen and Daudin (1995) employed linear model approaches for
estimating the parameters. These parameters were divided into some that contributed
to the separation between both groups and some that did not. The former were used to
determine the degrees of freedom under the null hypothesis H0 : �J = 0, where θ1
is the number of parameters in estimating cell probabilities using a log-linear model
and θ2 is the number of parameters in estimating the mean vector of the continuous
variables using a linear model of analysis of variance.

This strategy however may not be suitable with non-parametric smoothing, so we
propose new values of θ1 and θ2 that represent the numbers of estimated parameters in
the location model using smoothing methods. If there are g groups and q categorical
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variables, with ki categories in the i th such variable, then

θ1 = g

{( q∏

i=1

ki

)

− 1

}

and θ2 = p(g − 1)

{( q∏

i=1

ki

)

− 1

}

. (14)

Thus, if all the categorical variables are binary, then θ1 = g(2q − 1) and θ2 =
p(g − 1)(2q − 1). We interpret θ1 as the number of estimated cell probabilities and
θ2 as the number of elements of the estimated µ̂1s − µ̂2s .

Deriving definite degrees of freedom mathematically is crucial due to the
complexity of the model. Investigation using simulated data sets gave evidence on
the adequacy of the new degrees of freedom (14) over those proposed by Bar-Hen and
Daudin (1995), at least when all categorical variables are binary. The investigation
was as follows. For each pair from a range of values of p and q, two groups with
150 objects each were randomly generated in such a way that �J = 0 in each case.
This was ensured by generating the continuous variables in each group from a single
normal distribution with mean µ1 = µ2 = µ and covariance matrix, �, and setting
pis = 1

m for all groups i and cells s of the categorical variables. 100 objects from
each group were used to obtain the optimum smoothing parameter that minimises the
leave-one-out Brier score, λ. The obtained λ and the remaining 50 objects from each
group were used to compute DJ . Finally, DJ was compared to the χ2 distribution
with ν degrees of freedom at a fixed value of type I error, α. These processes were
repeated 1,000 times and using the property of binomial distribution, we expect to
obtain 950 ± 14 and 900 ± 16 non-significant cases if the null hypothesis is true at
α = 5% and α = 10%, respectively.

Three settings were used to determine the appropriate degrees of freedom, ν =
θ1 + θ2: (i) the one proposed by Bar-Hen and Daudin (1995), νL ; (ii) the one given in
(14), νS ; and (iii) a value that was searched manually through a grid of integers, νG .
νG returns the value in which the non-significant cases fall in the acceptance range,
either 950±14 or 900±16 depending on the size of α. A suitable grid of a ≤ νG ≤ b
was used, where a and b are a minimum and a maximum value chosen by trial and
error, e.g. for a case of two continuous and two binary variables, a grid of interval
10 ≤ νG ≤ 15 may be used. To decide whether either νL or νS is appropriate, both
were compared to νG and the one that gave values in closest agreement with νG was
chosen.

Figure 1 shows the location of νL and νS relative to νG at α = 5% and α = 10%. In
this figure, the X -axis represents the simulated data sets: each set has different numbers
of continuous and binary variables, with the number of binary variables increasing as
we move from left to the right, so that there are more cells and more parameters to be
estimated. Meanwhile, the Y -axis gives the information on the degrees of freedom.
The figure shows that the curve of νS is much closer to the curve of νG compared to
νL either at α = 5% or α = 10%, showing that νS is more appropriate than νL . The
latter deteriorates considerably when the number of binary variables increases, thus
should be avoided for the smoothed location model.
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Variable selection in discriminant analysis 113

Fig. 1 Agreement between νL , νS and νG when �opt minimises the leave-one-out Brier score

3.2 Searching process

Variables that maximise DJ can be found using forward, backward and stepwise
selections, based on the test for no additional information (Rao 1973, pp. 554-555).
To have an automatic searching process, the inclusion or the elimination of variables
must be stopped when there is no meaningful change in the value of DJ . Let C be the
set of selected variables. A summary of the stopping rule in each selection process is
as follows, where we assume that all categorical variables are binary.

