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Abstract: Instructional videos are very useful for completing complex daily tasks, which naturally contain abundant clip-narration
pairs. Existing works for procedure understanding are keen on pretraining various video-language models with these pairs and then fine-
tuning downstream classifiers and localizers in predetermined category space. These video-language models are proficient at represent-
ing short-term actions, basic objects, and their combinations, but they are still far from understanding long-term procedures. In addi-
tion, the predetermined procedure category faces the problem of combination disaster and is inherently inapt to unseen procedures.
Therefore, we propose a novel compositional prompt learning (CPL) framework to understand long-term procedures by prompting
short-term video-language models and reformulating several classical procedure understanding tasks into general video-text matching
problems. Specifically, the proposed CPL consists of one visual prompt and three compositional textual prompts (including the action
prompt, object prompt, and procedure prompt), which could compositionally distill knowledge from short-term video-language models
to facilitate long-term procedure understanding. Besides, the task reformulation enables our CPL to perform well in all zero-shot, few-
shot, and fully-supervised settings. Extensive experiments on two widely-used datasets for procedure understanding demonstrate the ef-
fectiveness of the proposed approach.
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1 Introduction

Instructional videos refer to videos visually and orally
demonstrating how to perform a daily task, such as “pre-
paring a particular meal” and “repairing a car”, which
are very popular for learning and completing complex
tasks in daily life. As indicated by the educational psycho-
logistl], dividing a whole task into smaller segments or
procedures could largely simplify the complex task and
facilitate the learning process for novices. Therefore, ex-
ploring intelligent algorithms to effectively understand
procedures in instructional videos has wide applications
in daily life, and will largely facilitate worldwide know-
ledge dissemination.

Procedure understanding in instructional videos in-
volves various kinds of tasks, such as procedure recogni-
tion, procedure segmentation, procedure localization, pro-
cedure anticipation, and procedure retrieval27. In early
works, each method is designed task-specifically that only
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tackles corresponding issues in one specific taskl 8. With
the booming of self-supervised learning (SSL) and unsu-
pervised learning in the fields of computer vision and nat-
ural language processing (NLP), most of the works fall in
the paradigm of pretrain-finetunel®13l. They first pre-
train various large-scale video-language models to obtain
general video-text representations since instructional
videos naturally contain weakly-aligned clip-narration
pairs, and then finetune the learned representation to
various procedure understanding tasks in predetermined
category space. The pioneering work VideoBERTI!0 bor-
rows ideas from word vectors in the NLP filed to create
discrete video tokens to learn video-text representation
from instructional videos via the BERT modell!4. Act-
BERTM further exploits global activity information, loc-
al activity information, and text information to learn gen-
eral procedure representations. Some works['!: 19 also ex-
ploit the character of modality consistency in instruction-
al videos to learn a joint representation of visual activity
and linguistic narration in large-scale video-language
models via the contrastive learning techniquell6.

Most of these large-scale video-language models are
trained by aligning short-term video clips with corres-
ponding narrations (clip-narration pairs), such as Act-
BERTN (4s), MIL-NCE[M! (3.2s). However, different
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from conventional short-term actions or activities[!7-25],
the procedures in instructional videos usually sustain
much longer (1-100s), such as procedures in the COIN
dataset(3] have an average length of 14.91s. Although pre-
trained video-language models perform well in represent-
ing short-term actions (verbs), basic objects (nouns), and
their combinations, they are still not sufficient to analyze
long-term procedures and are far more to understand the
complex instructional tasks. Besides, this paradigm re-
quires finetuning the downstream classifiers and local-
izers in a predetermined category space. Procedures in in-
structional videos are commonly composed of one or sev-
eral actions and objects, such as “apply some glue on the
boards” and “insert money into the vending machine”. It
is obvious that the predetermined procedure category
faces the serious problem of combination disaster and is
also inherently inapt to transfer to unseen actions, ob-
jects, and procedures.

To solve the problems mentioned above, we propose a
novel prompt learning based framework called composi-
tional prompt learning (CPL). It prompts short-term
video-language models to understand long-term proced-
ures and reformulates a series of classical procedure un-
derstanding tasks into general video-text matching prob-
lems, including procedure classification, procedure propos-
al, and procedure localization. Specifically, there are one
visual prompt and three textual prompts consisting of an
object prompt, action prompt, and procedure prompt to
compositionally mine beneficial knowledge from pre-
trained video-language models. They tend to align the op-
timization targets of various downstream procedural tasks
with the pretext target of pretrained video-language mod-
els, thus facilitating long-term procedure understanding.
Besides, a series of procedure understanding tasks are re-
formulated into general video-text matching problems,
making the proposed CPL also apt to zero-shot and few-
shot conditions.

In summary, the contributions of this paper are as fol-
lows:

1) The proposed compositional prompt learning frame-
work reformulates a series of classical procedure under-
standing tasks into general video-text matching problems,
enabling it to not only be good at fully-supervised but
also fit zero-shot and few-shot settings.

2) Three compositional textual prompts among the
proposed CPL could hierarchically and compositionally
distill dark knowledge from pretrained video-language
models.

3) The proposed CPL is capable of stirring knowledge
from short-term video-language models to understand
long-term procedures in complex instructional videos.

4) The proposed method achieves promising perform-
ance on a series of procedure understanding tasks includ-
ing classification, proposal generation, and temporal local-
ization on two widely-used datasets.
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2 Related works

2.1 Procedure understanding

The procedure understanding tasks in instructional
videos have various types and targets, including proced-
ure localizationl?, procedure segmentation? 71, procedure
captionlf], reference resolutionl26], activity anticipationl,
procedure planningl®, skill determination?7, etc. Accord-
ing to the usage of manual annotations, previous works
for instructional procedure understanding could be
roughly categorized into three groups, i.e., fully-super-
vised methods, weakly-supervised methods, and unsuper-
vised methods. With the emergence of deep learning,
various fully-supervised neural networks have been ap-
plied to procedure understanding, such as multi-stream
bi-directional recurrent neural network (MSB-RNN) and
multi-stage temporal convolutional network (MS-TCN)
for action segmentation2®: 29, ordering-dependency and
task-consistency methods built on SSNBY and R-C3DB
for temporal procedure localizationl], etc. To decrease the
burden of manual annotations, some worksB2 adopt the
Viterbi algorithm to solve the probabilistic model of
weakly supervised procedure segmentation. Action Modi-
fierB3 learns adverb representation from instructional
activity with video-level weak supervision. The unsuper-
vised procedure understanding approaches can be further
categorized into two subgroups including task-oriented
methods[” 34 35 and general video-language representa-
tion learning methods[® 1l 16, As for the former class,
some early works learn frame-wised continuous embed-
ding and segment the instructional activities via cluster-
ingB8l. Sener and Yaol37l proposed a generalized mallows
model (GMM) to model the distribution over sub-activ-
ity permutations. Since instructional video naturally con-
tains weakly-aligned clip-narration pairs, it is much more
suitable for self-supervised modality alignment. Recently,
the SSL-based pretrain-finetune paradigm has dominated
this domain, such as VideoBERT[!Y, ActBERTL, and
MIL-NCE[!. They first pretrain various large-scale
video-language models with weakly-aligned clip-narration
pairs, and then finetune the classifiers and localizers for
downstream procedure understanding tasks in specific
category space.

2.2 Prompt learning

Prompt learning is a rapidly emerging topic that ori-
ginated from the NLP field38l, which is originally de-
signed for probing knowledge from large-scale pre-trained
language models, such as BERT[ or GPTBY. Various
NLP tasks (e.g., understanding tasksl4? and generation
tasks(4l]) are reformulated as the standard fill-in-blank
pretext task (i.e., cloze-test) that is widely used in pre-
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training large-scale language models. Prompting learning
largely bridged the gap between pretext tasks of pretrain-
ing models and real downstream tasks. It has turned out
to be a huge success for zero-shot learning, few-shot
learning, and open-set learning. For more information,
please refer to a comprehensive survey from [42]. In-
spired by the success in the NLP field, many prompt
learning based works in computer vision has also
emerged. CoOpl43] borrows soft prompt technique in the
NLP field to the image field. CPT“4 tailored for both im-
age and text data is capable of explicitly grounding nat-
ural language to fine-grained image regions. CoCoOpl43]
introduces a conditional prompt that is sample-specific to
further improve the generalization of the soft prompts.
ActionCLIPHM6] changes the traditional action recognition
tasks into a standard video-text matching problem. Den-
seCLIP[47 extends the prompt learning for dense predic-
tion tasks, such as image segmentation. Ju et al.48] en-
codes temporal information with a lightweight Trans-
former to prompt visual-language models for efficient
video understanding. In this work, we consider composi-
tional prompts to stir pretrained short-term visual-lan-
guage models to tackle long-term procedure understand-
ing tasks.

