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Abstract: Face detection has achieved tremendous strides thanks to convolutional neural networks. However, dense face detection re-

mains an open challenge due to large face scale variation, tiny faces, and serious occlusion. This paper presents a robust, dense face de-
tector using global context and visual attention mechanisms which can significantly improve detection accuracy. Specifically, a global
context fusion module with top-down feedback is proposed to improve the ability to identify tiny faces. Moreover, a visual attention
mechanism is employed to solve the problem of occlusion. Experimental results on the public face datasets WIDER FACE and FDDB

demonstrate the effectiveness of the proposed method.
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1 Introduction

Face detection is necessary for many face-related ap-
plications, such as facial identity recognition(l] and facial
expression recognitionl?. As the fundamental problem of
computer vision, face detection has achieved remarkable
progress, especially with the recent development of convo-
lutional neural networks. Nevertheless, in certain scenari-
os, such as airports, scenic spots, and concerts, faces are
always dense and severely occluded, which significantly
reduces the detection accuracy. Therefore, dense face de-
tection is still a challenging issue.

In recent years, dense face detection has been extens-
ively studied since it is very common in many scenarios.
Zhang et al.B] presented a multi-task network, named
multi-task convolutional neural network (MTCNN), to
jointly address the detection and landmark alignment and
keep overall complexity well under control. Hu and
Ramananl made a series of analyses for tiny face detec-
tion and proposed to process image pyramids in a scale-
invariant manner to capture large-scale variations, which
greatly improves the detection performance of tiny faces.
Najibi et al.Pl proposed a single stage headless (SSH) face
detector, which adds context modules on feature pyram-
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ids to enlarge the receptive field and further improve the
performance of face detection. RetinaFacelfl was im-
proved on the one-stage target detection network Retin-
aNet[7. Tt added a context module and introduced facial
landmark regression loss, which achieves better results in
both the FDDB[El and WIDER FACE datasets.

Although face detection algorithms have made great
progress in recent years, the improvement in the recall
rate of these cases usually brings the risk of high false
positives due to limited context information and occlu-
sion in dense faces. The accuracy of dense face detection
is not yet ideal.

To solve the problems mentioned above, in this paper,
we propose a novel dense face detector based on global
context and visual attention mechanism. In order to en-
hance the model’s contextual reasoning ability, it is neces-
sary to make full use of context information. However,
one major problem of multi-scale representation from fea-
ture pyramid is that the higher resolution feature maps
only have limited global context information to discrimin-
ate faces. High-resolution images usually contain more de-
tailed texture features, while low-resolution images con-
tain more spatial context features. Since detailed texture
features and global context information are helpful for
tiny face detection, we extract the global context inform-
ation of low-resolution images, and jointly feedback to the
high-resolution images in our network. On the other
hand, occlusion will cause false detection and comprom-
ise accuracy. Therefore, we take advantage of the atten-
tion mechanism that can highlight facial features and re-
duce areas without faces, to improve the detection abil-
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ity of our network.

The main contributions of this paper are as follows:

1) We propose a global fusion context module based
on top-down feedback to fuse multi-scale information,
which is helpful for tiny face detection.

2) An improved visual attention module is designed to
further improve detection performance by highlighting
significant features.

3) The experimental results show that the proposed
model based on global context and visual attention mech-
anism can achieve better performance in terms of accur-
acy for dense face detection.

2 Related works

Face detection inherits many achievements from gen-
eral object detection, which are mainly divided into two
categories: two-stage methods (e.g., Faster R-CNN) and
one-stage methods (e.g., you only look once (YOLO)).
The two-stage detection network adopts a proposal and
refinement to achieve higher accuracy, but at the same
time reduces the detection efficiency. Compared to the
two-stage methods, the one-stage method removes the re-
gion proposal network and directly regresses the category
probability and position coordinates of the object, mak-
ing it more efficient. In consideration of detection effi-
ciency, we also adopt a one-stage detection framework.
Although remarkable improvements have been achieved
in face detection, the challenge of locating faces in dense
scenes still remains.

