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1 Introduction

Regular expressions are widely used within and even
outside of computer science due to their expressiveness
and flexibility. The importance of regular expressions for
constructing the scanners of compilers is well knownlll.
Nowadays, their applications extend to more areas such
as network protocol analysis2l, MySQL injection preven-
tionBl, network intrusion detection(4, XML data specifica-
tionls), and database queryingll, or more diverse applica-
tions like DNA sequence alignment[’. Regular expres-
sions are commonly used in computer programs for pat-
tern searching and string matching. They are a core com-
ponent of almost all modern programming languages, and
frequently appear in software source codes. Studies have
shown that more than a third of JavaScript and Python
projects contain at least one regular expression/s: 9.

However, recent research has found that regular ex-
pressions are hard to understand, hard to compose, and
error-pronell% 11, Indeed, regular expressions have a quite
compact and rather tolerant syntax that makes them
hard to understand even for very short regular expres-
sions. For example, it is not easy for users to capture
immediately what strings the regular expression
AINTHENNVIH)N)” specifies. It becomes much more
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difficult for complex regular expressions containing more
than 100 characters or may have more than ten nested
levels!!2l. This is a real situation for software developers.
For example, on the popular website stackoverflow.com,
where developers learn and share their programming
knowledge, more than 235 000 questions are tagged with
“regex”.

Faulty regular expressions may cause failures in the
corresponding applications that use them. Therefore, en-
suring the correctness of regular expressions is a vital pre-
requisite for their use in practical applications. In fact,
the importance of ensuring the correctness of regular ex-
pressions or other structural description models has
already been recognized by some researchers. Klint et al.[t3]
used the term “grammarware” to refer to all software
that involves grammar knowledge in an essential manner.
Here, grammar is meant in the sense of all structural de-
scriptions or descriptions of structures used in software
systems, including regular expressions, context-free gram-
mars, etc. They noted that “In reality, grammarware is
treated, to a large extent, in an ad-hoc manner with re-
gard to design, implementation, transformation, recovery,
testing, etc.” Take the testing of regular expressions as an
example: A survey of professional developers reveals that
developers test their regular expressions less than the rest
of their codesl8l. Indeed, an empirical study shows that
about 80% of the regular expressions used in practical
projects are not tested, and among those tested, about
half use only one test string that is far from sufficient[14].
Hence, sound and systematical methods and techniques
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are necessary to improve the quality of such software
components.

The importance and necessity of checking the correct-
ness and thus improving the quality of regular expres-
sions have attracted extensive attention from researchers
and practitioners, especially in recent years. In this art-
icle, we provide a review of the recent works related to
this issue. We classify the related works into different cat-
egories, including empirical study, test string generation,
automatic synthesis and learning, static checking and
verification, visual representation and explanation, and
repairing. For each category, we review the main results,
compare different approaches, and discuss their advant-
ages and disadvantages.

The rest of this article is organized as follows: Section 2
introduces the preliminary knowledge on regular expres-
sions, their different dialects, the meaning of correctness
and finite automata. Sections 3—8 review the relevant
works on the correctness assurance of regular expressions
according to different categories, respectively. Section 9
concludes with a summary and a discussion for further
work.

2 Regular expressions

2.1 Formal definition

Regular expressions arose in the context of the formal
language theory!5l. Simply speaking, a regular expression
is a sequence of characters that defines a (possibly infin-
ite) set of strings, which is called the language described
by the regular expression. Formally, a regular expression
defined on an alphabet X' of symbols is described recurs-
ively as follows. The empty set @, the empty string £ and
each symbol a € X are regular expressions, denoting the
empty set @, the set containing only the “empty” string,
the set containing only the character a, respectively. Sup-
pose that R and S are two regular expressions, then the
concatenation RS, the alternation R|S, and the Kleene
star R" are regular expressions, denoting the set of strings
that can be obtained by concatenating a string described
by R and a string described by S (in that order), the uni-
on of sets of strings described by R and S, and the set of
all strings that can be obtained by concatenating any fi-
nite number (including zero) of strings from the set de-
scribed by R, respectively. A string w belonging to the
language defined by regular expression R is called posit-
ive or accepted by R, otherwise called negative or re-
fused by R. For a given language, there exist many cor-
responding regular expressions that can describe the lan-
guage.

2.2 Different dialects
Apart from the above standard regular operators, ex-

@ Springer

tensions have been added to regular expressions to en-
hance their ability to specify string patterns. For ex-
ample, operators +,7, {m,n} and && are used for specify-
ing one or more repetition, one or zero repetition, repeti-
tion for at least m times and at most n times, interleav-
ing or shuffling(l6l of strings, respectively. Different ap-
plications may support different additional operators. For
instance, XML schema language DTD permits only addi-
tional operators 4+ and ?, while XSDI7 further supports
operator {m,n}. The XML schema language Relax NGI8]
even further allows the use of an interleaving operator
that specifies unordered concatenations of strings.

In particular, in the field of string pattern matching,
more additional notions and more compact syntax are
used to describe string patterns, such as the character
class, character range, complement, and wildcard. Differ-
ent regular expression pattern matching engines are not
fully compatible with one another. The syntax and beha-
vior of a particular regular expression engine may differ
from the others. Although Perl compatible regular expres-
sions (PCRE)[M and portable operating system interface
of UNIX (POSIX) regular expressions(2l have greatly in-
fluenced the features of most regular expression engines,
they have not been standardized yet. Thus, a lot of regu-
lar expression dialects exist in practical uses. Some regu-
lar expression engines even contain non-regular operators,
such as backreferences or look-around assertions. For con-
venience, Table 1 illustrates the syntax and operators
supported in most regular expression dialects.

