International Journal of Automation and Computing 18(6), December 2021, 887-914

www.ijac.net DOI: 10.1007/s11633-021-1313-0

Supervised and Semi-supervised Methods for Abdominal

Organ Segmentation: A Review

Isaac Baffour Senkyire!2 Zhe Liu!

1School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China

2Computer Science Department, Ghana Communication Technology University, Accra, Ghana

Abstract: Abdominal organ segmentation is the segregation of a single or multiple abdominal organ(s) into semantic image segments
of pixels identified with homogeneous features such as color and texture, and intensity. The abdominal organ(s) condition is mostly con-
nected with greater morbidity and mortality. Most patients often have asymptomatic abdominal conditions and symptoms, which are
often recognized late; hence the abdomen has been the third most common cause of damage to the human body. That notwithstanding,
there may be improved outcomes where the condition of an abdominal organ is detected earlier. Over the years, supervised and semi-su-
pervised machine learning methods have been used to segment abdominal organ(s) in order to detect the organ(s) condition. The super-
vised methods perform well when the used training data represents the target data, but the methods require large manually annotated
data and have adaptation problems. The semi-supervised methods are fast but record poor performance than the supervised if assump-
tions about the data fail to hold. Current state-of-the-art methods of supervised segmentation are largely based on deep learning tech-
niques due to their good accuracy and success in real world applications. Though it requires a large amount of training data for automat-
ic feature extraction, deep learning can hardly be used. As regards the semi-supervised methods of segmentation, self-training and
graph-based techniques have attracted much research attention. Self-training can be used with any classifier but does not have a mech-
anism to rectify mistakes early. Graph-based techniques thrive on their convexity, scalability, and effectiveness in application but have
an out-of-sample problem. In this review paper, a study has been carried out on supervised and semi-supervised methods of performing
abdominal organ segmentation. An observation of the current approaches, connection and gaps are identified, and prospective future re-
search opportunities are enumerated.
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1 Introduction

The abdomen is a vital and major part of the anatom-
ical region of the human body between the thorax and
the pelvisll: 2. The abdomen consists of major organs
which are separated into four quadrants: left upper, right
upper, left lower, and right lower quadrants. The left up-
per quadrant is anatomically associated with the spleen,
stomach, body of pancreas, splenic flexure, and left supra-
renal gland. The right upper quadrant is associated with
the liver and gallbladder, duodenum, pylorus, hepatic
flexure, and the right suprarenal gland. The left lower
quadrants consist of the sigmoid colon, the ovary and
uterine tube, left ureter, and descending colon. The right
lower quadrant has the cecum and appendix, ovary and
uterine tube, right ureter and the ascending colon. The
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quadrants assist in distinguishing the abdominal organ'’s
location for the examiner. The abdominal organs play
critical individual roles and also supports other functions
of the entire human bodyl4, that notwithstanding the ab-
domen is noted to be the third most common cause of
damage of the body organ. A greater percentage of pa-
tients often have asymptomatic abdominal condition and
symptomsl’l, and late recognition of the abdominal
organ's condition is mostly linked with greater amount of
morbidity and mortality® 7). However, there is improve-
ment in outcome when abdominal organ condition is de-
tected earlierl8l. Accessing or examining these organs of
the abdomen has been a paradox although its anterior
technique is soft and flexible when it is calm, and the or-
gans are not microscopic. While there are some possible
exceptions generally, the abdominal internal organs nor-
mally are not detectable on physical examination, rather
medical imaging methods are used!!l.

Medical imaging is a technique used to view the in-
ternal parts of the human body by creating visual repres-
entations of some organs or tissuesl¥, otherwise known as
bio-medical images, and further applying the techniques
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of image processing for the purposes of diagnosis and
therapy. Different imaging technology such as light (en-
doscopy, optical coherence tomography (OCT)), radioact-
ive pharmaceuticals (nuclear medicine: position emission
tomography (PET), single photon emission computed
tomography (SPECT)), magnet (magnetic resonance ima-
ging (MRI)), sound (ultrasound (US)), or X-rays (com-
puted tomography (CT) scan) can be used to capture the
bio-medical images for medical image analysis which will
facilitate highly accurate diagnosis by assessing the cur-
rent condition!!0], structure and functions of the abdomin-
al organ or tissue, abdominal organ disease monitoring/!],
further analysisl® and diagnosis/!2.

In order to obtain effective bio-medical images, tech-
niques to process the medical image play an important
role in medical imaging. Firstly, the image needs to be ac-
quired, followed by the varied image processing tech-
niques: image enhancement, image segmentation, feature
extraction and selection, and image classification. Of all
the image processing techniques, image segmentation is
the most significant stage in the analysis of medical im-
ages. It facilitates the extraction and visualization of the
region of interest (ROI) for additional analysisl, image-
guided interventions, enhanced radiological diagnosis, ra-
diotherapy(!3l, etc. Image segmentation is the division of
every single component present in an image into a set of
groups with common propertyll9. This is technically ex-
plained as the process in which each pixel in an image is
assigned a label, and there is a connection of the pixels
with the same label with respect to some semantic or
visual propertyll4. Of particular interest, the segmenta-
tion of the organ(s) of the abdomen creates a view of the
abdomen of the bodyl®), where a single abdominal
organl!5-18] or multiple abdominal organs[19-21l is or are se-
gregated into semantic image segments(??l of pixels identi-
fied with homogeneous features such as color and
texturel®), and intensity?3] for computer-aided surgery
(CAS), radiation therapy planningl2’l, anatomical struc-
ture modeling, measurement of tumor growth[?4l and visu-
alization prior to diagnosis, treatment, and surgical pro-
cedures, and computer-aided diagnosis[*9 which can save
the life of patients/12,

The techniques for machine learning based segmenta-
tion methods are grouped into two main categories: su-
pervised and unsupervised segmentation methods[25-27],
Both supervised and unsupervised abdominal segmenta-
tion methods have been highly effective at producing ac-
curate results. For example, the supervised methods pro-
duce accurate results with a large training dataset and
ground truth. The unsupervised methods on the contrary
produce accurate results without manually labeled data-
set(28]. However, it is extremely costly to create a large
library of annotated images to represent the manifold of
possible abdominal images. Yet, there is an abundance of
unannotated data, which is typically cheaper compared to
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the annotated data. This has attracted the attention of
the research community to combine the limited labeled
data and the abundant unlabeled data in a learning ap-
proach known as semi-supervised method 29,

To the best of our knowledge, there have been several
review works that have focused on the varied methodolo-
gies and technical approaches used on individual abdom-
inal organ's segmentation30-32] using some contemporary
medical imaging modalities and its progress based on
automated segmentation mechanismi3373% and [36] which
focused on deep learning for single and multi-abdominal
organ(s) image segmentation, detection, classification and
other related tasks. However, none of them have provided
a systematic overview focused on abdominal organ(s) seg-
mentation based on supervised and semi-supervised meth-
ods.

Web of Science core collection, Scopus and PubMed
databases were initially queried for papers containing
(“Abdominal organ segmentation” or “abdomen organ
segmentation” or “multi-organ segmentation” or “super-
vised segmentation method” or “abdominal organ super-
vised method” or “abdominal organ supervised segmenta-
tion learning” or “semi-supervised segmentation method”
or “abdomen organ semi-supervised method” or “abdo-
men organ semi-supervised segmentation learning”) in
title or abstract. Also, Medical Image Computing and
Computer Assisted Intervention Society (MICCAI), In-
ternational Symposium on Biomedical Imaging (ISBI)
and European Medicine and Biology Conference (EMBC)
proceedings were searched based on the paper title. Pa-
pers that did not focus primarily on segmentation issues,
and those not published in English were not considered.

This review aims to provide an overview of the super-
vised and semi-supervised methods of performing abdom-
inal organ segmentation. It describes the connection and
identifies the gaps in the current approaches, and enu-
merates prospective opportunities for future research. The
review is targeted at medical image analysis researchers
and any other interested parties.

The rest of this paper is organized as follows. Section
2 reviews methods of supervised and semi-supervised seg-
mentation. Section 3 presents supervised abdominal seg-
mentation methods and their application on single and
multi-organs. Section 4 highlights semi-supervised abdom-
inal segmentation methods relative to single and multi-or-
gans. Section 5 does an assessment of datasets in line
with abdominal organ segmentation. Section 6 presents a
discussion and projection of future works.

2 Methods

2.1 Supervised segmentation methods

The supervised segmentation method uses prior know-
ledge, based on manual annotationsBl or labeled
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images(2”l to locate objects of interest in an imagel38], and
to assess how reliable the segmentation results are. The
supervised method uses real objectsi3%. The supervised
segmentation method, regardless, has two downsides; it
requires large manual annotated datal40: 271, and it has do-
main adaptation problem37l. The method’s data for train-
ing is a pair which consists of input and output objects.
The training data pairs have a function that learns from
it to predict new samplesi4l. The method notwithstand-
ing performs well when the used training data is repres-
entative of the targeted data. Also, the supervised seg-
mentation methods have broader applications and are
more precise when provided with enough user input(42.

