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Abstract Simple and multiple linear regression models are considered
between variables whose “values” are convex compact random sets in R

p,
(that is, hypercubes, spheres, and so on). We analyze such models within a
set-arithmetic approach. Contrary to what happens for random variables, the
least squares optimal solutions for the basic affine transformation model do not
produce suitable estimates for the linear regression model. First, we derive least
squares estimators for the simple linear regression model and examine them
from a theoretical perspective. Moreover, the multiple linear regression model
is dealt with and a stepwise algorithm is developed in order to find the estimates
in this case. The particular problem of the linear regression with interval-valued
data is also considered and illustrated by means of a real-life example.

Keywords Linear regression model · Convex compact random sets · Support
function · Set arithmetic approach · Point estimation · Least squares method ·
Interval-valued data · Set-valued data

1 Introduction

Classical simple regression analysis deals with real-valued, possibly multidi-
mensional data and tries to estimate a linear relationship between an explan-
atory and a target variable. This scenario has been generalized, from different
points of view, to the case where the variables take intervals as their values
(see, e.g., Diamond 1990; Gil et al. 2001, 2002, 2006; Billard and Diday 2003;
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Lima Neto et al. 2004; De Carvalho et al. 2004; González-Rodríguez et al.
2006). In this paper, we formulate linear regression models for convex compact
random sets in R

p by following a set arithmetic approach (other approaches
are discussed in Gil et al. 2006). In fact, we present here a generalization of
the models considered in Gil et al. (2001, 2002, 2006) and González-Rodríguez
et al. (2006) for the particular case of interval data in R to the more general
case of convex compact sets in R

p.
Interval-valued random sets are useful in handling random experiments in

which the interest is focused on essentially imprecise characteristics (like eco-
nomical fluctuations, ranges, and so on) or it is associated with certain impre-
cisely known variables, like interval censoring times, or variables from which
available data are grouped. A simple example is presented in Sect. 6 where the
data intervals describe the daily ranges of pulse and blood pressure measure-
ments of sampled patients.

Convex compact random sets are a natural generalization of interval-
valued random sets which allows us to consider also random hypercubes, spheres
and so on (see, for instance, Matheron 1975; Stoyan et al. 1987; Cressie 1993;
Molchanov 2005).

In the context of interval data, Gil et al. (2002) have considered a kind of
“descriptive simple linear regression” formulated by an affine transformation
of the underlying random sets, and they have obtained the least squares opti-
mal solutions based on a generalized operational metric. On the other hand,
Gil et al. (2006) has considered the simple linear regression model (that will
be analyzed in this paper) for the particular case of interval data, and they
have shown that testing for linear independence in the underlying linear model
reduces to testing for the covariances of certain real-valued variables which
characterize the interval-valued random elements (concretely, the mid and the
spread values).

The two preceding viewpoints for the regression are in fact quite different. In
González-Rodríguez et al. (2006) it was shown by means of some examples and
simulations that, contrary to what happens in the case of real-valued variables
under the usual normality assumption, the least squares optimal solutions for
the affine transformation model do not produce suitable estimates for the sim-
ple linear regression model. This is due to the special features of the arithmetic
between interval-valued data. In this paper, these previous introductory studies
are extended by considering simple and multiple linear regression models for
convex compact set-valued data, and then analyzing the resulting estimators
from a theoretical point of view.

After recalling some preliminary concepts in Sect. 2, we formulate the con-
sidered Simple Linear Regression Model in Sect. 3. The estimation problem is
analyzed from a theoretical perspective in Sect. 4 and some illustrative exam-
ples are examined. Moreover, a stepwise algorithm to estimate the multiple
linear regression problem is given in Sect. 5. In order to illustrate the results in
a real-life situation, an example involving interval data is presented in Sect. 6.
Finally, Sect. 7 concludes with some final remarks.
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2 Preliminaries about random sets, metrics, and expectation

Let Kc(R
p) be the class of the nonempty convex compact subsets of R

p endowed
with the Minkowski addition and the product by a scalar, that is, for all sets
A, B ∈ Kc(R

p) and λ ∈ R we have

A + B = {a + b | a ∈ A , b ∈ B} and λA = {λa | a ∈ A}

It should be remarked that [Kc(R
p), +, ·] is not a linear space due to the lack of a

symmetric element w.r.t. the addition. For this reason, it is useful to consider the
Hukuhara difference A −H B, which is defined as the set difference C, provided
that C ∈ Kc(R

p), so that A = B + C. In the 1D case, if A, B ∈ Kc(R), we have
that A −H B = [inf A − inf B, sup A − sup B] iff inf A − inf B ≤ sup A − sup B.