2.1 Context modeling

Context is a crucial factor for multi-scale object detec-
tion, especially for small objects. Furthermore, sufficient
context information can also help us understand the im-
age. Recently, some researchers have indicated the im-
portance of using context information for face detection,
especially for localizing and classifying tiny, occluded and
blurred faces. Zhu et al.l'0l added skip connections to
faster RCNN[!] and deployed feature maps of earlier con-
volutional layers to detect small faces, which achieves
higher accuracy. In SSHI5, Najibi et al. applied simple
convolutional layers to produce a larger window effect,
achieving more efficient context modeling. Xu et al.ll2
also used context modules in feature pyramids to expand
the receptive field in PyramidBox. Zhang et al.[!3] extrac-
ted the context information by adopting large filters for
every prediction module in single shot scale-invariant face
detector (S3FD). In finding tiny faces (HR)4, Hu and
Ramanan made use of large local context in a scale-vari-
ant way, and indicated that context is mostly useful for
finding low-resolution faces. Although the existing con-
text modules improve the performance of face detection,
these models ignore the connection between low levels
and high levels, which is important in dense face detec-
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tion. Low-level features usually have higher resolution for
tiny face detection, but lack global context information,
which is also very important for tiny face detection.
Therefore, we apply a global context fusion module to im-
prove the detection rate of tiny faces.

2.2 Attention

The attention mechanism is derived from the human
brain's observation of things. When the brain observes
things, the focus position of the eyes is only a small and
important part. Therefore, attention can be interpreted
as a means of learning to use global information to select-
ively highlight significant features and suppress useless
features. Attention mechanism has demonstrated its ef-
fectiveness in the field of computer vision. Recently, a
number of works have attempted to enhance CNN's per-
formance in detection tasks by taking advantage of atten-
tion.

The attention mechanisms in computer vision are
mainly divided into channel attention and spatial atten-
tion. Channel attention focuses on the meaningful inform-
ation of the images. It indicates the importance between
features and assigns features according to different tasks.
The spatial attention mechanism mainly focuses on the
position information of the informative part and select-
ively aggregates the features through the weighted sum.
Jaderberg et al.[1] proposed a differentiable module, called
spatial transformer networks (STN), which can be inser-
ted into the convolutional networks. It made neural net-
works actively perform spatial transformation according
to the feature map. Hu et al.l!%] introduced a new archi-
tectural unit called squeeze-and-excitation net (SENet).
The SENet can obtain global information by selectively
emphasizing informative features and suppressing useless
features, which allows the network to perform feature re-
calibration. In convolutional block attention module
(CBAM)[6l. Woo et al. proposed an attention module of
feed-forward convolutional neural networks, which can in-
fer attention maps sequentially from two independent di-
mensions, i.e., channel and spatial, to obtain more useful
information. In face attention network[l’l, Wang et al. in-
troduce an anchor-level attention map to improve masked
face detection. CBAM is a common attention mechanism
in computer vision, but its direct dot product approach
may remove some useful context information. Therefore,
we first perform an exponential operation and then dots
with the feature maps to retain more context information.

3 Proposed approach

As motivated in Section 1, we develop a dense face de-
tector according to the following principles:

1) Processing faces with different scales in multiple
feature layers;

2) Making full use of global context information to de-
tect tiny faces;
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3) Highlighting the features of the face area and redu-
cing features in areas without faces.

Fig.1 provides an overview of our algorithm. We
present each part of our model in Sections 3.1-3.3.

3.1 Global context fusion module

Convolutional neural networks usually have different
semantic information and spatial resolution in different
feature layers. Shallow layers usually have a higher spa-
tial resolution, so it is beneficial to the spatial position-
ing of small objects. However, the lack of semantic in-
formation is not conducive to visual classification. On the
other hand, deeper layers contain more semantic informa-
tion, while the spatial resolution is affected.