The supervised abdominal segmentation method ad-
apts a semi-automatic segmentationl43: 44 process, and in-
teractive segmentation, which produces objects prior37 to
guide a computer-aided abdominal organ segmentation
through user interactions. The user input can be for in-
stance, setting the contour to commence the segmenta-
tion or initializing a pixel or voxel seed pointl45. In super-
vised learning, a training set Ds = {(zi,y:)}, where every
sample z; € X is related to a label y; € Y. X is the fea-
ture space, like an m-dimensional space of real numbers
R™, and Y'is the label space, like the set {0, 1} for a bin-
ary classification problem or the set R for a regression
problem. The data is used to train a classifier f:x —y
that can make available labels for samples that are un-
labeled from a previously unseen test set Dr[46],

Supervised segmentation methods are classified into
Atlas-based segmentation methods[?®l, conventional super-
vised methods7], and deep learning methods#3 49, In the
1990s, research studies of abdominal organ segmentation
focused on atlas-based methods. The atlas-based meth-
ods use labeled images (i.e., atlas) entire content, making
them more flexible regarding expected anatomical vari-
ations between subjectsl®?. However, they were problem-
atic, since they could not capture abdominal regions large
inter-subject variations, and the time for computation
was dependent tightly on the number of atlases[5ll. Non-
etheless, the past decade has registered a rigorous study
of conventional supervised segmentation techniques such
as support vector machine (SVM), random forest (RF),
and k-nearest neighbor clustering. Though such tech-
niques have been explored, they are limited in delineat-
ing fuzzy boundaries of abdominal organs in radiological
images. Recently, there has been a significant progress in
attaining segmentation results that are more accurate
within the supervised framework of machine learning.
This has been due to the significant shift from the manu-
al to automatic feature extraction enabled by deep learn-
ing networks joined with the substantial improvement in
computational powerl23. Supervised deep learning meth-
ods notwithstanding require a large amount of training
data to extract features automatically®? 23, otherwise,
the methods can hardly be used9].

2.2 Semi-supervised segmentation (SSS)
methods

The semi-supervised segmentation method combines
supervised model training and unsupervised feature rep-
resentation learning[®l but it is a variance of the weakly
supervised method% 5%, Semi-supervised learning in-
volves a dataset X which consists of a small number of
labeled samples and a large number of unlabeled samples,
ie, X ={X;,X,}, where X; ={(z;,y:)}'_, depicts the
labeled portion and X, = {x;},_, depicts the unlabeled
samples. Assume that the total number of samples for
training is N = l4+u and practically I<<u. The SSL goal is
to learn the function predicted for the labels of those un-
labeled samples by exploiting the information of the la-
bel dependency reflected by the information of the avail-
able labell®fl. A semi-supervised method can be either
transductive SSL or inductive SSL, otherwise known as
the pure semi-supervised method. The inductive SSL is
used to predict labels for future data, while the trans-
ductive SSL is used for predicting labels for the already
available samples that are unlabeled[6: 54, The semi-su-
pervised segmentation method attempts to automatically
exploits larger unlabeled data and less manually annot-
ated or labeled data to improve learning performance,
where no human interaction is assumed[s 54, It is identi-
fied as one of the approaches that tackle small training
dataset and it leverages segmentation collections to gen-
erate anatomical priors[57l.

The semi-supervised abdominal segmentation method
utilizes data that is unlabeled to update or re-arrange
labeled data hypothesis obtained. The method learns
from both labeled and unlabeled abdominal organ images
and it is fast. Generative method, self-training and co-
training, graph-based method, and transductive support
vector machine (TSVM) are the main categories of semi-
supervised methods/26: 51,

Semi-supervised approaches, typically work by mak-
ing further assumptions that connect properties of the in-
put features distribution to properties of the decision
function. The assumptions include: the smoothness as-
sumption, i.e., in feature space, samples that are close to-
gether are likely to be from the same class; the cluster as-
sumption, i.e., samples in a cluster are assumed to be
from the same class; and the low density assumption, i.e.,
class boundaries are assumed to be in a feature space area
that has a density lower than the clusters/46].

The generative semi-supervised method utilizes a
parametric model which has both labeled and unlabeled
abdominal organ data coming from the same inherent
model34, g(u, v) = q(v) g(ulv), where q(u, v) identifies a
mixture distribution with a greater number of unlabeled
abdominal organ data. Also, the components of the mix-
ture can be known and those components associated with
each of the classes are used to classify the unlabeled ab-
dominal organ data samples. This model is noted to be
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one of the oldest semi-supervised learning method, and it
is very simple with a probabilistic structure, but it is dif-
ficult accessing its accuracy!26l.

The self-training semi-supervised model propagates la-
bels from the labeled to the unlabeled data, and then
leverages on the larger, newly labeled set for trainingl46l.
Self-training is an algorithm that is incremental in nature.
The model works by first training a single classifier with
a small amount of labeled abdominal organ data. This is
followed by iteratively using the classifier to predict the
unlabeled abdominal organ’s data's labels, and the pro-
cedure recurs till there is some satisfaction of conver-
gence criterialll. Finally, the labels of the unlabeled data
ranked as most definite unlabeled points together with
their outcome are put together into the training set of the
labeled abdominal organ datal26l. The model makes and
exploits the cluster assumption which presupposes that
the method’s predictions are correct46l. The self-training
SSL model uses its own prediction to teach itself and it
requires only a few labeled samples. However, the al-
gorithm's performance is dependent on the prediction
confidence estimates26l, and it also does not have the
mechanism to rectify mistakes early, hence, it hurts per-
formancel®8.

Co-training semi-supervised model, unlike the self-
training model has more than one classifier trained and it
yields more precise and robust outcomes. This model di-
vides features into two independent sets, where each set
is enough to train a good classifier with the labeled ab-
dominal organ data. The learning process involves every
classifier being re-trained with the other classifier’s train-
ing examples(26: 51, Zhou et al.5l identify multi-view
learning as one of the commonly used models for semi-su-
pervised learning, which outlines paradigms in learning
by making use of the agreement that exists amongst var-
ied learners, while they site co-training as one of the earli-
est multi-view learning schemes. Co-training SSL can
evaluate features simultaneously but fails in a strongly
correlated base learner’s predictions/26].

Graph-based SSL is an efficient method with compu-
tational simplicity and a better generalization ability[20]
that generates a graph, where the nodes are made up of
the training samples. Its edges depict some instances of
similarity or distance relation. The method uses some cri-
teria to propagate the information of a label on the
graph, and its performance is dependent on the construc-
tion of the graph. The graph-based semi-supervised meth-
od is typically transductive and has scalability issues; a
graph generated would need to be reconstructed if new
instances should be accommodated®4. Furthermore, the
model assumes that samples connected are likely to have
the same label. For instance, every pixel can be depicted
as a node, and pixels that are of close proximity in the
image, can be linked by edges. This seeks to propagate
the labels along the graph. This can be realized using a
graph cut algorithm, which locates the labeling of the
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pixels so that all the pixels produced are smooth along
the graph. Nevertheless, locating a labeling means that
images that were previously unseen cannot be labeled
without running the procedure once more, also known as
the out-of-sample problem!46].

TSVM is a semi-supervised model that uses unlabeled
data to expand standard SVMs. With TSVM, the train-
ing set is divided into two independent sub-sets: labeled
and unlabeled data. The TSVM exploits the data that is
in abundance in order to update the decision boundary
that has been constructed initially from a small number
of labeled data while exploring the regions of low density.
It attempts to classify the labeled examples correctly. TS-
VM model is effective with few labeled samples and has
less computational cost than self-training and co-
training(26l. However, TSVM is severely impeded in large-
scale due to the high computational cost and non-convex-
ity though it is a powerful semi-supervised learning mod-
el?%l. The model also focuses only on a specific working
set. Hence, it has a generalization problem and performs
poorly with new datal60].

Cheplygina et al.l[46] cite the semi-supervised method
to perform worse than the supervised if the additional as-
sumptions about the data fail to hold. Cheplygina et
al.[46] stipulates that recent approaches do not make addi-
tional assumptions about the data, instead they use as-
sumptions which are already present in the classifier.

In this section, we first reviewed supervised segmenta-
tion methods, which were classified into atlas-based, con-
ventional, and deep learning methods. From the literat-
ure reviewed, research works on the liver, kidney, gall-
bladder, pancreas, spleen, and multi-organ(s) using super-
vised segmentation methods have attracted increasing in-
terest with deep learning, which indicates a shift from the
atlas and conventional methods of segmentation. We also
reviewed generative, self-training and co-training, graph-
based, and transductive support vector machine methods
which are the categories of the semi-supervised methods
and their applications to the liver, kidney, gallbladder,
pancreas, spleen, and multi-abdominal organs segmenta-
tion. From the literature reviewed, research works on the
liver, kidney, gallbladder, pancreas, spleen, and multi-or-
gan(s) using semi-supervised segmentation methods have
attracted increasing interest with self-training, and graph-
based methods.

3 Applications based on
segmentation method

supervised

This section provides a summary of supervised ab-
dominal segmentation applications for single abdominal
organs and multi-abdominal organs.

3.1 Single abdominal organ segmentation

In this section, we present an overview of the follow-
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ing single abdominal organs: liver, kidney, gallbladder,
pancreas, and spleen. The organs are introduced, their
mortality rates and various diseases that affect the or-
gans are also highlighted, and some research works based
on supervised segmentation methods are outlined. Table 1
gives an overview of the supervised segmentation method
applications as regards the specified organs.
3.1.1 Liver

The liver is the largest abdominal organ in the hu-
man body, which performs critical life sustaining tasks
such as storing of vitamins and detoxification[116], It is
mostly threatened by diseases and drug damagell7l. Ap-
proximately 2 million deaths are recorded worldwide as a
result of liver disease, half of the number is due to com-
plications of cirrhosis, and the other half is also due to
viral hepatitis and hepatocellular carcinoma (HCC). Cir-
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rhosis currently accounts for 1.16 million deaths globally,
and liver cancer with 788 000 deaths, making them the
11th and 16th ranked causes of death, respectively, each
year, which is 3.5% of all deaths worldwide. Liver dis-
eases can be categorized into alcohol-associated liver dis-
ease (AALD), non-alcoholic fatty liver disease (NAFLD),
viral hepatitis (Hepatitis A, B, C, D, and E), primary
sclerosing cholangitis, primary biliary cholangitis, autoim-
mune hepatitis, Wilson’s disease, and drug-induced liver
injury. These diseases result in acute liver failure, com-
pensated and decompensated cirrhosis, acute-on-chronic
liver failure, and HCC[!8l. Accordingly, liver segmenta-
tion is of prime importance in the diagnosis of liver dis-
eases, functional assessment and treatment[!!9, Over the
years, research work has been done beyond the tradition-
al manual approach to segment the liver: vessel treel64],

Table 1 Overview of supervised method applications. The last column describes the type of supervised method.

