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Abstract: We present the first comprehensive video polyp segmentation (VPS) study in the deep learning era. Over the years, devel-
opments in VPS are not moving forward with ease due to the lack of a large-scale dataset with fine-grained segmentation annotations.
To address this issue, we first introduce a high-quality frame-by-frame annotated VPS dataset, named SUN-SEG, which contains 158 690
colonoscopy video frames from the well-known SUN-database. We provide additional annotation covering diverse types, i.e., attribute,
object mask, boundary, scribble, and polygon. Second, we design a simple but efficient baseline, named PNS+, which consists of a global
encoder, a local encoder, and normalized self-attention (NS) blocks. The global and local encoders receive an anchor frame and multiple
successive frames to extract long-term and short-term spatial-temporal representations, which are then progressively refined by two NS
blocks. Extensive experiments show that PNS+ achieves the best performance and real-time inference speed (170{ps), making it a prom-
ising solution for the VPS task. Third, we extensively evaluate 13 representative polyp/object segmentation models on our SUN-SEG
dataset and provide attribute-based comparisons. Finally, we discuss several open issues and suggest possible research directions for the

VPS community. Our project and dataset are publicly available at https://github.com/GewelsJI/VPS.
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1 Introduction

As the second most deadly cancer and the third most
common malignancy, colorectal cancer (CRC) is estim-
ated to cause millions of incidence cases and deaths
yearly. The survival rate of CRC patients is higher than
95% in the first stage of the disease but, dramatically de-
creases to less than 35% in the fourth and fifth stagesl.
Therefore, the early diagnosis of positive CRC cases
through screening techniques, such as colonoscopy and
sigmoidoscopy, is vital in increasing the survival rate. For
prevention purposes, physicians can remove the colon
polyps that are at risk of turning into cancer. However,
this process highly depends on the physicians’ experience
and suffers from a high polyp missing rate, i.e., 22%-28%!2l.

Recently, artificial intelligence (AI) techniques have
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been applied to the automatic detection of candidate le-
sion polyps during colonoscopy for physicians. However,
developing AT models with a satisfactory detection rate is
still challenging due to two problems: 1) Limited annot-
ated data. Deep learning models are often hungry for a
large-scale video dataset with densely-annotated labels.
Moreover, a community-agreed benchmark is missing for
evaluating the approaches’ actual performance. 2) Dy-
namic complexity. The colonoscopy usually involves less
ideal conditions of camera-moving acquisition, such as the
diversity of colon polyps (e.g., boundary contrast, shape,
orientation, shooting angle), internal artifacts (e.g., wa-
ter flow, residue), and imaging degradation (e.g., color
distortion, specular reflection). To this end, we present a
systematic study to facilitate the development of deep
learning models for video polyp segmentation (VPS). The
main contributions of this work are summarized as fol-
lowing three points:

VPS dataset. We elaborately introduce a large-scale
VPS dataset, termed SUN-SEG, containing 158 690
frames selected from the SUN-databaselBl. We provide a
variety of labels, including attribute, object mask, bound-
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ary, scribble, and polygon. These labels can further sup-
port the development of colonoscopy diagnosis, localiza-
tion, and derivative tasks.

VPS baseline. We design a simple but efficient VPS
baseline, named PNS+, which consists of a global en-
coder, a local encoder, and two normalized self-attention
(NS) blocks. The global and local encoders extract long-
and short-term spatial-temporal representations from the
first anchor frame and multiple successive frames, re-
spectively. The NS block dynamically updates the recept-
ive field when coupling attentive cues among extracted
features. Experiments show that PNS+ achieves the best
performance on the challenging SUN-SEG dataset.

VPS benchmark. To comprehensively understand
VPS development, we conduct the first large-scale bench-
mark by evaluating 13 cutting-edge polyp/object seg-
mentation approaches. Based on the benchmarking res-
ults (i.e., five image-based and eight video-based), we ar-
gue that the VPS task is not well undertaken and leaves
plenty of room for further exploration.

A preliminary version of this work was presented in
[4]. In this extended work, we introduce three different
contributions. In Section 3, we introduce a high-quality
densely-annotated VPS dataset, SUN-SEG, with five ex-
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tended labels, i.e., attribute, object mask, boundary,
scribble, and polygon. Based on the normalized self-atten-
tion block as in [4], we propose a global-to-local learning
paradigm to realize the modeling of both long-term and
short-term dependencies. This part is detailed in Section
4.3. As shown in Section 5, we construct the first large-
scale VPS benchmark, which contains 13 of the latest
polyp/object segmentation competitors. We highlight sev-
eral potential research directions based on the above
benchmark results and progress in the VPS field.

2 Related works

This section reviews the recent efforts in computer-
aided polyp diagnosis from the following two aspects:
colonoscopy-related datasets (Section 2.1) and approaches
(Section 2.2).

2.1 Colonoscopy-related datasets

Several datasets have been collected for the examina-
tion of human colonoscopy. As shown in Table 1, we
summarize some key statistics from 20 popular datasets
and our SUN-SEG dataset. In light of the task definition,

Table 1 Statistics of existing 20 datasets for human colonoscopy. #IMG = Number of images; #VID = Number of video sequences;
DL = Densely labeling; CLS = Classification label; BBX = Bounding box; PM = Pixel-level mask.

Dataset Year #IMG #VID DL CLS BBX PM Website
CVC-ColonDB 2012 300 13 v -
ETIS-Laribll 2014 196 34 v -
CVC-ClinicDBI6I 2015 612 31 v Link
ColonoscopicDS(7] 2016 - 76 v Link
ASU-Mayol8l 2016 36 458 38 v v Link
CVC-ClinicVideoDBU 2017 11 954 18 v v Link
CVC-EndoSceneStilll10] 2017 912 44 v -
KID2[11,12] 2017 2371 47 v v Link
Kvasirl13] 2017 8 000 - v Link
EDD2020014 2020 386 - v v Link
SUN-databasel3! 2020 158 690 113 v v Link
Hyper-Kvasir[t3] 2020 110 079 374 v v Link
Kvasir-SEGI16] 2020 1000 - v Link
PICCOLOUI 2020 3433 40 v v Link
Kvasir-Capsulel!8] 2021 4741 504 117 v v v Link
CP-CHILD-A] 2021 8 000 - v Link
CP-CHILD-B[9] 2021 1500 - v Link
LDPolypVideol20] 2021 40 266 160 v v v Link
KUMC1 2021 37 899 155 v v v Link
PolypGenl22] 2021 6282 26 v v Link
SUN-SEG (our) 2022 158 690 1013 v v v Link
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we categorize them into three main-stream partitions.
2.1.1 Classification