Most current models adopt a context structure that
ignores the connection between the low and high levels.
Nevertheless, due to the background of the crowd in an
image being messy, especially in a dense crowd, some of
the patterns that resemble faces in these groups can be
misclassified, especially at the low scales with the low re-
ceptive field. Some faces are too small to be detected, and
we need contextual information around the face to help
with detection. Low-level features have higher resolution
and are usually used to detect tiny faces. On the other
hand, these features lack the global contextual informa-
tion which is necessary to detect tiny faces. Therefore, to
resolve this contradiction, we extract global context in-
formation from higher scales with a larger receptive field
and feedback these features to the low layers. As shown
in Fig.1, the global context fusion (GCF) module re-
ceives the output of different scales from the feature pyr-
amids. Each scale branch has a context module, and the
context module in each layer is also connected with all
previous low-resolution scale branches. GCF fuses contex-
tual information from all scales to make predictions. This

multi-scale context information fusion process helps to
drive global context information to all scale branches and
reduce false detection.

Fig.2 illustrates the internal architecture of the GCF.
Each scale extracts features from the current layer of the
feature pyramid and receives features from other scale
outputs. The features are up-sampled to the same size
and fused through the context module of the current
scale. S, represents the scale. Sy is used to receive the
lowest resolution feature output without feedback from
other layers, while S,~o of GCF receives feedback from
all other scales. These layers fuse the features from the
current scale along with multi-scale inputs from higher
branches to improve the performance of face detection.

Inspired by SSHD!, we apply an independent context
module on each scale. As shown in Fig.3, the context
module has three parallel structures. This structure can
enlarge the receptive field to obtain more contextual in-
formation. In order to reduce the number of parameters,
we use the 3 x 3 convolution instead of 5 x 5 and 7 x 7.
These three output layers pass through a concat layer
and a leaky ReLU function and obtain the final context
information.

This top-down contextual feedback module can locate
the face in the scale pyramid more accurately and fur-
ther mitigates the issues of tiny faces and occlusion in
dense face detection.

3.2 Visual attention network

In order to overcome the interference of useless in-
formation, we introduce a visual attention model to our
framework. Considering the faces with severe occlusion,
most invisible parts may have a negative impact on de-
tection. Therefore, in order to ensure the recall rate
without increasing the risk of achieving a higher false pos-

Co/
Cc2 C3 C4 C5 P6
Visual
attention Face classification
module loss
Face box
regression loss
P4 P5
L2 P3 S, Global
g‘ context Facial landmark
Sz ol regression loss
s, module

Feature pyramid

Fig.1 The proposed framework. Our model is designed based on the feature pyramid with a global context fusion module and visual
attention module. Following the attention modules, we calculate a multi-task loss for each anchor. We employ feature pyramid levels
from P2 to P6, where P2 to P5 are computed from the output of the corresponding ResNet residual stage (C2 through C5). C2to C5is a
pre-trained ResNet classification network. The GCF is designed to extract global context features to detect tiny faces, which receives
input from each scale of the feature pyramid and performs top-down feedback. S, (n = 0,1, 2, 3, 4) represents scale. The visual attention
module is used to highlight significant features, which infers attention feature maps from spatial and channel dimensions, respectively.
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Fig.2 The architecture of the global context fusion module. S, (n = 0, 1,2, 3, 4) represents the scale. Each layer fuses the features from
its scale (Sp) along with multi-scale inputs from higher branches to generate context information and the features for the next scale
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Fig. 3 The internal structure of the context module. The module has three parallel structures, which use 3 X 3 convolution instead of
5 x 5 and 7 X 7 to enlarge the receptive field and reduce the number of parameters simultaneously.

itive rate, we need to guide the model to highlight these
visible areas. For this purpose, we use a visual attention,
module as shown in Fig.4. Since we need to highlight the
feature of the relevant area, and obtain the location in-
formation of the area, inspired by CBAM[Sl, we apply the
visual attention mechanism from two dimensions, chan-
nel and spatial.

More specifically, and compared with the original at-
tention model, our visual attention module first performs
an exponential operation and then dots with the feature
maps. Furthermore, since context information is also im-
portant in face detection, our improved attention module
can highlight the detection information, and simultan-
eously retain more context information.