Among the existing works on ensuring the correctness
of regular expressions, some take the formal definition of
regular expressions into account, while some consider
various dialects. In this survey, we do not distinguish the
differences of the target regular expressions. We classify
and compare those works according to the topics on
which they focus.

2.3 Correctness

Simply speaking, a regular expression is correct if it
exactly does what its designers and users intend it to do —
no more and no less. The correctness involves two levels:
syntax correctness and semantic correctness. Syntax er-
rors can be checked by compilers. However, when regular
expressions are embedded in source programs, the com-
pilers usually treat them as literal strings, and syntactic-
al errors are reported only by throwing exceptions at run
time. Thus, some tools are developed to help developers
to compose syntactically correct regular expressions. For
example, almost all regular expression editors provide
syntax highlighting or syntax colouring.

The semantic correctness of a regular expression
means that the language defined complies with the inten-
ded language, i.e., it meets the users’ requirements. More
specifically, a regular expression is semantically correct if
it defines all the strings intended to be accepted and does
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Table 1 Syntax of regular expressions
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Name Rule Description
Regexp Unionexp
Unionexp Interexp | unionexp Union
Interexp
Interexp Concatexp & interexp Intersection
Concatexp
Concatexp Repeatexp concatexp Concatenation
Repeatexp
Repeatexp Repeatexp? Zero or one occurrence
Repeatexp * Zero or more occurrences
Repeatexp + One or more occurrences
Repeatexp {n} n occurrences
Repeatexp {n,} 7 Or IMOore OCCUrrences
Repeatexp {n,m} n to m occurrences
Complexp
Complexp ~ complexp Complement
Charclassexp
Charclassexp [charclasses] Character class
["charclasses] Negated character class
Simpleexp
Charclasses Charclass charclasses
Charclass
Charclass Charexp — charexp Character range
Charexp
Simpleexp Charexp
Any single character
# The empty language
Q Any string
“<Unicode string without double-quotes>" A string
0 The empty string
(unionexp) Precedence override
Charexp <Unicode character> A single non-reserved character

\ <Unicode character>

Word character
Digit character
‘Whitespace character

A single character

not define any strings intended to be rejected. Ensuring
semantic correctness is difficult since the intended lan-
guage is not easy to be formally specified. Different meth-
ods and approaches have been proposed to check the se-
mantic correctness of regular expressions or assist de-
velopers in writing semantically correct regular expres-
sions. For example, generate a set of strings from the reg-
ular expression to validate whether they conform to users’
intention, or automatically learn a regular expression
from a set of intended strings given by users. Almost all

the works reviewed in this paper are devoted to ensuring
the semantic correctness of regular expressions.

2.4 Automata

Formally, a non-deterministic finite automaton (NFA)
is a 5-tuple A = (X, Q, qo, F, 0), in which X' is the alpha-
bet, @ is a finite set of states, qo is the initial state, F'is
the set of final states and ¢ is the transition function that
maps each pair of a state and a symbol to a set of states.
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A string w = ajas " -a, is accepted by an automaton A if
and only if there exists a sequence of states qogi' g, such
that ¢, is one of the final states, and ¢; €6(g;i1, a;) for
each 1€[1,n]. A deterministic finite automaton (DFA) is
a special case of NFA, in which the transition function §
maps each pair of a state and a symbol to a singleton set
or the empty set . If a regular expression contains only
regular operators, it can be equivalently converted to an
NFA representation or a DFA representation. Some regu-
lar expressions support non-regular features such as back-
references, and they may require more complex auto-
maton representations.

3 Empirical study

To ensure the correctness and improve the quality of
regular expressions, it is quite important and necessary to
first investigate the practical issues which developers face
within regular expression usage, including, for instance,
what kind of bugs addressed mainly by developers, what
kind of operators/features are mostly used in practical
applications, what kind of representations are more un-
derstandable than others, etc. Those works are usually
conducted by empirical studies. In this section, we re-
view the recent results on the empirical research of regu-
lar expressions.

3.1 Testing status and bugs classification

Developers have reported that they test their regular
expressions less than the rest of their codeltl. Wang and
Stoleell4] further investigated how thoroughly tested regu-
lar expressions are by examining open source projects.
They used test metrics for graph-based coveragel2ll over
the DFA representation of regular expressions, including
node coverage, edge coverage, and edge-pair coverage.
Their evaluation shows that only 16.8% of the regular ex-
pressions are executed by the test suites, and among the
tested regular expressions, half (41.9%) contain only one
test string, and a majority (72.7%) use only positive in-
put strings or only negative input strings. Edge coverage
and edge-pair coverage are both very low (less than 30%
on average). These results reveal that regular expressions
are not well tested as expected in practice, which may be
responsible for many software faults.

In a follow-up work, Wang et al.[?2] presented an em-
pirical study on regular expression bugs in real-world
open-source projects. By analyzing a sample of merged
pull request bugs related to regular expressions, they
show that about half of the bugs are caused by incorrect
regular expression behavior, and the remaining are caused
by incorrect API usage and other code issues that re-
quire regular expression changes in the fix. Among the in-
correct regular expression behaviors, about two-thirds fall
into the category of rejecting valid strings, one-fifth ac-
cept invalid strings, and one-tenth accept invalid strings
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and rejecting valid strings. These indicate that de-
velopers are more likely to write incorrect regular expres-
sions that are too constrained than the regular expres-
sions intended to use. The authors also observe that fix-
ing regular expression bugs is nontrivial as it takes more
time and more lines of code to fix them compared with
the general pull requests.