There are four popular datasets for the initial purpose
of identifying gastrointestinal lesions. ColonoscopicDSI"]
collects 76 regular colonoscopy videos with three types of
gastrointestinal lesions, including hyperplasic, serrated,
and adenoma lesions. Kvasirl!3l contains eight types of
anatomical landmarks (i.e., polyps, esophagitis, ulcerat-
ive colitis, z-line, pylorus, cecum, dyed polyps, and dyed
resection margins), and each type has 1000 images. Hy-
per-Kvasir(13l further collects 110 079 samples from 374
colonoscopy videos, containing three types of annotations:
10 662 class labels with 23 different lesion findings and 1 000
images with segmented masks and bounding box labels.
Notably, all the segmented masks in Hyper-Kvasir are se-
lected from Kvasir-SEGI. Recently, CP-CHILD-A &
CP-CHILD-B[ record the colonoscopy data from chil-
dren, including two classes (i.e., colon polyp, normal or

other pathological images) for the classification task.
2.1.2 Detection

There are five widely-accepted video datasets mainly
used for the detection task. CVC-ClinicVideoDBl), as the
early video dataset, comprises 18 videos with a total
number of 11 954 frames, of which 10 025 frames contain
at least a polyp. As for the largest densely-annotated
video polyp detection dataset, the SUN-databasel3 con-
sists of 49 136 positive samples with their bounding boxes
acquired from 99 patients. More recently, two video data-
sets (i.e., Kvasir-Capsulel'¥ and KUMCI2!) have been ap-
plied for both detection and classification tasks. Espe-
cially, the former provides 47 238 bounding box labels
from 14 lesion classes, and the latter has 37 899 frames
with bounding box labels. Unlike the above datasets, LD-
PolypVideol2) includes 40 266 frames with circular an-

notations from 160 colonoscopy videos.
2.1.3 Segmentation

As for the video datasets, the early benchmark CVC-
EndoSceneStillll®) opts for the combination of CVC-
ColonDB[ and CVC-ClinicDBI®l. ETIS-Laribl® provides
196 labeled samples from 32 colonoscopy videos, contain-
ing about five frames for each sequence. EDD20201' con-
tains 386 endoscopy images from five different institu-
tions and multiple gastrointestinal organs. They provide
annotations for disease detection, localization, and seg-
mentation. PICCOLOL7 also samples 3 433 frames from
40 videos with sparse annotations. As such, the above five
video datasets adopt the sampling annotation strategy,
which still lacks per-frame masks on each video sequence
due to the labor-intensive annotation process. Being the
pioneering video dataset with densely-annotated masks,
ASU-Mayol8l contains 36 458 continuous frames from 38
videos, while it only provides 3 856 labels for ten positive
videos. Recently, PolypGen[?? has collected a multi-center
dataset incorporating more than 300 patients, including

single and continuous frames with 3 788 annotated seg-
mentation masks and bounding box labels. Unlike exist-
ing works, we introduce SUN-SEG, the first high-quality
densely-annotated dataset for the VPS task, which con-
tains rich annotated labels, such as object mask, bound-
ary, scribble, polygon, and attribute. We hope that this
work could fuel the development of colonoscopy diagnosis,
localization, and derivative tasks.

2.2 Colonoscopy-related methods

Early solutions[!; 23-25] have been dedicated to identify-
ing colon polyps via mining hand-crafted patterns, such
as color, shape, texture, and super-pixel. However, they
usually suffer from low accuracy due to the limited cap-
ability of representing heterogeneous polyps, as well as
the close resemblance between polyps and hard mimics[26].
In contrast, data-driven AI techniques can handle these
challenging conditions with better learning ability. This
section mainly focuses on tracking the latest image/video
polyp segmentation techniques7, while leaving the sys-
tematic review of polyp classification(?8 291 and detec-
tionB% 31] in our future work.

2.2.1 Image polyp segmentation (IPS)

Several methods have been proposed to locate the
pixel-level polyp regions from the colonoscopy images.
They can be grouped into two major categories. 1) CNN-
based approaches. Brandao et al.32] adopted a fully con-
volutional network (FCN) with a pre-trained model to
segment polyps. Later, Akbari et al.[3] introduced a mod-
ified FCN to improve the segmentation accuracy. In-
spired by the vast success of UNetl34 in biomedical im-
age segmentation, UNet-++035 and ResUNetB6 were em-
ployed for polyp segmentation for improved performance.
Furthermore, PolypSegl37l, ACSB8l, ColonSegNet39, and
SCR-Net[0 explore the effectiveness of UNet-enhanced
architecture on adaptively learning semantic contexts. As
the newly-proposed methods, SANet[!l and MSNet42
design the shallow attention module and subtraction unit,
respectively, to achieve precise and efficient segmenta-
tion. Additionally, several works opt for introducing addi-
tional constraints via three main-stream manners: exert-
ing explicit boundary supervision[*347 introducing impli-
cit boundary-aware representation(48-50 and exploring un-
certainty for ambiguous regionsPl. 2) Transformer-based
approaches. Recently, Transformers®2l have been gaining
popularity thanks to their powerful modeling ability.
TransFusel53 combines the Transformer and CNN,
termed the parallel-in-branch scheme, for capturing glob-
al dependencies and low-level spatial details. Besides, a
BiFusion module was designed to fuse multi-level fea-
tures from both branches. Segtran(54 proposes a squeezed
attention block that regularizes self-attention, and the ex-
pansion block learns diversified representations. A posi-
tional encoding scheme was proposed to impose an in-
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ductive continuity bias. Based on PVTP5], Dong et al.l>t]
introduced a model with three tight components, i.e., cas-
caded fusion, camouflage identification, and similarity ag-
gregation modules.

2.2.2 Video polyp segmentation (VPS)

Despite their progress, existing IPS methods suffer
from an inherent limitation of overlooking the valuable
temporal cues in colonoscopy videos. Therefore, efforts
have been dedicated to combining spatial-temporal fea-
tures among consecutive video frames. A hybrid 2/3D
CNN framework[? was proposed to aggregate spatial-tem-
poral correlations and achieved better segmentation res-
ults. However, the kernel size restricts the spatial correla-
tion between frames, restricting the accurate segmenta-
tion of the fast movements of polyps. To alleviate the
above problem, PNSNetl introduces a normalized self-at-
tention (NS) block to learn spatial-temporal representa-
tions with neighborhood correlations effectively. In this
paper, we delve deeper into a more effective global-to-loc-
al learning strategy based on the NS block, which can
fully leverage both long-term and short-term spatial-tem-
poral dependencies.

3 VPS dataset

We describe the introduced SUN-SEG dataset’s details
in terms of data collection/re-organization (Section 3.1),
professional annotations (Section 3.2), and dataset stat-
istics (Section 3.3).

3.1 Data organization

The colonoscopy videos in our SUN-SEG are from the
Showa University and Nagoya University databases (also
named SUN-databasel]), the largest video polyp dataset
for the detection task. There are two advantages of ad-
opting the SUN-database as our data source. 1) Challen-
ging scenarios. The videos are captured by the high-defin-
ition endoscope (CF-HQ290ZI & CF-H290ECI, Olympus)
and video recorder (IMH-10, Olympus), providing videos
of various polyp sizes in dynamic scenarios, such as ima-
ging at different focusing distances and speeds. 2) Reli-
able pathological localization. The initial classification in-
formation and bounding box annotations are provided by
three research assistants and examined by two expert en-
doscopists with professional domain knowledge.