(a) Forward selection.
Find the best of the remaining variables, whose inclusion into C yields the highest
value of DJ in each step. If the chosen variable does not increase the group
separation, then the values of DJ with and without that variable are estimates
of the same population quantity �. Thus, the difference between DJj and DJj−1

for j = 2, . . . , p + q is an estimate of � = 0 and hence, by the results above,
should approximately follow the chi-squared distribution with modified degrees
of freedom ν = ν j − ν j−1

X f
0 = n1n2

n1 + n2
(DJj − DJj−1) ∼ χ2(ν = ν j − ν j−1). (15)

Here, ni is the size of the training set for πi ; DJj and DJj−1 are the estimated
Kullback-Leibler divergence at steps j and j−1 respectively; and ν j and ν j−1 are
the values of the degrees of freedom for the chi-squared distribution of DJj and
DJj−1 respectively. This test statistic (15) is compared to χ2(ν = 2q − 1, 1 − α)

if a continuous variable is selected at step j or χ2(ν = 2q(2 + p), 1 − α) if a
binary variable is selected at step j , where p and q are the number of continuous
and binary variables at step j − 1 and α is the type I error. So, the tested variable
is selected if X f

0 > χ2(ν, 1 − α), otherwise the process is stopped.
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(b) Backward elimination.
Find the worst variable, whose omission from C yields the highest value of DJ .
Then, compare the test statistic

Xb
0 = n1n2

n1 + n2
(DJj−1 − DJj ) (16)

with χ2(ν = 2q − 1, 1 − α) if a continuous variable is selected at step j or
χ2(ν = 2q + p2q−1, 1 − α) if a binary variable is selected at step j . p and q
are the number of continuous and binary variables at step j − 1, and the selected
variable is deleted if Xb

0 < χ2(ν, 1 − α), otherwise the process is stopped.
This strategy has a potential to delete all variables and this will go against the
construction of the classification rule. Therefore, the backward elimination is
also stopped if there is only one continuous and one binary variable left in C .

(c) Stepwise selection.
In each step, stepwise selection performs the forward selection first, thus the
stopping rule outlined in (a) is employed. Then, the current set of selected vari-
ables is tested using the backward elimination stopping rules. However, the test
statistic is

Xs
0 = n1n2

n1 + n2
(D f

Jj
− Db

Jj
), (17)

where D f
Jj

is the estimated distance at step j obtained from the forward selection

sequence and Db
Jj

is the estimated distance at step j obtained from the backward
elimination sequence. Xs

0 is compared to the chi-squared distributions as given
in (b), either χ2(ν = 2q − 1, 1 − α) or χ2(ν = 2q + p2q−1, 1 − α), depending
on which type of variable has been selected. Here, p and q are the number of
continuous and binary variables at step j . The searching is terminated when both
tests of forward and backward sequences give the instruction to stop.

If some or all of the categorical variables have more than two categories then,
as already mentioned in Sect. 2.1, they can be replaced by an appropriate number of
dummy binary variables. The above procedure can thus be carried out formally, but it is
evident from equation (14) that the degrees of freedom of the various chi-squared tests
need to be adjusted. This can be done, for example, as in the fitting of log-linear models
to incomplete multiway tables (Fienberg 1972). Unfortunately, differing numbers of
categories in different variables disrupts the automatic nature of the process because
individual tailoring of the computational routine is required to ensure that correct
degrees of freedom are used in each test. Thus, for simplicity, we suggest keeping the
process exactly as given above. Although this means that the degrees of freedom are
larger in each test than they should be (as ki < 2ki −1 when ki > 2), this suggestion
has the merit that only those variables that are very clearly significant will be retained,
and the selection will therefore be as parsimonious as possible. Of course if some
relaxation is desired, then significance levels can always be set less stringently in each
of the tests.
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Once the variable selection process has been completed, the classification rule can
be constructed and then evaluated. To avoid having a biased evaluation on discriminant
analysis with variable selection, triple leave-one-out could be used. Unless the size of
samples is small, this strategy demands excessive computing so we use independent
training and test sets: first, objects in both groups are divided into separate training and
test sets. All p + q variables and training set are used to find a set of useful variables
using the outlined forward, backward or stepwise selection. Second, the obtained set of
variables and training set are used to construct a classification rule. All the estimation
processes in both steps are conducted in leave-one-out fashion. Finally, the constructed
rule is evaluated on the test set by counting the proportion of misclassified objects.

