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Abstract: Multimodal sentence summarization (MMSS) is a new yet challenging task that aims to generate a concise summary of a
long sentence and its corresponding image. Although existing methods have gained promising success in MMSS, they overlook the
powerful generation ability of generative pre-trained language models (GPLMs), which have shown to be effective in many text genera-
tion tasks. To fill this research gap, we propose to using GPLMs to promote the performance of MMSS. Notably, adopting GPLMs to
solve MMSS inevitably faces two challenges: 1) What fusion strategy should we use to inject visual information into GPLMs properly?
2) How to keep the GPLM's generation ability intact to the utmost extent when the visual feature is injected into the GPLM. To ad-
dress these two challenges, we propose a vision enhanced generative pre-trained language model for MMSS, dubbed as Vision-GPLM. In
Vision-GPLM, we obtain features of visual and textual modalities with two separate encoders and utilize a text decoder to produce a
summary. In particular, we utilize multi-head attention to fuse the features extracted from visual and textual modalities to inject the
visual feature into the GPLM. Meanwhile, we train Vision-GPLM in two stages: the vision-oriented pre-training stage and fine-tuning
stage. In the vision-oriented pre-training stage, we particularly train the visual encoder by the masked language model task while the
other components are frozen, aiming to obtain homogeneous representations of text and image. In the fine-tuning stage, we train all the
components of Vision-GPLM by the MMSS task. Extensive experiments on a public MMSS dataset verify the superiority of our model
over existing baselines.

Keywords: Multimodal sentence summarization (MMSS), generative pre-trained language model (GPLM), natural language gene-
ration, deep learning, artificial intelligence.
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1 Introduction aims to generate a textual summary based on its mul-
timodal contents, e.g., the text content and image. Most
Sentence summarization is a task that aims to gener- existing works on MMSS employ the encoder-decoder
ate a short summarization of a long sentence. Because of framework for semantic understanding and text genera-
its wide applications, e.g., news summarization and

product summarization, this task has attracted much re-

tion. For example, Li et al.B utilized recurrent neural
networks (RNNs) and convolutional neural networks

search attention.

The early studies focus on the pure sentence summar-
ization task, namely, producing a condensed summary
from an input long sentencell> 2. Despite their promising
performance, these efforts overlook visual modality in-
formation (i.e., the image). Visual modality allows read-
ers to grasp the key information at a glance, conveying
important cues regarding the core events. Therefore, a
few pioneer studies® 4 resorted to multimodal sentence
summarization (MMSS). As shown in Fig.1, the MMSS
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(CNNs) as the textual encoder and visual encoder, re-
spectively, and employed a textual decoder for multimod-
al sentence summarization.

Previous methods, however, follow the conventional
train-from-scratch paradigm, overlooking the benefit of
pre-training. In fact, the pre-training technique has
shown its advance in a series of natural language pro-
cessing (NLP) tasks. Several generative pre-trained lan-
guage models (GPLMs) have shown excellent capability
on language generation tasks, such as denoising autoen-
coder for pre-training sequence-to-sequence models/
(BART) and transfer text-to-text transformer®l (T5).
Therefore, in this work, we aim to adapt GPLMs to pro-
mote the MMSS research line. Notably, we face two key
challenges:

C1. What fusion strategy should we use to inject
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Input image:

N
Input sentence:

A new survey shows USA
new car drivers are less
happy with their vehicles
this year for the first time
in at least five years due
mainly to rising fuel
prices.

Generated summary:
A survey shows rising fuel prices bring decline in

satisfaction with cars.
AN /

Fig. 1 Illustration of the task of multimodal sentence sum-
marization

visual information into GPLMs properly? GPLMs are
trained on a text-to-text paradigm, and we need an ef-
fective fusion strategy to fuse visual and textual features.

C2. How to keep GPLMs' generation ability intact to
the utmost extent when the visual feature is injected in-
to GPLMs? The input of multimodal data is heterogen-
eous, which may hurt the performance of GPLMs, which
are pre-trained on the pure textual modality.

To address these two challenges, we propose a vision
enhanced generative pre-trained language model for mul-
timodal sentence summarization: Vision-GPLM for short.
As shown in Fig.2, Vision-GPLM mainly consists of three
components: multimodal feature extraction, multi-head
attention-based fusion, and text generation. Specifically,
we first introduce a multi-head attention mechanism to
fuse the visual representation to the GPLM to address
the first challenge. The multi-head attention mechanism
has shown its advance in many multimodal tasksl”> 8. We
then train the whole model in two stages: the vision-ori-
ented pre-training stage and fine-tuning stage. In the vis-
ion-oriented pre-training stage, only the visual encoder is
trained on the masked language model objectivel?, while
other components are fixed, aiming to obtain homogen-
eous representations of text and image. The fine-tuning
stage is utilized to learn the task-aware knowledge to
solve the MMSS task. To verify the effectiveness of our
proposed model, we conduct extensive experiments on a
publicly released dataset. The experimental results
demonstrate that our model outperforms the state-of-the-
art baselines.

Overall, our contributions can be concluded into three
points:

1) To the best of our knowledge, we are the first to
adopt the GPLM to MMSS task. Furthermore, we incor-
porate the encoded visual feature into the GPLM through
an advanced multi-head attention fusion strategy.

2) To keep the GPLM's generation ability to the max-
imum extent, we train the model in two stages: the vis-
ion-oriented pre-training stage and fine-tuning stage.

3) To justify the proposed model, we conduct extens-
ive experiments on a widely used benchmark. The experi-
mental results show that our model significantly outper-
forms the state-of-the-art baselines. As a by-product, we
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release our source code to benefit the research com-
munityl.

2 Related work

Our work is related to sentence summarization, pre-
trained language models, and image captioning.