Reference Abdominal organ Application Supervised method
[61] Liver Tracking tumor position in ultrasound (US) images Bi-directional convolutional long short-term memory
network (LSTM) U-Net with densely connected
convolutions bi-directional convolutional LSTM U-
Net with densely connected convolutions (BCDU-
Net) and convolutional neural network (CNN)
[62] HCC liver tumor segmentation Random forest (RF)
[63] CT images liver segmentation Contour embedded neural network (CENet)
[64] Liver vessel segmentation Deep neural network (DNN)
[65] Segmentation and classification of liver tumor from  Support vector machine (SVM)
CT images
[66] Automatic segmentation of livers and liver tumors ~ Modified U-Net (mU-Net)
in CT images
[67] Liver segmentation for fusion-guided intervention Multi-scale input and multi-scale output feature
abstraction network (MIMO-FAN)
[68] Automatic CT imaging liver segmentation in DeepMedic (Modified CNN)
selective internal radiation therapy (SIRT)
[69] Liver segmentation and volumetry Gaussian mixture model method and U-Net
[70] Liver CT segmentation and classification SegNet
[71] Liver segmentation and classification of hepatobiliary CNN with U-Net architecture and HBP-CNN
phase (HBP) images for ethoxybenzyl classification network
diethylenetriamine pentaacetic acid-enhanced
magnetic reasoning imaging (EOB-MRI) examination
[72] Liver and lesion segmentation Cascaded U-Net (CU-Net)
[73] Hepatic lesion segmentation Modality weighted U-Net (MW-UNet)
[74] Liver segmentation Multiple atlas approach (Expected label value ELP
computation approach)
[75] MRI liver segmentation Dilated FCN and modified U-Net
[76] Automatic liver segmentation SVM and neural network (NN) classifier
[77] Liver segmentation in perfusion MR images Probabilistic atlases
[78] Liver segmentation Faster R-CNN and DeepLab
[79] Automated segmentation of volumetric medical Deep CNN (3D deeply supervised network and
images conditional random field model 3D-DSN+CRF)
(80] Liver segmentation and lesions detection Fully convolutional network (FCN)
[81] Liver tumor segmentation Multi-level deep convolutional network (MDCN) &
fractal residual network (FRN)
[82] Liver and tumor segmentation 3D-DenseUNet-569
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Table 1 (continued) Overview of supervised method applications. The last column describes the type of supervised

method.
Reference Abdominal organ Application Supervised method
[83] Kidney Automatic kidney segmentation from CT images Deep CNNs (AlexNet and U-Net)
[84] Renal cortex, renal column, and renal medullar Modified AAM, GHT and modified RF
segmentation
[85] Renal tumor segmentation and classification CNN (ScNet)
[86] Fully automated renal masses (RM) detection and CNN, U-Net-based ensemble learning model
segmentation on CT images
[87] Automatic segmentation of kidney in US images Deep CNN and boundary distance regression network
[88] Measurement of glomerular filtration rate Modified 3D U-Net
[89] Renal transplant status assessment 3D CNN
[90] Automatic renal segmentation in DCE-MR images 3D CNN (3D U-Net)
[91] Robust contextual segmentation Parallel FCN networks (foreground, background, and
shape FBS Models)
[92] Automatic kidney segmentation in 3DUS Deep neural network and weighted fuzzy active shape
model
[93] 3D Kidney segmentation from CT images Random forest (RF) classification
[94] Gallbladder Identifying cholelithiasis and classifying gallstones ~ Yolo neural network (Yolov3-arch)
on CT images
[95] Pancreas Pancreas segmentation and station recognition Deep convolutional neural network (DCNN): ResNet
system in EUS and UNet++
[96] Automatic pancreas segmentation on CT images Deep U-Net
[97] Pancreas segmentation with uncertain regions of 2D U-Net
MRI images
[98] Pancreas segmentation in CT images Multiscale residual network (MR_Net)
[99] Liver guided pancreas segmentation 3D CNN
[100] Pancreas segmentation in abdominal CT scans Dense attentional network (DA-Net)
[101] Pancreas segmentation in 3D CT images U-Net (SEVoxNet)
[102] CT pancreas segmentation Deep Q network (DQN) with deformable U-Net
[103] Bottom-up approach for pancreas segmentation Cascaded random forest (RF) and DCNN (PCNN)
[104] Fully automated pancreas segmentation 3D U-Net
[105] CT pancreas segmentation TernaryNet
[106] Spleen Abdominal spleen segmentation DNN based on ResNet
[107] Spleen segmentation High-level features enhancement network (HLE-Net)
[108] Automatic spleen segmentation on CT Multi-Atlas (AGMMCL)
[109] Multi-organ Segmentation of thoracic and abdominal organs Cascaded V-Net
[110] Annotating abdominal CT images Deep neural network
[111] Fully automated segmentation of multiple Automated deep learning-based abdominal multi-
organs-at-risk (OARs) organ segmentation framework (ALAMO - 2D U-
Net)
[112] Multi-organ segmentation Pyramid input pyramid output feature abstraction
network (PIPO-FAN)
[113] Automated segmentation and volume measurement Deep learning algorithm (DLA)
of the liver and spleen
[114] Segmentation of 3D multi-organ OBELISK-Net
[115] Segmenting 8 abdominal organs 3D U-JAPA-Net

tumor120], lesionl'2l] and cyst[!22l using supervised
mentation methods. Conze et al.l2 combined standard
random forest (RF) and hierarchical multi-scale tree res-
ulting from recursive supervoxel decomposition to seg-
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seg-

ment a hepato-cellular carcinoma liver tumor in dynamic
contrast-enhanced CT scans. Li et al.l4l] varied the origin-
al U-Net by proposing a bottleneck feature supervised
(BS) U-Net, which is based on a convolutional neural net-
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work (CNN) to segment liver and tumor. Their model en-
tailed an encoding U-Net and a segmentation U-Net.
They used the encoding U-Net to train an autoencoder
firstly to get label maps encodings, which was used fur-
ther as additional supervision for the training of the seg-
mented U-Net. Xu et al.l64 segmented liver vessels from
contrast enhanced CT images by means of deep neural
networks and bootstrapping technology trained on noisy
labels.
3.1.2 Kidney

Kidneys are a pair of organs positioned at the rear end
of the abdomen and are protected by the rib cagel83l.
They are responsible for whole-body homeostasis, regulat-
ing acid-base balance, electrolyte concentration, the
volume of extracellular fluid, and blood pressure. The
kidney consists of four parts with specific functions: renal
cortex, renal column, renal medulla, and renal pelvis.
These parts are affected by different diseases. For in-
stance, the renal cortex usually suffers kidney tumor, ren-
al column hypertrophy may affect the renal column,
medullary cystic kidney disease typically affects the renal
medulla, and the renal pelvis mostly suffers transitional
cell cancer, and renal pelvis and ureter cancer84. The
2018 global cancer statistics reported 400 000 cases of kid-
ney cancer and close to 175 000 deaths due to kidney can-
cer. However, early and accurate diagnosis of kidney can-
cer can improve patient’s survival rate. In contrast, late
diagnosis and treatment will increase mortality if cancer
spreads to surrounding tissues or organsl'23l. Hence, kid-
ney segmentation is an imperative step in urology for
computer-assisted diagnosis and treatment, and a pre-
requisite in planning surgery. Accurate segmentation
gives information on the structural irregularities in the
kidney shape and kidney size measurement, which in-
forms the expert's analysis of serious clinical conditions,
such as carcinomal®3l. Researchers have applied super-
vised methods to efficiently and accurately segment the
kidney's region of interest over time. Jin et al.¥4 com-
bined 3D generalized hough transform (GHT) and 3D
active appearance models (AAM) to localize and estim-
ate the thickness of the renal cortex and a modified ran-
dom forests (RF) method to segment the kidney into the
renal cortex, renal column, renal medulla, and renal pel-
vis components based on the localization phases’ results
in clinical 3D CT abdominal images. Pan et al.39] pro-
posed a multi-task network that involved a segmentation
and classification convolutional neural network (SCNet)
for renal tumor preoperative assessment. Pan et al.[s%]
merged two tasks to feed semantic features to the classi-
fication network, and the classification results gave seg-
mentation network feedbacks in return. Their results
were boosted by 2.8% after they conducted a 2-step seg-
mentation strategy to the segmentation module, and they
achieved a 100% classification accuracy and 0.882 seg-
mentation dice coefficient of tumor region. The study of
[87] automatically segmented kidneys via subsequent

boundary distance regression and a network of pixel clas-
sification. Yin et al.l87 extracted high-level image fea-
tures from ultrasound images using deep neural networks
pre-trained for natural image classification. Their extrac-
ted features were fed into a boundary distance regression
network as input to learn kidney boundary distance
maps. Based on their predicted boundary distance maps,
they used a pixelwise classification network in an end-to-
end learning fashion to classify kidney pixels and non-kid-
ney pixels.
3.1.3 Gallbladder