3 Methods

3.1 Preliminaries

We first introduce some preliminary content about
video-language pretrained models (VL-PTMs) from in-
structional procedure videos. Since the instructional video
contains intrinsic clip-narration pairs that are semantic-
ally consistent, it is widely used for training large-scale
video-language models via SSL. According to the SSL
technique, the VL-PTMs from instructional videos could
be categorized into two categories, i.e., contrastive learn-
ing (CL) based modelsl': 15 and BERT based modelsl% 191,

As shown in Fig.1(a), given the weakly-aligned video-
narration pairs {(z:,y;)}ic1 € (X,))"}, the contrastive
learning based video-language models learn a joint distri-
bution P(X,Y; fv,g:) that embeds the video clip z; € X
and text narration y; €)Y in a joint semantic space
J € Rd, where f,: X = J and ¢:: Y — J are paramet-
erized mapping functions for video clips and text narra-
tions. The models f,, g+ are commonly pretrained with
the noise contrastive estimation (NCE) loss (1) or its
multiple instances learning enhanced version (i.e., MIL-
NCE (2))1.
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Fig.1 Mechanism of typical VL-PTMs trained from large-
scale untrimmed instructional videos, including paradigms based
on the contrastive learning technique (a) and BERT model (b).
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where P; is the set of candidate positive pairs.

In addition, the BERT-based VL-PTMs (Fig.1(b))
borrow the idea from pretraining language models on lar-
ge corpora. Specifically, the input sequence for these mod-
els could be denoted as {[CLS], w1, - - ,wn, [SEP], v1,- -,
un, [SEP]}, where wi,- - ,wy is the sequential embed-
ding of text narration and vi,--- ,vn is the visual embed-
ding of video clip, special token “[CLS]” and “[SEP]” de-
note classification and separation, respectively. The
multi-modal BERT models are usually optimized with
the pretext tasks of masked language -classification,
masked visual classification, and cross-modal matching.
The masked language classification was proposed in [49],
which is a standard pretext task for BERT-based models
in the NLP filedl® 10, 50, Empirically, it randomly masks
textual tokens with a probability of 15%, and replaces the
masked tokens with a special token [MASK] 80% of the
time, by a random textual token 10% of the time, and by
the original token 10% of the time. Then, the masked lan-
guage classifications are implemented by conducting a
cloze test. Formally, it approximately maximizes the
pseudo log-likelihood in the following:

L(0) = Eznp »_logp (x| 211;0) (3)

l

where x\; = (z1,--- ,z1—1, [MASK], 2141, -

masking the [-th token of input sequence z € D with

,xr) denotes
previous empirical strategy, and 6 is the learnable
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parameter of corresponding multi-layer bidirectional
transformer model!4. The masked visual classification is
nearly the same except that the input is changed from
the textual token to the visual token. The cross-modal
matching task is implemented by appending a linear layer
upon the output of the first special token “[CLS]”, which
is a binary cross entropy to determine whether the
inputted text and video are a positive pair. For more
details about pretext tasks, we refer the readers to two
surveys5L: 52,

After pretraining on abundant short-term clip-narra-
tion pairs, both the CL-based and BERT-based video-lan-
guage models contain plenty of dark knowledge about ba-
sic short-term video-language concepts. More generally,
the VL-PTMs generated from these two paradigms can
be equally expressed as a text encoder f, and a video en-
coder g; that receptively embed textual narrations and
short-term video clips into a joint semantic space J. For
simplification, we introduce and validate our framework
on one representative CL-based model MIL-NCE[! in
this paper. Note that the proposed framework is not spe-
cified in this model but is broadly applicable to VL-PTMs

from any mentioned paradigms above.

3.2 Compositional prompt learning

3.2.1 Overview

The pretrained video-language models perform well in
representing fundamental concepts such as short-term ac-
tions (verbs), basic objects (nouns), and their combina-
tions. However, it is far from sufficient to represent and
understand long-term procedures which usually last as
long as 1-100s. Therefore, we propose a compositional

Machine Intelligence Research 20(2), April 2023

prompting learning framework to stir off-the-shelf short-
term video-language models to understand long-term in-
structional procedures.

As
prompt learning framework involves components of both

shown in Fig.2, the proposed compositional
the visual prompt and the compositional textual prompts.
The visual prompt component is designed to temporally
fuse the clip-level information from sequential short-term
video clips {(x:)};”, to form procedure-level information,
where ¢, denotes the procedure length measured by video
clip. The textual prompts consist of three compositional
prompts, i.e. action prompt, object prompt, and proced-
ure prompt. The action prompt and object prompt are re-
spectively constructed from visible verbs and nouns in the
procedure label. The procedure prompt is hierarchically
constructed with the procedure label and the outputs of
lower prompts (i.e., action and object prompts). Differ-
ent from previous pretrain-finetune paradigm®1l, the
text encoder g; and video encoder f, in our CPL frame-
work (Fig.2) are always frozen during prompting and in-
ference, which is very parameter-efficient. Eventually, a
series of procedure understanding tasks are reformulated
into general video-text matching problems, which will be
introduced in detail in Section 3.2.4.
3.2.2 Textual prompts

Procedure labels usually contain a composition of one
or several basic actions (verbs) and objects (nouns), such
as “apply some glue on the boards”, “mix and pickle”,
and “wind the junction to fasten the connection”. Be-
sides, the pretrained video-language models are good at
aligning them with corresponding visual contents in joint
semantic space J. Therefore, we hierarchically organize
the textual prompts with three parts (including action
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Overview of the CPL framework. The video and text encoders from VL-PTMs are frozen during prompting and inference.
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prompt, object prompt, and procedure prompt) and
match their prompted embedding with that from video
clips.

Action and object prompts. Given a procedure la-
bel yp, we exploit the English core model from SpaCy! to
tag its part-of-speech (PoS), thus obtaining correspond-
ing verbs and nouns in the procedure label. After some
simple manual filtering (see Section 4.2 for details), we
treat the visible verbs and nouns as basic actions and ob-
jects, respectively. As a result, N, and N, actions and ob-
jects are obtained. Inspired by previous works CLIP[3]
and CoOpl43l, we design two types of text prompts, i.e.,
hand-crafted prompt and learnable continuous prompt.

Regarding the hand-crafted action prompt, a series of
templates are constructed and applied to every action,
such as {“An action of [ActionClass].”}, {“The video clip
contains an action of [ActionClass].”}, {“Playing a
kind of action, [ActionClass].”}, {“Doing action of
[ActionClass].”}, and {“Can you recognize the action of
[ActionClass]?”}. The [ActionClass] is filled with corres-
ponding action text. The hand-crafted prompt does not
introduce any learnable parameters, which intrinsically
fits zero-shot learning. However, identifying suitable
prompt templates needs sophisticated prompt engineer-
ing. Besides, as reported in both image and NLP
domains[43: 54, different prompt templates have a promin-
ent impact on the final performance of models. Therefore,
our continuous version of the action prompt directly
learns the soft prompts in an end-to-end manner. For
each action class, the continuous prompt is constructed as
follows:

template, = {[V1][V] - [Viv,][ActionClass]}  (4)

where [V,,](n =1,2,--- , N;) is a learnable vector with the
same dimension as word embedding in the VL-PTMs,
and the hyperparameter N; controls the number of
learnable tokens in the prompt template. Due to these
learnable parameters, the continuous prompt is not
applicable for zero-shot conditions.

Similarly, the hand-crafted or continuous prompt for
object prompt could be also constructed in the same man-
ner. Note that the numbers of actions and objects vary
across procedures, we practically set the maximum num-
bers of action prompt and object prompt as Nj.. and
NP.x, and pad the null classes “NullAction” and
“NullObject” when needed, respectively.

Procedure prompt. The procedure prompt is built
upon the procedure label and the lower action and object
prompts. Given the actions yi (1 =1,2,---, Nfax) and
objects y7 (j =1,2,---,Npax) in a procedure label y,
their outputs after corresponding prompt function and
the frozen text encoder (see Fig.2) could be obtained via
(5) and (6), respectively.

L http://spacy.io

h{ = gi(prompta(ys)) (5)

h§ = gi(prompto(y5)) (6)

where prompt, and prompt, are corresponding prompt
function, and g¢: is frozen text encoder. In addition, the
continuous template for procedure prompt (prompt,)
could be designed as follows:

{a]--- [Vn |[PClass] hi - hiya hi--- hige }
where ‘{PClass]” should be filled with corresponding
procedure name, [V,] (n=1,2,---,N¢) is a learnable
vector (token). As for the hand-craft procedure prompt,
the templates are constructed similarly to those for
actions, such as {“A procedure of [PClass]. h{---

‘}V&ax h{--- ?V,‘Zm”} and {“The video clip contains a
procedure of [PClass]. h{--- hya hi--- h{o. ”}. Note
that all the prompts for action, object, and procedure
should be in the form of the hand-craft version when used
for zero-shot conditions.