The original SUN-database has 113 colonoscopy
videos, including 100 positive cases with 49 136 polyp
frames and 13 negative cases with 109 554 non-polyp
frames!. We manually trim them into 378 positive and

I These statistical data come from this website, http://amed8k.
sundatabase.org/, which is different from the data reported in
the original paper3l. Besides, the SUN-database is available for
only non-commercial use in research or educational purposes,

which could be freely accessed with permission from the authors.
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728 negative clips while maintaining their consecutive in-
trinsic relationship. Such data pre-processing ensures that
each clip has around 3-11s duration at a real-time frame
rate (i.e., 30fps), promoting the fault-tolerant margin for
various algorithms and devices. To this end, the re-organ-
ized SUN-SEG contains 1 106 short video clips with 158 690
video frames in total, offering a solid foundation to build
such a representative benchmark.

3.2 Professional annotations

Following [57], we adopt a similar annotation pipeline.
According to the origin bounding box labels of the SUN-
databaseldl, ten experienced annotators are instructed to
offer various labels using Adobe Photoshop. Then, three
colonoscopy-related researchers re-verify the quality and
correctness of these initial annotations. Fig.1 shows two
typical samples under the restricted quality controls (i.e.,
rejected and passed). In addition to the original patholo-
gical materials provided by SUN-database, such as patho-
logical pattern (e.g., low-grade adenoma, hyperplastic
polyp, etc.), shape (e.g., pedunculated, subpedunculated,
etc.), and location (e.g., cecum, ascending colon, etc.), we
further extend them with diversified annotations in our
SUN-SEG. The newly-extended annotations consist of the
following five hierarchies: visual attribute — object mask
— boundary — scribble — polygon. Selected samples and
corresponding annotations can be found in Fig.2 and
their illustrations? are as follows.

(b) Water
occlusion

(a) aaon -
annotation

Fig.1 High-criteria control for data annotation. For instance,
we reject case (a), where the boundary is not consistent with the
polyp, and case (b), where the water overlapping area is falsely
annotated.

Visual attribute. According to the visual character-
istics of the videos, we provide ten visual attributes at
the video level, whose classification criteria are detailed in
Table 2.

Object mask. Correctly parsing lesion areas is help-
ful for a clinician. Therefore, as shown in Fig.2(a), we
provide pixel-wise object masks for each frame. We fur-
ther refine the coordinates of the original bounding box
based on the object mask to tighten the target, offering
more reliable localization labels.

2 The descriptions of complete annotations refer to https://github.
com/GewelsJI/VPS /blob/main/docs/DATA_DESCRIPTION.
md.
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Frame (a) Object mask

(b) Boundary

(c) Scribble (d) Polygon

Fig. 2 Diversified annotations for each video frame in our SUN-SEG dataset, including object mask (a), boundary (b), and two weak
labels, i.e., scribble (c) and polygon (d). For more details, refer to Section 3.2.

Boundary. Fig.2(b) shows the polyp boundary gen-
erated by calculating the gradient of the object mask.

Scribble. Besides, we offer two weak labels to facilit-
ate the research under data-insufficient conditions. As for
the scribble labels in Fig.2(c), we use two high-degree
curves to indicate the foreground (purple curve) and
background (white curve), respectively. To ensure the ob-
jectivity of various annotators, we adopt linear or quad-
ratic functions to randomly create the above curves in the
positive/negative region.

Polygon. Similarly, in Fig.2(d), we randomly deploy
the Douglas-Peucker algorithml®8! to find the circumsc-
ribed or inscribed polygons that fit the object boundaries.

3.3 Dataset statistics

This section discusses several vital statistics of our
three SUN-SEG sub-datasets for better illustration. For
more details on the data split of SUN-SEG, refer to
Section 4.4.1.

Center bias. Unlike general object detection, medic-
al images usually share a higher center bias since the tar-

gets are often not in the center of an image. To depict
the degree of center biasl®, we compute the average dis-
tribution of each dataset’s overall ground-truth map.
Figs.3, 4(a) and 4(b) show that the three sub-datasets of
SUN-SEG have a lower center bias than CVC-300 and
CVC(C-612 datasets.

Polyp size. Colonoscopy is an ego-motion situation
instead of shooting moving targets (i.e., stuff and things)
through fixed cameras in the general domain. As a result,
the scale variation of polyps and the irregular movement
of the camera causes the different sizes of polyps. The
polyps partly or even fully disappear in the view. Fig.4(c)
shows the comparison of polyp scales at five different
VPS datasets.

Global/Local contrast. To demonstrate how diffi-
cult a colon polyp is to identify, in Fig.4(d), we describe
it quantitatively using the global and local contrast
strategy!60,

4 VPS baseline

This section first clarifies the formulation of the VPS

Table 2 List of ten types of visual attributes (ATTR.) and their descriptions

ATTR. DESCRIPTION

SI Surgical instruments. The endoscopic surgical procedures involve the positioning of instruments, such as snares, forceps, knives,
and electrodes.

1B Indefinable boundaries. The foreground and background areas around the object have a similar color.

HO Heterogeneous object. Object regions have distinct colors.

GH Ghosting. The object has an anomalous RGB-colored boundary due to a fast-moving or insufficient refresh rate.

FM Fast-motion. The average per-frame object motion in a clip, computed as the Euclidean distance of polyp centroids between
consecutive frames, is larger than 20 pixels.

SO Small object. The average ratio between the object size and the image area in a clip is smaller than 0.05.

LO Large object. The average ratio between the object size and the image area in a clip is larger than 0.15.

ocC Occlusion. The polyp object becomes partially or fully occluded.

ov Out-of-view. The polyp object is partially clipped by the image boundaries.

SV Scale-variation. The average area ratio among any pair of bounding boxes enclosing the target object in a clip is smaller than 0.5.

@ Springer



536

Fig.3 Calculation of center biasl® on CVC-300, CVC-612,
and our SUN-SEG-Train/SUN-SEG-Easy /SUN-SEG-Hard

0.3 0.3
02 0.2
0.1 | 0.1
0 0 1

0 02 04 06 08 1.0 0
(a) Object margin to image center

02 04 06 0.8 1.0
(b) Object center to image center

0.8 0.4
—— SUN-SEG-Train Global contrast (Dashed line)
— SUN—SEG—Easy Local contrast (Solid line)
0.6 SUN-SEG-Hard 03 -
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7 hN
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(c) Normalized object size

02 04 06 08 1.0

(d) Global/Local contrast
distribution

Fig. 4 Statistic curves among existing VPS datasets (CVC-300
& CV(C-612) and our SUN-SEG-Train/SUN-SEG-Easy/SUN-
SEG-Hard. Note that the horizontal and vertical axes denote the
frequency and their statistic values, respectively. These curves
present the diversity of our dataset.

task in Section 4.1. Then, we describe the details of PNS+,
including the normalized self-attention block (Section 4.2),
global-to-local learning strategy (Section 4.3), and imple-
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mentation details (Section 4.4).
4.1 Task formulation

We mainly focus on the task of video polyp segmenta-
tion, which could be defined as a binary-class video ob-
ject segmentation task, i.e., identifying polyp and non-
polyp areas. Specifically, our goal is to render a model to
assign a probability prediction (i.e., a non-binary mask
ranging from 0 to 1) for every pixel of each frame. Be-
sides, we leave other types of tasks for future exploration,
such as video polyp detection.