2.1 Sentence summarization

Sentence summarization is one of the most common
NLP tasks, and there are mainly two ways to summarize
texts: extraction sentence summarization and abstraction
sentence summarization. Extractive sentence summariza-
tion is extracting a subset of words from a sentence to
represent the most significant aspects and combining
them into a shorter sentence. Abstractive sentence sum-
marization aims to generate a concise summary of the
most important information in a long text by rephrasing
or using new words.

As abstractive sentence summarization can assist in
overcoming the extraction techniques' grammatical inac-
curacies and therefore produces better-quality summaries,
recent works focus on abstractive sentence summariza-
tion. Early research mainly focused on generating the sen-
tence summary based on the sequence-to-sequence
(seq2seq) model. For example, Rush et al.l!l first presen-
ted a seq2seq model based on RNNs to generate a short
summary for a long sentence. Based on this, Chopra et
al.l2l further developed the seq2seq model equipped with a
novel convolutional-attention based encoder for sentence
summarization. In addition, Gu et al.!0 incorporated a
copying mechanism into the seq2seq model to improve
the fluency and accuracy of the generated summary. Des-
pite their promising success, these methods overlook the
visual modality, which also provides essential semantic
cues and aids in sentence summary. To tackle this issue,
some studies resorted to multimodal sentence summariza-
tion. For example, Li et al.l3l proposed a multimodal sen-
tence summarization model which contained a modality-
based attention mechanism for paying different attention
to the input image and sentence. To grasp the highlights
of the source sentence by the image, Li et al.[4l presented
a multimodal selective gate network to filter out incon-
sequential information from the source sentence.

Although these methods have achieved remarkable
success, they overlook the benefit of pre-training and
training the model from scratch.

2.2 Pre-trained language models

Pre-training recently has shown its powerful ability
for diverse NLP tasks, improving the model's perform-
ance for downstream tasks and reducing training costs.
Word2vecllll and GloVell2l are examples of early pre-

! https://github.com/LigiangJing/Vision-GPLM.


https://github.com/LiqiangJing/Vision-GPLM

L. Jing et al. / Vision Enhanced Generative Pre-trained Language Model for Multimodal Sentence Summarization 291

Vision-GPLM model

Outputs
probabilities

Multi-head
attention based
fusion

BART
decoder
Swin
Transformer

encoder

t1

e ————

Outputs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(shifted right) )

Vision-oriented pre-training stage

AB[]DE
Masked source
\ sentence

Fine-tuning stage

Predicted sentence l Summary
ABCDE K LM
§ \ A
Textual decoder Textual decoder
Za N —

Textual encoder

trret

FGHTIJ
Source sentence

[ Frozen [JLearnable

Fig.2 Illustration of our proposed model and two training stages. In the vision-oriented pre-training stage, the parameters of the
textual encoder and textual decoder are frozen while the visual encoder is trained to predict mask tokens. In the fine-tuning stage, all

components are learnable and trained to summarize sentences.

trained models that introduced a shallow architecture to
provide pre-trained word embeddings for downstream
NLP tasks. Although the pre-trained word embeddings
learned the semantic meaning of the word, they are con-
text-free, and hard to capture the semantic meaning of
the whole sentence or document. With the advance of
Transformer(13], increased research efforts have been com-
mitted to developing Transformer-based pre-trained mod-
els to capture context semantics. For example, Devlin et
al.l% pretrained the deep bidirectional encoder in Trans-
former (BERT) with two pre-training tasks: masked lan-
guage model and next-sentence prediction. Despite its
success in textual representation learning!!4, BERT can-
not be fine-tuned directly for language generation. Later,
Lewis et al.Bl developed BART, which utilized the full
Transformer architecture for natural language generation.
Meanwhile, Raffel et al.ll proposed T5, which transfers
all NLP tasks to a “text-to-text” format and can be util-
ized for a variety of downstream NLP tasks, such as doc-
ument summarization!5) and paraphrase detection(16.

Due to the pre-trained language models having ab-
sorbed rich knowledge from large-scale corpus, many re-
searchers have resorted to GPLMs to solve their specific
tasks. For example, Song et al.l”) adapted the generative
pre-trained language model BART for a multimodal
product summarization task which summarizes the im-
age of the product and its textual description into a short
text. Inspired by this, we also resorted to publicly re-
leased pre-trained language models to summarize sen-
tence-image pairs into a short sentence.

2.3 Image captioning

Image captioning aims to produce a natural language
description for an image. Early studies'® 19 on image
captioning firstly detected words from the image and then
utilized predefined templates to convert detected words
into a natural language sentence. These methods rely on

templates and always generate similar sentence struc-
tures. Meanwhile, the search-oriented methods(2% 21 dir-
ectly adopted the sentence of the similar image or selec-
ted a semantic similar sentence from a sentence set to get
the target sentence. Obviously, these methods are lim-
ited by the size of the human-generated sentence set and
cannot generate a new sentence. Recently, with the devel-
opment of deep learning, many works2227 utilized neur-
al networks to learn the probability distribution in the
common semantic space of visual content and textual
content, and generate a new sentence, achieving state-of-
the-art performance.

Despite the success of the image captioning methods
mentioned above, they are not suitable for the multimod-
al sentence summarization task because they cannot
tackle the textual input.

3 Methodology

In this section, we first introduce the task formulation.
Then, we detail the proposed Vision-GPLM.