The support function of a set A ∈ Kc(R
p) is defined by sA(u) = supa∈A〈a, u〉

for any u ∈ S
p−1, where S

p−1 is the unit sphere in R
p and 〈·, ·〉 denotes the inner

product in R
p. The support function sA is continuous and characterizes the con-

vex set A. In fact the function s : Kc(R
p) → C(Sp−1) defined by s(A)(u) = sA(u)

for A ∈ Kc(R
p), and u ∈ S

p−1, embeds Kc(R
p) onto a cone included in the

class of all continuous functions C(Sp−1). The support function is semilinear,
in the sense that, sA+B = sA + sB and sλA = λsA and, furthermore, if A −H B
exists, then sA−HB = sA − sB for all A, B ∈ Kc(R

p) and λ > 0 (see, for instance,
Diamond and Kloeden 1994).

In order to formalize least-squares estimation methods we need some dis-
tance measure between convex sets or intervals. For example, the least-squares
estimation method in Gil et al. (2002) is based on the dW-distance between
intervals, W being a non-degenerate symmetric probability measure on the real
Borel space ([0, 1]), B1([0, 1]), which, for all A, B ∈ Kc(R), is defined by

dW(A, B) =
√
√
√
√

∫

[0,1]

[

fA(λ) − fB(λ)
]2 d W(λ)

with fA(λ) = λ sup A + (1 − λ) inf A (see Bertoluzza et al. 1995).
In Gil et al. (2002) it is shown that the dW-metric has a suitable intuitive

meaning, in addition to very good operational properties. The usefulness of this
metric is mainly due to two facts, namely,

• it is an L2-type metric, which implies very good statistical properties in
connection with least squares methods;

• it involves not only distances between extreme points (infima and supre-
ma), but also distances between inner points in the intervals, except for
W(0) = W(1) = 0.5, which involves only distances between the extremes.

The dW-metric can be generalized (see Körner and Näther 2002) in the fol-
lowing way that preserves these useful properties:
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DK(A, B) =
√
√
√
√

∫

Sp−1

(sA(u) − sB(u))(sA(v) − sB(v))dK(u, v)

for A, B ∈ Kc(R
p) where K is a symmetric and positive definite kernel function.

When considering the metric DK in Kc(R
p) the functional s establishes an isom-

etry between the space Kc(R
p) and a closed convex cone of the Hilbert space

[C(Sp−1), ‖ · ‖K], where ‖ · ‖K denotes the L2 distance w.r.t. the kernel K. Thus,
if < ·, · >K denotes the associated inner product, we have that

D2
K(A, B) =< sA − sB, sA − sB >K .

This metric will be used later on.
If (Ω , A, P) is a probability space, a convex compact random set in R

p is usu-
ally defined as a Borel measurable mapping X : Ω → Kc(R

p) with respect to the
σ -field generated by the topology induced by the well-known Hausdorff metric
dH on Kc(R

p). In this respect, it should be noted that the Hausdorff metric and
DK are topologically equivalent (see Diamond and Kloeden 1994; Körner and
Näther 2002). When p = 1, the random sets above will be referred to as inter-
val-valued random sets. An interval-valued random set X can be characterized
by means of the random vector (mid X, spr X) where mid A = (sup A+ inf A)/2
and spr A = (sup A − inf A)/2 denote the mid-point (center) and the spread
(radius) of the interval A ∈ Kc(R), respectively. Similarly, the random rectan-
gles X parallel to the Cartesian axes in Kc(R

2) can be parameterized by a 4D
random vector (mid1X, mid2X, spr1X, spr2X), where (mid1 A, mid2 A) denotes
the 2D center, and (spr1A, spr2A) the 2D spread (the first coordinate being
associated with the x-axis and the second with the y-axis) for A ∈ Kc(R

2).
There are various ways to define the “expectation” of a random set. We

will use the following Aumann approach: let X : Ω → Kc(R
p) be a convex

compact random set such that E(|X|) < ∞ [with |X|(ω) = sup
{|x| ∣∣ x ∈ X(ω)

}

for ω ∈ Ω]. Then, the expected value of X in Kudō-Aumann’s sense (see, e.g.,
Aumann 1965) is given by the set of all the means of the integrable p-dimen-
sional real-valued random vectors that are contained in X with probability one:

EA[X] =
{

E(f )
∣
∣
∣ f : Ω → R, f ∈ L1, f ∈ X a.s. [P]

}

If X is an interval-valued random set, the expected value EA[X] can be written
as [E(inf X), E(sup X)]. Moreover, if E(|X|2) < ∞, the variance of X is defined
by Var(X) = E

(
[

DK
(

X, EA[X])]2
)

(see, for instance, Lubiano et al. 2000;

Körner and Näther 2002).