4.2 Normalized self-attention block

Recently, the self-attention mechanism/®!l has been
widely exploited in many popular computer vision tasks.
Our initial studies found that introducing the original
self-attention mechanism to the VPS task does not
achieve satisfactory results (high accuracy and speed) due
to the multiscale property of polyps that are captured at
various shooting angles and speeds. Directly utilizing the
naive self-attention scheme, such as the non-local net-
work(®] incurs a high computational cost, limiting the in-
ference speed. As shown in Fig.5 (right), we propose a
normalized self-attention (NS) block, which is motivated
by the fact that dynamically updating the receptive field
is important for self-attention-based networks. The NS
block involves five key steps, which are detailed as follows.
4.2.1 Enhanced rules

Motivated by the recent video salient object detec-
tion modell2], we utilize three strategies, i.e., channel split
rule, query-dependent rule, and normalization rule, to re-
duce the computational cost and improve the accuracy.

Channel split rule. Specifically, given three candid-
ate features (i.e., query feature Q, key feature K, and
value feature V') with the size of RT*#*WXC  we utilize
three linear embedding functions 6(-), ¢(-), and g¢(-) to
These
functions can be implemented by a convolutional layer

generate the corresponding attention features.

Soft-Attention

§ Spatial-Temporal
S aggregation

Channel split

<— Sliding window <€=————

(a) PNS + Network

Fig. 5
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with a kernel size of 1x1x1[61, Note that 7, H, W, and C
denote the number of frames, height, width, and chan-
nels of the given feature, respectively. This rule can be
expressed as

Qi =F0Q), Ki=Fp(K)), Vi=Fg(V)) (1)

where the function F¢ denotes the operation in which we
split each attention feature into N groups along the
channel dimension, resulting in three disparate features:
query Q;, key K;, and value V;, where ¢ = {1,2,--- ,N}.
Thus, the shape of the above three split features is
RTXH*Wx %

Query-dependent rule. To model the spatial-tem-
poral relationship among consecutive frames, we need to
measure the similarity between the split query features
{Q:}X, and split key features {K;}I_,. Inspired by [62],
we introduce N relevance measuring (i.e., query-depend-
ent rule) blocks to compute the spatial-temporal affinity
matrix for the constrained neighborhood of the target
pixel. Rather than computing the response between a
query position and a key feature at all positions, as done
in [61], the relevance measuring block can capture more
relevance regarding the target object within 7 frames.
More specifically, we get the corresponding constrained
neighborhood in K; for the query pixel X9 of @Q; in posi-
tion (z,y, z), which can be obtained by a point sampling
function F°. This is formulated as

z+kd; y+kd; T

> > > Kimont) (2

m=x—kd; n=y—kd; t=1

FHXY K;) =

where 1 <z<H, 1<y<W, 1<z<T and .7-"S<Xq7
K;) € RT<2’“+1>2X%. Thus, the size of the constrained
neighborhood will depend on the various spatial-temporal
receptive fields with different kernel sizes k, dilation rate
d; at the i-th group, and frame number T, respectively.

Normalization rule. However, the internal covari-
ate shift problem[63] exists in the feed-forward of input Q;,
causing the layer parameters to not dynamically adapt to
the next mini-batch. Thus, we maintain a fixed distribu-
tion for Q; via

Qi = Norm(Qs) (3)

where Norm(-) is implemented by the layer normaliz-
ation[%4 along the temporal dimension.
4.2.2 Relevance measuring

The affinity matrix M;' measures the similarity of
target pixels and their surrounding spatial-temporal con-
tents in an adaptive point sampling manner (refer to (2)).
It is defined as

QiF (X, Ki)"

/\/lf = Softmax
C/N

) , when X7 € Q;
(4)

where M{ € RTHWXT(2k+1)?, v/C/N is a scaling factor
to balance the multi-head attention.
4.2.3 Spatial-temporal aggregation

Similar to relevance measuring, we also compute the
spatial-temporally aggregated features M7 € RTHWX§
within the constrained neighborhood during temporal ag-

gregation. It is calculated by

ME = MAFS(X*, V), when X* € M. (5)

4.2.4 Soft-attention

We utilize a soft-attention block to synthesize fea-
tures from the group of affinity matrices M#* and aggreg-
ated features M?. During the synthesis process, relevant
spatial-temporal patterns should be enhanced, while less
relevant ones should be suppressed. We first concatenate
a group of affinity matrices M#* along the channel dimen-
sion to generate M*. The soft-attention map M?* is com-
puted by

M e RTHW>E — Max(M™) (6)

where M4 € RTHWXT2R+D?N and the Max(+) function
computes the channel-wise maximum value. We then conc-
atenate a group of the spatial-temporally aggregated
features M7 along the channel dimension to generate M7 .
4.2.5 Normalized self-attention

Finally, our normalized self-attention block, i.e., the
function NS(+, -, ), is defined as

y € RTXHXWxC _ NS(Q,K,V) = (MTWT) ® M?° (7)

where Wr is the learnable weight and ® denotes the
channel-wise Hadamard product.

4.3 Global-to-local learning

Observation. By establishing the non-local connec-
tions for the given features, the proposed NS block, as in
Section 4.2, shows the promising potential for learning
short-term spatial-temporal dependencies. However, this
mechanism still struggles to model long-term spatial-tem-
poral dependencies due to limited computational re-
sources, i.e., the network can only process a piece of
frames within a limited time.

In contrast to our conference version, PNSNetl, we
propose a novel global-to-local learning paradigm, which
realizes both long-term and short-term spatial-temporal
propagation at an arbitrary temporal distance, yielding a
simple but efficient framework, PNS+. Specifically, it ap-
pends a spatial-temporal learning pathway at a global
temporal level, naturally introducing long-term dependen-
cies into the network. We describe this strategy via the
following five steps: a global encoder (Section 4.3.1), a
local encoder (Section 4.3.2), the global spatial-temporal
modeling (Section 4.3.3), the global-to-local propaga-
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tion (Section 4.3.4), and the decoder/objectiveness
(Section 4.3.5).
4.3.1 Global encoder

Our strategy employs the first frame I; € R XW'x3
as an anchor (i.e., global reference). The dependency will
be calculated between the anchor frame and the sampled
consecutive frames within a sliding window. Following
PraNetl48], we use the same backbone, Res2Net-5063], to
extract the feature in the conv4 6 layer. To alleviate the
computational burden, we adopt an RFB-likel5¢l module
to reduce the channel dimension of the extracted feature
and generate the anchor feature A" € RH"xWhxch
4.3.2 Local encoder

The local encoder takes a piece of consecutive frames
Ia—{L}t2 e RT*W'>3 (¢ > 1) from a sliding window
as input. Similar to the global encoder, we leverage the
Res2Net-50 backbone to extract two groups of short-term
features from the conv3 4 and conv4 6 layers and use
channel reduction to generate the low-level {Xi i;Ae
RH WIXC and high-level {Xsh}f;f‘eRHhXthch short-
term features. We set H' = H'/4, W' = W' /4, C' = 24,
H"=H'/8, Wh"=W’/8, and C" = 32 as the default im-
plementation.
4.3.3 Global spatial-temporal modeling