3.2 Feature usage and evolution

Chapman and Stoleell] studied how regular expres-
sions are used in practice and what features of regular ex-
pressions are most commonly used in practice. Their find-
ings show that regular expressions are frequently used to
locate the content within a file, capture parts of strings,
and parse user inputs. They have identified eight regular
expression operators/features most commonly used in Py-
thon projects. These features include one-or-more repeti-
tions, group (parenthesis), zero-or-more repetitions, char-
acter range, etc. In a follow-up work, Chapman et al.[23]
further explored how different features impact the read-
ability, comprehension, and understandability of regular
expressions. Their study reveals that some features make
regular expressions more readable and understandable,
while some do not. For example, ‘\d” is semantically
equivalent to “[0—9])”. While “\d” is more succinct, “[0-9]”
may be easier for developers to read and thus may help
to avoid potential errors.

The work of [24] is devoted to regular expression evol-
ution, studying the syntactic and semantic differences
and feature changes of regular expressions over time. The
main results include: most edited expressions have a syn-
tactic distance of 4—6 characters from their old versions;
over half of the edits tend to expand the scope of the ex-
pression, indicating that the old versions define lan-
guages smaller than the intended ones. These results can
help to design mutation operators and repair operators to
assist with the testing and fixing of regular expressions.

3.3 Composition, re-use, and risks

Bai et al.l?’l conducted an exploratory case study to
find how developers compose their regular expressions
during the development of their projects. They find that
a large majority of developers search online resources
such as Q&A sites (e.g., stackoverflow.com, online for-
ums), repositories, or libraries (e.g., RegExLib[20l) during
their problem-solving tasks. This verifies that writing a
correct regular expression is usually difficult, and de-
velopers may prefer to re-use or modify an existing ex-
pression rather than write it from scratch. An earlier
study[?7 has reported that the use of regular expressions
is becoming highly repetitive, although they are being
used more and more often, and on the most popular web-
sites gathered in their study, only 4% of the regular ex-
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pressions are unique. However, as noted in [25], syntactic-
al errors often arise when participants copy/paste expres-
sions from another language to their projects.

Davis et al.[?8] pointed out that even no syntactical er-
rors appear during regular expression re-using, the se-
mantic and performance characteristic of expressions may
no longer retain. They surveyed a number of professional
developers to understand their regular expression re-use
practices and empirically measured the semantic and per-
formance portability problem introduced by re-using reg-
ular expressions. Their results show that 15% exhibit se-
mantic differences across languages and 10% exhibit per-
formance differences across languages, although most reg-
ular expressions compile across language boundaries
without syntactic errors. It implies that the re-use of reg-
ular expressions may introduce bugs. Semantics inconsist-
ency means that the same regular expression may match
different sets of strings across programming languages,
resulting in logical errors. Performance inconsistency
means that the same regular expression may have differ-
ent worst-case performance behavior, resulting in regular
expression denial of service (ReDoS) vulnerabilitiesl® 29.
Moreover, they state that they have identified hundreds
of source modules containing potential semantic bugs or
potential security vulnerabilities.

To find out how developers work with regular expres-
sions and the difficulties they face, Michael et al.l30]
provided a study of the regular expression development
cycle by interviewing a number of professional developers.
In general, developers say that regular expressions are
hard to read, hard to search for and hard to validate. Be-
sides, most developers are also unaware of critical secur-
ity risks that can occur when using regular expressions.

3.4 Determinism

A regular expressions is said deterministic if we al-
ways know definitely the next symbol we will match in
the expression without looking ahead in the string, when
we match a string from left to right against the expres-
sionBll. For instance, “(alb)"a” is not deterministic as the
first symbol in the string “aaa” could be matched by
either the first or the second a in the expression. Without
looking ahead, it is impossible to know which one to
choose. The equivalent expression “b*a(b"a)™, on the oth-
er hand, is deterministic. Deterministic regular expres-
sions allow pattern matching more efficiently than the
general ones. Several decision problems also behave bet-
ter for deterministic expressions. For example, language
inclusion for general expressions is PSPACE-complete but
is tractable when the expressions are deterministic. Some
applications require the determinism of regular expres-
sions, while some do not. For example, W3C specifica-
tion requires that the content models of XML schema
language DTDs and XSDsl['”7) must be deterministic regu-
lar expressions, while there are no determinism restric-

tions on Relax NGI[8 and regular expressions used for
string pattern matching. The work in [32] is devoted to
finding how deterministic real regular expressions are. Li
et al.B2 found that more than 98% of regular expressions
in Relax NG are deterministic, although Relax NG does
not have the determinism constraint for its content mod-
els. Besides, more than half of regular expressions from
RegExLib are deterministic. These results indicate that
deterministic regular expressions are commonly used in
practice. Therefore, exploring effective methods to ensure
the quality of such expressions is worthy of attention.

3.5 Others

Davis et al.33 performed an empirical study by com-
paring two different notations (textual and graphical) of
regular expressions and considering different factors such
as the length of regular expressions to find how these
factors affect the readability of regular expressions. They
used the time required for finding the shortest strings as
the primary measurement in their experiments. Their
findings show that the graphical notation of regular ex-
pressions is much more readable than the textual nota-
tion and that the length has a strong effect on the regu-
lar expression’s readability while the participants’ back-
ground shows no measurable effect.

Different empirical research may follow different
methodologies to extract regular expressions, e.g., from
different sources and written in only one or two program-
ming languages. Zheng et al.34 tried to find whether ex-
isting empirical research results can be generalized. They
report that significant differences exist in some character-
istics by programming languages and suggest that empir-
ical methodologies should consider the programming lan-
guages, as the generalizability is not always assured for
regular expressions supported in different programming
languages.