3.1 Task formulation

Suppose that we have a set of N training triplets
D = (X1,V1,11), (X2,V2,Y2), -+, (XN, VN,YN). Xi=
{xf, b, .- ,1:3\/11} is the source sentence (e.g., long news
sentences), where :r; denotes the j-th token in the source
text X;. M, refers to the total number of tokens, which is
a variable for different triplets. V; is the image in the i-th
triplet. Vi = {yi,45, -~ ,y6,} stands for the target sum-
mary in the i-th triplet, where O; denotes its total num-
ber of tokens. Based on these training triplets, our goal is
to learn a multimodal sentence summarization model M
which can generate a concise summary for the source sen-

tence and image as follows:
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Y = M(X,V | ©) (1)

where ©® stands for the parameters to be learned. For
simplicity, we temporarily omit the index (i.e., the
subscript 7) of each training triplet.

3.2 Model architecture

As shown in Fig.2, the model architecture mainly con-
sists of three components: multimodal feature extraction,
multi-head attention based fusion, and text generation.
As aforementioned, to utilize the power generation abil-
ity of the generative pre-trained language model, we re-
sort to BART as our backbone for textual feature extrac-
tion and summary generation.

3.2.1 Multimodal feature extraction

We introduce the feature extraction of the multimod-
al input, i.e., text feature extraction and vision feature
extraction.

Text feature extraction. We utilize the embedding
layer of BART to get the embedding of the source text.
In particular, each token can be embedded with a linear
transformation as follows:

ei:WTwi7 ’L'=172,-~'7M (2)

where W € RIYI*? is the token embedding matrix that
can be optimized. |V | refers to the size of the whole
token vocabulary. d; is the dimension of the token
embedding matrix. «; € RV is the one-hot vector that
indicates the index of the x; in the token vocabulary. e;
is the embedding of the token x; in the source sentence X.

To make the model aware of the positional order in-
formation of the inputs, we introduce the positional em-
bedding/!3] to get the final embedding of the source text X
as follows:

E=lei;ez; - sem|” +Ep (3)

where E, € RM*?% is the positional embedding and
E ¢ RM*4 is the final embedding that encodes the
positional information of the source sentence X, [;]
denotes the concatenation operation.

Then, we employ a BART encoder to extract the tex-
tual feature. In particular, we feed the text embedding E
into the encoder £ of the pre-trained BART as follows:

Z=¢£(E) (4)

where Z € R™*? ig the extracted textual feature, and do
is the dimension of the textual feature.

Vision feature extraction. Since the transformer
models have achieved excellent performance in many
computer vision tasks[?®l, we chose the Swin Transfor-
mer29 as the visual encoder. In particular, we firstly split
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an input RGB image into K non-overlapping patches by

a patch splitting module. Then, we employ the Swin

Transformer to extract the visual features by feeding the

split patches as follows:

I = Swin(vi,v2, -+ ,VK) (5)
I= I,W] + by

where v; € RHinXWinX3 ig the i-th split patch. H;, and
Wir are the height and width of the RGB patch image. 3
refers to the number of RGB channels. I’ € RP? is the
output feature vector of Swin. Dy is the dimension of the
output of the Swin Transformer. W; € RPoXDP1 ig a linear
transformation matrix, and b; € RP! is the bias vector.
I € RP1 is the extracted visual features, and D; is the
dimension of the visual feature.
3.2.2 Multi-head attention based fusion

In order to inject the visual information into the
GPLM (i.e., BART), we resort to a multi-head attention
based fusion strategyl!3l, which has achieved compelling
success in many multimodal tasks, such as multimodal
sentiment analysis(”, visual question answering(3%, and
multimodal abstractive summarization8l. Suppose we
have H attention heads, and the attention function of the
H-th attention head can be formulated as follows:

Qi = ZW!

K; =IW}F

V, = IWY (6)
KT

O; = softmax (QlKI ) Vi
Vi

where W/ € Rd”dﬁz, WF e RDleﬁQ, and W} € RPOUXH
are the learnable matrices in the i-th attention head,
which aim to project the text feature and the image fea-
ture into the same semantic space, and V;. softmaz(-) is
the softmax activation function. O; € R X% is the
representation of the multimodal input (i.e., the source
sentence and the image) derived by the i-th head.

Next, we aggregate all heads from different subspaces

to obtain the final multimodal representation as follows:

O =1[01;03;--- ;0Ox|Wo (7)

where Wo € R%%% is a trainable matrix. O € RM*% jg
the multimodal representation.

Finally, due to the superiority of residual connec-
tionB!Y in many computer vision tasks(?% 321 and natural
language processing tasksls 9, we apply an element-wise
addition between textual features Z and multimodal rep-
resentation O as follows:

Z =Z+0. (8)
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where Z’ € RM*%2 is the final multimodal represen-
tation.
3.2.3 Text generation

To generate the target text, we feed the multimodal
representation Z’ to the decoder P as follows:

ﬁj:D(Z/>g17g27"' 7@7'*1) (9)
where p; € R is the predicted token distribution for
the j-th token of the generated sentence. §; is the derived
token according to the largest element of p;.

3.3 Training paradigm

Considering that the heterogeneity between the input
sentence and image may hurt the text generation capabil-
ity of BART, which is pre-trained simply on large-scale
text corpus, we design our training paradigm with two
stages: the vision-oriented pre-training stage and fine-tun-
ing stage. The former works on forcing the visual en-
coder (i.e., Swin Transformer) to output homogeneous
textual representations, narrowing the gap between textu-
al and visual representations, while the latter targets fine-
tuning the whole model in an end-to-end manner. The
overall procedure of the optimization is briefly summar-
ized in Algorithm 1.

Algorithm 1. Training procedure of Vision-GPLM
Input: Training set D.
Output: Parameters ©.
1) Initialization parameters ©.
2) repeat
3) Randomly sample a batch of (X, V,Y) from D.
4) Update @y by optimizing the loss function in (10)
5) until Swin Transformer converges.
6) repeat
) Randomly sample a batch of (X, V,Y) from D.
) Update © by optimizing the loss function in (11)
)

-3

8
9) until M converges.
3.3.1 Vision-oriented pre-training

In the vision-oriented pre-training stage, we particu-
larly train the visual encoder (i.e., Swin Transformer)
while keeping the textual encoder and decoder (i.e.,
BART) fixed. In this way, the visual encoder can gain co-
adapted featuresB3 with GPLMs, and adapt better to
GPLMs.