4 Monte Carlo study

The proposed strategies of variable selection were evaluated on simulated data sets.
These data sets consist of p continuous and q binary variables generated using the finite
mixture model following Everitt and Merette (1990). This model involves two groups,
with n1 and n2 objects respectively, and starts from p+q continuous random variables,
yi1, . . . , yip, yi(p+1), . . . , yi(p+q), that are generated from a multivariate normal dis-
tribution with mean µi and a homogeneous covariance matrix, � of size (p + q) ×
(p + q). Then the mixture of continuous and binary variables is produced by keeping
yi1, . . . , yip as generated, but discretising yi(p+1), . . . , yi(p+q) using

xi j =
{

0 if −∞ � yi(p+ j) < δi j

1 if δi j � yi(p+ j) < ∞ (18)

where δi j are thresholds, i = 1, 2 and j = 1, . . . , q. The threshold for each
yi(p+1), . . . , yi(p+q), was determined such that δi j = 
−1(pi j ) × σyi(p+ j) + µyi(p+ j)

where pi j is the target proportion of objects of πi having xi j = 0, µyi(p+ j) and σyi(p+ j)

are the mean and standard deviation of yp+ j inπi respectively, and
−1(.) is the inverse
cumulative standard normal integral. Assuming the mean of each yi(p+1), . . . , yi(p+q)

is zero and all variances are unity, then δi j is equal to the standard normal ordinate
corresponding to the target proportion.

In the finite mixture model, a homogeneous covariance matrix is

� =
(

� p � pq

�T
pq �q

)

where � p,�q and � pq are the covariance matrices for the relevant types of
variables. Diagonal elements of �q were set as unity and low correlations among
binary variables and low correlations between binary and continuous variables were
assumed. Correlations among continuous variables were determined by the parametri-
sation procedure of Costanza and Afifi (1979). A factor υ (0 < υ < 1) must be
specified to determine the eigenvalues λk of � p through

λk = aυk−1 + 0.1 for k = 1, . . . , p, (19)
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where

a =
{

0.9p(1 − υ)/(1 − υ p) 0 < υ < 1
0.9 υ = 1.

υ represents the degree of independence among continuous variables: the variables
are highly dependent when υ is close to 0 and they are mutually independent when
υ = 1. Define � p = L�LT , where L is the matrix of eigenvectors of � p, LT is the
transpose matrix of L and � is the diagonal matrix of eigenvalues λk . Once λk has
been specified, then � can be obtained. A random orthonormal matrix L was generated
using the Gram-Schmidt procedure.

The artificial data sets were generated in such a way that for each type of variables
some of these variables contributed to the separation between groups and some did
not. This is necessary because the selection strategies (Sect. 3.2) must have at least
one continuous and one binary variable for construction of the classification rule. The
values for the necessary characteristics were chosen as follows:

• Number of continuous variables: (i) p = 3; (ii) p = 4; (iii) p = 8, while number
of binary variables is q = 4 for all cases.

• Covariance structure of continuous variables, � p, ranging from dependent to inde-
pendent cases: (i) υ = 0.25; (ii) υ = 0.45; (iii) υ = 0.85.

• Size of training sets: (i) n1 = n2 = 25; (ii) n1 = n2 = 100; (iii) n1 = 25, n2 =
100.

• Test sets for π1 and π2 fixed at 50 objects each.

The outlined strategy was used to generate both groups separately, π1 ∼ N(0,�)

and π2 ∼ N(µ,�). The values of means and the target proportion of binary variables
are summarised in Tables 1 and 2, respectively. Thus, the selection methods were
supposed to choose the continuous variables listed in the last column of Table 1, and
based on Table 2, X1, X3 and X4, were also supposed to be identified. We call these
variables the “useful” ones.

Table 1 Expectations of the continuous variables

Number of variables π1 π2 Useful variables

p =3 (0,0,0) (0,0,1) Y3

p =4 (0,0,0,0) (0,0,1,3) Y3, Y4

p =8 (0,0,0,0,0,0,0,0) (0,0,1,3,1,1,2,1.5) Y3, Y4, Y5, Y6, Y7, Y8

Table 2 Target proportion
P(X j = 0) for the binary
variables

Group X1 X2 X3 X4

1 0.30 0.50 0.50 0.90

2 0.80 0.40 0.15 0.50
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5 Monte Carlo results

Table 3 summarises results of the simulation study in the following format, (p1,q1)/
(p2,q2);z. Here p1 and q1 are the numbers of continuous and binary variables chosen
by the method; p2 and q2 are the numbers of “useful” continuous and binary variables
among those in (p1,q1); and z is the estimated error rate.

Consideration of (p1,q1) shows that backward elimination retains more variables
compared to the other strategies in general. Therefore, considering (p2,q2), backward
elimination is able to identify more useful variables in many cases and in the case
p = 3, q = 4 and n1 = n2 = 25 (bold), it has identified all the useful variables
correctly. Forward and stepwise selections agree with each other most of the time
and this might be influenced by the nature of identifying a new useful variable at
every searching step. Both methods potentially give different results if the number of
variables is large, for example in the case p = 8, q = 4 and n1 = n2 = 100.