To efficiently compute channel attention, we need to
compress the spatial dimension of the input feature map.
Average-pooling can achieve the aggregation of spatial in-
formation and learn the extent of the target object effect-
ively. At the same time, max-pooling gathers another im-
portant clue about distinctive object features to infer
finer channel-wise attention. So, we use both average-
pooling and max-pooling. As illustrated in Fig.5, the
channel sub-module first utilizes both average-pooling
outputs and max-pooling outputs to synthesize spatial in-
formation of a feature map, and produces two different

spatial context descriptors: Fy,, and Fy,,,. Then, both
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descriptors are input into a shared network to generate
channel attention map M. € RE*'¥! The shared net-
work is composed of a multi-layer perceptron (MLP) with
one hidden layer. Finally, we use element-wise summa-
tion to merge the output features.

Meanwhile, in the spatial sub-module, we use max-
pooling and average-pooling to synthesize channel inform-

c R1><H><W and

ation, producing two 2D maps: Fy,,
F3 e € RHEXW These two feature maps are then con-
nected and convolved by a convolution layer, generating
a 2D spatial attention map.

The improved attention module can further enhance
the feature expression of the face area and mitigate the
impact of negative information. It can extract the effect-
ive information of face more accurately and further im-
prove the model’s ability to understand complex scenes.
This model can effectively highlight visible parts of oc-
cluded faces and suppress cluttered background informa-
tion to improve the detection rate of occluded faces and
reduce the false recognition rate of background informa-
tion.

3.3 Multi-task loss

We refer to the loss of RetinaFacelfl. In order to im-
prove the efficiency, we only retain the face classification
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Fig. 4 The overview of the visual attention module. The module has two sequential sub-modules: channel and spatial. The feature map
is refined through each module. In order to retain more context information, our attention maps are first feed to an exponential

operation and then dot with feature maps.
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Fig.5 The structure of each attention sub-module. The channel sub-module uses both max-pooling outputs and average-pooling
outputs through a shared network which is composed of MLP with one hidden layer, and then the features are applied to the two
channels, respectively. Finally, the attention results of the channels are obtained after the sigmoid function. The spatial sub-module uses
channel-refined features that are pooled along the channel axis and forward them to a convolution layer and then we obtain the final

spatial attention after the sigmoid function.

loss, face box regression loss, and facial landmark regres-
sion loss, remove the dense regression loss, and optimize
them. The final multi-task loss is expressed as follows:

L= Lcls(pupz) + )\1pz Liox (th z) + )\2pz pts (ll7l ) (1)

1) Face classification loss Lcis(pi,p;), where p; is the
probability that the predicted faces are contained in the
anchor and p; € (0, 1) represents the negative anchor and
the positive anchor, respectively.

2) Face box regression loss Lpyos(ti,t;), where
ti = {to, ty, tw, tn}; and i = {t3,t},13,,1,}, respectively
represent the coordinate information of the prediction box
and groundtruth related to the positive anchor.

3) Facial landmark regression loss Lp:s(l;, 1), where
li = {l:clylyh'" x5, y5} and I} = {lzly yly """ ;57@5}”
respectively represent the predicted five facial landmarks
and ground truth related to the positive anchor. A; and
A2 are the loss-balancing parameters, and we set them to

0.4 and 0.1, respectively.

4 Experiments

4.1 Experimental setting

In this paper, we use MobileNet-0.25!81 and ResNet-
50019 as the backbone to conduct experiments. By em-
ploying MobileNet-0.25 as the backbone, our model can
achieve real-time on a single GPU. We use the stochastic
gradient descent (SGD) optimizer (weight decay at 0.000 5,
momentum at 0.9, batch size of 8 x 4) to train our model.
The learning rate starts at 1073, increasing to 102 after
5 epochs, then divided by 10 at 55 and 68 epochs. Fi-
nally, the training process is completed at 100 epochs.

4.2 Anchor settings
For the anchor setting, we use the same strategy as
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RetinaFace. We set our anchors from areas of 16 to 406>
on pyramid levels. In addition, the aspect ratio is set to
1:1. During training, the anchor matches the ground
truth when IoU is larger than 0.5 and matches the back-
ground when IoU is less than 0.3.