3.2.3 Visual prompt

Off-the-shelf VL-PTMs are usually pretrained with
short-term clip-narration pairs that lack procedural-level
temporal dynamics, inspired by ActionCLIPM6], we intro-
duce a visual prompt function to empower the models
with long-term temporal dependency. Formally, given se-
quential short-term video clips @, = {(x;)}.”, of one pro-
cedure, the visual prompt function prompt,(f.(xp)) tem-
porally forms a procedure level representation from clip-
level information, where f, is the short-term clip-wised
video encoder branch of VL-PTMs, and ¢, is the proced-
ure length measured by the video clip (the number of
video clips). So, the visual prompt simply aggregates rep-
resentations from sequential video clips of one procedure
to be a procedure-level representation. As shown in Fig. 3,
there are two kinds of visual prompt functions used in
this paper. The clip-wised average pooling (Fig.3(a)) is
the most straightforward yet very effective strategy,
which simply averages pooling clip-wised representation
along the temporal dimension. It will not introduce any
learnable parameter and thus is applicable for zero-shot
conditions. The second prompt function (Fig.3(b)),
equipped with an additional long short-term memory
(LSTM) or 1D convolutional layer before average pooling,
is elaborately designed to further capture temporal dy-
namics among clips. It introduces some additional para-
meters and could not be used for zero-shot settings.
3.2.4 Task reformulation

Classical procedure understanding tasks usually need
task-specific classifiers or localizers, thus having different
optimization targets with off-the-shelf VL-PTMs. To
bridge the target gap between VL-PTMs and down-
stream tasks, we reformulate the form of downstream
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Fig.3 Different types of visual prompts: (a) Clip-wised

average prompt, and (b) average prompt enhanced with multi-
layer LSTM or 1D convolutional layer for modeling temporal
dynamics.

procedure understanding tasks into a general matching
problem, which is also the main optimization target of
VL-PTMs.

Procedure classification. Existing methods usually
treat procedure classification as a close-set 1-of-N major-
ity voting problem, while we treat it as an open-set video-
text matching problem instead, as shown in Fig.4(a).
Formally, let a procedure video z? € & and its final se-
mantic embedding h%, = f,(prompt,(z?)), and let a pro-
cedure label y;’ € y? and its final semantic embedding
hy; = gi(prompteomp(y)). Given a procedure video zf €
xP, we match it with each procedure label y]’f € y® once
by calculating the cosine similarity between their final se-
mantic embeddings, then determine the best label match

Machine Intelligence Research 20(2), April 2023

y~ as the final class prediction, i.e.,

(7)

where () denotes similarity calculation. As a result, the

y? = arg min(hZ,, B ), of € y?

cosine classifier in (7) is not only capable of fully-
supervised and few-shot procedure classification but is
also naturally applicable for zero-shot recognition.

Procedure proposal. This task is aiming at generat-
ing a set of temporal proposals from an untrimmed in-
structional video that could overlap well with ground-
truth procedures. Therefore, the generated proposals are
category-independent. As shown in Fig.4(b), given an un-
trimmed video x;, we first apply a temporal sliding win-
dow w(t) with a length of W to calculate its time-depend-
ent semantic embedding via the following equation:

(®)

ha, (t) = fo(prompt,(z™)).

Then, we can obtain the similarity score Si;(t)
between this time-dependent semantic embedding he, (t)
and the semantic embedding hy; from each procedure la-
bel yj, i.e.,

9)

Since procedure proposals should be category-inde-
pendent, we further introduce a module called class-ag-

EE =%
_______ SR 28 S g
' Move wheel ... — Z Bl Tt Lo oo i 22 Text
21 [ e bl e £ e T
ackup car ---
55 - :: ) 2 =
Z — °° E £ 5 o "
£ é gl i ingie=" ol
5
- ” s | & =
T‘:‘:’ é' Video = 8 °
_’ 2 ._’ < .
> % encoder E g > e?llécol:l(e’r |
o
(a) Procedure classification (b) Procedure proposal
o o
!\ Change tire ... E g 8 E T
L E=S ;
H H ‘ Z% = Text 8.—3 enceo)zier
'l Move wheel .- ! B g 32
1 ! =S encoder 5 %
!| Jackup car .- H g & o o £
: S e > 2 =y
E 2 g o s
= »PE—p X — E
£ g < & @
2 8
“ % B
ER: . 2 £ Video
25 » Video ; 2 encoder
> & encoder g,

(¢) Procedure localization

Fig. 4

Illustration of task reformulation. Three classical downstream tasks for procedure understanding are reformulated as general

matching problems, including procedure classification, procedure proposal, and procedure localization.
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nostic fusion (CAF) to adaptively fuse the score S;;(¢)
generated from each procedure label. Specifically, the
CAF selects and averages the largest K scores for each
sliding window, i.e.,

Si(t) = mean(TopK (Si;(t))), j=1,2,---,N*  (10)

where N? is the number of procedure classes. Finally, the
class-agnostic score S;(t) is used to generate procedure
proposals via the standard temporal actionness grouping
(TAG) methodB following the protocol in a previous
work!53],

Procedure localization. As shown in Fig.4(c), the
procedure localization task can be decomposed into two
stages, i.e., procedural proposal and proposal classifica-
tion. Specifically, we first apply the reformulated propos-
al method to an untrimmed procedure video to obtain a
series of procedure proposals. Then, apply the reformu-
lated classification method to these proposals to generate
the final class prediction. Both stages are based on video-
text matching, so it is capable of stirring dark knowledge
contained in the pretrained video-language models, which
is more data-efficient and generalizable.

3.2.5 Optimization

As shown in Fig.2, the proposed CPL contains three
video-text matching components to stir hidden know-
ledge from VL-PTMs. The procedure matching forms the
core matching loss £P; and the action matching and ob-
ject matching form two auxiliary losses (L% and L°), thus
we have

(" +£%)

Ematch =[P + 2

(11)

Each matching loss has a similar form as it is in clas-
sical prompt learning methods[3; 5. Taking the proced-
ure matching as an example, it is computed as the sum of
the vision-to-text loss and text-to-vision loss, i.e.,

LY = Lio + Liz,. (12)

During prompting, the vision-to-text loss is construc-
ted as follows:

. exp(sim(h%,, hY.)/T)
Loz = —log (ZJ exp(sim(hk,, hy;)/T) 13)

where sim is the cosine similarity function, and 7 is a
temperature parameter. The text-to-vision loss is similar
to the vision-to-text loss except that one text label may
correspond to multiple visual inputs, so it should be
rewritten as follows:

A exp(sim(h%,, hb)/7)
t20 = 708 Zj:yﬁﬁyi exp(sim(hz;, hy,)/T) .

Note that the text set is formed from mini-batches
during training while from the whole dataset during infer-
ence for memory-saving following [56].

4 Experiments

4.1 Datasets

HowTol00M dataset. The HowTol00M dataset[!s]
is the largest instructional video dataset, which involves
broad domains in daily life, such as cooking, fitness, and
gardening. It totally contains 1.22M untrimmed You-
Tube videos belonging to 12 000 instructional tasks. Each
video has corresponding narration from manually-entered
subtitles or automatic speech recognition (ASR). The
narrations and video clips are only weakly aligned for
various reasons, including procedure missing, procedure
reversing, unrelated narrations, etc. Since no ground-
truths in terms of procedure classes or their temporal ex-
tents are available, the HowTol00M dataset is mainly
used to train large-scale video-language modelsl% 11, 5] in-
cluding both CL-based and BERT-based VL-PTMs in
Fig.1. The example model we take for compositional
prompt learning in this paper (i.e., MIL-NCEM) is also
pretrained on this dataset.

COIN dataset. The COIN datasetl3 is currently the
largest procedure understanding dataset with succinct
and accurate manual procedure annotations with respect
to the category and temporal extent. It contains 11 827
untrimmed YouTube videos from 180 daily tasks in 12
domains and has a large amount of 176 hours of videos.
On average, each video lasts 2.36 minutes with about
3.91 procedures, and each procedure lasts about 14.91s,
thus eventually the whole dataset has 46354 human-an-
notated procedures. Following the split in the original data-
set paperl3], the training and testing subsets contain 9 030
and 2797 video samples, respectively. Since the COIN
dataset has clear temporal bounding boxes and succinct
procedure descriptions, it could be used to evaluate many
kinds of procedure understanding tasks, including proced-
ure classification, procedure segmentation, procedure loc-
alization, procedure retrieval, etc.