Inspired by the masked language model objective
presented in previous worksl® % 34 we mask certain input
tokens randomly and then train the model to predict
those masked tokens. In particular, we randomly mask
5% tokens for every sentence, which is similar to BERT.
For tokens chosen to be masked, we replace tokens in the
strategy that 1) 80% of the time with [MASK] tokens, 2)
10% of the time with a random token, and 3) 10% of the
time with the unchanged input tokens. Considering that
the object and event information delivered by the given
image plays an important role in the summarization, we

increase the masking probability of nouns by 10%, since
objects and events are more likely to be described as
nouns.

To force the visual encoder can learn the homogen-
eous feature of textual modality, we choose to mask the
source sentence by the aforementioned mask strategy and
then reconstruct the original source sentence as follows:

M

. 1 ~Mask
Ls1 =min 77 ; log(pj“"" [t+]) (10)

~Mask

where p; p2!

[tx] denotes the element of p}’*** that
corresponds to the j-th token of the source sentence X,
and the j-th token is masked in the input sentence. M is
the total number of masked tokens in the source sentence
X. Oy are the parameters of the Swin Transformer.
Notably, this loss is defined for a single sample.
3.3.2 Fine-tuning

To adapt the visual encoder trained in the vision-ori-
ented pre-training stage, we train the entire model in an
end-to-end manner. Toward the optimization of our mod-
el, we adopt the standard cross-entropy loss to fulfill the
output supervision as follows:

L
1 R
Loz = mjn 7 3 log(h (1) (11)
&

where p;[t+] denotes the element of p; that corresponds
to the j-th token of the ground truth summary Y. L is
the total number of tokens in the ground truth summary
Y. Notably, this loss is also defined for a single sample.

4 Experiment

To verify the effectivity of the proposed model Vision-
GPLM, we conducted extensive experiments on a mul-
timodal sentence summarization dataset to answer these
research questions:

RQ1. Does Vision-GPLM outperform state-of-the-art
methods?

RQ2. How does each component of Vision-GPLM af-
fect its performance?

RQ3. What is the qualitative performance of Vision-
GPLM?

4.1 Experimental setting

Dataset. To verify the effectiveness of our model, we
conducted extensive experiments on a widely-used mul-
timodal sentence summarization datasetBl. Each sample
in this MMSS dataset is a triplet (i.e., sentence, image,
summary). The MMSS dataset contains 66 000 triplets.
As shown in Table 1, the training set, validation set, and
test set comsist of 62000, 2000, and 2000 triplets, re-
spectively. The average number of tokens in source sen-
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Table 1 The statistics of the MMSS dataset. #Train, #Valid,
and #Test denote the numbers of samples in the training set,
validation set, and testing set, respectively. #AvgSource-
Length and #AvgSummaryLength are the average num-
bers of tokens for source sentences and summaries, respectively.

#Train 62 000

#Valid 2000

#Test 2000
#AvgSourceLength 22
#AvgSummaryLength 8

tences is 22, whereas the average number of tokens in
summaries is 8.

Implementation details. We trained our model on
a Tesla T4 GPU, and the batch size is set to 16. We used
the BART provided by Hugging Face? as our text en-
coder and decoder backbone. The height and width of in-
put image's split patches, W, and H,,, are both 4. The
dimensions of the token embedding di and that of the en-
coded representation ds are both 768. The dimension of
the output representation of the Swin Transformer Dy is
1 024. The number of attention heads is set to 8. The size
of vocabulary V is 50 265. We utilized three widely-used
summarization metrics, ROUGE-1, ROUGE-2, and
ROUGE-LBS], for comparison. Note that all the experi-
ments were conducted five times, and the average per-
formance is reported.

4.2 On model comparison (RQ1)

To justify our model Vision-GPLM, we introduced
several baselines for comparison.

Lead.M It is a simple baseline that takes the first
eight words of the source sentence as the summary.

Compress.36 This method summarizes a sentence
based on the syntactic structure of the source sentence.

ABS.[N This method summarizes the source sentence
with a convolutional neural network (CNN) encoder and
a neural network language model decoder.

SEASS.B This is a textual summarization model
which incorporates textual selective encoding.

Multi-source.8] This is a multimodal hierarchical
attention model for text summarization.

Doubly-attentive.B9 This is a multimodal machine
translation model equipped with a doubly-attentive mech-
anism.

PGNet.40 This is a textual sequence-to-sequence
neural network model containing the copying mechanism.

MAtt.B This is a hierarchical seq2seq model with a
modality-based attention mechanism.

BART. This is a denoising autoencoder model with
transformer architecture which is pre-trained by recon-
structing the original text of corrupted text with five
noising functions.

2 https://huggingface.co/docs/transformers/index.
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TGSMR.[4 This is a multimodal selective gate net-
work for multimodal sentence summarization.

We report the performance comparison between our
model and all the baselines in Table 2. From Table 2, we
can acquire the following observations. 1) Vision-GPLM
achieves state-of-the-art performance compared to all
baselines on all metrics. This demonstrates the superior-
ity of Vision-GPLM. 2) It is worth noting that BART is
already far ahead of other baselines by only utilizing tex-
tual information. The reason may be that BART has
been well pre-trained on a vast corpus and learned trans-
ferable knowledge, which is overlooked by previous work.
3) Vision-GPLM surpasses BART on all metrics. This
verifies that Vision-GPLM can further improve the gener-
ation ability of GPLMs by injecting visual information.