4 Test string generation

Testing is a common way to ensure the correctness of
regular expressions. The purpose of regular expression
testing is to check whether the defined language meets
the specification of users. One straightforward way to
achieve this purpose is to automatically generate a num-
ber of strings from the regular expression under testing
and check whether they comply with the intended lan-
guage. The generated test strings can be positive or neg-
ative. If users find that a generated positive string should
be rejected or a generated negative string should be ac-
cepted, this indicates that the regular expression is incor-
rectly defined.

4.1 Coverage based generation

Coverage criteria are used to measure the quality of a
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particular test set and to provide strategies for test data
generation algorithms. Coverage criteria are usually
defined with respect to programs. In [33], a notion of
pairwise coverage is proposed that is defined for regular
expressions. The idea adopts pairwise testing3%, a com-
binatorial method for testing software systems. For each
pair of input parameters to a software system, pairwise
testing tries to test all possible combinations of these two
parameters. Similarly, pairwise coverage for regular ex-
pressions tests all possible combinations of any two sub-
expressions concatenated in the regular expression under
testing. Furthermore, to avoid generating infinite strings,
pairwise coverage restricts only three typical possibilities
for Kleene star *: zero, one, and more-than-one repeti-
tions. Consider the following regular expression “a*b*c™
for example. The string sets {e, a, aaa}, {, b, bb} and {e,
¢, ccec} cover the three typical repetitions for these sub-
expressions “a’™, “b™ and “c"” respectively. Pairwise cov-
erage criterion requires that all combinations of any two
of these three string sets should be covered. For instance,
the string “aaabbccee” covers the combinations (“aaa”,
“bb”), (“aaa”, “ccec”) and (“bb”, “cccc”). The string set
achieving pairwise coverage for a regular expression is not
necessarily unique. A string generation algorithm that
given as an input a regular expression outputs a small set
of strings that satisfies the pairwise coverage criterion is
implemented. The algorithm generates only positive
strings. Besides, it considers the formal definition of regu-
lar expressions and supports only basic operator concat-
enation, alternation, Kleene star, and two extended regu-
lar operators counting and interleaving. The algorithm
can be used for testing content models of XML schemas
but may not be suitable to be used directly for testing ex-
pressions in other specialized applications such as string
pattern matching, where regular expressions have a very
different syntax.

Egretllll generates strings from regular expressions
based on the underlying automata. It first converts a reg-
ular expression into a specialized automaton, then de-
rives a set of basis paths of the resulting automaton, and
finally creates strings from the basis paths. In this sense,
we may say that the generated strings cover the basis
paths of the specialized automaton. Egret focuses on reg-

ular expression patterns, i.e., expressions used in manipu-
lating text strings. Compared with pairwise coverage-
based generation, it allows more regular operators such as
the character class. We next use the regular expression
“a?[2-9](blc)\d{3}(e|f)” as an example to explain Egret's
generation process. The generation is divided into three
steps.

Step 1. Egret first converts the expression into a spe-
cialized automaton, as shown in Fig. 1. In this automaton,
transitions can be labeled by an individual symbol, a
character set, or an epsilon. Special “begin repeat” and
“end repeat” states are added to the beginning and end of
each repeating operator, respectively.

Step 2. The specialized automaton is then traversed
to obtain a set of basis paths, and for each basis path, an
initial test string is generated. For the automaton in
Fig.1, we have the following basis paths and initial sets
of strings.

Basis paths Initial strings

Path 1: 0—--—6-7-8-11—--—16-17-18-21 a2bddde
Path 2: 0—--—6-7-8-11—--—-16-19-20-21 a2bddd f
Path 31: 0—-—6-9-10-11—---16-17-18-21 a2cddde

Step 3. This step creates additional strings from the
initial set of strings. Two strategies are used for creating
additional strings: 1) altering the number of iterations for
each repeat operator and 2) changing the character used
for a character set. For instance, consider the initial
string “a2bddde” derived from Path 1. By replacing “a”
with € and “aa” (0 and 2 repetitions for “a?”), it obtains
one positive string “2bddde” and one negative string
“aa2bddde”. By replacing “2” with “0” (one digit outside
[2-9]), it obtains one negative string “a0bddde”. By repla-
cing “ddd” with “dd” and “dddd” (2 and 4 repetitions for
{3}), it obtains two negative strings, “a2bdde” and “a2bd
ddde”.

Due to different creation strategies of additional
strings in Step 3, Egret can produce not only positive test
strings but also negative test strings. However, Egret's
generation strategy especially for negative strings is relat-
ively simple. For example, “(alb)*” generates only one
negative string e, and “(alb)™ generates no negative
strings. Some faults may not be revealed for complex reg-
ular expressions.

Begin {3} End {3}

Fig.1 Specialized automaton converted from the regular expression “a?[2-9](b—c)\d{3"(e—f)” during Egret’s generation
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4.2 Mutation based generation

Mutation testing is a fault-based technique to design
new test data or to evaluate the quality of existing test
datal36l. It involves introducing into the software artifact
under test small changes, called mutations, which repres-
ent typical mistakes that developers could make. Each
mutated version is called a mutant. Test sets detect and
reject mutants by causing the behavior of the original
version to differ from the mutant; it is called killing the
mutant. Arcaini et al.87 applied mutation techniques to
regular expressions for test string generation. They identi-
fied a family of possible faults on regular expression defin-
itions representing the common mistakes programmers
make when writing regular expressions. A set of mutants
is created according to those faults, and then a set of crit-
ical strings that are able to distinguish the given regular
expression from its mutants are generated. We next
briefly describe this generation approach with an ex-
ample.