CrossTask dataset. The CrossTask datasetls con-
tains 4.7 K videos belonging to 83 tasks that fall into vari-
ous domains, such as cooking, car maintenance, crating,
and home repairs. Tasks and steps in the dataset are de-
rived from the website wikiHow, which describes how to
solve daily tasks. The primary tasks of CrossTask are
fully-annotated and could be used to evaluate the tem-
poral procedure localization task. Following the same
evaluation protocols in previous worksl® 11, we report the
average recall metric for the procedure localization task.
It is defined by the number of procedure assignments that
fall into the ground-truth extents divided by the total
number of procedures.
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4.2 Implementation details

We select an off-the-shelf VL-PTM from [11] as the
short-term video-language model, which is pretrained on
the HowTol00M dataset[l?]l. Following the settings in [11],
the visual backbone is an S3D networkl®” and the word
embedding is initially from the word2vec model®8l. The
token length for the textual prompt is set as 16, and the
number of templates is set as 8 for all prompts, which are
empirically obtained by grid search. The nouns and verbs
among procedures are obtained by PoS tagging via
SpaCy’s core web model for English. Inspired by previ-
ous works[!5 33 we manually filter out verbs that are not
physically visible (such as “accept”, “recommend”) or
with the VBD (past tense) tag that is not shown in the
video (such as the verb “chopped” in the procedure
“sprinkle some finely chopped coriander”). All the experi-
ments are implemented with the PyTorch framework.
The models are trained via the AdamW optimizer with
improved weight decay handling and gradient clipping
with a maximal norm of 0.1 is applied.

4.3 Results

To examine the effectiveness of the proposed frame-
work, we conduct extensive experiments on three set-
tings that have different levels of annotation availability,
including fully-supervised, zero-shot and few-shot para-
digms. The detailed results corresponding to each condi-
tion are reported in the following two sections.

4.3.1 Fully-supervised results

For the fully-supervised setting, we conduct extensive
experiments for a series of procedure understanding tasks
on the COIN and CrossTask datasets, including proced-
ure classification, procedure proposal, and procedure loc-
alization.

Procedure classification. We first apply our CPL
framework to the procedure classification task, which re-
formulates the traditional 1-of-N majority procedure vot-
ing into a matching problem between visual video clips
and textual procedure descriptions. Therefore, we com-
pare our novel framework with classical state-of-the-art
action or activity recognition approaches on the COIN
dataset, including TSN, TSMI60, STMI61, TDNI62, etc.
As shown in Table 1, our CPL framework significantly
outperforms the state-of-the-art action recognition meth-
od TDNI62 with large margins of 4.7% (Topl) and 8.3%
(Top5). The performance gains mainly owing to two reas-
ons: 1) Our CPL framework makes full use of the semant-
ic information contained in the procedure description, and
2) the compositional textual prompting strategy is good
at distilling the component knowledge in large-scale pre-
tained video-language models.

Procedure proposal. In addition, we further exam-
ine the effectiveness of our CPL via the procedure propos-
al task, which aims to segment an instructional proced-
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Table 1 Comparisons of procedure classification performance

on the COIN dataset
Methods Accuracy (Topl) Accuracy (Topb)
TSNP 36.5% 65.1%
TSMI60] 37.9% 69.3%
STMI61] 38.5% 72.7%
TDNI62] 40.2% 78.5%
CPL (Ours) 44.9% 86.8%

ure video into category-independent procedure segments.
To conduct a par-to-par comparison, we follow the set-
ting and baselines from a previous work[63l. Specifically,
the intersection over union (IoU) threshold for non-max-
imum suppression is set to 0.8, and the average recall
(AR) is computed via multiple IoU thresholds that vary
from 0.5 to 0.95 with an interval of 0.05. The final ARs
with respect to different ANs (40, 60, 80) are reported in
Table 2, where AN denotes the average number (AN) of
proposals per video. As shown in Table 2, our CPL
framework achieves state-of-the-art performance on both
of COIN and CrossTask datasets. Specifically, the pro-
posed CPL not only outperforms the weakly-supervised
methods, such as Hand Detector and Temporal Pri-
orl63, 641 but also exceeds the state-of-the-art supervised
method(63 with large margins in terms of different propos-
al numbers per video.

Procedure localization. We finally evaluate the
performance of the procedure localization task, which
aims to localize the temporal extent of a specific proced-
ure and classify its category at the same time. To con-
duct a par-to-par comparison, following the protocols in
previous works!® 63, we also use class-wise recalls and the
average recall as the evaluation metrics for this task. The
obtained results are included in Table 3. We compare
them with a series of state-of-the-art methods, including
the approaches from Richard et al.32, Alayrac et al.34],
Zhukov et al.l5], Miech et al.llll, and TVJE[NS, LTOVI63],
etc. The performance regarding class-wise recalls and the
average recall both achieve a new state-of-the-art result
on the CrossTask benchmark. The large performance gain
could be partly attributed to the fact that our CPL meth-
od successfully mined useful semantic information that is
already well represented in the video-language model
MIL-NCE, which is pretrained on the large-scale un-
trimmed instructional dataset HowTolOOM. In addition,
the gain should be partly attributed to the reason that
the proposed compositional prompt learning hierarchic-
ally aligns the optimization targets between the pretext
task of VL-PTMs and the downstream localization task.
4.3.2 Zero-shot and few-shot results

As introduced in Section 3.2.4, the proposed prompt
learning based framework also has great potential in per-
forming zero-shot and few-shot procedure understanding.
In this section, we carefully examine its performance un-
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Table 2 Comparisons of procedure proposal performance on the COIN and CrossTask datasets. Average recall under conditions of
different proposal numbers per video is reported, including AN = 40, AN = 60 and AN = 80.

COIN CrossTask
AN =40 AN =60 AN =80 AN =40 AN =60 AN =80
Random 0.01 0.02 0.03 0.01 0.02 0.03
Hand detector(64] 0.15 0.19 0.22 0.06 0.07 0.08
Temporal prior(63] 0.22 0.28 0.34 0.11 0.14 0.18
LTOVIE3] 0.25 0.35 0.41 0.17 0.23 0.27
Linear supervision[63| 0.30 0.39 0.45 0.21 0.27 0.33
CPL (Ours) 0.35 0.44 0.52 0.30 0.38 0.46
Table 3 Comparisons of procedure localization performance on the CrossTask dataset. Recall score for
each task and their average recall score are reported.
Methods Mako.klmchl Pickle Mgke banana Grill steak Jack up car Make jello Change tire Make Addoil Make
rice cucumber ice cream shots lemonade to car latte
Richard 7.6 4.3 3.6 46 8.9 5.4 7.5 7.3 3.6 6.2
et al.[32]
Alayrac 15.6 10.6 7.5 14.2 9.3 11.8 17.3 13.1 6.4 12.9
et al.[34]
Zh‘;ll‘%‘]’ et 13.3 18.0 23.4 23.1 16.9 16.5 30.7 21.6 4.6 19.5
TVJEDLS] 33.5 27.1 36.6 37.9 24.1 35.6 32.7 35.1 30.7 28.5
M:fc[f‘l]et 28.7 37.9 42.8 36.3 22.0 42.9 27.4 43.1 30.8 32.7
LTOVIE3] 34.1 40.0 48.7 40.3 30.7 46.1 34.5 45.9 38.1 35.9
CPL (Ours) 38.5 42.1 49.8 45.0 34.2 49.7 38.8 47.2 40.9 39.1
Methods Build shelves Make taco Make French Make Irish Make strawberry Make M:ake Make fish Average
salad toast coffee cake pancakes  meringue curry
Richard 12.3 3.8 7.4 7.2 6.7 9.6 12.3 3.1 6.7
et al.[32]
Alayrac
. 27.2 9.2 15.7 8.6 16.3 13.0 23.2 7.4 13.3
et al.l34]
Zh‘:l“[’;]’ et 35.3 10.0 32.3 13.8 29.5 37.6 43.0 13.3 22.4
TVJEN 43.2 19.8 34.7 33.6 40.4 41.6 41.9 27.4 33.6
M:l*ﬁf‘l]et 42.8 27.5 34.0 33.7 44.3 48.0 46.0 33.9 36.4
LTOVIE3] 50.0 35.4 38.1 42.6 42.6 45.9 51.6 37.8 41.0
CPL (Ours) 54.2 36.1 42.7 44.9 47.8 51.3 53.1 39.8 44.2

der different levels of annotation availability. Note that
the hand-crafted version of prompt functions is used for
the zero-shot condition while the continuous version is
used for the few-shot condition.

We first conduct extensive experiments for procedure
classification on the COIN datasets. Specifically, we train
our framework with various percentages of training data,
including 0%, 1%, 2%, 5%, 10% and 100%. Thus, 0%
means no supervised training that is a zero-shot setting
and 100% means previous fully-supervised setting, while
1%, 2%, 5% and 10% are different levels of few-shot set-
tings. Since our CPL framework reformulates procedure
classification as a novel video-text matching problem

(Section 3.2.4), we also construct a baseline method by
finetuning the same VL-PTMs under classical paradigm
of 1-of-N majority voting for comparing. The classifica-
tion results corresponding to these settings are reported
in Table 4. We can observe that our CPL achieves prom-
ising zero-shot learning ability that reaches about 22%
performance of the full-supervised setting (upper bound).
While the baseline finetuning method cannot perform
zero-shot classification, because its downstream 1-of-N
voting paradigm is different from the video-text match-
ing paradigm of VL-PTMs in that at least one annota-
tion is needed for alignment. Our CPL framework is cap-
able of distilling dark knowledge from pretrained video-
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Table 4 Comparing procedure classification results of the pro-
posed CPL framework under different levels of annotation
availability, including the zero-shot, few-shot and fully-
supervised settings on the COIN dataset.