Table 2 Performance (%) comparison among different methods.
The best results are in bold, and the second best results are un-
derlined. R-1, R-2, R-L represent ROUGE-1, ROUGE-2,
ROUGE-L, respectively. “Improvement?” denotes the
relative improvement of Vision-GPLM over the best baseline.

Model R-1 R-2 R-L
Lead 33.6 13.4 31.8
Compress 31.6 11.0 28.9
ABS 36.0 18.2 31.9
Multi-source 39.7 19.1 38.0
Doubly-attentive 41.1 21.8 39.9
SEASS 44.9 23.0 42.0
PGNet 46.1 24.2 44.2
MAtt 47.3 24.9 44.5
TGSMR 48.2 25.6 45.3
BART 51.4 29.1 48.6
Vision-GPLM 53.2 30.7 50.5
Improvementt 3.5% 5.5% 3.9%

4.3 On ablation study (RQ2)

To verify the importance of each module of Vision-
GPLM, we introduce the following variant methods for
ablation study.

w/o-Image. To show the benefit of the image in
MMSS, we design this method that only utilizes the
source text to generate the summary. Actually, it is
BART.

w-Concate. To demonstrate the effect of the multi-
head attention based fusion strategy, we directly utilize
concatenation operation for multimodal fusion rather
than the original multi-head attention based fusion in our
model.

w/o-Pre-training. To show the necessity of the vis-
ion-oriented pre-training, we remove the vision-oriented
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pre-training stage and directly apply fine-tuning.

w-VGG and w-Res. In order to show the influence
of different image encoders in our model, we replace Swin
Transformer in our model with the visual geometry group
(VGG)" and ResNetBll respectively.

Table 3 shows the ablation study results of our pro-
posed model. From Table 3, we have the following obser-
vations. 1) Vision-GPLM consistently surpasses w/o-Im-
age on all metrics. This illustrates the importance of us-
ing visual information for sentence summarization.
2) Vision-GPLM exceeds w-Concate. This shows the su-
periority of the multi-head attention based fusion
strategy. 3) The performance of Vision-GPLM drops
when the vision-oriented pre-training stage is removed.
The reason may be that directly injecting visual informa-
tion into GPLM confuses the GPLM and hurts its gener-
ation ability. 4) Our model exceeds w-VGG and w-Res on
all metrics. This suggests the powerful visual feature ex-
traction capacity of the Swin Transformer and its know-
ledge learned from the vision-oriented pre-training stage
is valuable.

Table 3 Ablation study results (%). The best results are in
bold. R-1, R-2, R-L represent ROUGE-1, OUGE-2,
ROUGE-L, respectively.

Model R-1 R-2 R-L
w/o-Image 51.4 29.1 48.6
w-Concate 52.3 29.6 49.5

w/o-Pre-training 52.4 30.0 49.7
w-VGG 50.2 27.8 47.6
w-Res 51.3 28.6 48.7
Vision-GPLM 53.2 30.7 50.5

4.4 On case study (RQ3)

As shown in Fig.3, to get an intuitive understanding
of the multimodal sentence summarization ability of our
model, we show a test result of Vision-GPLM and its
variant w/o-Image. As can be seen, the performance (i.e.,

ROUGE-1, ROUGE-2, and ROUGE-L) of Vision-GPLM
exceeds its variant w/o-Image. Looking into the gener-
ated summaries, we can learn that by incorporating the
product’s image, Vision-GPLM can capture the vital in-
formation (i.e., railway) which appears in both the image
and text, while w/o-Image can not. Therefore, “railway
town” is not mentioned in the summary produced by
w/o-Image, which instead incorrectly focuses on how
much it spends. This intuitively verifies the necessity of
injecting the visual modality into the GPLMs for mul-
timodal sentence summarization.

In addition, we studied the multi-head attention based
fusion mechanism, and we showed a testing sample on
the confidence assignment with tokens in the source sen-
tence in Fig.4. From Fig.4, the multi-head attention
based fusion mechanism does assign different levels of
confidence to different tokens in the source sentence. This
verifies that the multi-head attention based fusion does
contribute to the multimodal sentence summarization
task. Notably, the multi-head attention based fusion
mechanism assigns high confidence to the semantically
identical parts of the image and source sentence (e.g.,
“tourist”, “swimming pool”, and “hotel”), which is the
significant semantic information in multimodality and
hence boosts the MMSS task.

5 Conclusions and future work

In this work, we present a vision enhanced generative
pre-trained language model, which seamlessly unifies the
heterogeneous multimodal data (i.e., the source sentence
and image) of the product into the common semantic
space of the GPLM (i.e., BART). Extensive experiments
on a public multimodal sentence summarization dataset
demonstrate the superiority of our model over existing
cutting-edge methods. The ablation study verifies that
each component of our model is effective and that the
visual modality can enhance the quality of generated
summaries. Moreover, we also show the benefit of using
the Swin Transformer instead of VGG or ResNet for the
visual feature extraction. In the future, we plan to adopt

Source sentence:
Jiangxi province in
east china will spend
one billion yuan on
the development of
small towns along
the beijing-kowloon
railway, which runs
### km across the

I
|
I
I
I
|
|
|
I
I
|
|
|
|
|
I
|
|
! .
: province.
|

|

Reference summary:
Jiangxi to develop railway towns

Summary from w/o-Image:

|
|
I
|
|
|
|
:
3 |
- Jiangxi to spend one billion yuan on development of small !
= towns :
|
|
|
|
|
|
|
|
|

ROUGE-1: 37.49%, ROUGE-2: 14.28%, ROUGE-L: 37.49%
Summary from Vision-GPLM:

Jiangxi to develop small towns along railway

ROUGE-1: 83.33%, ROUGE-2: 39.99%, ROUGE-L: 66.66%

Fig. 3 Comparison between the summaries generated by Vison-GPLM and w/o-Image for a testing sentence-image pair. The reference
summary is the ground truth in this case. The ROUGE-1, ROUGE-2, and ROUGE-L scores for each sentence are given.
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Fig. 4

Source sentence:

Abritish tourist has drowned in a swimming
pool in a cyprus hotel, police said tuesday.
Reference summary :

British tourist drowns in cyprus resort .
Summary from Vision-GPLM:

British tourist drowns in cyprus hotel.