3 The affine transformation model and the simple linear regression model

Let {(xi, yi)}n
i=1 be a data matrix with (xi, yi) ∈ Kc(R

p) × Kc(R
p) for all

i = 1, . . . , n. This matrix can be viewed as a realization of a random sample
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Fig. 1 Affine transformation
yi∗ = axi + B for intervals
with a < 0

{Xi, Yi}n
i=1 obtained from a random element (X, Y) : Ω → Kc(R

p) × Kc(R
p).

In order to relate X and Y by some functional form, two interesting statis-
tical-probabilistic models based on the arithmetic defined in Sect. 2 can be
considered:

Affine transformation (X, Y) : Ω → Kc(R
p) × Kc(R

p) with Y∗ = aX + B
with a ∈ R and a set B ∈ Kc(R

p).

Simple linear regression model (X, Y) : Ω → Kc(R
p) × Kc(R

p) where Y =
aX + εX , where a ∈ R and εX is a random set with a fixed expected value
EA[εX ] = B ∈ Kc(R

p). This implies that EA[Y|x] = ax+B for any realization
x ∈ Kc(R

p) of X.

As an example in Fig. 1 we show how the affine transformation y∗
i = axi + B

operates on a interval xi to get y∗
i . It should be noted that since a < 0, we obtain

inf y∗
i by linear transformation of sup xi and sup y∗

i by linear transformation of
inf xi.

Remark 1 In the Simple Linear Regression model it is quite restrictive to
assume that the errors εX are centered at {0} (that is EA[εX ] = {0}), in con-
trast to what is usual for random variables, because the lack of linearity of
Kc(R

p) would make the errors degenerate into real-valued random variables.
For this reason, in order to consider set-valued errors, the independent term
is included in the formalization of the possible errors. On the other hand, the
model Y = aX +εX implies the existence of the Hukuhara difference Y −H aX,
which should be taken into account in order to estimate the parameter a. 
�
Remark 2 In the Affine Transformation Model the estimation problem con-
sists in finding the scale parameter a∗ ∈ R and a set B∗ ∈ Kc(R

p) such that
{(xi, a∗xi + B∗)}n

i=1 is as close to the data matrix {(xi, yi)}n
i=1 as possible accord-

ing to a given criterion, which in this paper will be based on the least squares
approach (see Sect. 4).



72 G. González-Rodríguez et al.

On the other hand, in the Simple Linear Regression Model the estimation
problem consists in finding values â ∈ R and a set B̂ ∈ Kc(R

p) such that
{(xi, âxi + B̂)}n

i=1 is as close to the data matrix as possible and, simultaneously,
yi = âxi + εi holds for a some εi ∈ Kc(R

p), that is, so that yi −H âxi exists for all
i = {1, . . . , n}.

The two viewpoints are different in the sense that,

• in the Affine Transformation problem, the affine function closest to the
data matrix is to be determined, but data are not assumed to fulfil this
affine transformation,

• in the Simple Linear Regression problem the aim is to find the best linear
relationship and, under such an assumption, the collected data are supposed
to satisfy the regression model.

The first one is a numerical problem related to a descriptive statistical
approach, whereas the second one is an estimation problem related to an infer-
ential approach. 
�

Gil et al. (2002) obtained the least squares optimal solution in the dW sense for
the interval-valued case and for the affine transformation model. In González-
Rodríguez et al. (2006) it has been shown that, contrary to what happens in the
case of random variables, the least squares optimal solutions for the affine trans-
formation do not produce suitable estimates for the linear regression model,
because we may obtain estimates a∗ for which the difference Y −H a∗X does
not make sense (i.e., there may exist observations for which yi −H a∗xi is not
a set). For instance, if p = 1 and the estimate a∗ is closer to 0 than the true
value of a (i.e., |a∗| ≤ |a|) then, under the linear model assumption we have
that a∗X ⊂ aX ⊂ Y, whence Y −H a∗X is well-defined. On the contrary, if a∗
is such that |a∗| > |a|, the last assertion is not always true.

Example 1 To illustrate the last comments, consider (X, Y) : Ω → Kc(R) ×
Kc(R) so that Y = X + ε, mid X and mid ε are independent random vari-
ables with N (0, 1) distribution and spr X and spr ε are independent random
variables with χ2

1 distribution . Three realizations (data) from X and ε have
been simulated (see Table 1). For these data we have that spr y1 = spr x1 +
spr ε1 = 0.2863 + 0.0893 = 0.3736. If the least squares solutions are computed
by applying the algorithm in Gil et al. (2002), then we obtain a∗ = 2.2644 and
B∗ = [−0.3282, 0.4041], whence spr (a∗x1) = 2.2644 · 0.2863 = 0.6478. Since
spr (a∗x1) > spr y1, it is not possible to compute the Hukuhara difference of y1
and a∗x1, and hence it is not possible to find any error ε∗

1 so that y1 = a∗x1 + ε∗
1 .