As shown in Fig.5, we leverage the first NS block to
model the long-term relationship at an arbitrary tempor-
al distance, which requires a four-dimensional temporal
feature as input; therefore, we have

h h h h h h
Xh c RAXH XWmxC {Xsh}ng:tA c RH XWhxC
~ h h h h h h
1h c R1><H XWhxC .Ah c RH XWhxC (8)

where < denotes reshaping the candidate features into
the temporal form to yield a four-dimensional tensor.
Then, as for the first NS block formulated in (7), we
employ the anchor feature as a query entry (ie.,
Q7 :./ih) and the high-level short-term feature as the
key and value entries (ie., KI9—x" & VI_xh).
Intuitively, we aim to build pixel-wise similarities
between the anchor and high-level short-term features,
which could be viewed as the modeling of global spatial-
temporal dependencies. It is defined as

79 ¢ RAxHththh _ NS(Ah7)Evh7)E-h) @)Eh (9)
where @ denotes the element-wise addition of residual
operation(67. This operation provides better convergence
stability of interior gradient propagation within the first
NS block, allowing it to easily be plugged into the pre-
trained networks.
4.3.4 Global-to-local propagation

Furthermore, we desire to propagate the long-term de-
pendency Z9 into a local neighborhood (i.e., frames in a
sliding window). Thus, we serve Z9 as the input entries
of the second NS block as in (7), i.e., query Q' = Z9, key
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K! = 79, and value V! = Z9. We have
Z' =NS(29,29,29) & 29 ¢ X", (10)

In this way, the introduced two residual connections
can maintain the interior gradient stability (i.e., ®Z7)
and exterior gradient stability (i.e., BX ") of the second
NS block.

4.3.5 Decoder and objectiveness

Finally, we combine the low-level short-term feature
X! from the local encoder and the spatial-temporal fea-
ture Z! from the second NS block with a two-stage UNet-
alike decoder FP. Before the combination, we recover the
feature 7! back to the spatial form, ie., {Z.}.L®. The

prediction from the decoder is computed with
Pa = {PYED = FPUXYET {2y 5. (1)

To this end, given a prediction Ps and the correspond-
ing ground-truth (GT) Gs at timestamp s, we utilize a
binary cross-entropy loss for optimization, which is for-
mulated as

Lyce = — Y _[Gslog(Ps) + (1 - Gy)log(1— Py)].  (12)

4.4 Implementation details

4.4.1 Datasets

We split 40% of the SUN-SEG data for training, i.e.,
SUN-SEG-Train with 112 clips (19 544 frames). The rest
of the data are all used for testing, including SUN-SEG-
Easy with 119 clips (17 070 frames) and SUN-SEG-Hard
with 54 clips (12 522 frames) according to difficulty levels
in each pathological category. Specifically, two colono-
scopy scenarios (i.e., seen and unseen’) are included in
the above two testing datasets: SUN-SEG-Easy (seen: 33
clips & unseen: 86 clips) and SUN-SEG-Hard (seen: 17
clips & unseen: 37 clips) for more fine-grained experi-
mental analyses.
4.4.2 Training details

We train our model using the SUN-SEG-Train data-
set on the server platform equipped with an Intel Xeon
(R) CPU E5-2690v4x24 and four NVIDIA Tesla V100
GPUs with 16 GB of memory each. The ImageNet pre-
trained weights of Res2Net-50[6% are loaded before train-
ing, and other newly-added layers are with Kaiming ini-
tialization. We set the batch size to 24, which takes
about 5 hours to reach convergence after 15 epochs. For
each mini-batch of data, we select the first frame of a
video clip as an anchor, randomly sample five consecut-
ive frames (A = 5) from the same clip, and resize them
to 256x448. The Adam optimizer’s initial learning rate

3 Seen denotes that the samples in the testing dataset are from
the same case in the training set, whereas the unseen indicates

that the scenario do not exist in the training set.
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and weight decay are set to 3x10% and 1x104, respect-
ively. We set the number of attention groups to N = 4 as
default. For the first NS block, we set the kernel size k =
3 and the dilation rate d;= {3,4,3,4} to capture more
long-term representations with a larger receptive field.
For the second one, we set the kernel size £k = 3 and re-
duce the dilation rate d;= {1,2,1,2} to mainly focus on
short-term relationships.
4.4.3 Inference stage

We evaluate PNS+ on SUN-SEG-Easy and SUN-
SEG-Hard with both seen and unseen scenarios. Similar
to the training phase, during inference, we select the first
frame as an anchor, sample five video frames (A = 5)
from a video clip, and resize them to 256x448. For the fi-
nal prediction, we use the network’s output Pa followed
by a Sigmoid function. The proposed PNS+ achieves a
super real-time inference speed of 170fps on a single V100
GPU without any heuristic post-processing techniques,
such as DenseCRFI68].

5 VPS benchmark

5.1 Evaluation protocols

5.1.1 Competitors

We elaborately select eight typical video-based object/
polyp segmentation methods, including COSNetl69],
MATII PCSA62 2/3DE AMDI7H, DCFI™2, FSNetl™l,
and PNSNetll. We also add five image-based object/
polyp segmentation methods to validate the effectiveness
of per-frame prediction ability, including UNetl34],
UNet++035], ACSNet38], PraNetls], and SANeti4l. For a
fair comparison, all the competitors utilize the same
training dataset as our PNS+ and reach convergence un-
der their default settings. It is worth noting that this pa-
per focuses only on the positive cases (with poly) in our
SUN-SEG dataset and leaves negative cases (without
polyp) for future work.
5.1.2 Evaluation metrics

To provide a deeper insight into the model perform-
ance, we use the following six different metrics for model
evaluation between prediction Ps and ground-truth G, at
timestamp s, including: 1) The Dice coefficient (Dice =
2 X |Ps N Gs|/|Ps UGs|) measures the similarity between
prediction and ground-truth mask and penalizes for the
false-positive/false-negative predictions. The operators N,
U, and | - | denote the intersection, union, and the num-
ber of pixels in an area, respectively. 2) The pixel-wise
sensitivity (Sen = |Ps N Gs|/|Gs|) is used to evaluate the
true positive prediction of overall lesion areas. Since the
goal of a colonoscopy is to screen the polyps with a low
polyp missing rate, people who have the polyps should be
highly likely to be identified. As a result, penalizing the
false-negative prediction can be done by adopting sensit-
ivity, which refers to the method's ability to correctly de-
tect polyps. 3) Being the harmonic mean of precision and

recall that is weighted by 3, F-measurel™ (Fs = (1 4+ %) x
Prc x Rel/(8? x (Prc + Rcl))) is widely used in measuring
binary masks by combining precision (Prc = |Ps N Gs|/|Ps|)
and recall (Rcl = |Ps N Gs|/|Gs]) for more comprehensive
evaluation. 4) As suggested by [75, 76], the weighted F-mea-
surel™(Fy' = (1 + B%) x Prc” x Rel” /(8% x (Prc”+)Rel®)):
amend the “Equal-importance flaw” in Dice and Fj, provi-
ding more reliable evaluation results. Following [78], we
set the factor 8% of Fjs and Fg" as 0.3 and 1, respectively.
5) Different from the above pixel-wise metrics, structure
measurel™ (So = a x So(Ps, Gs) + (1 — a) x S (Ps, Gs))
is used to measure the structural similarity at object-
aware S, and region-aware S,, respectively. We use the
factor & = 0.5 as a default. 6) Fan et al.8% proposed a
human visual perception-based metric, enhanced-alignment
measure: 5 = (1/(W x H)) W S 6(Pu(2,y), Gu(,y),
where ¢ is the enhanced-alignment matrix, W and H are
the width and height of the ground-truth G,. This met-
ric is inherently suitable for assessing polyps’ heterogen-
eous location and shape in colonoscopy.