A normal gallbladder is a pear-shaped abdominal or-
gan anatomically positioned below the liver at the couin-
aud segments IV and V junction(!24. It contains bile, a di-
gestive fluid from the liver(125]. After a meal, the content
of the gallbladder is released into the duodenum, where it
emulsifies fats in the food that is partly digested(!26]. Gall-
bladder disease is a widely prevalent internal organs
pathological conditionl!27), which affects a large part of
the adult population of developed societies. They mani-
fest commonly as gallstones and gallbladder cancer. The
primary cause of admissions to hospitals for gastrointest-
inal problems affecting almost 15% of the adult popula-
tion is gallstones. For example, 25 million Americans are
affected with gallstones(!28], while gallbladder cancer
(GBC) accounts for the most common biliary tract malig-
nancyl?”) and the 5th top gastrointestinal malignancy
globally. That notwithstanding, it is difficult to diagnose
GBC and its prognosis is comparatively poor because of
the rapid progression characteristics and high mortality
ratel!30]. However, enhanced early diagnosis could aid on-
time treatment and possibly influence patient
prognosis!3ll. Gallstones form in the gallbladder, bile
duct, and liver. It is traditionally categorized into choles-
terol stones, black pigment (calcium bilirubinate) stones,
brown stones, and mixed stones made up of cholesterol
and calcium bilirubinate. However, the classification
method depends largely upon the gallstones’ external
shape and color, and it does not accurately reflect the
cases wherein the gallstones’ internal morphology is dif-
ferent from the external onel!32]. Segmentation of the bile
duct and gallbladder are of high interest to detect the
hepatobiliary and pancreatic systems anomalies and risk
factors(l’. Computer technologies development has led to
many artificial intelligence-based data mining algorithms
being proposed to support experts in clinical stage assess-
ment, decision-making, and prognosis prediction/!29],
However, only a few of methods have been presented by
the research community to segment the gallbladder[!25].
Gloger et al.ll7 performed a gallbladder volumetry for
both native and secretin-enhanced MR cholangiopan-
creatography (MRCP) volume data using a fully auto-
mated gallbladder segmentation framework. Glover et
al.l7l used a 1.5-T MR system to produce native and se-
cretin-enhanced MRCP volume data. They automatically
computed 2D characteristic shape features of the gall-
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bladder using images of coronal maximum intensity pro-
jections (MIP). They generated gallbladder shape space
to derive 3D gallbladder shape features and combined
them with 2D gallbladder shape features in an SVM ap-
proach to detect MRCP volume data's gallbladder re-
gions. At the same time, they used the region-based level
set approach for fine segmentation. They further per-
formed a volumetric analysis for both the native and se-
cretin-enhanced MRCP sequences to calculate the gall-
bladder volume difference. Pang et al." proposed a
Yolov3-arch neural network to identify cholelithiasis and
classify gallstones on CT images. Pang et al.l trained a
Yolo network by first annotating a small amount of CT
images that included the spine, liver and gallbladder.
They picked out their CT images as a trained set from
the trained neural network. Their confidence to detect
gallstone was based on the coefficient of the output re-
lated to the occurrence probability of the gallstone.
3.1.4 Pancreas

The pancreas is a vital organ of the human body with
internal and external secretion functions, but is prone to
various diseases[!33]. Cancer of the pancreas is the sev-
enth ranked cause of cancer related deaths, with about
432 242 deaths every year and 458 918 new cases). To
diagnose and prognos is pancreas diseases, the organ's
identification and segmentation are very essential in the
task. Accurate segmentation of the pancreas can give seg-
mentation-based biomarkers, like volumetric measure-
ments and signatures of the 3D shape/surface. However,
manually tracing the pancreas boundary slice-by-slice is
labor expensive and susceptible to inter-variability and
intra-variability. Therefore, robust and automatic seg-
mentation algorithms can aid in processing large-scale im-
age data for relative clinical research!34. Zhang et al.[%
proposed and validated a location prior guided automatic
segmentation of the pancreas using a 3D convolutional
neural network. Zhang et al.l[] used a 2D CNN to firstly
segment and locate the liver so as to calculate the
centroid of the pancreas used to determine its bounding
box. After which, they employed a 3D CNN using the
pancreas bounding box as input to get the final segment-
ation. Wang et al.[101 rather segmented the pancreas us-
ing a fully 3D cascaded framework by adopting a 3D de-
tection network called PancreasNet to firstly locate the
pancreas in CT images. They cropped and down-sampled
the pancreas region while they fed the results into a 3D
coarse-scale segmentation network known as SEVoxNet-
C. Based on their coarse-scale segmentation results, they
further refined the pancreas regions and concatenated
them as input to the 3D fine-scale segmentation network,
also known as SEVoxNet-F. Man et al.[l92 employed a
deep Q network (DQN) driven technique with deform-
able U-Net to segment the pancreas accurately while ex-
plicitly acting upon the pancreas contextual information
and extracting anisotropic features. Farag et al.l103] pro-
posed a bottom-up method to segment the pancreas us-
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ing image and (deep) patch-level labeling confidences.
Farag et al.[103] firstly decomposed CT slice images into a
set of boundary-preserving superpixels that were disjoin-
ted. With a dense patch labeling, they computed the pan-
creas class probability maps, then generated image fea-
tures to classify the superpixels from both intensity and
probability information to input into a cascaded random
forest. Finally, they enforced a simple spatial connectiv-
ity based post-processing.
3.1.5 Spleen

In the lymphatic system, the spleen is the largest or-
gan, it is mostly forgotten by laypeople, yet it is of signi-
ficant importance to clinicians(!35. The abnormal in-
crease in the spleen size, called splenomegaly, is associ-
ated with the destruction of abnormal red blood cells,
which is clinically found in patients with liver disease,
cancer, and infectionl!8; 136], Spleen diseases pose particu-
lar challenges since it is not clear characterize healthy
subjects from unhealthy subjects. However, the splenic
disease has been determined traditionally on simple meas-
urements (width/length) or volumetric estimates. That
notwithstanding, such metrics have often failed to charac-
terize splenic diseasel!3%). In the wake of the traditional
approaches’ limitations, modern methods have been widely
used to detect anatomical abnormalities with the spleen.
Specifically, spleen segmentation is useful for prepro-
cessing for fast diagnosis of blunt splenic injury
severity[!37), measuring spleen volume, and evaluating
anatomical diseases via measurement[l%], Liu et al.[108]
proposed a multi-atlas segmentation of the spleen on CT
images using an adaptive Gaussian mixture model based
on context learning technique called context learning
method for performance level estimation (CLSIMPLE).
Liu et al.l108] generated a probability map for a target im-
age using the context learning method, while using the
Gaussian mixture model (GMM) as the prior in a
Bayesian framework. Liu et al.l'l08] postulated that the
CLSIMPLE typically trained a single GMM from the en-
tire set of heterogeneous training atlas. Hence, they
opined that the spatial prior estimated maps might not
accurately represent the specific target images. Rather
than using all training atlases, Liu et al.[!08] proposed an
adaptive GMM based context learning approach to learn
the GMM adaptively while using the training data sub-
sets with the subsets tailored for different target images.
They outlined that their training set were adaptively se-
lected based on the similarity between the atlases and the
images targeted via cranio-caudal length, which was
manually derived from the target image. Liu et al.[l08]
identified their AGMMCL to accurately segment the
spleen by training GMMs adaptively for different target
images. Moon et al.ll06] devised an automated pipeline for
the segmentation of the abdominal spleen. Moon et al.[106]
provided an end-to-end synthesized process pipeline that
permits users to circumvent any packages installation and
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deal locally with intermediate results. Their pipeline did
the pre-processing of input data, spleen segmentation us-
ing deep learning, reconstruction of 3D using labels gener-
ated by matching the segmentation results with dimen-
sions of the original image, which could be used later and
for either display or demonstration.

3.2 Multi-organ segmentation

Abdominal multi-organ segmentation of radiology im-
ages is essential for clinical applications like computer-
aided diagnosis and surgery and radiation therapy®ll. The
segmentation of multiple organs relatively assists in tar-
geting and navigation in computer-assisted diagnostic and
biomarker measurement systems as nearby organs are
used as navigational landmarks(2). Chen et al.lll]l de-
veloped an automated deep learning based framework to
segment the liver, spleen, pancreas, right kidney, left kid-
ney, stomach, duodenum, small intestine, spinal cord, and
vertebral bodies using a 2D U-Net and a structure of a
densely connected network with tailored design in the
augmentation of data and procedures for training such as
deep connection, auxiliary supervision, and multiple
views. The model of [111] takes in as input multi-slice
MR images and produces the segmentation results as out-
put. Fang and Yan[''2l employed a multi-scale deep neur-
al network feature abstraction to segment the liver,
spleen, and kidney over partially labeled datasets. Fang
and Yan['!2] further proposed a new network architecture
to abstract multi-scale features integrated into a U-shape
pyramid structure, pyramid input, and feature analysis.
They introduced an equal convolutional depth technique
to bridge the semantic gap caused by the direct merging
features from the different scales. Fang and Yan[!!2] then
employed a deep supervision technique to refine the out-
come in different scales. They designed an adaptive
weighting layer to incorporate the outcomes in an auto-
matic fashion so as to fully leverage their segmentation
features from all the scales. Fang and Yan[''2l harnessed a
unified training mechanism that allowed a multi-scale
deep neural network to train their datasets. Ahn et al.[l13]
segmented and measured the volume of the liver and
spleen using a deep learning algorithm trained with the
development of portal venous computed tomography im-
ages. Kustner et al.['38] implemented and validated auto-
mated semantic 3D liver and spleen segmentation on
multi-contrast MR data using DCNet (CNN) compared
against a random forest segmentation. Gibson et al.l20l
proposed a deep learning-based algorithm (dense VNet)
to automatically segment the pancreas, stomach, spleen,
esophagus, liver, gallbladder, left kidney and duodenum
on abdominal CT images.

In this section, we reviewed single and multi-abdomin-
al organs, their significance in the anatomical structure,
their morbidity and mortality rates, and some supervised
techniques used by some researchers for single and multi-

abdominal organs segmentation.

4 Applications based on semi-
supervised segmentation method

This section provides a summary of semi-supervised
abdominal segmentation applications for single abdomin-
al organs and multi abdominal organs.