�

To overcome these difficulties González-Rodríguez et al. (2006) proposed a
restricted least squares method for the interval-valued case which was empiri-
cally shown to improve the unrestricted least squares method in terms of the
mean squared error. In this paper, we generalize this method to the case of con-
vex compact sets and investigate it from a theoretical point of view. Additionally,
we also analyze a multiple linear regression model.
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Table 1 Simulated data to
estimate the model
EA[Y|x] = x + [−1, 1]

mid xi spr xi mid εi spr ε1

0.6561 0.2863 0.1238 0.0893
−0.0334 0.06533 1.0936 0.8334
−0.2719 0.5166 −1.7599 1.3875

4 Estimation in the simple linear regression model

Here we propose to restrict the Least Squares estimators for the unknown
parameter a and the set B to satisfy the Linear Regression Model, at least over
the set of observed data. The aim of this method can be formalized as follows:
to look for â ∈ R and B̂ ∈ Kc(R

p) in order to

⎧

⎪
⎨

⎪
⎩

Minimize
1
n

n
∑

i=1

D2
K(Yi, aXi + B)[w.r.t. a ∈ R and B ∈ Kc(R

p)]

subject to the constraint that Yi −H aXi exists for all i = 1, . . . , n.

Let A = {a ∈ R | Yi −H aXi exists for all i = 1, . . . , n} denote the set of all as
which fulfil the constraint. It is possible to show that A is a nonempty, closed and
convex subset. Actually either, A = R, or there exist a0, b0 ∈ [0, +∞), so that
A = [−a0, b0]. In addition, it is easy to verify that for a given sample {yi, xi}n

i=1,
A = R if, and only if, Card(xi) = 1 for all i = 1, . . . , n [i.e., the sets xi ∈ Kc(R

p)

are all degenerated into real numbers].
As an example, if we consider the case in which X and Y are interval-val-

ued random sets, then yi −H axi exists if, and only if, spr axi ≤ spr xi. Thus, if
spr xi > 0 [that is, card(xi) > 1], then |a| ≤ spr yi/spr xi for all i = 1, . . . , n,
whence a0 = b0 = mini=1...n spr yi/spr xi.

From now on, X and Y will denote the sample means [that is, the sets
X = (X1 + · · · + Xn)/n and Y = (Y1 + · · · + Yn)/n], σ̂ 2

X will denote the sample

variance [that is, σ̂X = DK(X, X)2], and σ̂ 2
X,Y will denote the sample covariance

of the corresponding support functions (that is, σ̂X,Y = < sY − sY , sX − sX >K).
The support function allows us to search the least squares estimator of param-
eter B in a way similar to that for the case of real-valued data.

Theorem 1 Given a ∈ A, the minimum of 1
n

∑n
i=1 D2

K(Yi, aXi + B) over B ∈
Kc(R

p) is attained at B(a) = Y −H aX.

Proof Consider a ∈ A. Given that there exists Yi −H aXi for all i = 1 . . . n, we
have

1
n

n
∑

i=1

D2
K(Yi, aXi + B) = 1

n

n
∑

i=1

D2
K(Yi −H aXi, B).

The definition of the variance w.r.t. the DK metric satisfies the Fréchet approach
(see Körner and Näther 2002), which means that the set that minimizes the
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square distance to a variable is precisely the mean, whence the expression is
minimized at B(a) = Y −H aX = Y −H aX. 
�

As a result of Theorem 1, the Least Squares minimization problem reduces
to

⎧

⎪
⎨

⎪
⎩

Find â ∈ R minimizing φ(a) := 1
n

n
∑

i=1

D2
K(Yi −H aXi, Y −H aX)

subject to a ∈ A.

Theorem 2 Whenever σ̂ 2
X > 0, the function φ(a) = 1

n

∑n
i=1 D2

K(Yi −H aXi, Y −H

aX) is minimized w.r.t a ∈ A at the following value: a∗ such that
For A = R the optimal a ∈ A is given by