As mentioned in Section 4.1, the models generate con-
tinuous floating predictions; thus, we need to threshold
the floating value into binary ones ranging from 0 to 255.
Specifically, we provide the maximum value of Dice and
the mean value of Ey4, Fp, and Sen under different
thresholds for the binary metrics. Furthermore, we ob-
tain the video-level score by averaging the evaluated res-
ults per image at a video clip. Then, we take the average
video-level scores as the performance on the whole data-
set. The one-key evaluation toolbox is available at
https://github.com/GewelsJI/VPS/tree/main/eval.

5.2 Quantitative comparison

Based on the protocols mentioned in Section 5.1, we
conduct a comprehensive VPS benchmark on two testing
sub-datasets (i.e., SUN-SEG-Easy and SUN-SEG-Hard),
which include the following three aspects.

5.2.1 Learning ability

Notably, the image-based models are trained and in-
ferred frame-by-frame. To better unveil the spatial-tem-
poral learning ability on the colonoscopy videos, we con-
duct two groups of experiments to validate the video-
based competitors’ ability on two seen sub-datasets. For
these sub-datasets shown in Table 3, our PNS+ also out-
performs top-1 video-based approaches, e.g., Dice score
on SUN-SEG-Easy (Seen): PNSNet (0.861) versus PNS+
(0.888) and Fj;'" score on SUN-SEG-Hard (Seen): PNS-
Net (0.892) versus PNS+ (0.929). The above results sug-
gest that PNS+ has a strong learning ability to segment
polyps accurately.

5.2.2 Generalization capability

To validate the model’'s generalizability, we conduct
the experiments on two testing sub-datasets with unseen
colonoscopy scenarios. As shown in Table 4, we present
the performance comparison with the other latest image-
and video-based competitors in six metrics. It shows that
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Table 3
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Quantitative comparison of two testing sub-datasets with seen colonoscopy scenarios

SUN-SEG-Easy (Seen)

SUN-SEG-Hard (Seen)

Model
Sa By Fg Dice Sa By Fg Dice
COSNet[69] 0.845 0.836 0.727 0.804 0.785 0.772 0.626 0.725
MATI7] 0.879 0.861 0.731 0.833 0.840 0.821 0.652 0.776
PCSAI62] 0.852 0.835 0.681 0.779 0.772 0.759 0.566 0.679
2/3D0 0.895 0.909 0.819 0.856 0.849 0.868 0.753 0.809
AMDI[71] 0.471 0.526 0.114 0.245 0.480 0.536 0.115 0.231
DCFI72 0.572 0.591 0.357 0.398 0.603 0.602 0.385 0.443
FSNet!7] 0.890 0.895 0.818 0.873 0.848 0.859 0.755 0.828
PNSNetl 0.906 0.910 0.836 0.861 0.870 0.892 0.787 0.823
PNS+ 0.917 0.924 0.848 0.888 0.887 0.929 0.806 0.855

Table 4 Quantitative comparison of two testing sub-datasets with unseen colonoscopy scenarios. “R/T” means to retrain the private
model using the code provided by the author. The best values are highlighted in bold.

SUN-SEG-Easy (Unseen)

SUN-SEG-Hard (Unseen)

Model Publish Code
Sa  EZ" Fg Fg'" Dice Sen Sa  EF™ Fg FF'" Dice Sen
UNet34] MICCAI;5 Link 0.669 0.677 0.459 0.528 0.530 0.420 0.670 0.679 0.457 0.527 0.542 0.429
UNet++[35] TMI; 5 Link 0.684 0.687 0.491 0.553 0.559 0.457 0.685 0.697 0.480 0.544 0.554 0.467
Image-level methods ACSNetl  MICCAIy Link 0.782 0.779 0.642 0.688 0.713 0.601 0.783 0.787 0.636 0.684 0.708 0.618
PraNetl48] MICCAIzo Link 0.733 0.753 0.572 0.632 0.621 0.524 0.717 0.735 0.544 0.607 0.598 0.512
SANet[41] MICCAI21 Link 0.720 0.745 0.566 0.634 0.649 0.521 0.706 0.743 0.526 0.580 0.598 0.505
COSNet69] TPAMI;9 Link 0.654 0.600 0.431 0.496 0.596 0.359 0.670 0.627 0.443 0.506 0.606 0.380
MATI TIP29 Link 0.770 0.737 0.575 0.641 0.710 0.542 0.785 0.755 0.578 0.645 0.712 0.579
PCSAIl62] AAAIy Link 0.680 0.660 0.451 0.519 0.592 0.398 0.682 0.660 0.442 0.510 0.584 0.415
2/3D[2I MICCAIzp R/T 0.786 0.777 0.652 0.708 0.722 0.603 0.786 0.775 0.634 0.688 0.706 0.607

Video-level methods

AMDI™] NeurIPS2; Link 0.474 0.533 0.133 0.146 0.266 0.222 0.472 0.527 0.128 0.141 0.252 0.213
DCFI™ ICCV2, Link 0.523 0.514 0.270 0.312 0.325 0.340 0.514 0.522 0.263 0.303 0.317 0.364
FSNet (7] ICCVay Link 0.725 0.695 0.551 0.630 0.702 0.493 0.724 0.694 0.541 0.611 0.699 0.491
PNSNetl4] MICCAI2; Link 0.767 0.744 0.616 0.664 0.676 0.574 0.767 0.755 0.609 0.656 0.675 0.579
PNS+ OURS;2 Link 0.806 0.798 0.676 0.730 0.756 0.630 0.797 0.793 0.653 0.709 0.737 0.623

our PNS+ achieves significant improvements by a large
margin in comparison with top image-based and video-
based approaches, e.g., Dice score on SUN-SEG-Easy
(Unseen): ACSNet (0.713) versus 2/3D (0.722) versus
PNS+ (0.756) and F§’ score on SUN-SEG-Hard (Unseen):
ACSNet (0.636) versus 2/3D (0.634) versus PNS+
(0.653). Interestingly, we observe that PNSNet drops dra-
matically on two unseen datasets, which is a sideshow of
better generalizability attributed to our newly-proposed
global-to-local learning strategy, especially on a clip with
a larger time span.
5.2.3 Attribute-based performance

Finally, we analyze the visual attribute-based compar-
ison presented in Table 2. In terms of S, score, Table 5
shows that our PNS+ consistently outperforms other
rivals in four attributes (i.e., IB, GH, FM, and SV). More
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specifically, as shown in Table 5, most methods cannot
address the VPS tasks with the IB attribute since the
colon polyps always have fuzzy boundaries. In contrast,
PNS+ achieves the best score (So = 0.667) on this chal-
lenging IB attribute of SUN-SEG-Easy (Unseen). This
discovery is also consistent with the results shown in
Fig.6. Similarly, the SO attribute also presents lower
scores (e.g., SUN-SEG-Easy (Unseen): So = 0.667), which
indicates that these two attributes are the most challen-
ging issues in colonoscopy. On the contrary, the HO and
LO attributes consistently sustain higher scores than oth-
er attributes, making polyps easier to detect. This phe-
nomenon meets our expectations since there is less distri-
bution bias for these relatively easy scenarios. We refer
the reader to Section 5.5 for a more visualized analysis of
challenging cases.