Settings
Methods Zero-shot Few-shot Fully-supervised
0% 1% 2% 5% 10% 100%
Baseline - 0.7 2.1 6.7 11.4 39.7
CPL (Ours) 10.3 17.5 20.9 25.9 34.4 44.9

language models, making it have a zero-shot understand-
ing of some key components of instructional procedures,
such as basic actions and objects. Although the proced-
ure descriptions are heterogeneous in large-scale auto-gen-
erated pretraining datasets (e.g., HowTolO0OM) and
downstream human-annotated datasets (e.g., COIN, Cross-
Task), they are still semantically equivalent at the high-
level semantic space. Besides, the proposed method is sur-
prisingly good at few-shot learning, reaching nearly 38%
and 77% of the fully-supervised performances (upper
bound) with only 1% and 10% procedure annotations, re-
spectively. While the baseline method only respectively
achieves 1.7% and 29% of the upper bound performance
with 1% and 10% annotations under a comparable upper
bound (fully-supervised). The excellent improvements
could be largely attributed to the fact that our prompt
learning based framework aligns the optimization targets
between the downstream classification task and per-
tained pretext task. We also visualize some positive and
negative results from our CPL framework under the few-
shot condition (10%) in Fig.5. We can observe that the
model successfully classified procedural samples in the
task “ChangeCarTire” after few-shot training, partially
because it may stir useful concepts (such as “wheel”,
“screw”, “jack”, “remove”) from the VL-PTMs. However,
it made many mistakes in task “MakePaperWindMill”.
This may be because the procedures in “MakePaper-
WindMill” are more intra-class similar and the involved
concepts (such as “windmill”, “bracket”, and “edge”) are
less common in the VL-PTMs, which may need more an-
notations to learn and distinguish.

Similarly, we also evaluate the zero-shot and few-shot
abilities of our CPL framework for procedure localization
task on the CrossTask dataset, and the results are shown
in Table 5. For a fair comparison, the baseline method
also divides procedure localization into two stages (pro-
cedure proposal and proposal classification), and each
stage is achieved by finetuning the same VL-PTMs as
ours under the classical paradigm of 1-of-N majority vot-
ing instead of our matching paradigm. We can observe
that our CPL method has a promising ability for zero-
shot and few-shot learning. It achieves high average re-
calls of 26.5% (60% of upper bound performance) with
only 10% annotated data while the baseline method only
reaches 12.7% (31% of upper bound performance) in the
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[Unscrew the screw] [Jack up the car] [Remove the tire]
) ) )

(a) Samples from the task “ChangeCarTire”

[Fold the edges of
the paper]
() (%) ()

[Fold the squares  [Fix the wind mill
inward and fix them] on the bracket]

[Fold the edges
of the paper]

[Fold the edges
of the paper]

(b) Samples from the task “MakePaperWindMill”

Fig. 5 Visualization of the positive and negative classification
results on the COIN dataset. The correct and incorrect
predictions are respectively marked in blue and red, and the
ground-truth for the incorrect prediction is also listed in black.

Table 5 Comparing procedure localization results of our CPL
framework on the CrossTask dataset under different levels of
annotation availability, including zero-shot,
few-shot and fully-supervised settings.

Settings
Methods Zero-shot Few-shot Fully-supervised
0% 1% 2% 5% 10% 100%
Baseline - 0.9 24 5.5 12.7 40.5
CPL (Ours) 12.3 15.8 17.6 22.8 26.5 44.2

same annotation condition, indicating the effectiveness
and superiority of the proposed method.
4.3.3 Analysis

In this section, we dig deeper into the proposed CPL
framework to examine and analyze the influence of some
key components and hyper-parameters. Specifically, we
will analyze the influence of the token numbers and tem-
plate numbers in the textual prompts, and the influence
of prompt types in the visual prompts.

Firstly, we take the procedure classification on the
COIN dataset as an example to investigate the impact of
token numbers in continuous textual prompts. Specific-
ally, we fix the template number and vary the learnable
token number N; of the textual prompt in a range
[4:4:24], and the performance of procedure classification
is shown in Table 6. We can observe that the accuracy
improves quickly when increasing the token number at
early stage since more tokens could provide more context
capacity for the textual prompts. Then, the accuracy is
gradually saturated and achieves a maximum value with
a token number of 16, thus we choose this value as the
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Table 6 Influence of the token number on procedure classi-
fication performance on the COIN dataset. fselected value.

Table 8 Influence of different visual prompts on procedure loca-
lization performance on the CrossTask dataset. fselected.

#Tokens 4 8 12 16t 20 24

Accuracy (%) 39.2 424 43.6 449 445 44.2

default value for other experiments.

Then, we examine the impact of template number by
procedure classification task on the COIN dataset. As
mentioned in Section 3.2.2, the discrete prompt needs
sophisticated prompt engineering, and different prompt
templates have a prominent impact on the final perform-
ance of models, which has been widely reported in both
fields of computer vision (CV) and NLP[3 54, Therefore,
our CPL mainly uses continuous (learnable) prompts ex-
cept for the zero-shot setting. Here, we focus on the im-
pact of the template number of the continuous prompt.
Specifically, the number of templates is varied in a range
{1, 4, 8, 12, 16}, and the results are shown in Table 7.
We can observe that the classification performance in-
creases with the number of prompt templates and is sat-
urated after 8 templates. Although the performances are
the same when there are 8 and 12 templates, we eventu-
ally choose 8 as the default value in consideration of com-
putational efficiency.

Table 7 Influence of template number on procedure classifi-
cation performance on the COIN dataset. fselected value.

#Templates 1 4 8f 12 16

Accuracy (%) 39.7 43.1 44.9 44.9 44.7

As mentioned in Section 3.2.3 and Fig.3, the visual
prompt could be in the form of two categories, including
the non-parameterized average pooling and parameter-
ized LSTM/ConvlD appended by average pooling. The
non-parameterized manner is applicable to all the zero-
shot, few-shot, and fully-supervised settings, and the
parameterized manner can only be used for the few-shot
and fully-supervised settings. Here, we take the task of
procedure localization on the CrossTask as an example to
examine the impact of different visual prompts. As shown
in Table 8, the two parameterized manners (LSTM/
ConvlD + average pooling) achieve comparable perform-
ance in all settings, and both are much better than the
non-parameterized manner (averaging pooling). This is
because the proposed two non-parameterized methods are
capable of capturing temporal dynamics among represent-
ations of video clips.

5 Conclusions

In this work, we propose a novel prompt learning
based framework to compositionally prompt pretrained
short-term video-language models to efficiently perform
long-term procedure understanding tasks in instructional
videos. Three compositional textual prompts and one

Settings
Types Few-shot Fully-supervised
1% 2% 5% 10% 100%
AveragePooling 13.214.919.5 23.8 41.7
Conv1D+AveragePooling 15.617.123.0 26.1 44.0
LSTM+AveragePooling" 15.817.6 22.8 26.5 44.2

visual prompt reformulate three classical procedure un-
derstanding tasks into general video-text matching prob-
lems. The framework efficiently transfers dark knowledge
from off-the-shelf video-language models to facilitate
downstream tasks under the umbrella of zero-shot, few-
shot, and fully-supervised settings. Eventually, our CPL
achieves promising results on two widely used instruction-
al datasets for procedure understanding tasks.

References

(1] R.J. Nadolski, P. A. Kirschner, J. J. van Merriénboer. Op-
timizing the number of steps in learning tasks for complex
skills. British Journal of Educational Psychology, vol.75,
no. 2, pp.223-237, 2005. DOI: 10.1348/000709904X22403.

[2] M. Rohrbach, S. Amin, M. Andriluka, B. Schiele. A data-
base for fine grained activity detection of cooking activit-
ies. In Proceedings of IEEE Conference on Computer Vis-
ion and Pattern Recognition, Providence, USA, pp.
1194-1201, 2012. DOI: 10.1109/CVPR.2012.6247801.

3] Y.S. Tang, D. J. Ding, Y. M. Rao, Y. Zheng, D. Y. Zhang,
L. L. Zhao, J. W. Lu, J. Zhou. COIN: A large-scale data-
set for comprehensive instructional video analysis. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition, IEEE, Long Beach, USA,
pp-1207-1216, 2019. DOI: 10.1109/CVPR.2019.00130.

[4] Y. A. Farha, A. Richard, J, Gall. When will you do what?
— Anticipating temporal occurrences of activities. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition, IEEE, Salt Lake City, USA,
pp- 5343-5352, 2018. DOI: 10.1109/CVPR.2018.00560.