a∗ =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

0 if σ̂−X,Y ≤ 0 and σ̂X,Y ≤ 0

σ̂X,Y

σ̂ 2
X

if σ̂X,Y > 0 and σ̂−X,Y ≤ σ̂X,Y

− σ̂−X,Y

σ̂ 2
X

if σ̂−X,Y > 0 and σ̂X,Y ≤ σ̂−X,Y

For A = [−a0, b0] the optimal a ∈ A is given by

a∗ =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

β
σ̂X,Y

σ̂ 2
X

− α
σ̂X,Y

σ̂ 2
X

if α = 0 or β = 0

−α
σ̂−X,Y

σ̂ 2
X

if
σ̂ 2−X,Y

σ̂ 2
X,Y

≥ 2β−β2

2α−α2 and α · β �= 0

β
σ̂X,Y

σ̂ 2
X

if
σ̂ 2−X,Y

σ̂ 2
X,Y

≤ 2β−β2

2α−α2 and α · β �= 0

where

α =
⎧

⎨

⎩

0 if σ̂−X,Y ≤ 0

min

{

1, a0

σ̂−X,Y/σ̂ 2
X

}

if σ̂−X,Y > 0

β =
⎧

⎨

⎩

0 if σ̂X,Y ≤ 0

min

{

1, b0

σ̂X,Y/σ̂ 2
X

}

if σ̂X,Y > 0

Proof The linearity of the inner product and the properties of the support
function allow us to express φ(a) as

φ(a) = 1
n

n
∑

i=1

< sYi − sY , sYi − sY >K + 1
n

n
∑

i=1

< saXi − saX , saXi − saX >K

−2
1
n

n
∑

i=1

< sYi − sY , saXi − saX >K .
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Since the homogeneity property of the support function w.r.t. the multipli-
cation by a scalar is only satisfied for positive constants, positive and negative
values of a will be considered separately. For the sake of simplicity, we will
present our reasoning in R = R ∪ {−∞, ∞}, and define a0 = b0 = ∞ if A = R.

First, if 0 ≤ a ≤ b0, we have that

φ(a) = σ̂ 2
Y + a2σ̂ 2

X − 2aσ̂X,Y .

This function is continuous, differentiable and convex in a, and it is therefore
easy to check that the minimum is attained at a1 = β

σ̂X,Y

σ̂ 2
X

. Analogously, if

−a0 ≤ a ≤ 0, we have that

φ(a) = σ̂ 2
Y + a2σ̂ 2

−X + 2aσ̂−X,Y .

Since the kernel K in the distance DK is assumed to be symmetric, we can easily
show that σ̂ 2

−X = σ̂ 2
X (nevertheless, there is no general relationship between

σ̂−X,Y and σ̂X,Y .) Thus, we obtain that the minimum of φ(a) in this case is

attained at a2 = −α
σ̂−X,Y

σ̂ 2
X

. Simple computations allow us to express the different

cases that arise in terms of the sample covariances to obtain that the minimum
of φ(a) over [−a0, b0] is attained at

a∗ =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

β
σ̂X,Y

σ̂ 2
X

− α
σ̂X,Y

σ̂ 2
X

if α = 0 or β = 0

−α
σ̂−X,Y

σ̂ 2
X

if
σ̂ 2−X,Y

σ̂ 2
X,Y

≥ 2β−β2

2α−α2 and α · β �= 0

β
σ̂X,Y

σ̂ 2
X

if
σ̂ 2−X,Y

σ̂ 2
X,Y

≤ 2β−β2

2α−α2 and α · β �= 0


�
Remark 3 The solution of the minimization problem is unique, but in the case
where (σ̂ 2

−X,Y)/(σ̂ 2
X,Y) = (2β − β2)/(2α − α2) and α · β �= 0, when a double

solution for a can be obtained (one being positive and the other one negative).

�

Remark 4 If A is symmetric, that is, A = [−a0, a0] (which happens, for instance
when the sampled sets {yi, xi}n

i=1 are all of them either intervals, or rectangles
parallel to the Cartesian axes), then the expression of a∗ is simply given by,

a∗ =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

0 if σ̂−X,Y ≤ 0 and σ̂X,Y ≤ 0

min

{

a0, σ̂X,Y

σ̂ 2
X

}

if σ̂X,Y > 0 and σ̂−X,Y ≤ σ̂X,Y

− min

{

a0, σ̂−X,Y

σ̂ 2
X

}

if σ̂−X,Y > 0 and σ̂X,Y ≤ σ̂−X,Y


�
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Table 2 Sample from a 2D random rectangle

mid1Y mid2Y spr1Y spr2Y mid1X mid2X spr1X spr2X

1.0 2.0 1.0 1.0 0.0 1.0 1.0 2.0
0.0 2.0 0.5 0.5 1.0 1.0 0.5 1.0
2.0 2.0 0.5 0.5 1.0 1.0 0.5 1.0
1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0

Although a double solution is uncommon in practice, a situation in which
this happens is illustrated by the following Example 2. Furthermore, after a
slight change in a single data value, a second situation with a unique solution
will result.

Example 2 Table 2 displays a sample from a 2D random rectangle parallel to
the Cartesian axes (X, Y) : Ω → Kc(R

2) × Kc(R
2).