Illustration of the multi-head attention based fusion

mechanism. The color depth of the orange bar stands for the
confidence of the word learned by the attention mechanism. The
darker color refers to the larger attention weight.

more advanced generative pre-trained language models

(e.g., T5) to solve the multimodal sentence summariza-

tion task.

References

(1]

A. M. Rush, S. Chopra, J. Weston. A neural attention
model for abstractive sentence summarization. In Proceed-
ings of Conference on Empirical Methods in Natural Lan-
guage Processing, Lisbon, Portugal, pp.379-389, 2015.
DOI: 10.18653/v1/D15-1044.

S. Chopra, M. Auli, A. M. Rush. Abstractive sentence
sum-marization with attentive recurrent neural networks.
In Proceedings of Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, San Diego, USA,
pp.93-98, 2016. DOI: 10.18653/v1/N16-1012.

H. R. Li, J. N. Zhu, T. S. Liu, J. J. Zhang, C. Q. Zong.
Multi-modal sentence summarization with modality atten-
tion and image filtering. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence, Stock-
holm, Sweden, pp.4152-4158, 2018.

H. R. Li, J. N. Zhu, J. J. Zhang, X. D. He, C. Q. Zong.
Multimodal sentence summarization via multimodal se-
lective encoding. In Proceedings of the 28th International
Conference on Computational Linguistics, Barcelona,
Spain, pp.5655-5667, 2020. DOI: 10.18653/v1/2020.col-
ing-main.496.

M. Lewis, Y. H. Liu, N. Goyal, M. Ghazvininejad, A. Mo-
hamed, O. Levy, V. Stoyanov, L. Zettlemoyer. BART: De-
noising sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension. In Pro-
ceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp.7871-7880, 2020. DOI: 10.
18653 /v1/2020.acl-main.703.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M.
Matena, Y. Q. Zhou, W. Li, P. J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer.

@ Springer

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[15]

[16]

(17]

Machine Intelligence Research 20(2), April 2023

Journal of Machine Learning Research, vol.21, no.1, Art-
icle number 140, 2020.

Y. H. H. Tsai, S. J. Bai, P. P. Liang, J. Z. Kolter, L. P.
Morency, R. Salakhutdinov. Multimodal transformer for
unaligned multimodal language sequences. In Proceedings
of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, Florence, Italy, pp.6558-6569, 2019.
DOI: 10.18653/v1/P19-1656.

T.Z.Yu, W. L. Dai, Z. H. Liu, P. Fung. Vision guided gen-
erative pre-trained language models for multimodal ab-
stractive summarization. In Proceedings of Conference on
Empirical Methods in Natural Language Processing,
Punta Cana, Dominican Republic, pp.3995-4007, 2021.
DOI: 10.18653/v1/2021.emnlp-main.326.

J. Devlin, M. W. Chang, K. Lee, K. Toutanova. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, USA,
Minnesota, pp.4171-4186, 2019. DOI: 10.18653/v1/N19-
1423.

J. T. Gu, Z. D. Lu, H. Li, V. O. K. Li. Incorporating copy-
ing mechanism in sequence-to-sequence learning. In Pro-
ceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, Berlin, Germany, pp.1631-
1640, 2016. DOI: 10.18653/v1/P16-1154.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean.
Distributed representations of words and phrases and their
compositionality. In Proceedings of the 26th International

Conference on Neural Information Processing Systems,
Lake Tahoe, USA, pp.3111-3119, 2013.

J. Pennington, R. Socher, C. Manning. GloVe: Global vec-
tors for word representation. In Proceedings of Conference
on Empirical Methods in Natural Language Processing,
Doha, Qatar, pp.1532-1543, 2014. DOI: 10.3115/v1/D14-
1162.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, I. Polosukhin. Attention is all you
need. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, Long Beach,
USA, pp.6000-6010, 2017.

X. Song, J. J. Chen, Z. X. Wu, Y. G. Jiang. Spatial-tem-
poral graphs for cross-modal text2video retrieval. IEEE
Transactions on Multimedia, vol.24, pp.2914-2923, 2022.
DOI: 10.1109/TMM.2021.3090595.

T. Hasan, A. Bhattacharjee, M. S. Islam, K. Mubasshir, Y.
F. Li, Y. B. Kang, M. S. Rahman, R. Shahriyar. X1l-Sum:
Large-scale multilingual abstractive summarization for 44
languages. In Proceedings of Findings of the Association
for Computational Linguistics, pp.4693-4703, 2021. DOI:
10.18653/v1/2021.findings-acl.413.

A. Nighojkar, J. Licato. Improving paraphrase detection
with the adversarial paraphrasing task. In Proceedings of
the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, pp.7106-7116,
2021. DOI: 10.18653/v1/2021.acl-long.552.

X. M. Song, L. Q. Jing, D. T. Lin, Z. Z. Zhao, H. Q. Chen,
L. Q. Nie. V2P: Vision-to-prompt based multi- modal
product summary generation. In Proceedings of the 45th


https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/N16-1012
https://doi.org/10.18653/v1/2020.coling-main.496
https://doi.org/10.18653/v1/2020.coling-main.496
https://doi.org/10.18653/v1/2020.coling-main.496
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/P19-1656
https://doi.org/10.18653/v1/2021.emnlp-main.326
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.1109/TMM.2021.3090595
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.acl-long.552

L. Jing et al. / Vision Enhanced Generative Pre-trained Language Model for Multimodal Sentence Summarization

(18]

(19]

[20]

(21]

(22]

(23]

(24]

25]

(26]

(27]

(28]

29]

International ACM SIGIR Conference on Research and
Development in Information Retrieval, Madrid, Spain,
pp-992-1001, 2022. DOI: 10.1145/3477495.3532076.