In real applications, useful variables are unknown, thus performance of the rule
(e.g. error rate) is often used as a criterion of good variables. Table 3 shows that there
is no clear winner among the selection strategies based on error rate. Two interesting
situations from this table are worth highlighting.

(i) The first situation (p = 4; q = 4; n1 = n2 = 25) shows the biggest difference
in error rates between methods. Backward elimination has much lower error
rate (0.06) than both forward and stepwise selections (0.23). This is due to the
differences in the final chosen variables. Details from printed results showed
that backward elimination retained x1, y1 and y4 while the other two strategies
selected x4, y1, y2 and y4. Two factors may explain this situation. Firstly, there
were different sets of binary variables. Secondly, both forward and stepwise
selections selected the useless y2.

(ii) The second situation is when all strategies obtain zero value for the error rate (see
case p = 8, q = 4). This means that the associated classification rules perfectly
allocate test objects to their groups. These results occur because both groups are
very disperse. In this case, all proposed search strategies are equivalent.

In Table 3, the ‘Full’ method means that all p + q variables are used to construct
the smoothed location model. In 52% of cases the error rate of the rules with variable
selection is equal to or lower than the error rate of the full model (marked ‘a’).

The obtained results have shown some interesting features about selecting variables
on the basis of smoothed Kullback–Leibler divergence. Initially, this criterion was
chosen instead of error rate due to lack of asymptotic distributions of the latter, which
creates difficulties to perform automatic variable selection. Despite criticisms that have
previously been made by several researchers (Habbema and Hermans 1977; Raudys
and Jain 1991), there is evidence that this criterion chooses useful variables.

Both assessment based on the selecting of useful variables and error rate show that
none of the selection strategies is always the winner, so the choice of strategy depends
on the problem in hand. However, backward elimination is not a good strategy for a
large number of binary variables because it includes all the variables at the beginning
of the process and so requires estimation of many parameters. In such case, forward
and stepwise selections are preferable.
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Table 3 Numbers of selected variables and values of error rate for variable selection strategies

Number of Group size Selection Covariance structure
p q π1 π2 method Independent Moderate Dependent