One possible fault in defining regular expressions is
that a programmer could have used the wrong repetition
operator. Suppose that a programmer wants to define a
regular expression accepting all the non-empty sequences
of digits; they could have wrongly written it as “[0-9]™
instead of the correct one “[0-9]*”. According to this
fault, Arcaini et al.B7 proposed the mutation operator
quantifier change (QC) that mutates each simple repeti-
tion operator into another simple repetition operator, and
for each user-defined operator {m}, creates a mutant in
which m (and also n if the operator is {m,n})is in-
creased and a mutant in which it is decreased. For ex-
ample, for regular expression “[0-9]"”, the mutation oper-
ator QC produces two mutants, “[0—9]7” and “[0-9]7?”. For
the regular expression “[0-9]{3}”, QC generates mutants
“[0-9]{2}”, “[0-9]{4}”, “[0-9]{3,}” and “[0-9]{0,3}".

Given a regular expression R and one of its mutant
M, a string s is said to be able to distinguish R from M if
s is accepted by R and not by M, or vice versa. That is,
s is a string of the symmetric difference between R and
M. For example, the empty string e is distinguishing for
regular expression “[0-9]"” and its mutant “[0-9]*". As
long as the mutant is not equivalent to the original ex-
pression, one can always find certain distinguishing
strings. The string generation algorithm developed in [37]
uses 14 mutation operators. For a regular expression R,
the algorithm first mutates it to obtain a set of mutants,
and then for each non-equivalent mutant, it computes the
symmetric difference of the automaton representation of
the original regular expression and the mutant. If the
symmetric difference is not empty (which means that the
mutant is not equivalent), it randomly selects a distin-
guishing string from the symmetric difference set.

This mutation-based generation could produce both
positive strings and negative strings. However, since the
number of mutants generated after using the 14 muta-

tion operators is very large, the generation process usu-
ally takes much time, and the generated string set may
be extensive, especially for long and complex regular ex-
pressions.

Some researchers adopted the technique of mutation
testing to validate XML schemasB% 39. Since the content
models of XML data are described by regular expressions,
schema testing reduces to some extent the testing of ex-
pressions. Mutation operators applied to different XML
schema components are proposed, and mutation-based
generation of XML data is implemented. The generation
algorithm usually produces only positive XML data.

4.3 Sampling and enumeration

In formal language theory, sampling and enumerating
are two fundamental problems concerning the generation
of regular languages. Sampling focuses on generating a
uniformly random string of length n of a regular lan-
guage so that strings of length n in that language all have
the same probability of being generated0: 41, Enumerat-
ing tries to enumerate all the distinct strings or all strings
of length n of a regular language in lexicographical
order42 43, However, most of the existing sampling and
enumerating algorithms take finite automata or regular
grammars as their inputs. Radanne and Thiemann/*4
presented an enumeration-based algorithm that takes reg-
ular expressions as direct input. These regular expres-
sions can be extended with intersection and complement
operators. The algorithm generates both positive and neg-
ative strings, which can be used to test regular expres-
sion parsers as well as to test regular expressions them-
selves.

There are many practical tools online available for
generating strings from regular expressions, such as
Xeger] Exrex/40] Generex[*”], and Regldg[*¥l. These tools
generate strings either randomly or systematically. For
example, Xeger randomly generates test strings for a reg-
ular expression and allows the users to specify how many
strings to be generated. Exrex produces all matched
strings for a given regular expression, and in case that the
matched strings are infinite, users are asked to restrict
the number of repetitions of the Kleene star operator or
restrict the number of generated strings. All these tools
generate only positive strings. The fault detection ability
of the generated strings is not quite satisfactory com-
pared with coverage-based generation or mutation-based
generation methods, as illustrated in [11, 33, 49].

5 Learning

Since writing a regular expression for a specific task
can be time-consuming and error-prone and require spe-
cial skills and familiarity with the formalism involved in
constructing regular expressions, some researchers have
been working on synthesizing or learning regular expres-
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sions automatically, either from a set of sample strings or
from a natural language specification described by a hu-
man being.

5.1 Learning from examples

The problem of synthesizing regular languages from
examples is a traditional topic in formal language theory.
Prior works concentrated mostly on learning determinist-
ic finite automatal®%; 1. Recent emerging research begin
to consider regular expressions as the learning target. The
examples can contain positive strings or both positive and
negative strings.

Brauer et al.l’2l devised an automaton-based approach
that learns regular expressions for information extraction
from only positive samples. Bartoli et al.[53] developed a
system that automatically creates a regular expression
from a set of input strings annotated by users, which
parts of strings to be matched (positive) and which parts
not to be matched (negative). The regular expressions
learned are expected to generalize the matching behavior
represented by examples. They have demonstrated that
their system has similar performance in both time and ac-
curacy with an experienced developerl®4. Also, the sys-
tem adopts the idea of genetic programming in the gener-
ation of regular expressions. Genetic programming is a
heuristic technique searching for an optimal or at least
suitable solution for a target problem. It starts with an
initial set of candidate solutions built usually at random
and then repeatedly evolves by trying to build new can-
didate solutions from existing ones using genetic operat-
ors and meanwhile discarding worst candidate solutions.
A problem-dependent function called fitness is defined in
order to quantify the ability of each candidate solution to
solve the target problem. The evolving procedure is re-
peated a predefined number of times or until a satisfying
solution is found: For example, a solution with perfect fit-
ness is found. The system developed in [53] adapted this
framework to the specific problem of regular expression
learning from examples. Each candidate regular expres-
sion is represented by an abstract syntax tree and two fit-
ness functions (one concerning the length of the candid-
ate expression and the other concerning the matching res-
ults of the candidate and the given examples) are defined
to measure the quality of each candidate expression.