4.3 Data augmentation

According to the statistics of the WIDER FACE,
there are around 20% tiny faces and 26% occluded faces.
Therefore, the number of training samples in dense scenes
may not be sufficient. Thus, we employ the random crop
data augmentation and random horizontal flip.

4.4 Evaluation indicators
The measurement indicators in the detection mainly

include precision, recall, and average precision (AP). The
formula of each indicator is defined as follows:

. TP
Precision = TP+ 7P~ 100% (2)
Recall = TP+ EN & 100% (3)

where TP represents the number of the positive samples
that are predicted as positive samples, FP represents the
number of negative samples that are predicted as positive
samples, and FN represents the number of positive
samples that are predicted as negative samples.

4.5 Datasets

In order to verify the effectiveness of the proposed al-
gorithm, we test it on WIDER FACEF and FDDBBSI
datasets, respectively. All algorithm models are trained
on the WIDER FACE and tested on the FDDB and
WIDER FACE.

4.5.1 WIDER FACE

The WIDER FACEDN dataset contains 32 203 images
and 393 703 face bounding boxes with strong variability
in expression, illumination, scale, occlusion, and pose. It
contains three parts: training set, validation set, and test-
ing set. The validation set, and the testing set are di-
vided into three parts: easy, medium and hard according
to the detection difficulties, which can better verify the
generalization ability of the model. Due to the strong
variability of occlusion, scale and posture, the WIDER
FACE dataset is one of the most challenging datasets.

We compare our model with the state-of-the-art de-
tectors like S3FDI13, SSHI, HRM4 and RetinaFacelf, as
shown in Table 1. Our algorithm obtains the best results
in all subsets. The results obtained are 96.2% (easy),
95.1% (medium) and 86.7% (hard) for ResNet-5001, and
92.2% (easy), 89.9% (medium) and 76.7% (hard) for Mo-

@ Springer

Machine Intelligence Research 19(3), June 2022

bileNet-0.25018]. More specifically, compared with the pre-
vious state-of-the-art results, our method improves by
2.3% on the hard set, which contains a lot of occluded
and tiny faces. The precision-recall curves are shown in
Fig.6. The abscissa is the recall rate, and the ordinate is
the precision rate. The area under the curve is the AP
value, and the closer the curve is to the upper right, the
better the model performance is. The AP curve also
demonstrates the excellent performance of our model, es-
pecially in easy subsets. The effectiveness of the pro-
posed algorithm is verified.

Table 1 Testing results of different network models on WIDER

FACE
AP (easy) AP (medium) AP (hard)
Method (%) (%) (%)
MTCNNE] 85.1 82.0 60.7
RetinaFace (MobileNet-
0.25)0 90.7 88.2 73.8
Ours (MobileNet-0.25) 92.2 89.9 76.7
HRH 92.3 91.0 81.9
SSHbI 92.7 91.5 84.4
S3FD3 93.5 92.1 85.8
RetinaFace (ResNet-50)[6] 95.5 94.0 84.4
Ours (ResNet-50) 96.2 95.1 86.7
Precision-recall curve
1.0 |
0.8 1
g
£ 06
&
0.4
— Easy
02 9| — Medium
— Hard
0.2 0.4 0.6 0.8 1.0

Recall

Fig. 6 Precision-recall curve on the WIDER FACE

The comparison of the visual results of our method
and RetinaFace on the WIDER FACE can be found in
Fig.7. As illustrated in Fig.7, our algorithm is better
than RetinaFace for extremely tiny faces and severely oc-
cluded faces in dense scenes. RetinaFace is easy to recog-
nize parts that resemble faces as faces, while our method
significantly reduces false detections. Meanwhile, we can
find that our method is more robust in the face location
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for overlapping faces.
4.5.2 FDDB

In order to further verify the effectiveness of the al-
gorithm, we tested it on FDDBEl. FDDB has fewer faces,
but there are also various face states and dense and seri-
ous occlusion problems. Our model is trained on Wider
Facel! training set and tested on the FDDB testing set.
The results based on average precision are shown in Table 2.
DDFD represents deep dense face detector, DP2MFD
represents deep pyramid deformable parts model for face
detection. Our model significantly outperforms state-of-
the-art detectors on the FDDB test set, further showing
the promising performance on dense faces.