Full 0.20 0.19 0.13

Backward (3,3)/(1,3); 0.20a (3,2)/(1,2); 0.22 (2,1)/(1,1); 0.25

25 25 F & S (2,1)/(1,1); 0.31 (1,1)/(0,1); 0.30 (2,1)/(1,1); 0.25

3 4 Full 0.20 0.49 0.21

Backward (1,2)/(1,2); 0.23 (1,2)/(0,1); 0.43a (3,1/(1,1); 0.23

100 100 F & S (1,2)/(1,2); 0.23 (1,1)/(1,1); 0.47 (3,1)/(1,1); 0.22

Full 0.25 0.13 0.09

Backward (2,3)/(1,2); 0.26 (3,2)/(1,2); 0.18 (3,2)/(1,2); 0.18

25 100 F & S (1,2)/(1,2); 0.23a (1,1)/(1,1); 0.25 (1,1)/(1,1); 0.24

Full 0.11 0.09 0.04

Backward (2,1)/(1,1); 0.06a (4,2)/(2,2); 0.09 (3,2)/(1,2); 0.06

25 25 F & S (3,1)/(1,1); 0.23 (3,2)/(2,2); 0.08a (3,1)/(2,1); 0.02a

4 4 Full 0.15 0.08 0.01

Backward (4,2)/(2,2); 0.15a (4,1)/(2,1); 0.09 (3,2)/(1,2); 0.02

100 100 F & S (4,2)/(2,2); 0.15a (3,1)/(1,1); 0.09 (3,2)/(1,2); 0.02

Full 0.12 0.16 0.06

Backward (2,2)/(2,2); 0.17 (3,3)/(1,3); 0.15a (4,2)/(2,2); 0.05

25 100 F & S (2,2)/(2,2); 0.17 (2,1)/(2,1); 0.18 (4,1)/(2,1); 0.04a

Full 0.13 0.00 0.01

Backward (5,1)/(5,1); 0.14 (8,2)/(6,2); 0.00a (7,1)/(6,1); 0.00a

25 25 F & S (2,2)/(2,1); 0.19 (8,2)/(6,2); 0.00a (5,2)/(5,1); 0.01

8 4 Full 0.18 0.00 0.00

Backward (4,3)/(3,3); 0.15 (8,3)/(6,2); 0.00a (7,3)/(5,3); 0.00a

100 100 Forward (3,2)/(3,2); 0.15 (8,2)/(6,2); 0.00a (7,3)/(5,3); 0.00a

Stepwise (3,1)/(3,1); 0.13a (7,2)/(5,2); 0.00a (4,1)/(4,1); 0.00a

Full 0.10 0.02 0.01

Backward (6,2)/(4,1); 0.11 (7,1)/(5,1); 0.04 (6,2)/(5,2); 0.03

25 100 F & S (1,2)/(1,2); 0.20 (7,1)/(5,1); 0.03 (6,2)/(5,2); 0.03

See text for explanation
Lines F & S refer to forward and stepwise selections - they produce the same results
a Improved performance on selection

6 Examples and comparisons

The proposed variable selection strategies were also investigated on three real data
sets. As well as evaluating their performance, it was of interest to compare them
with other classification rules. There is potentially a very large set of such candidate
rules, ranging from the simple “Naive Bayes” approach (Bickel and Levina 2004)
through to complex neural networks and support vector machines (Webb 2002), but
we decided to focus specifically on those commonly used rules that are routinely avail-
able in standard package software. Working with S-Plus 6.1, the full set of rules for
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comparison was therefore: smoothed location models (LM) with exponential, kernel
and nearest neighbour smoothing to obtain cell probabilities; linear discriminant func-
tions (LDF); quadratic discriminant functions (QDF); logistic discrimination (logis-
tic); regression based models with forward, backward and stepwise selections; and
tree classifiers. As a full tree may be unnecessarily large, a tree with error rate pruning
was also considered: a full tree was first constructed and then it was pruned to t nodes
such that the pruned tree of size t gives the lowest error rate (Venables and Ripley
1994, p. 345).

The obtained data sets contain various types of variables, but the location model is
suitable with continuous and binary variables. Therefore, other types of variables were
transformed to follow either continuous or binary type. We treated ordinal variables
as continuous variables and nominal variables were dichotomised into new binary
variables: if a nominal variable has k states, then it was replaced by k − 1 binary
variables, b1, b2, . . . , bk−1. These binary variables all take zero value except b j , which
takes value one, when the corresponding nominal variable is observed in its j th state
for j = 1, . . . , k − 1, and they are all zero when the nominal variable is in state k. For
all three data sets we used the automatic (parsimonious) selection method suggested
in Sect. 3.2, the degrees of freedom of chi-squared tests being those derived from the
full set of binary variables.

The first data set concerns the influences of psychosocial behaviour among breast
cancer patients, conducted at King’s College Hospital, London. It comprises 78 patients
who had a benign tumour (π1) and 59 patients who had a malignant tumour (π2). 15
measurements were taken for each patient: two continuous variables, six ordinal vari-
ables having 11 states each, four nominal variables having three states each and three
binary variables. By treating the ordinal as continuous and dichotomising the nominal
into binary, then these data consist of eight continuous and 11 binary variables. The
second data set is the subset of the first data set that was analysed by Krzanowski
(1975, 1980), where it was known as data Set 5. This data set contains a reduced num-
ber of variables with one continuous variable, six ordinal, two nominal and two binary
variables. After transforming both the ordinal and nominal variables, this subset has
seven continuous and six binary variables. This data set was also considered in this
study so that some comparisons between the full and the reduced sets could be made.

Finally, the third data set is a subset of the original “Cleveland Heart” data of the
StatLog project. It concerns the presence and absence of heart disease from various
medical tests carried out on patients in the Cleveland Clinic Foundation. These patients
came from one of two groups: 150 patients without heart disease (π1) and 120 patients
with heart disease (π2), and there were seven continuous, three nominal and three
binary variables. Transforming the nominal variables then leads to seven continuous
and nine binary variables.