https://github.com/4uiiurz1/pytorch-nested-unet
https://github.com/MrGiovanni/UNetPlusPlus
https://github.com/ReaFly/ACSNet
https://github.com/DengPingFan/PraNet
https://github.com/weijun88/SANet
https://github.com/carrierlxk/COSNet
https://github.com/tfzhou/MATNet
https://github.com/guyuchao/PyramidCSA
https://github.com/rt219/the-emergence-of-objectness
https://github.com/Roudgers/DCFNet
https://github.com/GewelsJI/FSNet
https://github.com/GewelsJI/PNS-Net
https://github.com/GewelsJI/VPS
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Table 5 Visual attributes-based performance on SUN-SEG-Easy /SUN-SEG-Hard
(Unseen) in terms of structure measure (Sq) score

SUN-SEG-Easy (Unseen)

SUN-SEG-Hard (Unseen)

SI IB HO GH FM SO LO OC OV 8V SI IB HO GH FM SO LO OC OV S8V

UNetl34] 0.675 0.548 0.768 0.715 0.633 0.593 0.648 0.670 0.643 0.620 0.618 0.619 0.663 0.676 0.713 0.689 0.633 0.658 0.659 0.658
UNet++B3 0.701 0.542 0.782 0.739 0.647 0.591 0.678 0.683 0.665 0.617 0.654 0.604 0.665 0.696 0.714 0.681 0.660 0.676 0.677 0.678
ACSNetl]  0.789 0.612 0.896 0.820 0.704 0.663 0.787 0.770 0.759 0.705 0.770 0.681 0.828 0.795 0.817 0.738 0.810 0.828 0.806 0.759
PraNet[*8]  0.745 0.585 0.821 0.772 0.673 0.611 0.722 0.722 0.703 0.653 0.673 0.635 0.725 0.720 0.755 0.691 0.666 0.714 0.708 0.703
SANetl]  0.724 0.582 0.854 0.760 0.676 0.615 0.703 0.701 0.711 0.680 0.658 0.565 0.738 0.709 0.760 0.692 0.733 0.729 0.727 0.693
COSNetl®]  0.663 0.531 0.786 0.684 0.610 0.549 0.637 0.648 0.613 0.617 0.641 0.593 0.727 0.668 0.690 0.637 0.694 0.707 0.666 0.625
MATI7] 0.772 0.664 0.873 0.789 0.706 0.691 0.755 0.738 0.746 0.715 0.772 0.701 0.801 0.776 0.782 0.780 0.791 0.795 0.789 0.750
PCSA2  0.676 0.563 0.759 0.708 0.628 0.610 0.634 0.662 0.656 0.616 0.656 0.591 0.692 0.683 0.706 0.671 0.612 0.677 0.665 0.663
2/3D0 0.809 0.625 0.899 0.835 0.728 0.667 0.820 0.783 0.778 0.719 0.768 0.662 0.865 0.784 0.797 0.737 0.853 0.827 0.808 0.765
AMDI[] 0.476 0.461 0.471 0.481 0.484 0.466 0.447 0.467 0.442 0.498 0.471 0.468 0.447 0.473 0.468 0.469 0.453 0.487 0.462 0.481
DCFI™2] 0.465 0.485 0.479 0.505 0.541 0.495 0.362 0.484 0.492 0.495 0.441 0.508 0.422 0.498 0.587 0.556 0.351 0.470 0.494 0.540
FSNetl™  0.719 0.603 0.810 0.752 0.694 0.632 0.686 0.711 0.691 0.665 0.662 0.648 0.743 0.713 0.774 0.723 0.701 0.728 0.728 0.694
PNSNetl 0.789 0.592 0.871 0.820 0.723 0.619 0.768 0.749 0.751 0.705 0.746 0.631 0.803 0.780 0.778 0.743 0.805 0.790 0.794 0.758
PNS+ 0.819 0.667 0.883 0.844 0.738 0.690 0.796 0.782 0.798 0.734 0.770 0.703 0.817 0.801 0.823 0.793 0.792 0.808 0.807 0.795

Time

MAT 2/3D PNSNet PNS+ GT Frame

ACSNet

Fig. 6 Qualitative visualization of the proposed PNS+ and four representative competitors on three sequences (from left to right:
caseld 3, case30, and case3 2). The red boxes indicate the wrong or missing predictions. We refer the reader to the project page for a
complete dynamic comparison.

5.3 Qualitative comparison

- Time Time

As shown in Fig.6, we present visual results on three
video clips of four typical models (i.e., PNSNet, 2D/3D,
MAT, and ACSNet) and our PNS+. In the last four
rows, the competitors fail to generate complete segmenta-

tion results for the polyps that share the same camou-

A

flaged texture with the background. In contrast, in the
3rd row, our model can accurately locate and segment
polyps in a challenging situation, i.e., polyps with differ-
ent sizes and homogeneous textures.

5.4 Ablation studies

To validate the effectiveness of our core designs, we
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conduct extensive ablation studies and summarize the
results in Table 6.
5.4.1 Contribution of base network

We initialize a UNet-like variant #01 via leveraging
the Res2Net-5065 backbone, which can be viewed as an
image-based approach to generate per-frame predictions.
We observe that #OUR significantly improves the per-
formance (Sa: +7.7%) on SUN-SEG-Easy (Unseen).
5.4.2 Contribution of channel split

To discover the best setting for the channel split rule
as in Equ. (1), we instantiate four variants with four dif-
ferent channel split numbers: #02 (N = 1), #03 (N = 2),
#04 (N = 4), and #05 (N = 8). These results show that
small (#02 & #03) and large (#05) channel split num-
bers may harm the channel-level information by col-
lapsing the knowledge in a different channel. In contrast,
we adopt the moderate scale (#04: N = 4) with the best
performance on SUN-SEG-Hard (Unseen) (e.g., Dice:
2.7%1) when compared to variant #05. Such a trade-off
scale would exert our model focusing on the polyp-re-
lated attention while suppressing the irrelevant cues.
5.4.3 Contribution of soft-attention

We further ablate soft-attention and observe that #04
with the soft-attention block is generally better than #06
without it on SUN-SEG-Easy (Unseen): 1.9%71 in terms
of the Dice score. Such an improvement suggests that in-
troducing the soft-attention operation to synthesize the
relationship between aggregation feature and affinity
matrix is necessary for increasing performance.
5.4.4 Effectiveness of normalization

We also study the improvement of the normalization
operation by comparing #04 with #07. We observe that
#04 generally outperforms #07 on SUN-SEG-Hard (Un-
seen) (e.g., Dice: 4.1%7). It shows that the layer normal-
ization along the temporal dimension could alleviate the
internal covariate shift problem by fixing the distribution
of query entries in the attention mechanism.
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5.4.5 Different learning strategies

Finally, we examine the effectiveness of the proposed
learning strategy, as proposed in Section 4.3, by deriving
three variants, including #08 (L—L: local-to-local), #09
(L—G: local-to-global), #10 (G—G: global-to-global),
and #Our (G—L: global-to-local). For example, variant
#09 combines local spatial-temporal cues and introduces
global ones, termed a local-to-global (L—G) strategy.
#08 will dramatically decrease on SUN-SEG-Easy (Un-
seen) (Sa: 5.8%J)) when focusing on the local cues due to
a lack of global context. On the other hand, if only focus-
ing on the global information, the performance of variant
#10 will drop on SUN-SEG-Hard (Unseen), e.g., Fg'’
5.4%). In contrast, #Our with the global-to-local
strategy outperforms variant #09 on SUN-SEG-Hard
(Unseen), e.g., Fg': 3.5%7, since propagating long-term
cues into short-term neighbors.