The least squares estimates for the model Y = aX + εX , where a ∈ R and
εX is a random set with a fixed, but unknown EA[εX ] = B ∈ Kc(R

2), can be
computed as it is shown in Theorems 1 and 2. Since (X, Y) are random rect-
angles parallel to the Cartesian axes, properties of the Aumann expectation
allow to guarantee that B must be also a rectangle parallel to the Cartesian
axes [that is, B will be determined by (mid1B, mid2B, spr1B, spr2B)]. On the
other hand, we can verify that A = [−1, 1], that is, A is symmetric and a0 = 1.
Therefore the solution of the minimization problem is given by the expres-
sion in Remark 4. In this case σ̂−X,Y = σ̂X,Y = 0.153 > 0, whence a double
solution for a and B is obtained, which yield two alternative regression func-
tions ŷ = 0.32x + (0.68, 1.68, 0.51, 0.28) and ŷ = −0.32x + (1.32, 2.32, 0.51, 0.28),
respectively. We observe that â is an interior point of A.

Consider now x′
1 = (2, 2, 1, 2) as a new data interval replacing x1 = (0, 1, 1, 2)

in Table 2. Since only the center of x1 has changed, the threshold a0 is still 1.
However, σ̂X ′,Y = 0.278 and σ̂−X ′,Y = 0.028, and then the solution is unique.
Concretely, it is given by ŷ = 0.41x′ + (0.48, 1.48, 0.13, 0.41). The estimate â′ is
also an interior point of A. 
�

5 Estimation of the multiple linear regression model

In this section, we consider a Multiple Linear Regression Model and present a
stepwise method for estimation. As an extension of the Simple Linear Regres-
sion Model presented in Sect. 3, we consider the next probabilistic model,

Multiple linear regression model (X1, . . . , Xk, Y) : Ω → [Kc(R
p)]k+1

Y = β1X1 + . . . βkXk + εX1...,Xk = β t−→X + ε−→
X

,

whereβββ t = (β1, . . . , βk),
−→
X t = (X1, . . . , Xk), βj ∈ R for all j ∈ {1 . . . k} and ε−→

X
is a random set with expected value EA[ε−→

X
] = B ∈ Kc(R

p). This implies that
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EA[Y|−→x ] = β1x1 +· · ·+βkxk +B for any sample realization −→x ∈ [Kc(R
p)]k

of
−→
X .

The aim is to estimate the unknown parameters of the Multiple Linear
Regression Model on the basis of a random sample {−→X i, Yi}n

i=1 from (
−→
X t, Y).

Hence, the problem is to estimate βββ ∈ R
k and B ∈ Kc(R

p) so that {(−→X i, β̂ββ
t−→
X i +

B̂)}n
i=1 is as close to the data matrix {−→X i, Yi}n

i=1 as possible subject to the con-

straint Yi = β̂ββ
t−→
X i + εi for some εi ∈ [Kc(R

p)] (i ∈ {1, . . . , n}).
We propose to estimate stepwise the parameters βj ∈ R (j ∈ {1, . . . , k}) which

are significantly different from zero, that is, to include in the estimate model the
set-valued independent variables Xj which contribute new linear information
to approximate the response Y. In order to verify whether or not a coefficient
βj ∈ R is significantly different from zero, we propose to use a linear inde-
pendence bootstrap test. The test will be applied to simple regressions models
relating a independent variable Xj and a given response. A way of applying this
test in practice is presented in the following auxiliary algorithm for a generic
simple linear regression model Y = aX + εX .

Auxiliary algorithm:

Linear independence bootstrap test for a = 0
Step 1 Compute the value of the statistic T = 1 − σ̂ 2

Y−HâX/σ̂ 2
Y .

Step 2 Obtain (X1, ε∗
1 ), . . . , (Xn, ε∗

n), where {ε∗
i }n

i=1 is sampled from
{Y1 −H âX1, . . . , Yn −H âXn} and compute the value

T∗ = 1 − σ̂ 2
ε∗−Hâ∗X/σ̂ 2

ε∗ .

Step 3 Repeat Step 2 a large number b of times and approximate the p-value
for βj as the proportion of values in {T∗

1 , . . . , T∗
b} greater than T.

The stepwise estimation algorithm should evaluate the new contribution of
the available variables at each step, in order to include a new variable Xj in the
model if the corresponding βj is significatively different from zero. Concretely,
since the estimators introduced in Sect. 4 for the simple linear regression model
guarantee the existence of the Hukuhara differences, we can compute the resid-
uals and check at each step if there is any variable that contributes with new
linear information to these residuals. To measure the significance of the linear
contribution we will use the p-values of the linear independence test obtained
by applying the auxiliary algorithm. In this respect, if (Z1, . . . Zn)t ∈ [Kc(R

p)]n

stands for any of the sample residuals, we will denote by θj(Z) the p-value of the
test of the null hypothesis H0 : βj = 0 on the basis of the sample information
{((Xj)i, Zi)}n

i=1.