(5] D. Zhukov, J. B. Alayrac, R. G. Cinbis, D. Fouhey, I
Laptev, J. Sivic. Cross-task CVFweakly supervised learn-
ing from instructional videos. In Proceedings of IEEE/
CVF Conference on Computer Vision and Pattern Recog-
nition, IEEE, Long Beach, USA, pp.3532-3540, 2019.
DOI: 10.1109/CVPR.2019.00365.

[6] H. Kuehne, A. Arslan, T. Serre. The language of actions:
Recovering the syntax and semantics of goal-directed hu-
man activities. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, Columbus,
USA, pp. 780-787, 2014. DOI: 10.1109/CVPR.2014.105.

(7] L. W. Zhou, C. L. Xu, J. J. Corso. Towards automatic
learning of procedures from web instructional videos. In
Proceedings of the 32nd AAAI Conference on Artificial In-
telligence, New Orleans, USA, pp.7590-7598, 2018. DOI:
10.5555/3504035.3504965.

8] C.Y. Chang, D. A. Huang, D. F. Xu, E. Adeli, L. Fei-Fei,
J. C. Niebles. Procedure planning in instructional videos.
In Proceedings of the 16th European Conference on Com-
puter Vision, Springer, Glasgow, UK, pp.334-350, 2020.

@ Springer


http://dx.doi.org/10.1348/000709904X22403
https://doi.org/10.1109/CVPR.2012.6247801
https://doi.org/10.1109/CVPR.2019.00130
https://doi.org/10.1109/CVPR.2018.00560
https://doi.org/10.1109/CVPR.2019.00365
https://doi.org/10.1109/CVPR.2014.105
https://doi.org/10.5555/3504035.3504965

260

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

DOLI: 10.1007/978-3-030-58621-8_20.

L. C. Zhu, Y. Yang. ActBERT: Learning global-local
video-text representations. In Proceedings of IEEE/
CVF Conference on Computer Vision and Pattern Recog-
nition, IEEE, Seattle, USA, pp.8743-8752, 2020. DOI: 10.
1109/CVPR42600.2020.00877.

C. Sun, A. Myers, C. Vondrick, K. Murphy, C. Schmid.
VideoBERT: A joint model for video and language repres-
entation learning. In Proceedings of IEEE/CVF Interna-
tional Conference on Computer Vision, Seoul, Repubic of
Korea, pp.7463-7472, 2019. DOI: 10.1109/ICCV.2019.
00756.

A. Miech, J. B. Alayrac, L. Smaira, I. Laptev, J. Sivic, A.
Zisserman. End-to-end learning of visual representations
from uncurated instructional videos. In Proceedings of
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE, Seattle, USA, pp.9876-9886, 2020.
DOI: 10.1109/CVPR42600.2020.00990.

B. Cui, G. Y. Hu, S. Yu. DeepCollaboration: Collaborat-
ive generative and discriminative models for class incre-
mental learning. In Proceedings of the 35th AAAI Confer-
ence on Artificial Intelligence, pp.1175-1183, 2021. DOI:
10.1609/aaai.v35i2.16204.

J. P. Zhang, J. M. Zhang, G. Y. Hu, Y. Chen, S. Yu. Scale-
net: A convolutional network to extract multi-scale and
fine-grained visual features. IEEE Access, vol. 7, pp. 147560—
147570, 2019. DOI: 10.1109/ACCESS.2019.2946425.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, I. Polosukhin. Attention is all you
need. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, Long Beach,
USA, pp.6000-6010, 2017.

A. Miech, D. Zhukov, J. B. Alayrac, M. Tapaswi, L.
Laptev, J. Sivic. HowT0100m: Learning a text-video em-
bedding by watching hundred million narrated video clips.
In Proceedings of IEEE/CVF International Conference on
Computer Vision, IEEE, Seoul, Repubic of Korea,
pp- 2630-2640, 2019. DOI: 10.1109/ICCV.2019.00272.

K. M. He, H. Q. Fan, Y. X. Wu, S. N. Xie, R. Girshick.
Momentum contrast for unsupervised visual representa-
tion learning. In Proceedings of IEEE/CVF Conference on
Computer Vision and Pattern Recognition, IEEE, Seattle,
USA, pp.9726-9735, 2020. DOI: 10.1109/CVPR42600.
2020.00975.

G. Hu, B. Cui, S. Yu. Skeleton-based action recognition
with synchronous local and non-local spatio-temporal
learning and frequency attention. In Proceedings of IEEE
International Conference on Multimedia and Expo, Shang-
hai, China, pp.1216-1221, 2019. DOI: 10.1109/ICME.
2019.00212.

R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska, S.
Westphal, H. Kim, V. Haenel, I. Fruend, P. Yianilos, M.
Mueller-Freitag, F. Hoppe, C. Thurau, I. Bax, R.
Memisevic. The “something something” video database for
learning and evaluating visual common sense. In Proceed-
ings of IEEE International Conference on Computer Vis-
ion, Venice, Italy, pp.5843-5851, 2017. DOI: 10.1109/IC-
CV.2017.622.

G. Y. Hu, B. Cui, S. Yu. Joint learning in the spatio-tem-
poral and frequency domains for skeleton-based action re-
cognition. IEEE Transactions on Multimedia, vol.22,
no.9, pp.2207-2220, 2020. DOI: 10.1109/TMM.2019.
2953325.

F. C. Heilbron, V. Escorcia, B. Ghanem, J. C. Niebles.

@ Springer

(21]

22]

23]

24]

[25]

[26]

27]

(28]

29]

(30]

31]

32]

Machine Intelligence Research 20(2), April 2023

ActivityNet: A large-scale video benchmark for human
activity understanding. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition, Bo-
ston, USA, pp.961-970, 2015. DOT: 10.1109/CVPR.2015.
7298698.

G.Y. Hu, B. Cui, Y. He, S. Yu. Progressive relation learn-
ing for group activity recognition. In Proceedings of
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE, Seattle, USA, pp.977-986, 2020. DOI:
10.1109/CVPR42600.2020.00106.

M. S. Liu, J. Q. Gao, G. Y. Hu, G. F. Hao, T. Z. Jiang, C.
Zhang, S. Yu. MonkeyTrail: A scalable video-based meth-
od for tracking macaque movement trajectory in daily liv-
ing cages. Zoological Research, vol.43, no.3, pp.343-351,
2022. DOI: 10.24272/j.issn.2095-8137.2021.353.

B. X. Wu, C. G. Yang, J. P. Zhong. Research on transfer
learning of vision-based gesture recognition. [Online],
Available: https://dblp.org/rec/journals/corr/abs-1812-
05770.html?view=Dbibtex, 2021.

Z. W. Xu, X. J. Wu, J. Kittler. STRNet: Triple-stream
spatiotemporal relation network for action recognition.
[Online],  Available:  https://dblp.org/rec/conf/cvpr/
WuGHFK20.html?view=Dbibtex, 2021.

L. F. Wu, Q. Wang, M. Jian, Y. Qiao, B. X. Zhao. A com-
prehensive review of group activity recognition in videos.
International Journal of Automation and Computing,
vol. 18, no. 3, pp.334-350, 2021. DOI: 10.1007/s11633-020-
1258-8.

D. A. Huang, J. J. Lim, L. Fei-Fei, J. C. Niebles. Unsuper-
vised visual-linguistic reference resolution in instructional
videos. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, USA,
pp-1032-1041, 2017. DOI: 10.1109/CVPR.2017.116.

H. Doughty, D. Damen, W. Mayol-Cuevas. Who's better?
Who's best? Pairwise deep ranking for skill determination.
In Proceedings of IEEE/CVF Conference on Computer
Vision and Pattern Recognition, IEEE, Salt Lake City,
USA, pp.6057-6066, 2018. DOI: 10.1109/CVPR.2018.
00634.

B. Singh, T. K. Marks, M. Jones, O. Tuzel, M. Shao. A
multi-stream Bi-directional recurrent neural network for
fine-grained action detection. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, Las
Vegas, USA, pp.1961-1970, 2016. DOI: 10.1109/CVPR.
2016.216.

Y. A. Farha, J. Gall. MS-TCN: Multi-stage temporal con-
volutional network for action segmentation. In Proceed-
ings of IEEE/CVF Conference on Computer Vision and
Pattern Recognition, IEEE, Long Beach, USA, pp.3570-
3579, 2019. DOI: 10.1109/CVPR.2019.00369.

Y. Zhao, Y. J. Xiong, L. M. Wang, Z. R. Wu, X. O. Tang,
D. H. Lin. Temporal action detection with structured seg-
ment networks. In Proceedings of IEEE International Con-
ference on Computer Vision, Venice, Italy, pp.2933-2942,
2017. DOI: 10.1109/ICCV.2017.317.

H. J. Xu, A. Das, K. Saenko. R-C3D: Region convolution-
al 3D network for temporal activity detection. In Proceed-
ings of IEEE International Conference on Computer Vis-
ion, Venice, Italy, pp.5794-5803, 2017. DOI: 10.1109/IC-
CV.2017.617.