We further validate the effectiveness of the global-to-
local learning strategy via visualizing the key dataflows.
As shown in Fig.7, the first and second columns present
the anchor feature A" extracted from the global encoder
and the spatial-temporal feature Z! from the second NS
block, respectively. Note that the current frame I is ran-
domly selected from consecutive frames Ia. It shows that
our PNS+ can propagate the long-term dependency with
the assistance of the anchor frame I;, though the current
frame I, is hard to recognize due to indefinable boundar-
ies (i.e., IB attribute). Of note, as in the rightmost
column of Fig.6, the PNSNet fails to locate the polyp
since it does not use a global-to-local learning strategy.
Compared to it, our PNS+ successfully detects the polyp
by exploiting the global reference of the anchor frame.

5.5 Issues and challenges

This section discusses some common issues within
challenging attributes, whose visualization results are

Table 6 Ablation studies for the core designs of the proposed PNS+. See Section 5.4 for detailed analyses

VARIANTS SUN-SEG-Easy (Unseen) SUN-SEG-Hard (Unseen)
o Base N  Soft Norm Strategy Sa Egm F;;’ Dice Sao E(Z”” F;}” Dice
#01 v - - - - 0.729 0.718 0.571 0.616 0.726 0.720 0.559 0.603
#02 v 1 v v L 0.782 0.766 0.631 0.722 0.783 0.775 0.629 0.715
#03 v 2 v v L 0.773 0.760 0.625 0.720 0.785 0.784 0.631 0.719
#04 v 4 v v L 0.786 0.777 0.651 0.741 0.792 0.789 0.649 0.735
#05 v 8 v v L 0.774 0.762 0.627 0.724 0.775 0.774 0.619 0.708
#06 v 4 - v L 0.782 0.775 0.639 0.722 0.785 0.786 0.637 0.715
#07 v 4 v - L 0.755 0.752 0.587 0.705 0.754 0.751 0.579 0.694
#08 v 4 v v L—L 0.748 0.717 0.577 0.705 0.760 0.741 0.587 0.693
#09 v 4 v v L—-G 0.788 0.780 0.645 0.741 0.776 0.768 0.618 0.715
#10 v 4 v v G—-G 0.778 0.763 0.627 0.726 0.767 0.753 0.599 0.694
#Our v 4 v v G—L 0.806 0.798 0.676 0.756 0.797 0.793 0.653 0.737
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(a) Anchor frame 7, (b) Current frame 7,  (c) Ground-truth G,

s )

(d) Anchor
feature A"

(e) Spatial-temporal
feature Z'

(f) Prediction P,

Fig. 7 Feature visualization of key dataflows. The red arrow
denotes using the anchor feature A" to guide the representation
of spatial-temporal frame Z!. For more details, refer to
Section 5.4.5.

presented in Fig. 8. Of note, VPS is a newly-emerging and
challenging track in medical imaging, and its overall ac-
curacy is not high enough. We observe that existing cut-
ting-edge models (i.e., ACSNet and 2/3D) and our
baseline model (PNS+) still lack sufficient robustness in
particular cases in the LO, HO, SI, GH, and SV attrib-
utes. As for the HO (3rd column) and LO (8th column)
attributes, three models fail to capture the whole polyp
due to significant appearance changes. Besides, the false-
positive/false-negative predictions (marked with red
boxes) on the surgical instrument (Ist column) and the
optical flares (4th column) indicate that these models
could not learn semantics without perceiving the accur-
ate polyp-related representation in such a hard case.
Moreover, the misidentifications for the SV attribute (last
column) are caused by the insufficient diversity of polyp
sizes in the training set. The aforementioned drawbacks
inspire us to explore more robust learning paradigms to
improve the accuracy of VPS.

We also observe that three models consistently fail to

2/3D PNS+ GT Frame

ACSNet

| o ‘!EI r ‘. 4

locate lesion regions that share a similar color to the in-
testinal wall or are too small to be detected. Thus, there
is a large room for improving the detection ability in IB
and SO attributes via camouflaged pattern discovery
techniques(8l 82, Last but not least, lacking temporal-wise
understanding will lead to a false prediction of the FM,
OV, and OC attributes. Taking OV and OC, e.g., ex-
ploiting temporal cues more thoroughly should mitigate
the performance degradation results from the occlusion of
the intestinal wall or the image boundary, since the occlu-
sion is not continuous in the entire video clip. In sum-
mary, these challenging cases are common difficulties that
other methods face and cause severe performance degrad-
ation that deserves further exploration.

6 Potential directions

This section highlights several potential trends for
promoting colonoscopy research in the deep era.

High-precision diagnosis. As shown in Table 4, we
observe that the leading approaches are still unsatisfact-
ory in our SUN-SEG-Hard (e.g., sensitivity score < 0.63).
We argue that the high-precision VPS algorithm would
steer clinical medicine in boosting auxiliary diagnostic
technologies.

Data-insufficient learning. It is promising to ex-
plore efficient learning strategies(83: 34 under limited con-
ditions in specific clinical applications, such as weakly-su-
pervised /un-supervised/self-supervised learning and kn-
owledge distillation.

Privacy-preserving AI. Intelligent VPS systems
must safeguard data through the entire life cycle from
training to production and governance, which fuels funda-
mental techniques like federal learning.

Trustworthy AI. How Al-guided decisions are made
and what determining factors are involved play a crucial
role in understanding the insights of deep networks. In
other words, the VPS model should be causal, transpar-

'

SI IB HO GH FM SO LO oC ov

Fig. 8 Challenging samples were taken from ten visual attributes. More analyses can be referred in Section 5.5
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ent, explainable, and interactive, which inspires more
trusted developments, such as in [85].

The above possible directions listed are still far from
being solved for the VPS. Fortunately, several famous
works can serve as references, providing it a potential
basis to be transferred to the VPS community.

7 Conclusions

This paper presents the first comprehensive study on
video polyp segmentation (VPS) from a deep learning
perspective. We first introduce a large-scale VPS dataset
SUN-SEG via extending the famous SUN-database with
diversified annotations, i.e., attribute, object mask,
boundary, scribble, and polygon. We then design a simple
but efficient baseline, dubbed PNS+, to segment colon
polyps from the colonoscopy video. Based on the normal-
ized self-attention block, PNS+ fully exploits long-term
and short-term spatial-temporal cues via a novel global-
to-local learning strategy. We also contribute the first
comprehensive benchmark that contains 13 cutting-edge
polyp/object segmentation approaches. Extensive results
show that PNS+ achieves the best performance against
all these competitors. We conclude by outlining several
potential directions for future colonoscopy-related re-
search in the deep learning era. We hope that this work
will spur advancements in other closely related medical
video analyses.
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