T. Mikolov, K. Chen, G. Corrado, J. Dean. Efficient estim-
ation of word representations in vector space. In Proceed-
ings of the 1st International Conference on Learning Rep-
resentations, Scottsdale, USA, 2013. DOI: doi.org/10.
48550/arXiv.1301.3781.

G. Kulkarni, V. Premraj, S. Dhar, S. M. Li, Y. Choi, A. C.
Berg, T. L. Berg. Baby talk: Understanding and generat-
ing simple image descriptions. In Proceedings of Confer-
ence on Computer Vision and Pattern Recognition, IEEE,
Colorado Springs, USA, pp.1601-1608, 2011. DOI: 10.
1109/CVPR.2011.5995466.

A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C.
Rashtchian, J. Hockenmaier, D. Forsyth. Every picture
tells a story: Generating sentences from images. In Pro-
ceedings of the 11th European Conference on Computer
Vision, Springer, Heraklion, Greece, pp.15-29, 2010. DOI:
10.1007/978-3-642-15561-1_2.

M. Mitchell, J. Dodge, A. Goyal, K. Yamaguchi, K. Stra-
tos, X. F. Han, A. Mensch, A. Berg, T. Berg, H. DaumélII
Midge: Generating image descriptions from computer vis-
ion detections. In Proceedings of the 13th Conference of
the European Chapter of the Association for Computa-
tional Linguistics, Avignon, France, pp. 747-756, 2012.

Q. Z. You, H. L. Jin, Z. W. Wang, C. Fang, J. B. Luo. Im-
age captioning with semantic attention. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recog-
nition, Las Vegas, USA, pp.4651-4659, 2016. DOI: 10.
1109/CVPR.2016.503.

T. Yao, Y. W. Pan, Y. H. Li, Z. F. Qiu, T. Mei. Boosting
image captioning with attributes. In Proceedings of IEEE
International Conference on Computer Vision, Venice,
Ttaly, pp. 4904-4912, 2017. DOT: 10.1109/ICCV.2017.524.

T.Yao, Y. W. Pan, Y. H. Li, T. Mei. Exploring visual rela-
tionship for image captioning. In Proceedings of the 15th
FEuropean Conference on Computer Vision, Springer, Mu-
nich, Germany, pp.711-727, 2018. DOI: 10.1007/978-3-
030-01264-9_42.

L. Ke, W. J. Pei, R. Y. Li, X. Y. Shen, Y. W. Tai. Reflect-
ive decoding network for image captioning. In Proceedings
of IEEE/CVF International Conference on Computer Vis-
ion, IEEE, Seoul, Republic of Korea, pp.8887-8896, 2019.
DOI: 10.1109/ICCV.2019.00898.

M. Cornia, M. Stefanini, L. Baraldi, R. Cucchiara.
Meshed-memory transformer for image captioning. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition, IEEE, Seattle, USA, pp.10575—
10584, 2020. DOI: 10.1109/CVPR42600.2020.01059.

Y. W. Pan, T. Yao, Y. H. Li, T. Mei. X-linear attention
networks for image captioning. In Proceedings of
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE, Seattle, USA, pp.10968-10977, 2020.
DOI: 10.1109/CVPR42600.2020.01098.

B. W. Cheng, A. G. Schwing, A. Kirillov. Per-pixel classi-
fication is not all you need for semantic segmentation. In
Proceedings of the 35th Conference on Neural Information
Processing Systems, pp. 17864-17875, 2021.

Z. Liu, Y. T. Lin, Y. Cao, H. Hu, Y. X. Wei, Z. Zhang, S.

(30]

(31]

32]

(33]

34]

37]

(38]

(40]

[41]

297

Lin, B. N. Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of
IEEE/CVF International Conference on Computer Vision,
IEEE, Montreal, USA, pp.9992-10002, 2021. DOI: 10.
1109/1CCV48922.2021.00986.

J. Cho, J. Lei, H. Tan, M. Bansal. Unifying vision-and-lan-
guage tasks via text generation. In Proceedings of the 38th
International Conference on Machine Learning, pp.1931-
1942, 2021.

K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual
learning for image recognition. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition,
Las Vegas, USA, pp.770-778, 2016. DOI: 10.1109/CVPR.
2016.90.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. H. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G.
Heigold, S. Gelly, J. Uszkoreit, N. Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In Proceedings of the 9th International Conference
on Learning Representations, pp.1-21, 2021.

J. Yosinski, J. Clune, Y. Bengio, H. Lipson. How transfer-
able are features in deep neural networks? In Proceedings
of the 27th International Conference on Neural Informa-
tion Processing Systems, Montreal, Canada, pp.3320—
3328, 2014.

W. L. Taylor. “Cloze procedure”: A new tool for measur-
ing readability. Journalism & Mass Communication
Quarterly, vol. 30, no.4, pp.415-433, 1953. DOI: 10.1177/
107769905303000401.

C.Y. Lin. ROUGE: A package for automatic evaluation of
summaries. In Proceedings of Text Summarization
Branches Out, Barcelona, Spain, pp. 74-81, 2004.

J. Clarke, M. Lapata. Global inference for sentence com-
pression an integer linear programming approach. Journal
of Artificial Intelligence Research, vol.31, no.1, pp.399-
429, 2008.