A. Richard, H. Kuehne, J. Gall. Action sets: Weakly su-
pervised action segmentation without ordering con-
straints. In Proceedings of IEEE/CVF Conference on
Computer Vision and Pattern Recognition, IEEE, Salt


https://doi.org/10.1007/978-3-030-58621-8_20
https://doi.org/10.1007/978-3-030-58621-8_20
https://doi.org/10.1109/CVPR42600.2020.00877
https://doi.org/10.1109/CVPR42600.2020.00877
https://doi.org/10.1109/ICCV.2019.00756
https://doi.org/10.1109/ICCV.2019.00756
https://doi.org/10.1109/CVPR42600.2020.00990
https://doi.org/10.1609/aaai.v35i2.16204
http://dx.doi.org/10.1109/ACCESS.2019.2946425
https://doi.org/10.1109/ICCV.2019.00272
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/ICME.2019.00212
https://doi.org/10.1109/ICME.2019.00212
https://doi.org/10.1109/ICCV.2017.622
https://doi.org/10.1109/ICCV.2017.622
https://doi.org/10.1109/ICCV.2017.622
http://dx.doi.org/10.1109/TMM.2019.2953325
http://dx.doi.org/10.1109/TMM.2019.2953325
https://doi.org/10.1109/CVPR.2015.7298698
https://doi.org/10.1109/CVPR.2015.7298698
https://doi.org/10.1109/CVPR42600.2020.00106
http://dx.doi.org/10.24272/j.issn.2095-8137.2021.353
https://dblp.org/rec/journals/corr/abs-1812-05770.html?view=bibtex
https://dblp.org/rec/journals/corr/abs-1812-05770.html?view=bibtex
https://dblp.org/rec/conf/cvpr/WuGHFK20.html?view=bibtex
https://dblp.org/rec/conf/cvpr/WuGHFK20.html?view=bibtex
http://dx.doi.org/10.1007/s11633-020-1258-8
http://dx.doi.org/10.1007/s11633-020-1258-8
https://doi.org/10.1109/CVPR.2017.116
https://doi.org/10.1109/CVPR.2018.00634
https://doi.org/10.1109/CVPR.2018.00634
https://doi.org/10.1109/CVPR.2016.216
https://doi.org/10.1109/CVPR.2016.216
https://doi.org/10.1109/CVPR.2019.00369
https://doi.org/10.1109/ICCV.2017.317
https://doi.org/10.1109/ICCV.2017.617
https://doi.org/10.1109/ICCV.2017.617
https://doi.org/10.1109/ICCV.2017.617

G. Hu et al. / Compositional Prompting Video-language Models to Understand Procedure in Instructional Videos 261

(33]

34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

Lake City, USA, pp.5987-5996, 2018. DOI: 10.1109/CV-
PR.2018.00627.

H. Doughty, I. Laptev, W. Mayol-Cuevas, D. Damen. Ac-
tion modifiers: Learning from adverbs in instructional
videos. In Proceedings of IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, IEEE, Seattle,
USA, pp.865-875, 2020. DOI: 10.1109/CVPR42600.2020.
00095.

J. B. Alayrac, P. Bojanowski, N. Agrawal, J. Sivic, L.
Laptev, S. Lacoste-Julien. Unsupervised learning from
narrated instruction videos. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, Las
Vegas, USA, pp.4575-4583, 2016. DOI: 10.1109/CVPR.
2016.495.

S. N. Aakur, S. Sarkar. A perceptual prediction frame-
work for self supervised event segmentation. In Proceed-
ings of IEEE/CVF Conference on Computer Vision and
Pattern Recognition, IEEE, Long Beach, USA, pp.1197-
1206, 2019. DOI: 10.1109/CVPR.2019.00129.

A. Kukleva, H. Kuehne, F. Sener, J. Gall. Unsupervised
learning of action classes with continuous temporal embed-
ding. In Proceedings of IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, IEEE, Long Beach,
USA, pp.12058-12066, 2019. DOI: 10.1109/CVPR.2019.
01234.

F. Sener, A. Yao. Unsupervised learning and segmenta-
tion of complex activities from video. In Proceedings of
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, TEEE, Salt Lake City, USA, pp.8368-
8376, 2018. DOI: 10.1109/CVPR.2018.00873.

T. X. Sun, X. Y. Liu, X. P. Qiu, X. J. Huang. Paradigm
shift in natural language processing. Machine Intelligence
Research, vol.19, no.3, pp.169-183, 2022. DOI: 10.1007/
511633-022-1331-6.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sut-
skever. Language models are unsupervised multitask
learners. OpenAl blog, vol. 1, no.8, Article number 9, 2019.

T. Schick, H. Schiitze. It's not just size that matters: Small
language models are also few-shot learners. In Proceedings
of Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language
Technologies, pp.2339-2352, 2021. DOI: 10.18653/v1/
2021.naacl-main.185.

X. L. Li, P. Liang. Prefix-tuning: Optimizing continuous
prompts for generation. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural
Language Processing, pp.4582-4597, 2021. DOI: 10.18653/
v1/2021.acl-long.353.

P. F. Liu, W. Z. Yuan, J. L. Fu, Z. B. Jiang, H. Hayashi,
G. Neubig. Pre-train, prompt, and predict: A systematic
survey of prompting methods in natural language pro-
cessing. [Online], Available: https://arxiv.org/abs/2107.
13586, 2021.

K.Y. Zhou, J. K. Yang, C. C. Loy, Z. W. Liu. Learning to
prompt for vision-language models. International Journal
of Computer Vision, vol.130, no.9, pp.2337-2348, 2022.
DOI: 10.1007/s11263-022-01653-1.

Y. Yao, A. Zhang, Z. Y. Zhang, Z. Y. Liu, T. S. Chua, M.
S. Sun. CPT: Colorful prompt tuning for pre-trained vis-
ion-language models. [Online|, Available: https://arxiv.
org/abs/2109.11797, 2021.

K.Y. Zhou, J. K. Yang, C. C. Loy, Z. W. Liu. Conditional

[46]

(47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

prompt learning for vision-language models. In Proceed-
ings of IEEE/CVF Conference on Computer Vision and
Pattern Recognition, IEEE, New Orleans, USA, pp. 16795—
16804, 2022. DOI: 10.1109/CVPR52688.2022.01631.

M. M. Wang, J. Z. Xing, Y. Liu. ActionCLIP: A new
paradigm for video action recognition. [Online], Available:
https://arxiv.org/abs/2109.08472, 2021.

Y. M. Rao, W. L. Zhao, G. Y. Chen, Y. S. Tang, Z. Zhu, G.
Huang, J. Zhou, J. W. Lu. DenseCLIP: Language-guided
dense prediction with context-aware prompting. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition, IEEE, New Orleans, USA,
pp.18061-18070, 2022. DOI: 10.1109/CVPR52688.2022.
01755.

C. Ju, T. D. Han, K. H. Zheng, Y. Zhang, W. D. Xie.
Prompting visual-language models for efficient video un-
derstanding. In Proceedings of the 17th European Confer-
ence on Computer Vision, Springer, Tel Aviv Israel,
pp.105-124, 2022. DOI: 10.1007/978-3-031-19833-5_7.

W. L. Taylor. “Cloze procedure”: A new tool for measur-
ing readability. Journalism Quarterly, vol.30, no.4,
pp.415-433, 1953. DOI: 10.1177/107769905303000401.

J. Devlin, M. W. Chang, K. Lee, K. Toutanova. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Min-
neapolis, USA, pp.4171-4186, 2019. DOI: 10.18653/v1/
N19-1423.

Z. Gan, L. J. Li, C. Y. Li, L. J. Wang, Z. C. Liu, J. F. Gao.
Vision-language pre-training: Basics, recent advances, and
future trends. [Online|, Available: https://arxiv.org/abs/
2210.09263, 2022.

F. L. Chen, D. Z. Zhang, M. L. Han, X. Y. Chen, J. Shi, S.
Xu, B. Xu. VLP: A survey on vision-language pre-training.
[Online], Available: https://arxiv.org/abs/2202.09061,
2022.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S.
Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G.
Krueger, I. Sutskever. Learning transferable visual models
from natural language supervision. In Proceedings of the
38th International Conference on Machine Learning,
pp.8748-8763, 2021.

T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, S. Singh.
AutoPrompt: Eliciting knowledge from language models
with automatically generated prompts. In Proceedings of
Conference on Empirical Methods in Natural Language
Processing, pp.4222-4235, 2020. DOI: 10.18653/v1/2020.
emnlp-main.346.

T. W. Lin, X. Zhao, H. S. Su, C. J. Wang, M. Yang. BSN:
Boundary sensitive network for temporal action proposal
generation. In Proceedings of the 15th European Confer-

ence on Computer Vision, Springer, Munich, Germany,
pp-3-21, 2018. DOI: 10.1007/978-3-030-01225-0_1.