4.1 Single abdominal organ segmentation

In this section, we present an overview of the follow-
ing single abdominal organs: liver, kidney, gallbladder,
pancreas, and spleen. Some research works based on semi-
supervised segmentation methods are outlined. Table 2
also gives an overview of the semi-supervised segmenta-
tion method applications as regards the specified organs.
4.1.1 Liver

Zheng et al.['39 presented a semi-supervised liver seg-
mentation mechanism built on an adversarial learning
model, which incorporated prior knowledge with deep
learning to enhance the accuracy of the segmentation.
They used both annotated and unannotated images to
train the semi-supervised adversarial learning model.
Zheng et al.[139] extracted the probabilistic atlas of the liv-
er, defined a deep atlas prior (DAP) loss, and proposed a
Bayesian loss. Based on the principle of the Bayesian
model, which involves a likelihood and a prior, they com-
bined the DAP loss and focal loss. Borga et al.29 intro-
duced an atlas-based segmentation and validated their
approach on liver segmentation in abdominal magnetic
resonance images. Borga et al.?9 adapted a semi-super-
vised approach of a graph recounting a manifold of ana-
tomical disparities of whole-body images while using un-
labeled data to identify a path with slight deformations
from the labeled atlas to the targeted image. Borga et
al.2% proposed increasing the dataset numbers and seg-
mentation of other anatomical structures for future stud-
ies, but they identify that they have not evaluated their
method on other organs or image modalities other than
MR as the limitation of their study. Liao et al.[143] de-
veloped a density peak (DP) clustering, graph cuts, and
border marching method for automatic liver segmenta-
tion from CT volumes. They segmented an initial slice by
density peak clustering. They then developed an intens-
ity model and a PCA-based regional appearance model
based on pixel-wise and patch-wise features to enhance
the contrast between liver and background. Liao et al.[143]
integrated the models together with the location con-
straints estimated iteratively into graph cuts so as to seg-
ment the liver in every single slice automatically. Liao et
al.['43] finally increased the segmentation accuracy using a
vessel compensation method based on border marching.
Huang et al.l44 presented a fully automatic procedure
that employs modified graph cuts and feature detection
for the accurate and fast segmentation of the liver. Huang
et al.l'4 automatically determined the initial slice and
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Table 2 Overview of semi-supervised segmentation method applications. The last column describes the type of
semi-supervised method used.

Reference Abdominal organ Application Semi-supervised method
[139] Liver Liver segmentation Semi-supervised adversarial learning model
(Segmentation network and discriminator network)
[140] Automatic 3D liver location and segmentation Graph cut and CNN
[141] Extracting the liver from CT images Graph cut
[142] Automatic liver segmentation on volumetric CT Supervoxel-based graph cuts
images
[143] Automatic liver segmentation from abdominal CT Graph cuts and border marching
volumes
[144] Fully automatic liver segmentation in CT images Modified graph cuts
[145] Kidney Precise estimation of renal vascular dominant regions Tensor-cut, spatially aware FCN, and voronoi
diagrams
[146] Automatic renal segmentation for MR urography 3D-GraphCut and random forests
[147] Segmenting kidneys in 2D US images Graph cuts
[148] Pancreas Semi-supervised medical image segmentation and Uncertainty-aware multi-view co-training (UMCT)
domain adaptation
[149] Medical image segmentation Semi-supervised task-driven data augmentation
method
[150] 3D semi-supervised learning UMCT
[151] Organ segmentation refinement Uncertainty-based graph convolutional networks
[152] Spleen Splenomegaly segmentation Co-learning and DCNN
[153] Multi-organ Unified multi-organ segmentation Co-training weight-averaged models
[154] Multiple-organ segmentation Graph cuts
[155] Automatic multiorgan segmentation for 3D Graph cuts

radiological images

seeds of graph cuts using an intensity-based mechanism
with prior position information. They enhanced the weak
boundaries of soft organs and prevented over-segmenta-
tion by proposing a contrast term founded on the similar-
ities and variances of local organs across multi-slices.
Huang et al.l44 then integrated the contrast term into
the graph cuts for the automatic segmentation of the slice
and prevented leakage by using the neighboring slices of
the patient-specific intensity and shape constraints. Fi-
nally, they proposed a feature detection method that de-
pended on vessel anatomical information to remove the
neighboring inferior vena cava with similar intensities.
4.1.2 Kidney

Zheng et al.ll47 segmented kidneys in US images by
proposing a dynamic graph-cuts (GC) based segmenta-
tion method with multiple feature maps integrated.
Zheng et al.l'47 built a graph of image pixels with close
proximity to the kidney boundary and not a graph of the
whole image. This was meant to handle kidney images
with large appearance variations and to enhance the effi-
ciency of computation. They further made the segmenta-
tion of the kidney robust to weak boundaries by adopt-
ing localized regional information to measure resemb-
lance between image pixels for edge weights computation
to construct the graph of image pixels. They dynamically
updated the localized graph, and the graph-cuts based
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segmentation looped until convergence. Wang et al.[143]
proposed a fully automatic segmentation method that in-
tegrated a neural network and tensor-based graph-cut
methods to precisely estimate the renal vascular domin-
ant region using a voronoi diagram. Wang et al.[14%] firstly
used a CNN to localize the regions of the kidney and with
tensor-based graph-cut method they extracted tiny renal
arteries. They then generated a voronoi diagram to ap-
proximate the dominant regions of the renal arteries
based on the kidney and renal arteries segmented. Yoruk
et al.l46l presented an automatic renal segmentation
method that used spatial and temporal domains to fully
segment the kidney and renal cortex. Yoruk et al.[146]
built a heuristic approach to locate kidneys with the help
of the medulla as a target, they revised a GrabCut al-
gorithm to function in 3D, and incorporated the modified
GrabCut algorithm to the time resolved magnetic reson-
ance imaging data using principal component analysis di-
mensionality reduction, and finally trained an RF classifi-
er to segment the renal tissue into cortex, medulla, and
the collecting system.
4.1.3 Gallbladder

Saito et al.l1%6] proposed a fast approximation for op-
timization. They evaluated their proposed method in a
gallbladder segmentation context from a non-contrast CT
volume. Saito et al.[!56] used a branch-and-bound method
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to simultaneously optimize the segmentation, shape, and
location priors after they spatially standardize and estim-
ate the posterior probability of the target organ. Saito et
al.[l5] achieved a fast approximation by compounding
sampling in the eigenshape space to cut down the num-
ber of shape priors and efficient computational method
for assessing the lower bound. The proposed joint optim-
ization of the segmentation, shape, and location priors by
[156] proved to be effective in the segmentation of the
gallbladder with high computational efficiency.
4.1.4 Pancreas

Xia et al.l'¥8 proposed an uncertainty-aware multi-
view co-training framework that leveraged on unlabeled
data for better performance. Xia et al.!48 firstly rotated
and permuted their 3D volumes into more than one view
and trained a 3D deep network on every one of the views.
They then applied co-training by implementing multiple
view consistency on unlabeled data, where an uncer-
tainty estimation of every one of the views was exploited
to attain accurate labeling. Chaitanya et al.[149 proposed
a method based on semi-supervised task-driven data aug-
mentation to address the challenge of realizing a robust
segmentation in a training setting with limited data.
Their proposed method’s generator intensity and shape
disparities used two classes of transformations: addictive
intensity transformations and deformation fields. Both
transformations used a semi-supervised framework to op-
timize labeled and unlabeled examples. Their proposed
model was evaluated on three different publicly available
datasets for segmentation, including the pancreas. Xia et
al.[1%0] proposed an uncertainty-aware multi-view co-train-
ing (UMCT) model for 3D data to segment pancreas. Xia
et al.%] exploited 3D multi-viewpoint consistency by
generating varied views while rotating or permuting the
3D data using the asymmetrical 3D kernels to trigger in
different sub-networks diversified features. They further
estimated the reliability of every view's prediction with
Bayesian deep learning while proposing an uncertainty-
weighted label fusion (ULF) mechanism. Xia et al.!59 ob-
tained more accurate pseudo labels for every view, which
they used as a signal for supervision for unlabeled data
after propagating through the ULF module. Soberanis-
mukul et al.l'51 employed a technique of segmentation re-
finement which depended on uncertainty analysis and
networks of graph convolution. Soberanis-mukul et al.[!51]
formulated a semi-supervised graph learning problem that
was solved by training a graph convolutional network
which employed the uncertainty levels of the convolution-
al network in a specific input volume. Soberanis-mukul et
al.[151] tested their approach by refining the initial output
of a 2D U-Net. They further validated their framework
with two different datasets, the National Institutes of
Health (NIH) pancreas dataset and the spleen dataset of
the medical segmentation decathlon.
4.1.5 Spleen

Huo et al.l'8] proposed and used multi-atlas segmenta-
tion for clinical magnetic resonance imaging spleen seg-
mentation for splenomegaly. Huo et al.l!8] first used an

automated segmentation technique that employed a se-
lective and iterative method for performance level estima-
tion (SIMPLE) atlas selection to rectify the concerns of
inhomogeneity for clinical splenomegaly magnetic reson-
ance imaging. Then, to further control outliers, Huo et
al.l8]  proposed semi-automated craniocaudal spleen
length-based SIMPLE atlas segmentation (L-SIMPLE) to
fuse a spatial prior in a Bayesian fashion and guide iterat-
ive atlas selection. Huo et al.l18] lastly, employed graph
cuts refinement to achieve the final segmentation from
the probability maps from multi-atlas segmentation
(MAS). Tang et al.152 designed a co-learning strategy to
train a deep network from heterogeneously labeled scans;
hence, they proposed a new method of deep convolution-
al neural network (DCNN) that integrated heterogeneous
multi-resource labeled cohorts for the segmentation of
splenomegaly. Tang et al.[1%2] introduced a loss function
based on the Dice similarity coefficient to learn multi-or-
gan information adaptively from varied resources. They
employed three cohorts in their experiments: Their first
cohort had only splenomegaly labels, while the second, a
training cohort, had 15 distinct anatomical labels with
spleens with normal spleens. Tang et al.152 used as a
testing cohort, a distinct, independent cohort that in-
volved 19 splenomegaly CT scans with labeled spleens.
Their new DCNN achieved the highest median Dice simil-
arity coefficient value compared to multi-atlas, SS-Net
(with only spleen labels), and U-Net segmentation with
multi-organ training. Huo et al.[136] proposed a network of
splenomegaly segmentation which leveraged on the seg-
mentation performance by using large convolutional ker-
nels in the skip connection layers for the spleen that was
large. They further employed adversarial networks to dis-
criminate the segmentation performance for training that
was end-to-end, and finally they improved their spleno-
megaly segmentation using 2D+ multi-view training. Huo
et al.157 proposed frameworks based on multi-atlas seg-
mentation to segment MRI spleen for splenomegaly. Huo
et al.l!57 introduced an automated approach based on a
selective and iterative method to interactively select a
subset of atlases for the performance level estimation
(SIMPLE) approach. They also introduced a spatial pri-
or to guide the iterative atlas selection by proposing a
semi-automated craniocaudal length based SIMPLE atlas
selection to control the outliers.