Along the same lines as [53], subsequent regular ex-
pression learning algorithms have been proposed for en-
tity extractionl or text extractionl>¢l. Those genetic pro-
gramming-based learning techniques, although powerful,
usually execute slowly. It may take many minutes to ob-
tain the synthesized results. Lee et al.l’7] proposed to rap-
idly infer the simplest regular expression over a binary al-
phabet from a set of positive and negative examples,
which can then be interactively used by students to as-
sist them in studying and understanding regular expres-
sions.

@ Springer

Another class of regular expression learning al-
gorithms follows Gold's framework of learning (identifica-
tion) in the limit(8l, which is explained as follows. Let I"
be a subclass of regular expressions. I is said to be learn-
able or identifiable if there is an algorithm p mapping
sets of example strings to expressions in I" such that 1) S
is a subset of p(S) for every example set S and 2) to
every regular expression R of I, we can associate a so-
called characteristic sample S. such that, for each ex-
ample set S with S. C S, p(5) is equivalent to R. Intuit-
ively, the first condition says that algorithm p must be
sound; the second condition says that it must be com-
plete, i.e., p should converge when the sample contains
enough data.

It was shown by Goldl58l that the class of all regular
expressions is not learnable from only positive data.
Therefore, researchers have turned to identify subclasses
of regular expressions that can be learnable, such as
single occurrence regular expressions and chain regular
expressions(59, 60], and simple looping regular
expressions(fll. The learning of such special expressions
usually contains two steps: First, it constructs an auto-
maton from the given example strings, and then it de-
rives a target regular expression from the automaton. We
next take the learning of single occurrence and chain reg-
ular expressions as an example to explain the two steps.

A regular expression is called single occurrence if
every alphabet symbol occurs at most once in it. If a
single occurrence regular expression is of the form fi - f,
(n > 1) where each f; is a chain factor: an expression of
the form (a1]*"|ak), (ai]"|lar)?, (ai]'*"lax)T, or (ai]-*|ak)t?
with k£ > 1 and every a; is an alphabet symbol, then this
expression is called a chain regular expression. For ex-
ample, “(alb)*?c?(dle|f)t” is a chain regular expression
while “(abt|c)?(d?|e|f+)*” is not. Given a set of examples,
the learning algorithm first constructs a single occur-
rence automaton using the classical 2T-INF algorithm[®9.
A single occurrence automaton is a specific kind of DFA
in which no edges are labeled and all states, except for
the initial and final state, are symbol names. Fig.2 shows
the single occurrence automaton constructed from ex-
amples {aab, cdd}. The learning algorithm then trans-
forms the automaton into a single occurrence regular ex-
pression using a set of graph-based rewriting rules. If the
target expression is a chain regular expression, the trans-
formation adopts a different strategy. For example, the

\
(=)

Ko o8

Fig. 2 Example of single occurrence automaton
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single occurrence regular expression derived from the
automaton in Fig.2 is “(a*b)|(cdt)”, while the chain regu-
lar expression derived from this automaton is “at?¢?b?7d*7?”.
The algorithms following Gold's learning model can be
theoretically proved sound and complete. Since the regu-
lar expressions learned are restricted, such subclasses
learning algorithms are usually used in specific applica-
tions, such as the automatic inference of XML schemas.

5.2 Learning from specifications

Some researchers stated that although writing regular
expressions is time-consuming and error-prone, it is often
much easier for users to specify their tasks or require-
ments in natural language. Therefore, automatic learning
of regular expressions from natural language specifica-
tions is necessary and meaningful to help reducing pos-
sible errors caused by incorrect regular expressions. Ap-
proaches have been recently proposed for automatic gen-
eration of regular expression from specifications, by train-
ing a probabilistic parsing model from natural language
sentences and then generating regular expressions from
the modell62, or by using a sequence-to-sequence learning
model to directly translate natural language sentences to
regular expressionsl63 64, For example, Locascio et al.[63]
created a corpus of regular expression and natural lan-
guage pairs using the grammar rules such as “[0-9] — a

X
“’xr — ends

number”, “(x)" — x zero or more times”,
with £” and “.*z." — contains 2”. They then applied the
long short-term memory (LSTM) model to train this cor-
pus to accomplish the natural text descriptions to regu-
lar expressions translation. However, as pointed out in
[65], these approaches use only synthetic data in their
training datasets and validation/test datasets, and they
may not be effective in handling real-world situations.

Taking into account that natural language specifica-
tions alone are often ambiguous and that examples in
isolation are often not sufficient for conveying the user in-
tent, Chen et al.l66] proposed a multi-modal synthesis
technique for creating regular expressions from a combin-
ation of examples (including both positive and negative)
and natural language specifications. The implemented
tool produces top-k results that satisfy the examples and
natural language descriptions, but it is still up to the user
to check the results and to provide more information if
needed.

6 Static checking and verification

6.1 Syntax checking

Formal methods and verification are important to im-
prove the quality of software. However, most of the stat-
ic analysis tools only consider program code, and do not
check regular expressions. Moreover, compilers usually

treat regular expressions in the source program as literal
strings, and syntactic errors of regular expressions are re-
ported by throwing exceptions at run time. Spishak et
al.[l% designed a system that validates the regular expres-
sion syntax at compile time. In addition, the system
checks the use of incorrect capturing group numbers that
results in an exception error at run time. For example,
the regular expression “(a”)([0-9]*)” contains two groups
delimited by parentheses. If a program accesses the res-
ult matched by the third group, then an error occurs be-
cause there is no group three in this regular expression.