Stepwise algorithm:

Estimation of the multiple linear model

Step 1 Fix the significance level α ∈ (0, 1) and set β̂ββ
t = (0, . . . , 0)t ∈ R

k and
J = {1, . . . k};
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Step 2 For each j ∈ J, compute θj(Y −H β̂ββ
t−→
X ) by means of the Auxiliary

Algorithm and set

j∗ = arg min
j∈J

θj(Y −H β̂ββ
t−→
X );

Step 3 IF θj∗(Y −H β̂ββ
t−→
X ) < α, THEN

• Compute the estimate of the coefficient a in the simple linear regression
model for (Xj∗ , Y −H β̂ββ

t−→
X ) (see Sect. 4);

• Set β̂ββ j∗ = a and J = J \ { j∗}
• GO TO Step 2

ELSE the estimate of (βββ t, B) is (β̂ββ
t
, Y −H β̂ββ

t−→
X ) STOP.

The Stepwise Algorithm will be illustrated by means of a simulated situation
in the following example.

Example 3 In order to compare the estimates obtained by applying the Step-
wise Algorithm with the exact values in a concrete Multiple Linear Model, a
sample of n = 10 data of Y = β1X1 +β2X2 +ε has been obtained, where β1 = 1,
β2 = 3, and (X1, X2, ε) : Ω → [Kc(R

2)]3 is a 3D random rectangle parallel to the
Cartesian axes whose characterizing random vectors are distributed as follows:

• random centers: mid1X1, mid2X1, mid1X2, mid2X2, mid1ε, mid2ε normally
distributed as N (0,1).

• random spreads: spr1X1, spr1ε, spr2ε distributed as χ2
1 , spr2X1, spr1X2 dis-

tributed as χ2
2 , and spr2X2 as χ2

3 .

The simulated data are gathered in Table 3. To estimate the model Y =
β1X1 + β2X2 + ε, the Stepwise Algorithm has been applied. In Step 1 the
significance level α has been fixed to be equal to 0.05. In the first iteration
the independence bootstrap test in the Auxiliary Algorithm leads to a p-value
equal to 0.008 for (X1, Y), and equal to zero for (X2, Y). Consequently, the
first variable to be chosen is X2. Since the corresponding p-value is lower than
α, X2 is included in the estimated model with a parameter β̂2 = 2.944. In
the second iteration the linear independence bootstrap test in the Auxiliary
Algorithm for (X1, Y −H β̂2X2) leads to a p-value = 0 < α, therefore X1
is also included in the estimated model with β̂1 = 1.062. Thus the estimate

B̂ = Y −H β̂ββ
t−→
X is the rectangle parallel to the Cartesian axes given by the

vector (mid1B, mid2B, spr1B, spr2B) = (0.201, 0.428, 1.270, 0.937).
The exact model was EA[Y|(x1, x2)] = x1 + 3x2 + (0, 0, 1, 1) and the estimate

from 10 data ŷ = 1.062x1 + 2.99x2 + (0.201, 0.428, 1.270, 0.937), which seems
to indicate that the estimates for β1, β2 are quite good and the estimated B is
reasonable. 
�

6 An illustrative real-life example with interval data

The following example illustrates the methods developed in this paper in a
real-life case. Data have been supplied by the Department of Nephrology of
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Table 3 n = 10 simulated triples of data intervals for the model Y = a1X1 + a2X2 + ε

mid1Y mid2Y spr1Y spr2Y mid1X1 mid2X1 spr1X1 spr2X1 mid1X2 mid2X2 spr1X2 spr2X2

1.463 4.601 1.235 14.170 0.771 1.340 0.445 0.618 0.611 0.710 0.065 4.472
0.580 −2.916 2.060 23.470 −0.189 1.429 0.024 0.373 0.275 −1.423 0.599 7.698
1.716 4.991 8.401 11.759 0.927 0.073 0.653 0.810 −0.064 1.385 0.461 3.207

−5.735 1.302 5.470 11.685 −1.252 0.547 0.020 2.837 −1.857 −0.059 1.761 2.744
0.666 −0.372 1.864 17.100 1.151 −1.057 0.029 0.420 0.107 0.224 0.578 5.144

−2.067 −0.606 36.004 5.164 −0.267 −1.261 1.844 1.942 −0.475 0.151 10.898 1.001
11.916 −2.992 2.652 12.361 0.857 −0.972 0.001 5.512 3.869 −0.348 0.398 1.985
−1.984 −0.551 1.800 10.967 −0.985 1.526 0.442 0.815 −0.601 −0.693 0.452 2.454

3.659 −0.791 14.608 4.984 1.197 0.103 0.644 0.227 0.700 −0.459 4.361 1.428
−1.782 4.212 6.738 22.738 −0.818 1.864 1.429 3.507 −0.886 0.098 1.576 6.184

the Hospital Valle del Nalón in Langreo (Asturias, Spain) and has been previ-
ously considered in Gil et al. (2002, 2006) to illustrate different aspect regarding
the linear regression between interval data.