4.2 Multi-organ segmentation

Huang et al.[133] co-trained weight-averaged models for
learning from few-organ datasets, a unified multi-organ
segmentation network. Huang et al.[!53] trained collabor-
atively two networks and allowed both networks to teach
one another on un-annotated organs. They adopted the
weighted-average models to alleviate the noisy teaching
supervisions that existed with the networks in order to
generate dependable soft labels. Huang et al.l%3] further
utilized a region mask to selectively apply the consistent
constraint on regions of the un-annotated organ that
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needed collaborative teaching, which enhanced the per-
formance. Experiments conducted by Huang et al. on four
public datasets identified their framework to better util-
ize few-organ data and realized superior performance with
less computational cost on public datasets. Zhou et al.[5!
designed a deep multi-planar co-training (DMPCT) for
multi-organ segmentation by exploiting multi-planar in-
formation to produce pseudo-labels for 3D CT volumes
that are unlabeled. The DMPCT framework is a system-
atic EM-like semi-supervised learning model consisting of
the following models; teacher, multi-planar fusion module,
and a student model. Zhou et al.b!] trained the teacher
model from more than one plane distinctly in a slice-by-
slice approach with annotations, the DMPCT enjoyed ex-
tra benefits of continuously producing more dependable
pseudo-labels by the multi-planar fusion system, few
helped train the student model with massive unlabeled
data. Zhou et al.Bll introduced co-training as multiple
segmentation networks that corresponded to varied
planes in the teacher and student models. They did it so
that the networks could be trained concurrently in their
unified framework and benefit from one another. Taka-
oka et al.l154 introduced a higher-precision technique to
segment multiple organs with the aid of graph cuts with-
in medical images like CT-scanned images. Takaoka et
al.[154] advanced supervoxels instead of voxels as the seg-
mentation units, i.e., the graphical model's nodes, and
they designed the energy function that minimized accord-
ingly. They then used the SLIC supervoxel algorithm and
evaluated the performance of their segmentation al-
gorithm by energy minimization likening to the ground
truth. Kéchichian et al.[1%5] designed a method that auto-
matically segments multiorgan for 3D radiological images
of varied anatomical components and modalities.
Kéchichian et al.[!5] followed the Bayesian model and ad-
vanced location and intensity prospects of structures to-
gether with a prior distribution of their corresponding
spatial configuration. They defined the location likeli-
hoods by target-specific probabilistic atlases created by
recording atlases to the target in shrinking frames with
the aid of a fast SURF-based registration technique that
projected a homothetic transformation. Kéchichian et
al.[1%3] used confidence regions of probabilistic atlases to
obtain the target-specific intensity possibilities. They de-
rived the spatial prior from shortest-path constraints
spelt out on the adjacency graph of structures.
Kéchichian et al.[15% defined an energy function using the
likelihoods and spatial prior, optimized by a multilabel
Graph cut method to derive the multiorgan segmentation.
In this section, we covered some works by the re-
search community on semi-supervised segmentation ap-
plications for single and multi-abdominal organs.

5 Datasets and evaluation

This section outlines abdominal organ datasets and
the web source to the datasets.
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5.1 Datasets

One of the biggest producers of data is the medical
domain. Today clinical practice and medical research pro-
duce vast numbers of images of high dimension/!53]. In
2011, 30% of the world's storage was estimated to con-
tain medical images, which showed the enormous and of-
ten miscalculated amount of data generated in medical
institutions. Presently, these images are primarily used
for single patient treatment and only in restricted form
across groups of patients or for education. This second-
ary use of the data presents some benefits, and the ex-
tracted content directly from the images is complement-
ary to clinical data that is structured and free text that is
mostly used in medical decision support(!3]. Image seg-
mentation, as a critical stage in medical image analysis,
advances on models that aids in the visualization and ex-
traction of ROI for supporting medical decisions. In or-
der to build a segmentation model that is reliable, a pre-
condition is the availability of a large quantity of labeled
data for trainingl25l, and current unconventional segment-
ation models still need a large, representative, and high
quality annotated datasetsl!'®). However, perfectly-sized
and carefully-labeled datasets are rare for training an im-
age segmentation model. Usually, datasets of medical im-
ages are small, this is because it is extremely time-con-
suming to annotate and expert knowledge is also
required39. Hence, this limits the medical image seg-
mentation datasets to scarce, weak, noisy, image-level an-
notated data available for training(!®9. Though the medic-
al domain is producing large volumes of data, the super-
vised machine learning algorithms’ challenge is the lack of
annotated datall3 46]. The supervised deep learning meth-
od also faces the same challenge'® and even requires
large labeled training set to achieve high accuracyl®! in
their training(!!. On the other hand, semi-supervised ma-
chine learning algorithms for medical image segmenta-
tion can make effective use of data that is unanno-
tated(139],

Several datasets that are commonly used for abdomin-
al organ segmentation are publicly available, and they are
manually labeled or annotated atlases devoid of basic in-
formation about patientsB0, while private datasets are
also mostly created by researchers by collecting data from
volunteers[!%9], patients or hospitalsl®] after satisfying
ethical and or patient consent[16l] to complement their re-
search works when the need arises. The following abdom-
inal organ specific datasets are publicly available: for liv-
er — Sliver07 dataset from the Medical Image Computing
and Computer Assisted Intervention Society MICCAT liv-
er segmentation challenge (MICCAI-Sliver07), 3Dircadb
dataset from Research Institute against Digestive Cancer
(3DIRCADB), the MIDAS liver tumor dataset from Na-
tional Library of Medicines Imaging Methods Assessment
and Reporting (IMAR) project?3, Liver Tumor Segment-
ation Challenge (ListS-ISBI2017)[66], kidney — MICCAI
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2019 Kidney Tumor Segmentation Challenge
(KiTS19)[!23] pancreas — NIH%! from the National Insti-
tutes of Health Clinical Center, BTCV[0] from Beyond
the Cranial Vault, ISICDM from the challenge on the
2019 International Symposium on Image Computing and
Digital Medicinel®, spleen — Spleen segmentation
dataset(1'2l, multi-organ — VISCERAL, and TCIA[14]
from The Cancer Imaging Archive. These datasets come
in a CT, MRI, or US modalities. Datasets that are pub-
licly available are very important for the community of
researchers. However, it is also critical to compare the
pros and cons of segmentation methods, this is because it
is more meaningful to correlate the accuracy of distinct
segmentation methods using the same dataset.

The MICCAI-Sliver07 dataset consists of 30 CT scans
made up of 20 training data with matching ground truth
and 10 testing data without ground truth. Datasets in
this database are pathological and made up of tumors,
metastases and cysts of varied sizes[162. All the volumes
of the MICCAI-Sliver07 dataset have an in-plane resolu-
tion of 512 x 512 pixels. The inner-slice pixel spacing
ranges from 0.576 2mm to 0.8125mm, and the slice
thickness also ranges from 0.7mm to 5.0mm. The num-
ber of slices in every case ranges from 64 to 394163],

The LiTS dataset consists of 200 3D liver CT scans
from more than one clinic. The dataset involves images of
varying spatial resolution and fields-of-view. The images
have axial slices of 512 x 512, with 0.45—5.0 mm slice spa-
cing, an in-plane resolution of 0.60—-0.98 mm. The LiTS
dataset is divided into 130 CT scans in training and 30
CT scans in testing[36l.

The ISICDM dataset is from the 2019 International
Symposium on Image Computing and Digital Medicine
Challenge. It comprises of liver data that has 24 subjects
with manually delineated liver annotations, varied image
sizes and fixed resolution of 1 X 1 X 5mm?, and pan-
creas data that involves 36 training and 18 testing im-
ages, with the ground truth segmentation of the images
for testing hidden during the challenge. “Thick” and
“thin” are the two subsets of this dataset with a 5mm
and 1mm spacing respectively along the axial planel®.

The 3DIRCADB dataset comprises 20 venous phases
enhanced CT scans of 10 men and 10 women, 15 of the
volumes have hepatic tumors in the liver, i.e., 75% of the
instances. The level of size and number of tumor lesions
and contrast enhancement differentiates the CT volumes
substantially[36l. The 20 folders represent 20 different pa-
tients and every patient has more than 120 image slices.
Every image has a resolution of 512 x 512 width and
height, and the number of slices for each patient is
between 74 and 2607

The MIDAS dataset contains a collection of biomedic-
al multimodal images available in DICOM format and
consists of metadata images. The dataset supports 20
types of varied format images corresponding to medical
and non-medical images. Researchers can use the MI-

DAS database in the area of biomedical multimodal ima-
ging which involves image segmentation, computer-aided
design (CAD) methods, registration, and techniques for
fusion[164],

The KiTS19 dataset consists of a collection of multi-
phase CT imaging, segmentation masks, and the compre-
hensive clinical results for 210 patients. The KiTS19
dataset was collected between 2010 and 2018 from varied
centers for kidney tumor segmentation. The KiTS19
volume slice thickness ranges from 2—-5mm, and the im-
ages have a spatial size of 510 x 510 pixels with different
number of depth slices of 21-600 for every patient[165],

The NIH pancreas segmentation dataset consists of 82
contrast-enhanced abdominal CT scans with a volume
size of 512 x 512 x D, where the D belongs to 181 and
466. The volumes spatial resolutions height and weight
are between 0.5—-1.0mm and 1.0 mm depth36],

The BTCV dataset consists of abdominal CT scans
obtained at the Vanderbilt University Medical Center
from cancer patients with metastatic liver or post-operat-
ive ventral hernia patients. The images voxel sizes are
from 0.6-0.9 mm in the left-right axis and anterior-pos-
terior, and 0.5-5.0 mm in the inferior-superior axis. The
anterior-posterior fields of view are from 172-318 mm,
246—367 mm for the left-right axis, and 138—283 mm for
the inferior-superior axis realized from manual cropping
the rib-cagel3¢.