6.2 Semantic checking

Some researchers(67l focused on regular expressions
used to specify the structure of elements and attributes in
XML documents. The type system designed for such reg-
ular expressions aims at determining the program's se-
mantic errors, such as subtype checkingl®® 6. Subtype
checking means that given a function in which the input
and output are specified by regular expressions R; and
Ry, respectively, the type system statically verifies that
for any input that matches Rj, the output of this func-
tion always matches Ry. This checking can detect type-
related errors in the function. If subtype checking fails, it
might also indicate that the regular expressions specify-
ing input and output types are not correctly defined.

Automatic checking of regular expressions (ACRE)[™
attempts to statically detect semantic errors of regular
expressions used mainly in the area of string pattern
matching. It performs eleven checks on regular expres-
sions based on common mistakes for developing regular
expressions. For example, it checks invalid ranges within
a character set such as [A—z]. It is more likely that the
correct range should be [A-Z] or [a—z]. For another ex-
ample, it checks whether “braces” are balanced in the
matching strings; it helps to detect cases where strings
with unbalanced braces are incorrectly accepted. Con-
sider the syntactically correct expression “[{\(]?[0—
9]{3}[\)}]?” for example. The tools report that a braces-
unbalanced string “(000}” is accepted, which might not
be expected.

6.3 Verification

A verification framework for regular expressions is
proposed in [71]. The framework does not adopt the test-
ing techniques to validate regular expressions. Instead, it
allows users to express their expression requirements us-
ing natural language, which are then compiled into a kind
of domain-specific formal specifications. It then checks
the consistency between the formal specifications and the
verified regular expressions using equivalence checking.

We use the motivating example from [71] to briefly
explain how the verification framework works. Suppose
that the requirement of the regular expression to be veri-
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fied is informally stated using natural language, the valid
string should contain a sub-string X such that before X
there are only c's, after X there are only d's, in X, b’s and
a's alternate, and the first symbol in X is a, and the last
symbol is b. This requirement description is then further
translated into the following formal specifications:

my@spec = (

let X « [ab]*, // in X, b's and a's alternate

X — (?=a*b)ine; //in X, begin in a end in b

let e « (? = c*X.*), // there are only c's before X
e «— (? =*Xd*) in S; // there are only d's after X
)i

Finally, the framework converts this formal specifica-
tion into an automaton and conducts the equivalence
checking on this specification automaton, and the target
regular expression converted automaton, if they are equi-
valent, then the target regular expression is considered
correct; otherwise, the framework returns the “failed” in-
formation with counterexamples. For instance, if the veri-
fied expression is “c(ab)*d*” for the above example, the
framework reports “failed” with a counterexample
“caabd”, which is matched with the specifications but not
the target regular expression. In such a way, incorrect
regular expressions are detected. However, as pointed out
in [71], the translation of formal specifications from nat-
ural language descriptions is not always accurate and still
needs the users’ interaction.

7 Visualization and abstraction

It is a common agreement that regular expressions,
due to their complexity and compactness, introduce large
challenges to the composition and comprehension for de-
velopers. Visual representations or explanations of the un-
derlying structures of regular expressions can help to im-
prove the readability and understandability and thus the
quality of regular expressions. Many efforts have been put
into this direction.

7.1 Highlighting

Highlighting the syntax of regular expressions is a tra-
ditional way of visualization that is supported in almost
all text editors. Apart from this, some tools(”2-7 provide
debugging environments that can explain string match-
ing results by highlighting the parts of regular expres-
sions matching a certain string or highlighting the strings
matched by regular expressions. This helps to check
whether the matching results are expected.

7.2 Graphical representation

A regular expression can be transformed into an equi-
valent automaton, which in turn can be visualized as an
diagram. Several tools[” ™l such as RegExpert[™ and

RegExper!™], are developed to visualize regular expres-
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sions as their corresponding automaton-like graph repres-
entations. There are also some tools[" 80 that provide ad-
ditional tree views that show the hierarchical structure of
the regular expression components, enabling developers to
easily understand and track the structural and functional
relationships among the sub-expressions or components
contained in the regular expression. Oflazer and Yimaz[$!l
described a visual interface and a development environ-
ment for developing regular expressions that allow the
users to construct complex regular expressions via a drag
anddrop visual interface. Beck et al.82 proposed to show
the structures of regular expressions by augmenting the
original textual representations with visual elements in-
stead of using automaton-like graph representations or
tree-view representations. The developed tool highlights
the structure of a regular expression through horizontal
lines at the top and bottom of the expression and dis-
cerns special-purpose tokens by color. For example, it
highlights those repetition operators (*,7, {m,n}, etc.) in
yellow color and highlights the union operator (]) in blue
color. Groups in the regular expression are highlighted
through horizontal lines attached to the bottom of the ex-
pression. The stacking of these lines reflects the nesting
hierarchy of groups. Feedback from users show that such
a visualization approach is “intuitive”, “clear”, “self-ex-
plaining”, “easy to understand”, “helpful” and “useful”.

7.3 Abstraction

Erwig and Gopinath[!? tried to establish an abstrac-
tion mechanism to serve as explanations of regular ex-
pressions. They identified and abstracted the common
sub-expressions or components occurred in a regular ex-
pression, then introduced names for those common sub-
expressions, and finally obtained a representation that
directly reveals the overall structure of the original regu-
lar expression. As an example consider the regular expres-
sion (taken from [12]) “<\s*[aA]\s+[hH|[rR][eE][fF]|=f\s*>
\s¥\s*[¢I][mM][gG]\s+[sS][r R][cC]=\s*>["<>]*<\s* /[i]]
[mM][gG]\s*>\s*<\s*/[a A]\s*>". Tt is abstracted as the
following representation: “< g href =f > < img src=f >
[*<>]*< /img>< /a >", which makes much more clearer what
kind of strings the original regular expression describes.