Q. Y. Zhou, N. Yang, F. R. Wei, M. Zhou. Selective encod-
ing for abstractive sentence summarization. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics, Vancouver, Canada, pp. 1095—
1104, 2017. DOI: 10.18653/v1/P17-1101.

J. Libovicky, J. Helcl. Attention strategies for multi-source
sequence-to- sequence learning. In Proceedings of the 55th
Annual Meeting of the Association for Computational Lin-
guistics, Vancouver, Canada, pp.196-202, 2017. DOI: 10.
18653/v1/P17-2031.

I. Calixto, Q. Liu, N. Campbell. Doubly-attentive decoder
for multi-modal neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics, Vancouver, Canada, pp.1913—
1924, 2017. DOI: 10.18653/v1/P17-1175.

A. See, P. J. Liu, C. D. Manning. Get to the point: Sum-
marization with pointer-generator networks. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics, Vancouver, Canada, pp.1073-
1083, 2017. DOI: 10.18653/v1/P17-1099.

K. Simonyan, A. Zisserman. Very deep convolutional net-
works for large-scale image recognition. In Proceedings of
the 3rd International Conference on Learning Representa-
tions, San Diego, USA, 2015.

@ Springer


https://doi.org/10.1145/3477495.3532076
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1109/CVPR.2011.5995466
https://doi.org/10.1109/CVPR.2011.5995466
https://doi.org/10.1007/978-3-642-15561-1_2
https://doi.org/10.1007/978-3-642-15561-1_2
https://doi.org/10.1109/CVPR.2016.503
https://doi.org/10.1109/CVPR.2016.503
https://doi.org/10.1109/ICCV.2017.524
https://doi.org/10.1007/978-3-030-01264-9_42
https://doi.org/10.1007/978-3-030-01264-9_42
https://doi.org/10.1007/978-3-030-01264-9_42
https://doi.org/10.1109/ICCV.2019.00898
https://doi.org/10.1109/CVPR42600.2020.01059
https://doi.org/10.1109/CVPR42600.2020.01098
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1177/107769905303000401
http://dx.doi.org/10.1177/107769905303000401
https://doi.org/10.18653/v1/P17-1101
https://doi.org/10.18653/v1/P17-2031
https://doi.org/10.18653/v1/P17-2031
https://doi.org/10.18653/v1/P17-1175
https://doi.org/10.18653/v1/P17-1099

298

Liqiang Jing received the B.Eng. degree
in computer science and technology from
School of Computer Science and Techno-
logy, Hefei University of Technology,
China in 2020. He is now a master student
in computer technology at Department of
Computer Science and Technology, Shan-
dong University, China.

His research interests include multimod-
al learning and natural language processing.

E-mail: jingligiang6@gmail.com

ORCID iD: 0000-0001-9827-5835

Yiren Li received the B.Eng. degree in
finance from Hebei University of Econom-
ics and Business, China in 2004, and the
degree in industry and business adminis-
tration from Tianjin University, China in
2007. He is currently the deputy general
manager of HBIS Group and the chairman
of HBIS Digital Technology Co., Ltd.,
China. Previously, he successively served

as the deputy director of Integrated Management Department of
HBIS Group, director of Management Innovation Department of
HBIS Group, and strategy director of HBIS Group, China. He
has published more than 20 papers.

His research interests include intelligent applications in the
iron and steel industry.

E-mail: liyiren@hbisco.com (Corresponding author)

Junhao Xu is an undergraduate student
in data science and big data technology at
Department of Computer Science and
Technology, Shandong University, China.

His research interests include informa-
tion retrieval and natural language pro-
cessing.

E-mail: xujunhao.cn@gmail.com

@ Springer

Machine Intelligence Research 20(2), April 2023

Yongcan Yu is an undergraduate stu-
dent in data science and big data techno-
logy at Department of Computer Science
and Technology, Shandong University,
China.

His research interests include computer
vision and recommendation system.

E-mail: yuyongcan0223@gmail.com

Pei Shen received the B.Eng. degree in
computer and application from Hebei Uni-
versity of Science and Technology, China
in 2010. He is currently the general man-
ager of HBIS Digital Technology Co., Ltd,
China. He is a member of Steel of Stand-
ardization Administration of China, vice
chairman of the Smart Enterprise Promo-
tion Committee of the China Enterprise
Federation, and director of the Intelligent Manufacturing Alli-
ance of the Iron and Steel Industry, China.

His research interests include intelligent applications in the
iron and steel industry.

E-mail: shenpei@hbisco.com

Xuemeng Song received the B.Eng. de-
gree in in electronic information engineer-
ing from University of Science and Techno-
logy of China, China in 2012, and the
Ph.D. degree in computer science from
School of Computing, National University
of Singapore, Singapore in 2016. She is cur-
rently an associate professor of Shandong
University, China. She has published sev-
eral papers in the top venues, such as ACM SIGIR, MM and
TOIS. In addition, she has served as reviewers for many top con-
ferences and journals.

Her research interests include the information retrieval and
social network analysis.

E-mail: sxmustc@gmail.com (Corresponding author)

ORCID iD: 0000-0002-5274-4197



	1 Introduction
	2 Related work
	2.1 Sentence summarization
	2.2 Pre-trained language models
	2.3 Image captioning

	3 Methodology
	3.1 Task formulation
	3.2 Model architecture
	3.2.1 Multimodal feature extraction
	3.2.2 Multi-head attention based fusion
	3.2.3 Text generation

	3.3 Training paradigm
	3.3.1 Vision-oriented pre-training
	3.3.2 Fine-tuning


	4 Experiment
	4.1 Experimental setting
	4.2 On model comparison (RQ1)
	4.3 On ablation study (RQ2)
	4.4 On case study (RQ3)

	5 Conclusions and future work
	References