The Medical Segmentation Decathlon (MSD) spleen
dataset consists of CT volume images from patients who
were undergoing treatment of chemotherapy for liver
metastases at Memorial Sloan Kettering Cancer Center
and formerly reported. The CT scans are made up of 61
portal venous phases were added with a CT reconstruc-
tion and acquisition parameters similar to the
Task08_HepaticVessel dataset as specified in [166].

The VISCERAL dataset contains four modalities: CT
and MR scans of the whole body, CECT scans of the en-
tire trunk, and T1 contrast-enhanced MR scans of the ab-
domen (Kidney, urinary bladder, gallbladder, spleen, liv-
er, and pancreasl’67). Every modality specified has 30
clinical scans (20 scans for training dataset and 10 scans
for test dataset)[168],

The Cancer Imaging Archive (TCIA) dataset consists
of radiology images depicting the data of about 37 568
subjects collected and it is the repository for cancer ima-
ging and related information for the US National Cancer
Institute. The TCIA dataset is organized into tumor type
collections with other collections, which includes analytic
results or clinical datall69. In addition, the TCIA multi-
label dataset consists of labels of spleen, kidney, esophag-
us, pancreas, gallbladder, stomach, liver, and
duodenum[114,

For more information on abdominal organ segmenta-
tion datasets, refer to [167] and Table 3 for the web
source to the datasets, and [170] for the medical image
segmentation datasets limitations.
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Table 3 Publicly available abdominal organ(s) datasets

Organ Dataset Web source
Liver LiTS https://competitions.codalab.org/competitions/17094
Liver Sliver07 https://www.sliver07.org
Liver 3Dircadb https://www.ircad.fr/research/3d-ircadb-01
Liver MIDAS https://www.insight-journal.org/midas/
Liver ISICDM http://www.imagecomputing.org/2019/challenge.html
Pancreas NIH https://wiki.cancerimagingarchive.net /display /Public/Pancreas-CT
Kidney KiTS19 https://kits19.grand-challenge.org/
Spleen MSD-spleen http://medicaldecathlon.com
Multi-organ BTCV https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
Multi-organ VICERAL https://www.smir.ch/VISCERAL/Start
Multi-organ TCIA https://www.cancerimagingarchive.net

5.2 Evaluation

Diverse evaluation metrics are used to analyze the
performance of abdominal organ segmentation methods.
The accuracy of the segmentation algorithms often pro-
posed by researchers is evaluated with three common
metrics: volume-based, surface distance-based and clinic-
al performance metrics('!l. These metrics are used to veri-
fy the performance segmentation methods between the
ground truth and test resultsl6dl. Dice similarity coeffi-
cient (DSC), Jaccard (JAC) index, relative volume differ-
ence (RVD), and Fl-score are the most common metrics
used in the referenced literature and they are calculated

using (1)—(5).

DSC =2 x |[Ri N Ra| / (|Ra| + | Rel) (1)
JAC = (|[R1 N Rz) / (|R1 U Rel) (2)
RVD ((A/B) — 1) x 100 (3)
F\ =2TP/(2TP + FP + FN) (4)

Accuracy = (TP+TN) /(TP + FN +TN + FP)
(5)

where R; indicates a ground truth region and Ry a
segmentation result region%. A and B denote the total
volume of the segmentation region and total volume of
the ground truth respectivelyl33l. TP represents True
Positive — number of pixels/voxels correctly classified, TN
represents True Negative — number of background
pixels/voxels correctly classified, FP represents False
Positive — number of pixels/voxels wrongly classified, and
FN represents False Negative — number of background
pixels/voxels wrongly classified(145, 171],

DSC is also known as Sorensen-Dice index (SDI),
Sorensen Index (SI)I72. DSC represents an algorithm's
overall performance in correctly including the ROI pixels
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inside the segmentation. It is considered superior and
noted to segment boundaries because it only evaluates
labeled pixels correctly. DSC is additionally often used to
measure system performance repeatability through cross-
validation[!73]. There is no overlap between the segmen-
ted region and the ground truth when a value of 0 is ob-
tained, but a value of 1 represents perfect segmentation.
Jaccard (JAC) index is mostly excluded in instances
where DSC is reported since it provides the same
ranking(33l,

JAC is also known as Intersection-over Union (IoU).
It calculates the ratio of the area of the overlap between
the segmentation predicted and the segmentation of the
ground truth to the area of union between the segmenta-
tion predicted and the ground truth segmentation. JAC
and DSC are similar as they are monotonic in one anoth-
er or correlated positively. However, what differentiates
JAC from DSC is that, JAC penalizes instances of res-
ults that are incorrect more than the DSC. Hence, JAC
or DSC can be used for segmentation validation instead
of using both[173],

RVD non-symmetrically calculates the results and ref-
erence volumes difference and represents that both
volume sizes are equal if a value 0 is recorded, but this
does not imply that the segmentation results and the
ground truth masks are identical. RVD metric reveals if a
method inclines to over— (positive number) or under—
(negative number) segment the imagel™!.

Fi-score, also known as Boundary F; (BF) specifies
the harmonic mean of precision (positive predictive value)
and recall (true-positive rate or sensitivity)0l. It is con-
venient for contour or boundary matching between pre-
dicted segmentation and ground truth segmentation. It is
also known as the DSCI73,

Table 4 gives a summary of abdominal organs segmen-
ted using the supervised method, the used datasets, and
their dice score. Table 5 gives a summary of abdominal
organs segmented using the semi-supervised method, the
used datasets, and their evaluation score. From the refer-
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Table4 Summary of abdominal organs segmented using supervised method: The reference, organ, modality, datasets used, data size,

application and dice score.

Reference OArl;j;)lminal Modalities Dataset Data size Segmentation application  Dice score (%)
[63] Liver CcT Public Dataset, MICCAI-Sliver07, 160 Liver 96.00
3DIRCADB & Annotated Subjects
(Clinical experts)
[65] CT Public 3DIRCADB & Private 120 Normal liver tissue 95.70
Tumor tissue 96.10
[66] CcT LiTS-ISBI2017 130 Liver-tumor 89.72
Liver 98.51
3DIRCADB - Liver-tumor 68.14
Liver 96.01
[67] CT LiTS - Liver-tumor 96.10
[62] DCE-CT 8 Examinations 48 Parenchyma 95.50
Active 80.40
Tumoral 91.00
[41] CcT LiTS Liver 96.10
Tumor 56.90
[64] CT Local Hospital, 3SDIRCADb 56 Liver vessel 68.70
(82] cT LiTS-2017 201 Liver 96.20
Tumor 69.60
[174] cT R Adams Cowley Shock Trauma Left 73 Whole liver volume 95.00
(STC)
&ryder Trauma Left (RTC)
[175] CcT LiTS-2017 201 Liver 94.24
[88] Kidney SPECT/CT Tc-99m DTPA kidney SPECT/CT Data 393 Renal parenchyma 89.00
[89] DW-MRI  DW-MRI Data 32 Kidney 91.00
[90] DCE-MRI Hospital 30 Normal 91.40
Abnormal 83.60
[91] Us Populationl 108 Kidney 77.24
Population2 123 Kidney 72.83
[93] CT Private 60 Kidney 97.30
[85] CT Jiangsu Province Hospital 131 Renal 88.20
[123] cT KiTS19 300 Kidney 96.74
[17] Gallbladder MRCP SHIP - Tumor 84.54
Native MRCP 92.00
Secretin-enhanced MRCP  90.00
[96] Pancreas cT NIH-CT 82 Pancreas 78.90
[97] MRI Changhai Hospital 20 Uncertain regions 73.88
cT NIH-CT 82 Uncertain regions 84.37
[98] CT NIH-CT 82 pancreas 87.57
[100] CT NIH Pancreas, BTCV 129 Pancreas 81.39
[103] cT NIH 80 Pancreas 70.70
[104] CT NIH-CT 82 Pancreas 85.99
[101] CT NIH 82 Pancreas 85.93
[99] CT ISICDM 78 Pancreas 80.71
[102] cT NIH 82 Pancreas 86.93
[105] CcT NIH-CT 82 Pancreas 71.00
[107] Spleen CcT Memorial Sloan Kettering Cancer Left 41 Spleen 96.40
[109] Multi-organ CT Multi-atlas Labeling Beyond the Cranial 30 Multi-organs 78.76

Vault (BCTV)
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Table 4 (continued) Summary of abdominal organs segmented using supervised method: The reference, organ, modality,

datasets used, data size, application and dice score.

Abdominal

Reference organ Modalities Dataset Data size Segmentation application Dice score (%)
[110] CcT Dual-phase CT Datasets 236 Multi-organs 89.40
[111] MRI T1-VIBE 102 Multi-organs 90.00
[112] CcT LiTS 201
KiTS 300 Multi-organs 94.40
Spleen Seg. dataset -
BTCV 47
[113] CT Dataset-1 150 Liver 97.30
Spleen 97.40
Dataset-2 50 Liver (External) 98.20
Spleen (External) 96.90
Liver (Internal) 98.30
Spleen (Internal) 96.80
[20] CT Pancreas -CT & BTCV 90 Spleen 95.00
L. Kidney 93.00
Gallbladder 73.00
Esophagus 71.00
Liver 95.00
Stomach 87.00
Pancreas 75.00
Duodenum 63.00
[114] CcT VISCERAL 10 7 organs 82.27
TCIA 43 8 organs 79.03

enced literature, DSC is the most frequently used evalu-
ation index for the abdominal organ segmentation accur-
acy measurement since its calculation is most convenient,
and the value is larger as compared to JAC for the same
two images. This indicates that the DSC has a much bet-
ter effect of calibration[0l.