8 Repairing

Repair of regular expressions is usually done by the
synthesis from examples. That is, if a regular expression
is incorrect, then a new set of examples is provided from
which the correct expression that is consistent with the
given examples is synthesized or learned. Li et al.[3l
aimed at repairing regular expressions that define lan-
guages larger than the intended ones. Therefore, to re-
pair a faulty regular expression, a new set of negative ex-
amples are required and the goal is to modify the origin-
al expression so that it rejects the new examples. On the



L. X. Zheng et al. / Ensuring the Correctness of Regular Expressions: A Review 531

contrary, Rebelel4 focused on repairing regular expres-
sions that define languages smaller than the intended
ones. Thus, a new set of positive examples is provided,
and the goal is to modify the original expression so that
it accepts the new examples. The repair processes of these
two works use a set of heuristics to transform an initial
regular expression into a modified one that accepts/re-
jects the new examples. The transformation rules include:
remove a disjunct from a union, for example, “alblc” to
“a|c”, or restrict the repetition range of a repetition oper-
ator, for example, “a{l1,3}” to “a{l,2}”, etc. However,
these repairs do not provide any minimality guarantees
and may produce regular expressions that are very differ-
ent from the original ones.

Pan et al. repaired regular expressions with both
positive and negative examples, and it guaranteed to find
the syntactically smallest repair of the original regular ex-
pression. Here, “smallest” is measured by the edit dis-
tance between the abstract syntax trees of the initial reg-
ular expression and the target regular expression. The re-
pair algorithm first generates a set of initial templates
based on the initial regular expression and the given pos-
itive and negative examples. It then processes the tem-
plates by discarding templates that cannot result in a
correct repair, generating new templates based on the
current ones until an optimal regular expression is ob-
tained. Some works have been conducted to study how to
repair the ReDoS vulnerable regular expressions/8 87,

Arcaini et al.[88] devised an evolutionary approach to
testing and repairing regular expressions. The approach
starts from an initial guess of the regular expression;
then, it repeatedly generates meaningful strings to check
whether they are accepted or not and tries to repair the
desired solution consistently. Cochran et al.3% proposed a
genetic programming approach to repairing regular ex-
pressions. It uses genetic programming operators over the
DFA representation of the regular expression, and then
the obtained DFA is converted back to a regular expres-
sion. The conversion from DFAs could yield expressions
that are completely different from the original ones.

Arcaini et al. presented an iterative mutation-based
process for testing and repairing regular expressions. For
a regular expression, the approach generates a set of
strings that distinguishes the regular expression from its
mutants and asks the users to assess the correct evalu-
ation of these strings. If a mutant evaluates these strings
more correctly than the original regular expression, then
it substitutes the faulty expression with this mutant. This
process iterates until no mutants better than the original
expression are found. However, the repair process re-
quires a lot of users' efforts as they are frequently asked
to assess the correctness of the strings’ evaluation or to
judge whether a mutant is better than the original ex-
pression.

9 Conclusions

Regular expressions are widely used in different fields

within and even outside of computer science. Ensuring
the correctness of regular expressions is a vital prerequis-
ite for their usage in practical applications. In recent
years, efforts have been made to assist users or program-
mers in writing correct regular expressions or to validat-
ing the correctness of regular expressions. In this paper,
we have conducted a review around this topic. In particu-
lar, we have classified existing relevant works into six cat-
egories, including 1) empirical study on various problems
in the development of regular expressions, 2) test string
generation from regular expressions, 3) automatic learn-
ing or synthesis of regular expressions from example
strings or specifications, 4) statically checking the syntax
or specific semantic errors in regular expressions or verify-
ing regular expressions with specifications, 5) visual rep-
resentations or explanations of the underlying structures
of regular expressions, and 6) repairing of faulty regular
expressions. For each category, we have reviewed differ-
ent approaches and discussed their advantages and disad-
vantages. Table 2 provides an overview of our classifica-
tion.

The importance of ensuring the correctness of regular
expressions is just beginning to be addressed, and the
current research progress on this topic is far from enough.
There are still a few research problems waiting for new
solutions and tools, and we list some in the following:

1) Generation of negative strings. Generating test
strings is a common yet effective way to discover errors in
regular expressions. Empirical studies show that a major-
ity of faulty regular expressions define languages that are
too constrained, i.e., they reject valid strings. Such a kind
of fault cannot be detected by positive strings generated
from the incorrect expressions. Therefore, generating
meaningful negative strings outside of the regular expres-
sion languages is an important problem to study.

2) Refactoring of regular expressions. The lack of
readability is usually a pain point for composing and re-
using high-quality regular expressions. Thus, refactoring
transformations are needed to enhance the readability or
comprehension of regular expressions. For example, \d is
semantically equivalent to [0123456789] and [0—9]. While
\d is more succinct, [0-9] may be easier to read.

3) Fault location and automatic repair. Fault detec-
tion and diagnosis is, in general, a challenging problem[1].
Nevertheless, even though a regular expression is detec-
ted incorrectly defined, locating the faulty areas and fur-
ther repairing them are even more difficult, as practical
expressions are usually large and have complex struc-
tures. Existing works on fault location and automatic re-
pair of regular expressions are relatively insufficient.
Much attention is needed to be paid to these issues.
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Table 2 Classification of recent works on ensuring correctness of regular expressions
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