Comparisons were made in terms of performance of the rules and size of set of
selected variables. The values of the 10-fold cross-validation error rate for each data
set are presented in Table 4. As can be seen, logistic discrimination is the best rule in
the full breast cancer data and heart data set, while exponential LM is the best rule in
the reduced breast cancer data set. On the other hand, QDF has the worst performance
in the full breast cancer data and the heart data, and the full tree is the worst in the
reduced breast cancer data.
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Table 4 Classification
performance based on 10-fold
cross-validation error rate, with
lowest error rates shown in bold
for each data set

Data set

Method Selection direction Breast cancer Heart

Full Reduced

LDF Include all variables 0.2920 0.3066 0.1667

QDF Include all variables 0.4453 0.3212 0.2778

Logistic Include all variables 0.2847 0.2847 0.1519

Full tree Auto-selection 0.3139 0.3650 0.2519

Pruned tree lowest error rate 0.3139 0.3577 0.2519

Regression Forward selection 0.3139 0.2847 0.1815

Backward elimination 0.2920 0.2847 0.1889

Stepwise selection 0.2920 0.2847 0.1889

Smoothed location model:

Exponential Forward selection 0.3139 0.2628 0.2037

Stepwise selection 0.3139 0.2628 0.2037

N. neighbour Forward selection 0.3066 0.2920 0.1667

Stepwise selection 0.3066 0.2920 0.1667

Kernel Forward selection 0.3066 – 0.1852

Stepwise selection 0.3066 – 0.1852

We did not perform smoothed LM with backward elimination as it is inappropriate
due to the large number of variables to begin with. We encountered a problem of
matrix singularity in the eighth fold of the reduced breast cancer data when evaluating
the kernel LM. Thus, this rule could not obtain the 10-fold cross-validation error rate.
The results for the full and reduced breast cancer data are different, with LDF and
trees being the worst while other rules show better performance in the reduced case.
Such results may be due to the different use of variables.

The results in Table 4 also give evidence that sometimes, using a reduced size of
variables is better than using them all. For example, in the full breast cancer data, LDF
and regression with backward and stepwise selections are the second best rules, and
in the heart data, LDF and nearest neighbour LM have the same error rate. In such
cases, we usually favour having fewer variables for reasons of simplicity (see Hoadley
2001) and to avoid the effect of multicollinearity problems. We therefore compared
the average number of selected variables over the 10-fold among classification rules
with variable selection. These values are given in Table 5.

In Table 5, different classification rules select different subsets of variables. This is
due to the use of different criteria for selecting variables. The regression rule selects
variables based on the AIC criterion, trees select variables from the information of
categorical variables and the Gini criterion and finally, the smoothed LM rules choose
the variables that give the biggest separation between two groups.

The results show that smoothed LM rules use fewer variables compared to the other
rules (perhaps a consequence of our “parsimonious” selection strategy). We marked
the rule(s) with the lowest error rate with ‘a’; representing the best performance.
Except for the full breast cancer data, other data sets give evidence that using fewer
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Table 5 Average number of
selected variables over 10-fold
cross-validation

a The rules with lowest error
rates for each data set

Classification rules Breast cancer Heart

Full Reduced

Full tree 8.4 8.8 11.1

Pruned tree 6.9 8.7 10.8

Regression:

Forward selection 5.1 3.5 9.2

Backward elimination 11.3a 4.1 11.1

Stepwise selection 11.3a 4.2 11.1

Smoothed location model:

Exponential 2.4 3.5a 6.0

Nearest neighbour 2.3 2.8 4.6a

Kernel 4.3 2.5 4.6

variables is better: exponential LM is the best in the reduced breast cancer data and
nearest neighbour LM is the best in heart data.

The similar performance of the full and pruned trees may be influenced by the
strategy of pruning, where a pruned tree is constructed from a full tree. Maybe a good
tree could be obtained by searching for a tree in which the combination of variables
gives the lowest error rate. The difficulty of using trees is that they are best used by
experts, because growing a tree not only involves mathematics but needs one to be
creative to build it (Duin 1996).

7 Discussion and conclusions

In this paper, we have demonstrated variable selection for the location model in
forward, backward and stepwise selections. Results from a simulation study show
evidence that the proposed strategies are able to handle multivariate data and that they
are also reliable for various types of variables.

Examples of real data show the potential use of the location model. It is some-
times the best, and if not, its results are not much different from the best rules. As a
conclusion, the smoothed location model should be considered as another potential
tool in discriminant analysis when the feature variables are mixed. Also, there are no
problems in employing this rule with large number of variables.

It would very beneficial to extend this study to more than two groups. The imple-
mentation to this case is generally straightforward, but the selection strategies need
to be planned carefully to avoid constructing inappropriate rules. Furthermore, the
possibility of the inappropriate use of distance between groups for more than two
groups (see Habbema and Hermans 1977; Raudys and Jain 1991; Aeberhard et al.
2000) have to be noted. Perhaps, the best strategy is probably to find the subset which
gives the smallest error rate, but much work has to be done in order to find the ‘best’
subset automatically through this approach.
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