Data in Table 4 correspond to the “range of the pulse rate over a day”, X,
the “range of systolic blood pressure over the same day”, Y, and the “range of
diastolic blood pressure over the same day”, Z, observed in a sample of n = 59
patients (suffering from different types of illness) from a population of 3,000
patients who are hospitalized per year.

Values of X, Y and Z are obtained from several registers of the pulse rate,
systolic blood pressure and diastolic blood pressure of each patient measured
at different time points (usually 60–70) over a concrete day. Blood pressures
and rate pulse data are often collected by taking into account simply the lowest
and highest registers during a day (actually, some devices used for this purpose
even record and memorize only these extreme values during a day); in these
cases, the whole registers for a day and the associated variation can distort the
information on the characteristic which is considered to be relevant: the range.

The aim is to estimate the relationship that relates the diastolic blood pressure
Y as a linear function of the pulse rate X1 and the systolic blood pressure X2, that
is, to estimate β1, β2 ∈ R and B ∈ Kc(R) in the model Y = β1X1 +β2X2 +εX1,X2

with EA([εX1,X2 ] = B.
In the first step of the Stepwise Algorithm, the significance level has been

fixed again to be α = 0.05, in the first iteration the independence bootstrap
test in the Auxiliary Algorithm leads to a p-value = 0.115 for (X1, Y) and a
p-value = 0 for (X2, Y). Consequently, the first variable to be chosen is X2.
Since the corresponding p-value is lower than α, X2 is included in the esti-
mate model with a parameter β̂2 = 0.0077. In the second iteration the linear
independence bootstrap test in the Auxiliary Algorithm for (X1, Y −H β̂2X2)

leads to a p-value = 0.074 > α, therefore X1 is not included in the estimated

model. We find that B̂ = Y −H β̂ββ
t−→
X is the interval in R

1 with center 2.049 and
spread 0.978, that is [1.071, 3.027]. As a consequence, the estimated model is
ŷ = 0.077x2 + [1.071, 3.027].
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Table 4 Data on the ranges of pulse rate (X1), systolic (X2) and diastolic (Y) blood pressure for
n = 59 patients

X Y Z X Y Z

58–90 118–173 63–102 52–78 119–212 47–93
47–68 104–161 71–118 55–84 122–178 73–105
32–114 131–186 58–113 61–101 127–189 74–125
61–110 105–157 62–118 65–92 113–213 52–112
62–89 120–179 59–94 38–66 141–205 69–133
63–119 101–194 48–116 48–73 99–169 53–109
51–95 109–174 60–119 59–98 126–191 60–98
49–78 128–210 76–125 59–87 99–201 55–121
43–67 94–145 47–104 49–82 88–221 37–94
55–102 148–201 88–130 48–77 113–183 55–85
64–107 111–192 52–96 56–133 94–176 56–121
54–84 116–201 74–133 37–75 102–156 50–94
47–95 102–167 39–84 61–94 103–159 52–95
56–90 104–161 55–98 44–110 102–185 63–118
44–108 106–167 45–95 46–83 111–199 57–113
63–109 112–162 62–116 52–98 130–180 64–121
62–95 136–201 67–122 56–84 103–161 55–97
48–107 90–177 52–104 54–92 125–192 59–101
26–109 116–168 58–109 53–120 97–182 54–104
61–108 98–157 50–111 49–88 124–226 57–101
54–78 98–160 47–108 75–124 120–180 59–90
53–103 97–154 60–107 58–99 100–161 54–104
47–86 87–150 47–86 59–78 159–214 99–127
70–132 141–256 77–158 55–89 138–221 70–118
63–115 108–147 62–107 55–80 87–152 50–95
47–83 115–196 65–117 70–105 120–188 53–105
56–103 99–172 42–86 40–80 95–166 54–100
71–121 113–176 57–95 56–97 92–173 45–107
68–91 114–186 46–103 37–86 83–140 45–91
62–100 145–210 100–136

7 Concluding remarks and open problems

In this paper least squares estimators for linear regression models between con-
vex compact random sets are found, on the basis of a set-arithmetic approach.
The statistical properties of these estimators and of the corresponding good-
ness-of-fit measures (such as consistency, bias, asymptotic distributions, and
so on) are still to be derived. The results generalize those for interval-valued
random sets and insofar also provide a contribution to Symbolic Data Analysis
(see, for instance, Bock and Diday 2000; Billard and Diday 2003).
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