Section 5 reviewed medical image datasets, the source
and properties of publicly available datasets for the liver,
kidney, pancreas, gallbladder, spleen, and multi-abdomin-
al organs, and the metrics used for the evaluation of the
performance of abdominal organ segmentation methods
based on ground truth and test results.

6 Discussions and future directions

In the previous sections, we reviewed supervised and
semi-supervised abdominal organ segmentation methods
with respect to single and multi-organs, datasets, and
evaluation from selected papers. This section focuses on
discussing literature, existing challenges, and future pro-
spects for abdominal organ segmentation.

6.1 Discussions

Various abdominal organs have been discussed with
respect to supervised and semi-supervised methods used
in the process of segmentation throughout this paper.
The publications on supervised and semi-supervised
methods for abdominal organ segmentation are illus-
trated in Figs.1—4. The results are collected by using the
following search terms: “kidney segmentation”, “liver seg-
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mentation”, “gallbladder segmentation”, “spleen segment-
ation”, “pancreas segmentation”, “multi-organ segmenta-
tion” in the title on Web of Science core collection.

From Fig.1 and the literature reviewed, current state-
of-the-art supervised segmentation methods are based on
deep learning techniques. As compared to the convention-
al and atlas methods, deep learning methods have
achieved much better performance recently!?l. Since it is
successful in real world applications, it also provides good
accuracy, that notwithstanding it is projected as a prime
method in the medical field for future applications(36l.
Deep learning approaches, such as U-Net, FCN, DNN,
among others, have shown remarkable potential in auto-
matic segmentationll” of abdominal organ images.
Hence, they have efficiently been proposed for the seg-
mentation of abdominal organs.

Also, from Fig.2 and the literature reviewed, it can be
deduced that current state-of-the-art methods of semi-su-
pervised segmentation regarding abdominal organs are es-
sentially based on graph and self-training techniques.
There has been an increasing interest in graph tech-
niques due to their convexity, scalability and effective-
ness in application. A graph-based SSL convexity ensures
easier attainment of a local solution by the optimization
problems than the general case. Graph-based SSL is scal-
able due to its flexibility in dealing with big data large-
scale datasets. Graph-based semi-supervised learning
methods seek to learn the function predicted for the la-
bels of unlabeled samples by exploiting the information of
the label dependency reflected by the label information
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Table 5 Summary of abdominal organs segmented using the semi-supervised method: The modality, datasets used, data size,
application, evaluation type and evaluation score.

Reference Abdominal Modalitics Dataset Data size Segrrhlent.atlon Evaluation  Evaluation
organ application  type score (%)
[140] Liver CcT MICCAI-Sliver07 78 Liver RVD 2.7
3DIRCABD Liver RVD 0.97
[142] CcT MICCAI-Sliver07 30 Liver RVD 4.16
[143] CcT MICCAI-Sliver07 & XHCSU14 (Local 40 Liver RVD -0.1
Database)
[144] CT Sliver07, 20 Liver RVD -0.6
3DIRCADB & Local Clinical Datasets 20 Liver RVD 0.7
[29] MRI Philips Health Care & GE Healthcare 36 Liver SI 97.0
Global Diagnostic Imaging
[163] cT XHCSU14 20 Liver Dice 97.3
MICCAI-Sliver07 - Liver Dice 97.2
[145] Kidney CcT Kidney Dataset 27 Kidney Dice 95
8 Renal artery Dice 80
[146] DEC-MRI Group 1, Group 2, Group 3 26 Renal cortex F1 0.86
DCE-MRI Dataset 45 Renal F1 0.93
[147] Us Clinical Kidney US images 85 Kidney Dice 95.81
[156] Gallbladder CT Patients 27 Gallbladder Jaccard Index 0.623
[148] Pancreas CcT NIH 82 Pancreas (10% labeled training cases)
Dice 78.77
(20% labeled training cases)
Pancreas
Dice 81.18
[151] cT NIH 65 Pancreas Dice 77.8
[150] CcT NIH 82 Pancreas (10% labeled training cases)
Dice of 2 75.63
views 77.55
Dice of 3 77.87
views
Dice of 6
views
(20% labeled training cases)
Dice of 2 79.77
views 80.14
Dice of 3 80.35
views
Dice of 6
views
[176] CT NIH 82 Pancreas Dice 82.4
MRI UFL-MRI 79 Pancreas Dice 80.5
[152] Spleen CT ImageVU 100 Normal Dice 94.0
117 Splenomegaly
[136] MRI Tlw & T2w 60 Splenomegaly Dice 94.10
[157] MRI Tlw/T2w 55 Splenomegaly Dice 88.0
[153] Multi-organs CT MOBA 90 Multi-organs Dice 83.60
[51] CcT Newly Collected Large Dataset 310 Multi-Organ Dice 77.94
[154] CcT - 24 Multi-organs Jaccard index 80.69
availablel®6l. Self-training is gaining attention since it does ing tasks to be trained on inadequately labeled training
not need any particular assumption and also allows learn- data. This shows impressive outcomes in SSLI78. Self-

@ Springer



904 International Journal of Automation and Computing 18(6), December 2021

m Atlas-based
® Conventional
®Deep learning

50

40

30

20 I

10 l I

0 R - -1 mm

Liver  Kidney Gallbladder Pancreas Spleen Multi-organ

Fig. 1 The number of supervised segmentation methods: Atlas,
conventional, and deep learning publications between 2016 and
2021 in WeDb of Science Core Collection as of March 23, 2021.
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Fig. 2 The number of semi-supervised segmentation methods:
Generative, self-training, co-training, graph, and TSVM
publications between 2016 and 2021 in Web of Science Core
Collection as of March 23, 2021

training techniques can also be used with any classifier,
and it is one of the SSL’s most straightforward ap-
proaches(20].

From Figs.3 and 4, more supervised methods have
been used to segment abdominal organs as compared to
the semi-supervised methods. In the past years, research-
ers have sought to attain more accurate segmentation res-
ults within the framework of supervised machine learning
due to the significant focus on the deep learning
network’s automatic feature extraction instead of the
manual feature extraction and the substantial improve-
ment in computational power. Moreover, the supervised
segmentation methods have broader applications and are
more precise when provided with enough user inputi2l.
The semi-supervised is noted to be fast, but it performs
worse than the supervised if the data assumptions fail to
hold. However, recent approaches rather make assump-
tions that are pre-contained in the classifier[46],

6.2 Future directions

The future of abdominal organ segmentation is largely
dependent on the availability of large and high quantity,
and quality annotated datasets2% 159, Annotating medic-
al images is extremely time-consuming and requires ex-
pert knowledgel!39, which is costly hence the correspond-
ing small medical image datasets. Currently, not too
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supervised segmentation method publications between 2016 and
2021 in Web of Science Core Collection as of March 23, 2021.
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Fig. 4 The number of single and multi-abdominal organ semi-
supervised segmentation method publication between 2016 and
2021 in Web of Science Core Collection as of March 23, 2021

many annotated public datasets are available, and the
ones available have become the basis for correlating the
accuracy of distinct segmentation methods. On gallblad-
der, no open source CT images dataset of cholelithiasis
and gallstones is availablel®l. Supervised machine learn-
ing algorithm requires annotated datall3: 46l and super-
vised deep learning methods particularly requires a large
labeled training set to achieve high accuracyl!l in their
training!!!l. On the other hand, the semi-supervised ma-
chine learning algorithm leverages on unannotated
datal!3? and may be necessary to be explored further by
the research community to address the abdominal organ
dataset limitations.

It can also be seen from the reviewed publications
that majority of the datasets used are based on the CT
modality, and very few of them are made up of the MRI
and US modalities. The emerging MRI technology, with
its high effectiveness in showing the difference between
healthy and diseased soft tissues in the body[l"], makes it
the ideal modality for further and comprehensive analys-
is of the abdomen[l67]. More than one imaging modality
has been analyzed by physicians generally so as to assess
better and evaluate the condition of abdominal
organ(s)PY. Hence, it would be necessary to advance re-
search works on supervised and semi-supervised
method(s) of segmenting abdominal organs using diverse
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modalities simultaneously.

Finally, research interest on abdominal organs such as
spleen, gallbladder, multi-organ, and pancreas has not
gained much attention compared to the kidney and liver,
and would be necessary to explore in both supervised and
semi-supervised segmentation approaches.

7 Conclusions

In this paper, we have surveyed single and multi-ab-
dominal organ(s) segmented based on supervised and
semi-supervised methods, datasets, and abdominal organ
segmentation evaluation metrics. Firstly, we discussed
methods of supervised and semi-supervised segmentation.
Then we presented supervised abdominal segmentation
methods and their application on single and multi-organs.
We also highlighted semi-supervised abdominal segmenta-
tion methods relative to single and multi-organs, and we
assessed datasets in line with abdominal organ segmenta-
tion, while discussing abdominal organ segmentation over
the stipulated period. Finally, we pointed out some fu-
ture prospects relative to abdominal organ segmentation.

Abdominal organ(s) segmentation can be very effi-
cient and effective when large and high quality annot-
ated datasets are available. Also, the process of segment-
ing abdominal organ(s) is daunting due to issues with the
technique of imaging and anatomy; the organ’s close
proximity to adjacent organs, the similarity of texture
and intensity of the adjacent organs, and the abdominal
organ(s) shape’s low contrast and variability. However,
the segmentation of abdominal organ(s) remains a critic-
al area of research, and it is highly vital for computer-
aided surgery, anatomical structure modeling, radiation
therapy planning, tumor growth measurement, visualiza-
tion prior to diagnosis, treatment, and surgical proced-
ures, and computer-aided diagnosis which can save the
life of patients.
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