The visualization results of our model and
RetinaFacelf] can be found in Fig.8. It can also be seen
that our algorithm is better than RetinaFace for tiny
faces and occluded faces in dense scenes. In addition, our
algorithm is also better for complex angle faces such as
profile faces.

4.6 Ablation study

To further verify the proposed network, we conduct

| e —

Fig.7 Comparison of the visualization results on the WIDER FACE. The top row is the RetinaFacelfl testing results, and the
bottom row is the testing results of the proposed method. The yellow circles represent whether the face is detected, and the green circles
represent correct detection.

Table 2 Test results of different network models on FDDB

Method AP (%)
DDFDI20] 85.0
Cascade CNNI21] 85.6
Fast R-CNN[22] 89.9
DP2MFDI23] 91.7
UnitBox[24] 94.5
Retina face (MobileNet-0.25)0] 98.7
Ours (MobileNet-0.25) 99.0
Retina face (ResNet-50)[6] 99.2
Ours (ResNet-50) 99.6

additional ablation experiments to examine the effects of
the global context fusion module and the visual attention
module on face detection performance. As shown in
Table 3, along with the global context fusion module, the
accuracy has been further improved by 0.4%, 0.8%, 1.5%
AP in the easy, medium and hard subsets. From the ex-
periments, we come to the conclusion that the global con-

text fusion module has a better detection effect on a

Fig. 8 Comparison of the visualization results on FDDBBI. The top row is the RetinaFacelf! testing results, and the bottom row is the

testing results of the proposed method.

@ Springer



254

Table 3 Effectiveness of each strategy

Strategy Baseline  Our method
Global context fusion module \ R
Visual attention network y v
Easy 95.5 95.9 95.7 96.2
Medium 94.0 94.8 94.5 95.1
Hard 84.4 85.9 85.5 86.7

small scale, blur, occlusion and overlapping faces. There-
fore, it is crucial for improving the accuracy of face detec-
tion. The performance is improved by 0.2%, 0.5%, 1.1%
AP in the easy, medium and hard subsets, respectively,
along with the visual attention mechanism. Fig.9 is the
comparison of visual results with an attention module. As
shown in Fig.9, background like hairs, hands and pat-
terns could be misclassified as a face without the visual
attention mechanism, while the addition of an attention
module significantly reduces the false detection rate, sug-

Machine Intelligence Research 19(3), June 2022

gesting that the visual attention mechanism effectively
decreases the false positive rate and enables a further im-
provement.

4.7 Fake face detection

In addition, we also carried out an extended experi-
ment. Since there are some algorithms that can generate
fake faces, we also used our model to detect these fake
faces and achieved good results. As illustrated in Fig. 10,
the top row shows real face images, and the bottom row
shows fake face images generated by generative flow
(Glow), StyleGAN, progressive growing of generative ad-
versarial nets (PGGAN), Face2Face, and StarGAN, re-
spectively. Nevertheless, our model can still detect the
faces and five key points of the faces.

5 Conclusions

In this paper, to address the problem of dense faces

N

Fig.9 Comparison of visual results with and without the attention module. The top row shows the detection results without the
attention module, and the blue circles represent the parts of error detection. The bottom row shows the detection results with the
attention module added, and the blue circles represent the parts of correct detection.

09887

Fig. 10 Detection results on fake faces. The top row shows real face images. The bottom row shows fake face images generated by
Glow, StyleGAN, PGGAN, Face2Face and StarGAN, respectively.
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with tiny size and serious occlusion, we presented a novel
facial detector with a global context fusion module and
an attention mechanism, which can significantly improve
the accuracy in dense face scenes and not compromise the
localization accuracy while obtaining a high recall rate.
Our solution outperforms state-of-the-art methods in the
current most challenging benchmarks for face detection.
Although our detector has achieved good results, further
research is needed in the future to improve the efficiency
of the detector and apply it in practical scenarios.
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