S. C. Wang, Y. Q. Duan, H. H. Ding, Y. P. Tan, K. H.
Yap, J. S. Yuan. Learning transferable human-object in-
teraction detector with natural language supervision. In
Proceedings of IEEE/CVF Conference on Computer Vis-
ion and Pattern Recognition, IEEE, New Orleans, USA,
pp-929-938, 2022. DOI: 10.1109/CVPR52688.2022.00101.

S. N. Xie, C. Sun, J. Huang, Z. W. Tu, K. Murphy. Re-
thinking spatiotemporal feature learning: Speed-accuracy
trade-offs in video classification. In Proceedings of the 15th
FEuropean Conference on Computer Vision, Springer, Mu-

@ Springer


https://doi.org/10.1109/CVPR.2018.00627
https://doi.org/10.1109/CVPR.2018.00627
https://doi.org/10.1109/CVPR.2018.00627
https://doi.org/10.1109/CVPR42600.2020.00095
https://doi.org/10.1109/CVPR42600.2020.00095
https://doi.org/10.1109/CVPR.2016.495
https://doi.org/10.1109/CVPR.2016.495
https://doi.org/10.1109/CVPR.2019.00129
https://doi.org/10.1109/CVPR.2019.01234
https://doi.org/10.1109/CVPR.2019.01234
https://doi.org/10.1109/CVPR.2018.00873
http://dx.doi.org/10.1007/s11633-022-1331-6
http://dx.doi.org/10.1007/s11633-022-1331-6
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
http://dx.doi.org/10.1007/s11263-022-01653-1
https://arxiv.org/abs/2109.11797
https://arxiv.org/abs/2109.11797
https://doi.org/10.1109/CVPR52688.2022.01631
https://arxiv.org/abs/2109.08472
https://doi.org/10.1109/CVPR52688.2022.01755
https://doi.org/10.1109/CVPR52688.2022.01755
https://doi.org/10.1007/978-3-031-19833-5_7
https://doi.org/10.1007/978-3-031-19833-5_7
http://dx.doi.org/10.1177/107769905303000401
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2210.09263
https://arxiv.org/abs/2210.09263
https://arxiv.org/abs/2202.09061
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.1007/978-3-030-01225-0_1
https://doi.org/10.1007/978-3-030-01225-0_1
https://doi.org/10.1109/CVPR52688.2022.00101

262

nich, Germany, pp.318-335, 2018. DOI: 10.1007/978-3-
030-01267-0_19.

(58] T. Mikolov, K. Chen, G. Corrado, J. Dean. Efficient estim-
ation of word representations in vector space. [Online],
Available: https://arxiv.org/abs/1301.3781, 2013.

[59] L. M. Wang, Y. J. Xiong, Z. Wang, Y. Qiao, D. H. Lin, X.
O. Tang, L. van Gool. Temporal segment networks: To-
wards good practices for deep action recognition. In Pro-
ceedings of the 14th European Conference on Computer
Vision, Springer, Amsterdam, The Netherlands, pp.20-36,
2016. DOI: 10.1007/978-3-319-46484-8 2.

(60] J. Lin, C. Gan, S. Han. TSM: Temporal shift module for
efficient video understanding. In Proceedings of IEEE/
CVF International Conference on Computer Vision, IEEE,
Seoul, Repubic of Korea, pp.7082-7092, 2019. DOI: 10.
1109/ICCV.2019.00718.

61] B.Y. Jiang, M. M. Wang, W. H. Gan, W. Wu, J. J. Yan.
STM: Spatiotemporal and motion encoding for action re-
cognition. In Proceedings of IEEE/CVF International
Conference on Computer Vision, IEEE, Seoul, Repubic of
Korea, pp.2000-2009, 2019. DOI: 10.1109/ICCV.2019.
00209.

62] L. M. Wang, Z. Tong, B. Ji, G. S. Wu. TDN: Temporal
difference networks for efficient action recognition. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition, IEEE, Nashville, USA, pp. 1895—
1904, 2021. DOI: 10.1109/CVPR46437.2021.00193.

[63] D. Zhukov, J. B. Alayrac, I. Laptev, J. Sivic. Learning ac-
tionness via long-range temporal order verification. In Pro-
ceedings of the 16th European Conference on Computer
Vision, Springer, Glasgow, UK, pp.470-487, 2020. DOI:
10.1007/978-3-030-58526-6_28.

[64] D. D. Shan, J. Q. Geng, M. Shu, D. F. Fouhey. Under-
standing human hands in contact at internet scale. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition, IEEE, Seattle, USA, pp.9866—
9875, 2020. DOI: 10.1109/CVPR42600.2020.00989.

Guyue Hu received the B.Eng. degree in
automation from Hefei University of Tech-
nology, China in 2016, and the Ph.D. de-
gree in pattern recognition and intelligent
systems from National Laboratory of Pat-
tern Recognition (NLPR), Institute of
Automation, Chinese Academy of Sci-
ences (CASIA), China in 2021. He was also
a research fellow with School of Comput-

-

ing, National University of Singapore, Singapore from 2021 to
2022. He is currently a research fellow with School of Computer
Science and Engineering, Nanyang Technological University,
Singapore. He serves as a regular reviewer for a number of inter-

@ Springer

Machine Intelligence Research 20(2), April 2023

national journals and conferences, such as TPAMI, TMM, TC-
SVT, CVPR, ICCV, ECCV.

His research interests include computer vision, pattern recog-
nition, and computational neuroscience, especially in multi-mod-
al learning, video understanding, and human activity analysis.

E-mail: guyue.hu@ntu.edu.sg (Corresponding author)

ORCID iD: 0000-0002-6198-8230

Bin He received the B.Eng. degree in
automation from Harbin University of Sci-
ence and Technology, China in 2014, and
the Ph.D. degree in mechanical and elec-
tronic engineering from Harbin University
of Science and Technology, China in 2020.
As a joint Ph.D. student, he finished the
entire doctoral research at National Labor-
atory of Pattern Recognition (NLPR), In-
stitute of Automation, Chinese Academy of Sciences (CASIA),
China. He is currently an engineer at North China Computing
Technology Institute (alias The 15th Research Institute of China
Electronics Technology Group Corporation), China.

His research interests include computer vision, pattern recog-
nition, and intelligent decision-making, especially lie in military
intelligence.

E-mail: binhe.cas@foxmail.com

ORCID iD: 0000-0002-3845-7335

Hanwang Zhang received the B. Eng. de-
gree in computer science from Zhejiang
University, China in 2009, and the Ph.D.
degree in computer science from National
University of Singapore, Singapore in
2014. He was a research scientist with De-
partment of Computer Science, Columbia
University, USA from 2017 to 2018, and a
research fellow with National University of
Singapore from 2014 to 2016. He is currently an assistant pro-
fessor at School of Computer Science and Engineering, Nanyang
Technological University, Singapore. He has authored more than
150 scientific papers in these areas in top journals and confer-
ences, including TPAMI, TIP, ICLR, NeurIPS, CVPR, ICCV,
ECCV, ACL, EMNLP, etc. He is the recipient of the Best Demo
Runner-up Award in ACM MM 2012, the Best Student Paper
Award in ACM MM 2013, the Best Paper Honorable Mention in
ACM SIGIR 2016, and TOMM Best Paper Award 2018. He is
also the Winner of the Best Ph.D. Thesis Award of School of
Computing, National University of Singapore, Singapure in
2014.

His research interests include computer vision and multime-
dia, especially focusing on the fusion of deep learning and reason-
ing for these fields.

E-mail: hanwangzhang@ntu.edu.sg

ORCID iD: 0000-0001-7374-8739


https://doi.org/10.1007/978-3-030-01267-0_19
https://doi.org/10.1007/978-3-030-01267-0_19
https://doi.org/10.1007/978-3-030-01267-0_19
https://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-3-319-46484-8_2
https://doi.org/10.1007/978-3-319-46484-8_2
https://doi.org/10.1109/ICCV.2019.00718
https://doi.org/10.1109/ICCV.2019.00718
https://doi.org/10.1109/ICCV.2019.00209
https://doi.org/10.1109/ICCV.2019.00209
https://doi.org/10.1109/CVPR46437.2021.00193
https://doi.org/10.1109/CVPR46437.2021.00193
https://doi.org/10.1109/CVPR46437.2021.00193
https://doi.org/10.1007/978-3-030-58526-6_28
https://doi.org/10.1007/978-3-030-58526-6_28
https://doi.org/10.1109/CVPR42600.2020.00989

	1 Introduction
	2 Related works
	2.1 Procedure understanding
	2.2 Prompt learning

	3 Methods
	3.1 Preliminaries
	3.2 Compositional prompt learning
	3.2.1 Overview
	3.2.2 Textual prompts
	3.2.3 Visual prompt
	3.2.4 Task reformulation
	3.2.5 Optimization


	4 Experiments
	4.1 Datasets
	4.2 Implementation details
	4.3 Results
	4.3.1 Fully-supervised results
	4.3.2 Zero-shot and few-shot results
	4.3.3 Analysis


	5 Conclusions
	References

